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1 Introduction

The natural gauge invariant objects in any gauge theory include scattering amplitudes, Wil-

son loops, correlation functions and form factors of local operators. In the past years numer-

ous studies have revealed interesting duality relations between the first three objects in pla-

nar N = 4 SYM theory. The simplest MHV gluon scattering amplitude An(p1, . . . , pn) has

been shown [1–3] to be dual to a Wilson loop Wn(x1, . . . , xn) defined on a lightlike contour,

An(p1, . . . , pn) = Wn(x1, . . . , xn) , (1.1)

upon the identification of the separation between the cusp points xi of the contour with the

particle momenta pi in Minkowski space, xi−xi+1 = pi for i = 1, . . . , n and xn+1 ≡ x1. This

duality has a natural supersymmetric extension [4–6] where the super-lightlike contour is

built out of the on-shell supermomenta of the scattered particles. The correlation functions

Gn = 〈O(x1) . . . O(xn)〉 of local gauge invariant operators O(x) are dual to the Wilson loops

(and hence to the amplitudes) in the lightlike limit [7, 8], limx2
i,i+1→0 x

2
12 . . . x

2
n1 Gn = Wn.

This duality has a supersymmetric generalisation as well [9–11].

The fourth object is the form factor 〈0|O(x)|k1, . . . , km〉 of a local operator O(x) with

an asymptotic m−particle state of on-shell momenta k2j = 0 for j = 1, . . . ,m. It is a hybrid

between correlation functions and scattering amplitudes because it lives simultaneously in

coordinate and momentum spaces. Such form factors (and their supersymmetric extensions

in N = 4 SYM) have been actively studied in recent years [12–18]. It is interesting to know

if there are possible duality relations for them as well. This question has been addressed

in [19] but for a more complicated object, the matrix element of a lightlike bosonic Wilson

loop stretched between local operators along a single light-cone direction, with an on-shell

state. It has been shown that this object is dual to itself upon swapping the coordinate and

momentum data. It has also been conjectured there that the new duality may extend to a

larger class of objects, namely the form factor Wn,m = 〈0|Wn(x1, . . . , xn)|k1, . . . , km〉 of an

n−gon lightlike (supersymmetric) Wilson loop with an m−particle state. Schematically,

the suggested duality takes the form

Wn,m({x}|{k}) = Wm,n({y}|{p}) , (1.2)

where the kinematical data on both sides are related as in (1.1),

xi − xi+1 = pi , yj − yj+1 = kj , (1.3)

for i = 1, . . . , n and j = 1, . . . ,m provided that the total momenta of the particles vanish,∑n
i=1 pi =

∑m
j=1 kj = 0. This conjecture has been successfully tested in [20] in the simplest

case of a Wilson loop with a state of helicity (+1) gluons and in the Born approximation.

Building upon the observations in [19] and [20], in this paper we study the general case

of the form factor for a lightlike supersymmetric Wilson loop and we argue that it has a

remarkable duality property in planar N = 4 SYM. It extends the bosonic relation (1.2)

and the identification of coordinates with momenta (1.3) to their supersymmetric analogs.

The super-Wilson loop form factors are considered in the planar limit and in the lowest-

order perturbative approximation (Born level). The introduction of Grassmann variables

– 2 –
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(θi on the Wilson loop contour and ηj for the on-shell states) allows us to probe the duality

for more complicated configurations of particle helicities. By analogy with the amplitudes,

we call the contributions at the lowest level in the Grassmann expansion MHV-like, at

the next level NMHV-like, etc. At MHV level we confirm the result of [20]. The NMHV

level is much more complicated, the form factor being a non-trivial rational function of

the kinematical data. Yet, we show that the duality still works, in a rather simple and

suggestive way, by just matching planar Feynman diagrams. This allows us to argue that

it should hold for the complete supersymmetric object (at all Grassmann levels) and also

beyond the Born approximation.

The key to understanding the duality is the appropriate superspace formulation of the

Wilson loop and its form factor. In the conventional approach the chiral supersymmetric

Wilson loop [4–6] is formulated in terms of constrained on-shell super-connections [21, 22],

which makes the Feynman diagram technique highly inefficient. In this paper we prefer

to use the Lorentz harmonic chiral (LHC) superspace approach [23]. It provides an off-

shell formulation of the chiral N = 4 SYM theory in terms of unconstrained prepotentials,

best suited for supersymmetric quantisation. LHC superspace is an alternative to the

twistor formulation [24, 25], closer in spirit to traditional field theory (see also [26]). The

main idea is to consider the interacting theory as a perturbation of the self-dual sector.

The twistor formulation has been successfully used to justify the so-called MHV rules

for the computation of the amplitude [27], to prove the duality between supersymmetric

Wilson loops and amplitudes [5], to compute off-shell correlation functions of the N = 4

stress-tensor multiplet [28]. More recently, the LHC formalism was applied to finding

the non-chiral completion of the correlators [29] and to the calculation of form factors of

local operators [30]. In this paper, after explaining the kinematical setup in section 2, we

formulate the lightlike Wilson loop in LHC superspace in section 3 and apply the Feynman

rules of [30] to the computation of its form factors in section 4. We find an important

additional contribution to the Wilson loop, compared to the twistor formulation [5]. It is

needed to make the Wilson loop gauge invariant.

The duality essentially works on a graph-to-graph basis. More precisely, we find two

types of Feynman graphs corresponding to two different helicity configurations at NMHV-

like level. These graphs are dual to each other after identifying the kinematical data as

in (1.3) and redrawing the graph following a simple rule. In addition to these graphs there

are sets of graphs whose role is to restore gauge invariance. We use a light-cone gauge whose

parameter is the so-called reference spinor. A known problem of such gauges is the presence

of spurious poles. Their elimination in the Feynman graphs (and hence the restoration of

gauge invariance) is a somewhat subtle procedure which we describe in detail in section 5.

We end the paper with several appendices. In appendix A we explain how to obtain

the LHC formulation of the lightlike Wilson loop starting from the standard one with

constrained super-connections. In appendix B we summarise the Feynman rules in the light-

cone gauge. In appendix C we derive some Fourier transforms that we need for establishing

the duality. In appendix D we explain the mechanism of spurious pole cancellation in the

boundary cases.
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2 Definitions and summary of the results

2.1 Generalised form factors of Wilson loops

In this paper, we study a new object — the generalised form factor of the lightlike Wilson

loop. In N = 4 SYM with gauge group SU(N) it is defined as the matrix element of

a lightlike n−gon supersymmetric Wilson loop Wn with the on-shell m−particle state

|1a1 . . .mam〉:

〈0|Wn|1
a1 . . .mam〉 =

1

N
〈0|trP exp

[
i

∮

Cn

(
dxµAµ(x, θ) + dθαAAαA(x, θ)

)]
|1a1 . . .mam〉 ,

(2.1)

where the integration goes over a closed contour Cn formed by n straight lightlike segments

connecting the superspace points (xi, θi). The bosonic and fermionic gauge connections,

Aµ and AαA, have expansions in powers of θ’s with coefficients given in terms of the gluon,

gaugino and scalar fields. Their explicit expressions are shown below in (2.28).

In the planar limit, the form factor can be decomposed in the standard manner over

the basis of single traces,

〈0|Wn|1
a1 . . .mam〉 =

∑

σ∈Sm/Zm

tr(T aσ1 . . . T aσm )Fn,m(σ1, . . . , σm) , (2.2)

where the sum runs over all permutations of the external particles σ1, . . . , σm modulo

cyclic shifts. The matrix element (2.2) is a natural generalisation of lightlike Wilson loops

〈0|Wn|0〉 and scattering amplitudes A(1a1 . . .mam). In fact, it gets a disconnected contribu-

tion given by their product. In what follows we discard it and consider only the connected

contribution to (2.2).

The color-ordered form factors Fn,m depend on two sets of variables. The first set

consists of n coordinates in Minkowski space-time and their odd superpartners (xα̇αi , θαAi )

specifying the position of the vertices of a lightlike n−gon,1

(xi − xi+1)
2 = 0 , (xi − xi+1)

α̇α (θAi,α − θAi+1,α) = 0 (2.3)

for i = 1, . . . , n, with the cyclicity conditions xn+1 = x1 and θn+1 = θ1. Here the first

relation means that the Wilson loop is built from lightlike segments and the second relation

is its superpartner.

The second set of variables consists of the on-shell momenta of m particles (kα̇αj , ηjA)

kα̇αj = k̃α̇j k
α
j ≡ |kj ]〈kj | (2.4)

with k2j = 0 and j = 1, . . . ,m. Like the scattering amplitudes, the expansion of the on-shell

state in powers of ηjA corresponds to particles with different helicity (gluons, gaugini and

scalars). Each particle superstate carries one unit of helicity. It is then convenient to intro-

duce the helicity-free function Wn,m multiplying (2.2) by the so-called Parke-Taylor factor

Wn,m = 〈k1k2〉〈k2k3〉 . . . 〈kmk1〉 Fn,m(1, . . . ,m) , (2.5)

1We use two-component spinor notation for vectors, e.g., xα̇α = (σµ)
α̇αxµ. The Lorentz and R symmetry

indices take values α = 1, 2, α̇ = 1, 2 and A = 1, 2, 3, 4, respectively.
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where 〈kikj〉 = kαi ǫαβk
β
j . The scalar function Wn,m defined in this way depends on the two

sets of variables introduced above,

Wn,m = Wn,m({x, θ}; {k, η}) . (2.6)

As follows from the definition (2.2), this function is invariant under cyclic shifts of the

coordinates and momenta.

2.2 Dual variables

To elucidate the interesting properties of Wn,m we introduce the so-called dual superspace

variables [31]. The coordinates of the Wilson loop (xi, θ
A
i ) have the dual momenta (pi, ω

A
i )

defined as

xi − xi+1 = pi , |θAi 〉 − |θAi+1〉 = |pi〉ω
A
i , (2.7)

where we do not display the Lorentz indices for simplicity. It follows from (2.3) that pi are

lightlike vectors, p2i = 0, satisfying the condition
∑n

i=1 pi = 0. Similarly, the odd variables

ωA
i satisfy the relation

∑n
i=1 |pi〉ω

A
i = 0 and solve the second condition in (2.3). Note

that the properties of (pi, ω
A
i ) (with i = 1, . . . , n) match those of the supermomenta of the

on-shell states in the scattering amplitude An. This observation was crucial in establishing

the duality between the lightlike Wilson loop Wn and the scattering amplitude An.

For the set of on-shell momenta (kj , ηjA), the dual coordinates are defined as

kj = yj − yj+1 , |kj〉 ηjA = |ψj,A〉 − |ψj+1,A〉 . (2.8)

Here the dual momenta y1, . . . , ym+1 are consecutively lightlike separated, (yi − yi+1)
2 =

0 and their superpartners satisfy (yj − yj+1)(|ψj,A〉 − |ψj+1,A〉) = 0. Note the striking

similarity between relations (2.7) and (2.8). Namely, these relations can be mapped into

each other by exchanging coordinates with dual momenta, (x, θ) → (y, ψ), and momenta

with dual coordinates, (k, η) → (p, ω).

There is however an important difference between the two sets of dual coordinates.

The dual vectors pi define the edges of a closed n−gon and their sum equals zero. The

same is true for the sum of dual odd coordinates |pi〉ω
A
i ,

n∑

i=1

pi = x1 − xn+1 = 0 ,
n∑

i=1

|pi〉ω
A
i = |θA1 〉 − |θAn+1〉 = 0 , (2.9)

so that the dual variables satisfy the periodicity conditions xi = xi+n and θAi = θAi+n. For

the dual momenta the analogous relations read

m∑

j=1

kj = y1 − ym+1 = K ,
m∑

j=1

|kj〉 ηjA = |ψ1,A〉 − |ψm+1,A〉 = QA , (2.10)

where K and Q are the total momentum and supercharge of the m particles in (2.2),

respectively. In contrast with (2.9), K and Q can take arbitrary values and there are no

reasons to impose the periodicity conditions ym+1 = y1 and ψm+1,A = ψ1,A. Indeed, the

function (2.6) is well defined for arbitrary K and Q.

– 5 –
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Figure 1. Diagrammatic representation of the duality relation (2.13). The Wilson loop on the left

is built out of lightlike vectors p1, . . . , pn, the wavy lines denote on-shell particles with momenta

k1, . . . , km and the dash lines stand for free propagators. Black and white dots denote effective

vertices. The dual Wilson loop form factor on the right has the lightlike vectors and momenta

exchanged. The middle figure explains the duality by superimposing the two graphs.

2.3 Duality relation

Setting K = QA = 0 in (2.10) we restore the symmetry between (2.9) and (2.10). This

allows us to treat the original variables and their dual counterparts on an equal footing. In

this paper we argue that for K = QA = 0 the symmetry of Wn,m is enhanced and yields an

interesting duality relation for Wn,m that we shall formulate in a moment. More precisely,

we can use the dual variables to define, following (2.2), the matrix element of the lightlike

Wilson loop 〈0|Wm|1a1 . . . nan〉. Here the Wilson loop is evaluated along a closed lightlike

m−gon with vertices located at (yj , ψj) and the on-shell state consists of n particles with

supermomenta (pi, w
A
i ). This matrix element has the same general form (2.2) and (2.5),

with the corresponding scalar function Wm,n given by

Wm,n = Wm,n({y, ψ}; {p, ω}) . (2.11)

Applying relations (2.7) and (2.8) we can express it in terms of the original variables {xi, θi}

and {kj , ηj}.

The duality relation that we propose states that the functions (2.6) and (2.11) coincide

in planar N = 4 SYM,

Wn,m({x, θ}; {k, η}) = Wm,n({y, ψ}; {p, ω}) . (2.12)

Using the definition of the dual variables we can rewrite the duality relation in other

equivalent forms, e.g.

Wn,m({p, ω}; {k, η}) = Wm,n({k, η}; {p, ω}) . (2.13)

This relation is represented diagrammatically in figure 1.

The duality relation (2.12) should hold for any values of n and m. As a simple il-

lustration, we examine it for the lowest values of n and m. In the special cases m = 0

(or n = 0) we recover the well-known duality between the n−point superamplitude and

the n−point super-Wilson loop. Since the n−gon Wilson loop is well defined for n ≥ 2,

– 6 –
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we start with n = 2, 3. In this case, the cusp points xi satisfying (2.3) have to lie on the

same light-ray in Minkowski space-time. Then, the integration contour of the Wilson loop

collapses to a backtracking path leading to W2 = W3 = 1. As a consequence, the matrix

element on the left-hand side of (2.2) only receives disconnected contributions yielding the

vanishing of Wn,m({x, θ}; {k, η}) for n = 2, 3. The duality relation (2.12) implies that the

same should be true for Wm,n({y, ψ}; {p, ω}) for n = 2, 3. Indeed, the corresponding matrix

element (2.2) involves an on-shell state with (real valued) lightlike momenta ki that are

necessarily aligned due to
∑

i ki = 0. In this case 〈kikj〉 = 0 and it follows from (2.5) that

Wm,n vanishes, in agreement with (2.11).

2.4 Duality relation at MHV level

Let us now consider the duality relation for n,m ≥ 4. In this case both sides of (2.12) are

different from zero and are given by nontrivial functions of the kinematical variables and

of the ’t Hooft coupling constant. In what follows we shall restrict our consideration to the

lowest order in the coupling (Born level). Expanding both sides of (2.12) in the Grassmann

variables, we can get relations between the different components. By analogy with the

scattering amplitudes, we shall refer to the terms of the expansion as MHV, NMHV, etc.

Notice that since Wn,m({x, θ}; {k, η}) depends on two sets of Grassmann variables θi and

ηj , we will have to deal with a double expansion of the form NκMHV ×NσMHV.

The lowest term of the expansion, MHV×MHV, corresponds to (2.12) with all Grass-

mann variables put to zero on both sides of the relation. Namely, for θi = 0 the super

Wilson loopWn reduces to the bosonic lightlike Wilson loop and for ηj = 0 the on-shell state

in (2.2) reduces to a gluon state of helicity (+1). In this way, from (2.1) and (2.2) we obtain

FMHV×MHV
n,m (x, k) =

1

N
〈0|tr

(
E1n . . . E32E21

)
|k+1 . . . k+m〉 , (2.14)

where Ei+1,i denotes a bosonic Wilson line in the fundamental of SU(N) evaluated along

the lightlike segment [xi, xi+1]

Ei+1,i = P exp

(
−i

∫ 1

0
dt pi ·A(xi − pit)

)
, (2.15)

with pi = xi − xi+1. Notice that the ordering of the E−factors inside the trace in (2.14) is

opposite to that of the gluons in the on-shell state.

In the Born approximation, AMHV×MHV
n,m is given by the sum of tree Feynman diagrams

in which the on-shell gluons are attached to the lightlike n−gon contour either directly

or through 3− and 4−gluon interaction vertices. The calculation can be simplified by

introducing the notion of a “wedge”, i.e. a cusped Wilson line built from two semi-infinite

rays running along the lightlike vectors −p1 and p2 and joining at point x:

Wp2,p1(x) = P

[
exp

(
i

∫ ∞

0
dt p2 ·A(x+ p2t)

)
exp

(
−i

∫ 0

−∞
dt p1 ·A(x− p1t)

)]
. (2.16)

In the product Wp3,p2(x3)Wp2,p1(x2) with p2 = x2 − x3, it is easy to see that the two semi-

infinite rays running along p2 partially cancel against each other giving rise to E32. In this

– 7 –
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x1x2

x3

x4 x5

x6

y1

y2

y3 y4

y5
p1

p2

p3
p4p5

p6

k1

k2

k3
k4

k5

Figure 2. Diagrammatic representation of the duality relation (2.25) for n = 6 and m = 5.

Notice that the polygon vertices and the gluons are ordered in opposite directions. Black blobs

with outgoing gluons denote wedge form factors (2.19). The lightlike edges of the Wilson loops are

mapped to the momenta of the on-shell gluons, ki = yi − yi+1 and pj = xj − xj+1.

way, we can rewrite (2.14) as

FMHV×MHV
n,m (x, k) =

1

N
〈0|tr

[
Wpn,pn−1(xn) . . .Wp2,p1(x2)Wp1,pn(x1)

]
|k+1 . . . k+m〉 . (2.17)

The advantage of this representation is that, in the Born approximation, the on-shell gluons

can be emitted by one of the W−factors thus allowing us to express the matrix element

on the right-hand side of (2.17) as the sum over all possible attachments of m gluons to n

wedges

FMHV×MHV
n,m =

∑

ℓ1<···<ℓs

∑

1≤is<···<i1≤n

〈0|Wpi1 ,pi1−1(xi1)|k
+
ℓ1
. . . k+ℓ2−1〉 (2.18)

× 〈0|Wpi2 ,pi2−1(xi2)|k
+
ℓ2
. . . k+ℓ3−1〉 . . . 〈0|Wpis ,pis−1(xis)|k

+
ℓs
. . . k+ℓ1−1〉 .

Here the first sum goes over all possible partitions of m gluons over s clusters (with s ≤

n) and the second sum runs over all possible wedges xi1 , . . . , xis to which these clusters

are attached. The difference in the ordering of indices ℓk and ik in (2.18) is due to the

opposite ordering of the E−factors and gluons in (2.14). Relation (2.18) is represented

diagrammatically in figure 2.

Relation (2.18) involves the so-called wedge form factor 〈0|Wp2,p1(x)|k
+
1 . . . k+ℓ 〉. Since

the on-shell state contains only gluons of the same helicity, its calculation in the Born

approximation can be performed in the self-dual sector of Yang-Mills theory [20, 26]

〈0|Wp2,p1(x)|k
+
1 . . . k+ℓ 〉 = F (p2, k1, . . . , kℓ, p1) e

ix(k1+...+kℓ) . (2.19)

Here the dependence on x is fixed by Poincaré symmetry and the order of the arguments

of the F−function matches the color ordering of the gluons. Its explicit expression reads

– 8 –
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(see section 4.1 for more details)

F (p2, k1, . . . , kℓ, p1) =
〈p2p1〉

〈p2k1〉〈k1k2〉 . . . 〈kℓp1〉
. (2.20)

Substituting (2.19) and (2.20) in (2.18) and matching the result with (2.5) we find

WMHV×MHV
n,m (x, k) =

∑
eixi1

yℓ1ℓ2+ixi2
yℓ2,ℓ3+...+ixisyℓs,ℓ1 (2.21)

×
〈kℓ1−1kℓ1〉〈pi1pi1−1〉〈kℓ2−1kℓ2〉〈pi2pi2−1〉 . . . 〈kℓs−1kℓs〉〈pispis−1〉

〈kℓ1pi1〉〈pi1−1kℓ2−1〉〈kℓ2pi2〉〈pi2−1kℓ3−1〉 . . . 〈kℓspis〉〈pis−1kℓ1−1〉
,

where the sum covers the same range as in (2.18). Here we used (2.8) to switch to dual

momenta in the exponent, e.g. yℓ1ℓ2 = kℓ1 + . . . + kℓ2−1. We recall that for vanishing

total momentum K =
∑m

i=1 ki = 0, the dual momenta satisfy the periodicity condition

ym+1 = y1. Using this property, we can rewrite the exponential factor in (2.21) in the

equivalent form

eiyℓsxis,is−1
+...+iyℓ2xi2i1

+iyℓ1xi1is . (2.22)

We observe that it can be obtained from the original factor by swapping the variables

xi1 ↔ yℓs , xi2 ↔ yℓs−1 , . . . , xis ↔ yℓ1 . (2.23)

Let us now examine the expression in the second line of (2.21). It depends on two sets of

null vectors pi and ki defining the edges of the lightlike Wilson loop and the momenta of

the on-shell gluons, respectively. It is straightforward to verify that it is invariant under

the swapping of these vectors

kℓ1 ↔ pis , kℓ2 ↔ pis−1 , . . . , kℓs ↔ pi1 . (2.24)

Putting together (2.23) and (2.24), we immediately conclude that the expression on the

right-hand side of (2.21) is invariant under the exchange of the original variables (x, k) with

their dual partners (y, p). This yields the duality relation

WMHV×MHV
n,m (x, k) = WMHV×MHV

m,n (y, p) , (2.25)

in agreement with [20].

2.5 Duality beyond MHV

To test the duality relation (2.12) beyond MHV level, we have to take into account the

dependence of the Wilson loop form factor (2.1) on the Grassmann variables θAi and ηjA.

The dependence on η comes from the expansion of the on-shell super-state in (2.1) over

the states of particles (gluons, gaugino and scalars) with different helicity.

At the same time, the dependence of (2.1) on θ comes from the expansion of the

supersymmetric n−gon Wilson loop

Wn =
1

N
tr
(
E1n . . . E32 E21

)
(2.26)

– 9 –



J
H
E
P
0
4
(
2
0
1
8
)
0
2
9

in powers of θi defining the position of vertices of the lightlike n−gon in (chiral) super-

space. Here the supersymmetric Wilson line Ei+1,i is evaluated along the straight segment

connecting the superspace points (xi, θi) and (xi+1, θi+1)

Ei+1,i = P exp

[
−i

∫ 1

0
dt

(
1

2
xα̇αi,i+1Aαα̇(x(t), θ(t)) + θαAi,i+1AαA(x(t), θ(t))

)]
, (2.27)

where x(t) = xi − xi,i+1 t and θ(t) = θi − θi,i+1 t. The super-connections A are subject to

the defining on-shell constraints of N = 4 SYM [32]. One way of solving them is to fix the

non-supersymmetric Wess-Zumino gauge and express the components of A in terms of the

propagating gluon, gaugino and scalar fields [21, 22]

Aαα̇ = Aαα̇ + iθAα ψ̄α̇A +
i

2!
θAα θ

βBDβα̇φ̄AB −
1

3!
ǫABCDθ

A
α θ

βBθγCDβα̇ψ
D
γ + . . .

AαA =
i

2
φ̄ABθ

B
α −

1

3!!
ǫABCDθ

B
α θ

γCψD
γ +

i

4!!
ǫABCDθ

B
α θ

βCθγDFβγ + . . . , (2.28)

where the dots denote higher-order terms in θ.

Before continuing let us examine the superspace structure we should expect this object

to have arising from supersymmetry. The chiral supersymmetry of (2.6) yields the Ward

identity ( n∑

i=1

∂

∂θAi
+

m∑

j=1

|kj〉ηj,A

)
Wn,m({x, θ}; {k, η}) = 0 . (2.29)

The duality relation is expected to hold if the total particle supercharge vanishes, QA =∑m
j=1 |kj〉 ηjA = 0. Then (2.29) implies that Wn,m can be an arbitrary function of θAij =

θAi − θAj and ηkA. In virtue of the R symmetry, these variables must form SU(4) invariants.

The latter are of three different kinds: ǫABCDθ
A
ii′θ

B
jj′θ

C
kk′θ

D
ll′ , η

4
ijkl = ǫABCDηiAηjBηkCηlD

and (θijηk) = θAij ηkA. The dependence on these invariants simplifies further in the Born

approximation.

To compute Wn,m in the Born approximation, we substitute (2.26)–(2.28) into the

definition (2.1) and retain the contribution at the lowest order in the coupling. Since the

dependence on θ’s comes from the expansion of the bosonic and fermionic connections

in (2.28), the number of contributing diagrams and their complexity increases significantly

as compared with the MHV case described in the previous subsection. Moreover, the

use of the Wess-Zumino gauge (2.28) breaks manifest supersymmetry. This makes the

conventional approach impractical.

In this paper we prefer the off-shell formulation of the chiral N = 4 SYM theory in

terms of unconstrained prepotentials in LHC superspace [23], better suited for supersym-

metric quantisation. In section 3 we formulate the lightlike Wilson loop in LHC superspace

and apply the Feynman rules of [30] to the computation of its form factors.

In this new formulation, Wn,m({xi, θi}; {kj , ηj}) is given by a sum of contributions

having a similar structure to (2.18), with the important difference that the wedge form

factors are replaced by their supersymmetric generalisations depending on the Grassmann

variables θAi and ηjA. This leads to the following general expression for Wn,m,

Wn,m =
∑

eixi1
yℓ1ℓ2+ixi2

yℓ2,ℓ3+...+ixisyℓs,ℓ1 × e〈θi1ψℓ1ℓ2
〉+〈θi2ψℓ2ℓ3

〉+...+〈θisψℓsℓ1
〉 × Ŵn,m ,

(2.30)
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which should be compared with (2.21). Here we used shorthand notation for 〈θi1ψℓ1ℓ2〉 =

θαAi1 (ψℓ1,αA − ψℓ2,αA) with the dual ψ−variables defined in (2.8). The sum in (2.30) has

the same form as in (2.18) and runs over all possible partitions of m super particles over

s clusters. Notice that the function Ŵn,m depends on the choice of partition. The second

exponent on the right-hand side of (2.30) is the supersymmetric completion of the first

exponent depending on the bosonic variables.

Most importantly, as we show below by exploring the structure of the Feynman dia-

grams, the function Ŵn,m does not depend on the mixed products of Grassmann variables

(θijηk) in the Born approximation.2 This allows us to expand Ŵn,m in powers of the two

remaining invariants leading to the following relation

Ŵn,m = W (0,0)
n,m +

(
W (1,0)

n,m +W (0,1)
n,m

)
+
(
W (2,0)

n,m +W (1,1)
n,m +W (0,2)

n,m

)
+ . . . , (2.31)

where W
(κ,σ)
n,m is a homogenous polynomial in θ’s and η’s of degree 4κ and 4σ, respectively.

Schematically, W
(κ,σ)
n,m ∼ θ4κη4σ. By analogy with the superamplitude, we refer to the

terms on the right-hand side of (2.31) with κ + σ = k as NkMHV-like. The lowest term

of the expansion, W
(0,0)
n,m , defines the MHV-like contribution WMHV×MHV

n,m discussed in the

previous subsection. Its explicit expression can be read from (2.21).

Substituting (2.30) and (2.31) into (2.12), we can formulate the duality relation in each

sector,

W (κ,σ)
n,m ({x, θ}; {k, η}) = W (σ,κ)

m,n ({y, ψ}; {p, ω}) . (2.32)

The explicit expressions for W
(κ,σ)
n,m for generic κ and σ are rather complicated even in the

Born approximation. Nevertheless, as we show below, the duality relation (2.32) can be

verified by matching into each other the diagrams contributing to both sides of (2.32).

3 Lightlike Wilson loop in LHC superspace

As mentioned in the introduction, the conventional formulation (2.27) of the chiral super-

symmetric Wilson loops, making use of constrained super-connections, is not convenient

for quantum calculations. The LHC superspace approach, where the dynamical gauge pre-

potentials are unconstrained, is much more efficient. In this section we start by a brief

summary of the LHC superspace description of N = 4 SYM. Then we present the explicit

form of the Wilson loop in LHC superspace, in terms of the two unconstrained gauge pre-

potentials (the detailed derivation is shown in appendix A). Our formulation is similar to

the twistor one of Mason and Skinner in [5] but differs from it in an essential point.

3.1 N = 4 super-Yang-Mills in LHC superspace

Here we recall some basic facts about N = 4 SYM in LHC superspace (for details see [23]).

The theory is formulated in terms of two dynamical chiral superfields (prepotentials),

A++(x, θ+, u) , A+
α̇ (x, θ

+, u) . (3.1)

2This does not follow from chiral supersymmetry (2.29) and it would be interesting to understand the

symmetry leading to such a structure.
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Here θ+A = θAαu
+α is a projection of the chiral Grassmann variable with a harmonic variable

u+α. This commuting spinor variable together with its conjugate u−α form a matrix of the

chiral half SU(2)L of the Euclidean Lorentz group SO(4) ∼ SU(2)L×SU(2)R. The harmonic

variables u± parametrise the coset space S2 ∼ SU(2)L/U(1). The superfields (3.1) are in-

terpreted as infinite harmonic expansions on the sphere, i.e. homogeneous series in the har-

monic variables u± with fixed U(1) charge. For example, in the expansion of A+
α̇ (x, θ

+, u) =

Aαα̇(x)u
+α + Aαβγα̇(x)u

+αu+βu−γ + . . . + O(θ) we find the ordinary gauge field Aαα̇(x)

and an infinite set of auxiliary higher-spin fields Aαβγα̇(x), . . . . Note the absence of the

other projection θ−A = θAαu
−α in (3.1). Such superfields are called chiral-analytic.

The prepotentials have the meaning of the connections for two of the gauge covariant

derivatives in the theory, namely

∇++ = ∂++ +A++ , ∇+
α̇ = ∂+

α̇ +A+
α̇ . (3.2)

Here ∂+
α̇ = u+α∂αα̇ is a projection of the space-time derivative ∂x while ∂++ = u+α∂/∂u−α

is one of the two covariant derivatives on S2. These derivatives transform with a gauge

parameter of the chiral-analytic type,

∇ → eΛ(x,θ
+,u) ∇ e−Λ(x,θ+,u) . (3.3)

The remaining gauge connections can be constructed from the prepotentials by solving the

various super-curvature constraints. In particular, the projected spinor derivative ∂+
A =

u+α∂/∂θαA commutes with the gauge parameter Λ(x, θ+, u), hence it needs no connection,

∇+
A = ∂+

A .

The action of the theory consists of two terms,

SN=4 SYM =

∫
dud4xd4θ+ LCS(x, θ

+, u) +

∫
d4xd8θ LZ(x, θ) . (3.4)

The first term in (3.4) is of the Chern-Simons type,

LCS(x, θ
+, u) = tr

(
A++∂+α̇A+

α̇ −
1

2
A+α̇∂++A+

α̇ +A++A+α̇A+
α̇

)
(3.5)

and it describes the self-dual sector of the theory [33]. The second term in (3.4) involves

only the prepotential A++ in a non-polynomial way [24, 34],

LZ = tr
∞∑

n=2

(−1)n

n

∫
du1 . . . dun

A++(x, θ+1 , u1) . . . A
++(x, θ+n , un)

〈u+1 u
+
2 〉 . . . 〈u

+
n u

+
1 〉

, (3.6)

where θ+A
i = θαA(ui)

+
α with i = 1, . . . , n and 〈u+i u

+
j 〉 = u+α

i ǫαβ u
+β
j . This Lagrangian is

local in (x, θ) space but non-local in the harmonic space (each copy of A++ depends on

its own harmonic variable). The gauge coupling constant g can be restored by redefining

A → gA and L → g−2L.

In this paper we are dealing with form factors, so we need to define the supersym-

metric on-shell states. A detailed discussion can be found in [30], here we only recall that
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the super-wave functions of the prepotentials A in the state with (super)momentum (k, η)

have the form

〈k, η|A++(x, θ+, u)|0〉 = δ2(k, u)eikx+〈kθ〉η , 〈k, η|A+
α̇ (x, θ

+, u)|0〉 = 0 (3.7)

provided we quantise the theory in the light-cone gauge (B.1). The harmonic delta func-

tion δ2(k, u) identifies the harmonic variable of the field with the chiral spinor momentum,

u+α = kα. Notice that only the prepotential A++ has a non-trivial wave function, while A+
α̇

does not appear in external states.

3.2 Chiral Wilson loop in LHC superspace

Now, the question arises how to reformulate the Wilson loop (2.26), (2.27) in terms of the

prepotentials? The detailed answer is given in appendix A, here we just summarise it.

The chiral lightlike Wilson loop in LHC superspace takes the following form:

Wn =
1

N
tr

n∏

i=1

U(xi, θi; pi, pi−1)Ei+1,i . (3.8)

Here the so-called bilocal bridge

U(x, θ; p2, p1) = 1 +

∞∑

n=1

(−1)n
∫

du1 . . . dun
〈p2p1〉A

++(1) . . . A++(n)

〈p2u
+
1 〉〈u

+
1 u

+
2 〉 . . . 〈u

+
n p1〉

(3.9)

resembles the interaction Lagrangian (3.6). The bridges glue together adjacent Wilson line

segments in (3.8),

Ei+1,i = P exp

{
−
i

2

∫ 1

0
dt p̃α̇i A

+
α̇

(
xi − tp̃ipi, 〈piθi〉, |pi〉

)}
. (3.10)

We remark that in the expression for the Wilson loop (3.8) the prepotential A++ appears

only at the cusps of the Wilson loop contour via the bilocal bridge U (3.9), while the other

prepotential A+
α̇ contributes only through the edges of the contour.

We would like to emphasise that the definition of the Wilson loop (3.8) differs from the

twistor formulation of Mason and Skinner [5]. They have the analog of the bilocal bridge

U (called ‘parallel propagator’) but not the Wilson line segments Ei+1,i (see the discussion

in appendix A.3). We believe that their definition is not gauge invariant and hence it is

incomplete. Still, the result of their calculation of the NMHV Wilson loop is correct, for a

reason which will become clear at the end of section 5. However, as we show in this paper,

the Wilson line segments in (3.8) are indispensable for obtaining a gauge-invariant result

for the Wilson loop form factor.

4 Diagrammatic approach to the duality

In this section we illustrate the duality (2.32) in the simplest MHV×MHV case. It corre-

sponds to the first term on the right-hand side of (2.31) which has the lowest Grassmann

degree (κ = 0, σ = 0). We apply the Feynman rules from appendix B to the calculation of

– 13 –



J
H
E
P
0
4
(
2
0
1
8
)
0
2
9

p2

p3

p4

p5
p6p7

p8

p9

p10

p11

p12 p1

k8

k6

k5

k4

k3

k2
k1

∞ → ∞ →

k1k2

k3
k4 k5

k6
k7
k8

p1 p2

p3

p4

p5
p6

p7

p8

p9

p10

p11
p12

Figure 3. The left figure represents a planar Born-level diagram for the Wilson loop form factor

W
(0,0)
12,8 . The external particles are coming from infinity which is chosen inside the Wilson loop

contour. The right figure represents a diagram for W
(0,0)
8,12 where the variables specifying the Wilson

loop contour and the external particles are swapped. Here infinity is chosen to lie outside the Wilson

loop contour. In the middle figure the two diagrams are superimposed so that the planar graph

duality is manifest.

the Wilson loop form factor defined in (3.8), in the planar limit and to the lowest order in

the coupling and rederive the result (2.21). This example illustrates both the graph duality

and the simplicity of the LHC computation by applying the effective rules of appendix B.2.

We end the section by a discussion of the general structure of the non-MHV diagrams.

4.1 MHV example

As follows from the definition of the Wilson loop (3.8)–(3.10), to the lowest degree in

the Grassmann variables, the Born-level contribution only comes from diagrams without

internal propagators and interaction vertices and with the prepotential A++ replaced by

the wave function (B.10). Indeed, the propagators of the prepotentials A++ and A+
α̇ given

by (B.9), (B.12), (B.13) and (B.14) are nilpotent (either ∼ θ4 or ∼ η4) and increase the

Grassmann degree. This leaves us with only one type of diagram illustrated in figure 3.

Here in the diagram on the left-hand side we draw all external legs inside the Wilson

loop contour. These legs are ordered according to (2.2) and they end at a point that

we call ‘infinity’. This graph contains n = 12 edges and m = 8 external particles and

contributes to F12,8. In the second diagram in figure 3 we show the planar dual graph

faintly superimposed. For every face of the original graph we draw a vertex, then we join

the vertices up by appropriate edges going through the boundaries of two faces as described

above. This results in the third diagram which we recognise as a valid MHV×MHV diagram

contributing to F8,12 with all external legs outside the Wilson loop.

Let us compute the graph expressions using the simple rules from appendix B.2. First

consider the left diagram in figure 3. There are five non-trivial cusps of the Wilson loop
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emitting particles. Using (B.7) and (B.11) we obtain the following contribution to F12,8

F12,8 =
eik1x1+Q1θ1〈p12p1〉

〈p1k1〉〈k1p12〉
×

ei(k2+k3)x11+(Q2+Q3)θ11〈p10p11〉

〈p11k2〉〈k2k3〉〈k3p10〉
(4.1)

×
eik4x8+Q4θ8〈p7p8〉

〈p8k4〉〈k4p7〉
×

eik5x7+Q5θ7〈p6p7〉

〈p7k5〉〈k5p6〉
×

ei(k6+k7+k8)x4+(Q6+Q7+Q8)θ4〈p3p4〉

〈p4k6〉〈k6k7〉〈k7k8〉〈k8p3〉
.

where Qiθj ≡ ηiA〈kiθ
A
j 〉. The dependence on the Grassmann variables follows the sim-

ilar bosonic variables exponents. Substituting F12,8 into (2.5) and (2.30) we obtain the

corresponding contribution to Ŵ12,8

Ŵ12,8 =
〈k8k1〉〈k1k2〉〈k3k4〉〈k4k5〉〈k5k6〉 × 〈p12p1〉〈p10p11〉〈p7p8〉〈p6p7〉〈p3p4〉

〈p1k1〉〈k1p12〉〈p11k2〉〈k3p10〉〈p8k4〉〈k4p7〉〈p7k5〉〈k5p6〉〈p4k6〉〈k8p3〉
. (4.2)

Let us now look at the right diagram in figure 3. It depends on the variables (yj , ψj)

defining the Wilson loop contour and the variables (pi, ωi) specifying the external particles.

Using the effective Feynman rules, we obtain the following contribution to F8,12:

F8,12 =
ei(p1+p2+p3)y1+(Q̃1+Q̃2+Q̃3)ψ1〈k8k1〉

〈k8p3〉〈p3p2〉〈p2p1〉〈p1k1〉
×

ei(p11+p12)y2+(Q̃11+Q̃12)ψ2〈k1k2〉

〈k1p12〉〈p12p11〉〈p11k2〉

×
ei(p8+p9+p10)y4+(Q̃8+Q̃9+Q̃10)ψ4〈k3k4〉

〈k3p10〉〈p10p9〉〈p9p8〉〈p8k4〉
×

eip7y5+Q̃7ψ5〈k4k5〉

〈k4p7〉〈p7k5〉

×
ei(p4+p5+p6)y6+(Q̃4+Q̃5+Q̃6)ψ6〈k5k6〉

〈k5p6〉〈p6p5〉〈p5p4〉〈p4k6〉
, (4.3)

where Q̃iψj ≡ ωA
i 〈piψjA〉. Substituting this expression into (2.5) and (2.30) we find that

its contribution to Ŵ8,12 is precisely equal to (4.2),

Ŵ8,12 = Ŵ12,8 . (4.4)

This example illustrates the general diagrammatic proof of the duality in the MHV case:

there are mixed 〈kipj〉 brackets, common to both the graph and its dual. Then the missing

〈kikj〉 brackets in the denominator on one side become explicit numerator terms from the

Wilson loop vertices on the other, and vice versa for the 〈pipj〉 brackets.

The exponential factors can be seen to agree in general, also diagrammatically. Using

kj = yj − yj+1 we find that there is an exponent eixiyj in the left diagram if and only if

the face yj has a corner xi. In the dual picture faces and vertices are swapped, but the

result is unchanged. The Grassmann exponents follow the same pattern.

4.2 Classification of diagrams

Going beyond the MHV level, we have to consider diagrams containing propagators and

interaction vertices. An example of such a diagram is shown in figure 1. The left diagram

contains two propagators connecting cusp points and one propagator connecting a cusp

point with a vertex of emission of two particles. The former produce a factor O(θ8) and

the latter yields a factor O(η4). As a result, this diagram describes an N2MHV×NMHV
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contribution. Similarly, the contribution of the right diagram in figure 1 is NMHV×N2MHV

like. In general, a diagram with κ + σ propagators (dash lines) and σ emission vertices

(white dots) gives rise to an NκMHV×NσMHV contribution in the Born approximation.

The duality essentially works diagram by diagram, although there are a few subtleties

which will be discussed in the next section. Indeed the duality can be seen very straight-

forwardly at the diagrammatic level and is essentially a planar graph duality.

Planarity in this context is slightly non-trivial since on the one hand we have external

legs coming from infinity and on the other, position space propagators between the cusp

points. In the planar limit the only diagrams that survive are those which can be drawn with

all external legs and all internal propagators “outside” the Wilson loop contour, without

any of the lines crossing, and with the external legs going to infinity (see left diagram in

figure 1). There is an alternative description where we move the source of the external legs

“infinity” to a point inside the Wilson loop and insist that all legs and internal propagators

lie inside the Wilson loop without any lines crossing (see the right diagram in figure 1).

To obtain the dual of a contributing graph, draw a vertex inside each face, and connect

vertices by lines going through the boundaries of the faces: if the boundary of two faces

is a leg (wavy line), connect the corresponding vertices with a Wilson line (double line),

if the boundary is a Wilson line connect with a leg and if the boundary is a propagator

(dash line), connect them with propagators (see the middle diagram in figures 1 and 3).

The resulting dual graph will be a valid graph contributing to the dual Wilson loop

form factor (but in the opposite description i.e. if the original graph had all propagators

outside the Wilson loop contour, the dual graph has all propagators inside). Furthermore,

the expressions for the two graphs are identical after swapping the variables appropriately.

Let us note that the case W
(κ,0)
n,0 = W

(0,κ)
0,n corresponds to the duality between the

vacuum expectation value of the n-gon Wilson loop and the NκMHV n-particle amplitude.

The diagrammatic interpretation of this duality in terms of momentum twistor variables

has been discussed in [5].

5 Duality between NMHV×MHV and MHV×NMHV

We now move on to consider diagrams from the second term in eq. (2.31), i.e. κ + σ = 1,

which come in two types (κ, σ) = (0, 1) or (1, 0). Each type consists of diagrams with a

single propagator. The diagrams of the first type (0, 1) have Grassmann structure O(η4)

and contain an emission vertex (white blob). According to the Feynman rules (see (B.12)

and (B.13)) this vertex is connected by a propagator (dash line) either to a cusp point

(black blob) or to an edge of the Wilson loop contour (double line). The diagrams of the

second type (1, 0) have Grassmann structure O(θ4). They contain one propagator which

is stretched either between two cusps or between a cusp and an edge of the Wilson loop

contour. We call diagrams where all propagators end on cusps/vertices “cusp diagrams”.

Diagrams involving propagators ending on edges are called “edge diagrams”.3

3Note that only one end of a propagator can be on a Wilson loop edge, since there is no propagator

between two prepotentials A+
α̇ , see appendix (B).
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In this section we carefully examine the NMHV-like case by focussing on the sector of

a general Feynman diagram involving the propagator. We first examine the cusp diagrams

before turning to the edge diagrams, show how spurious poles cancel and in the process

allow the duality to hold in a surprising and non-trivial fashion.

5.1 Cusp diagrams

First we consider the diagrams contributing to the form factor W
(1,0)
n,m , eq. (2.31) in the Born

approximation. These diagrams contain n cusps (black blobs), m external states (wave

lines) and one propagator (dash line). Focussing on the part of the diagram containing the

propagator we have4

x2

xi

k1

k2

...
...

p1 p2

pi−1pi

=

∫
d4q

4π2
eiqx2i

ei(k1x2+k2xi)〈p1p2〉〈pi−1pi〉δ
4
(
〈θ2i|q|ξ]

)

q2〈p1k1〉〈k1|q|ξ][ξ|q|p2〉〈pi−1|q|ξ][ξ|q|k2〉〈k2pi〉
× . . .

(5.1)

where q is the momentum that flows through the dash line. Here and in all expressions

below we drop the exponential dependence on the Grassmann variables eη1〈k1θ2〉+η2〈k2θi〉

which follows the similar exponential factor of the bosonic variables. The dots on the

right-hand side of (5.1) denote the contribution of the remaining cusps which are the same

as in the MHV case.

Now consider cusp diagrams contributing to W
(0,1)
m,n . Again focussing on the piece

containing the propagator, the dual to the above diagram is:

y2

x2

xi

p2

pi−1

p1

pi

...
...
k2

k1

(5.2)

=
e−ix2iy2〈k1k2〉δ

4
(
〈θ2i|x2i|ξ]

)

x22i〈p1k1〉〈k1|x2i|ξ][ξ|x2i|p2〉〈pi−1|x2i|ξ][ξ|x2i|k2〉〈k2pi〉
× . . .

4We use this diagram to illustrate the general case. The most generic diagram would have an arbitrary

number of legs (or none) in place of k1 and k2.
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Here we have replaced the momentum through the propagator p2 + · · ·+ pi−1 by the dual

variable x2i and similarly the supermomentum by θ2i.

The expressions (5.1) and (5.2) depend on the gauge fixing spinor ξ (see eq. (B.1))

which generate spurious complex poles, e.g. 〈k1|q|ξ] = 0 in (5.2). Below we demonstrate

that the ξ-dependence as well as the spurious poles cancel in the sum of all diagrams.

Notice that the two expressions (5.1) and (5.2) look very similar. In fact, if we re-

placed q in (5.1) by x2i, then the integrand of the Fourier integral would be identical to the

expression in (5.2) (up to 〈krkr+1〉 and 〈prpr+1〉 factors which we expect from the duality

relations (2.5) and (2.12)).5 Indeed if we were allowed to perform the Fourier transform

in (5.1) in Euclidean space, then we would simply replace q by x2i everywhere according to

eq. (C.4). Thus if we were in Euclidean space, (5.1) and (5.2) would give identical expres-

sions (up to the Parke-Taylor factors) leading to the required duality between diagrams.

At the moment however we cannot yet justify Wick rotation to Euclidean space as (5.1)

has spurious complex poles in q-space preventing this. It will become possible after we take

into account the edge diagrams.

5.2 Edge diagrams

Besides the cusp diagrams we also have edge diagrams with propagators ending on (and

being integrated along) edges of the Wilson loop contour. These appear in both W
(1,0)
n,m

and W
(0,1)
m,n .

An example of such a contribution to W
(1,0)
n,m is

x2

xi

k1

k2

...
...

p1 p2

pi−1pi

=

∫
d4q

4π2

(
eiqx2i − eiqx3i

)
ei(k1x2+k2xi)〈p1p2〉〈pi−1pi〉[p2ξ]δ

4
(
〈θ2ip2〉

)

〈p1k1〉〈k1p2〉〈p2|q|ξ][p2|q|p2〉〈pi−1p2〉〈p2k2〉〈k2pi〉
× . . .

(5.3)

We note here that, again if we could perform the Fourier integration in Euclidean space,

we would get two terms coming from the two exponents in the first factor. The first term

is obtained by replacing q in the integrand by x2i and the second one replacing q by x3i,

see eq. (C.6). But these two terms are equal (and opposite) since x3i = x2i+x32 = x2i−p2
and q appears everywhere contracted with a p2. Thus as a Euclidean Fourier integral we

get from (5.3) a vanishing result and indeed we will find no corresponding dual diagram as

we will discuss shortly.

However, as a Fourier integral in Minkowski space, (5.3) is non-vanishing and plays an

important role in the cancellation of spurious poles which ultimately allows for the Wick

rotation to Euclidean space. We will take a closer look at spurious pole cancellation in the

5We have displayed only part of the exponential factors in (5.1) and (5.2), the rest goes into the ellipsis.

To compare them, in (5.1) we rewrite k1x2 + k2xi = −y2x2i + . . ., as in (5.2).
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next subsection, but for the moment we leave all the diagrams contributing to W
(1,0)
n,m in

the form of Fourier integrals.

There are also edge diagrams contributing to W
(0,1)
m,n for example

y2

x2

xi

p2

pi−1

p1

pi

...
...
k2

k1
=

(e−ix2iy2 − e−ix2iy1)[ξk1]〈k1k2〉δ
4
(
〈θ2ik1〉

)

〈p1k1〉〈k1|x2i|ξ]〈k1|x2i|k1]〈k1p2〉〈pi−1k1〉〈k2pi〉
× . . .

(5.4)

This type of diagram also plays a crucial role in the cancellation of spurious poles. Again

there is no corresponding dual diagram. Intriguingly however, if we used the duality to

translate this diagram into an expression contributing to the dual diagram W
(1,0)
n,m we would

obtain an integral which evaluates to zero in Minkowski space. However this vanishing

Minkowski integral plays a crucial role in the cancellation of leftover spurious poles of

W
(1,0)
n,m at the level of the Fourier integrand. Armed with these additional terms we then

have a Fourier integrand with no remaining spurious poles, and we can hence Wick rotate

and do the Fourier integration. After this has been performed these “fake” terms contribute

a non-vanishing result! We will see all this more explicitly in the next two subsections.

We end this subsection by a comment on the vacuum expectation value of the lightlike

Wilson loop 〈0|Wn|0〉 at NMHV level. It corresponds to diagrams of the type (5.1) and (5.3)

without external legs. In [5] the same object has been calculated in the twistor framework

using the incomplete expression (A.20) for the Wilson loop. Evidently, this can account

only for the cusp diagrams but the edge diagrams are missing. Nevertheless, the final result

is correct. The reason for this is that the authors of [5] work in Euclidean space where

the missing edge diagrams vanish, as we have shown. However, the edge diagrams become

very important when we consider the form factors of the Wilson loop (2.1).

5.3 Spurious pole cancellation

In this subsection we take the generic diagrams (5.1) and (5.2) contributing to W
(1,0)
n,m and

W
(0,1)
m,n , respectively, examine their spurious poles and show how they cancel. We begin

with W
(0,1)
m,n since there things are more straightforward.

MHV×NMHV sector. Diagram (5.2) contains four spurious poles. We consider each

pole in turn.

It is convenient to associate the spurious poles of (5.2) with the four angles formed

by the propagator and the two pairs of lines (k1, k2) and (p2, pi−1) attached to each end.

First we consider the pole at [ξ|x2i|p2〉 = 0 (associated with the upper right angle). By

setting |ξ] = x2i|p2〉 it is straightforward to find the residue of (5.2) at this pole. We can

then check that the residue is cancelled by the pole of a nearby diagram with the leg p2
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attached to the other end of the propagator. Diagrammatically, displaying the residue by

filling in the associated angle we have

p2

p3
...

... +

p3p2

...
... = 0

(5.5)

The pole at 〈pi−1|x2i|ξ] = 0 is cancelled by a very similar mechanism, i.e. the nearby

diagram with leg pi−1 attached to the other end of the propagator cancels this pole.

Now we consider the pole at 〈k1|x2i|ξ] = 0 (associated with the upper left angle). By

setting |ξ] = x2i|k1〉 we can obtain its residue and it is straightforward to check that this

cancels the corresponding residue from the first term of the nearby edge diagram (5.4).

The second term of the edge diagram then cancels a spurious pole from another nearby

cusp diagram. Diagrammatically:

......
+ ......

+ ......
= 0

(5.6)

The spurious pole of (5.2) at [ξ|x2i|k2〉 = 0 is cancelled by a similar mechanism (essentially

the above picture reflected in the horizontal axis.)

We have thus cancelled all spurious poles of the diagram (5.2) using nearby diagrams.

Of course each new diagram (apart from the edge diagram) will introduce new spurious

poles, which are then cancelled by further nearby diagrams etc. In this way we see that

all spurious poles are cancelled up to certain special boundary cases which we consider in

appendix D.

NMHV×MHV sector. We now consider the spurious poles of W
(1,0)
n,m taking the dia-

gram in (5.1) as a suitably generic example. Again there are four spurious poles which we

consider in turn.

First consider the pole at [ξ|q|p2〉 = 0. This is shared by the nearby edge diagram (5.3).

By considering the limit [ξ| → 〈p2|q we can find the residue at this pole of both (5.1)

and (5.3). We find that the pole of the first term of (5.3) exactly cancels the pole of (5.1).

The second term of (5.3) on the other hand cancels a pole of a nearby cusp diagram.

Diagrammatically, denoting the pole of a particular diagram by filling in the angle between
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the relevant propagator and neighbouring edge we find

x2

xi

k1

k2

...
...

p1 p2

pi−1pi

+

x2

xi

k1

k2

...
...

p1 p2

pi−1pi

+

x2

xi

k1

k2

...
...

p1 p2

pi−1pi

= 0

(5.7)

The spurious pole of (5.1) at [ξ|q|pi−1〉 = 0 is cancelled similarly (by essentially a reflection

of (5.7) about the horizontal axis).

However now consider the spurious pole at 〈k1|q|ξ] = 0. There is no nearby diagram

which can cancel this spurious pole at the level of the integrand. One is tempted to consider

the diagram with leg k1 shifted down so that it is attached to vertex xi, but the two diagrams

have different exponential factors, eik1x2 and eik1xi , preventing the cancellation. At first

sight, this leads to an apparent breakdown of gauge invariance in this sector!

The solution to this puzzle in fact comes from examining the corresponding cancellation

occurring in the dual picture described above. There we had a corresponding pole at

〈k1|x2i|ξ] = 0 which was cancelled by the edge diagram (5.4). Translating this via the

duality6 suggests we consider the expression

I :=

∫
d4q

4π2
eiqx2i

(ei(k1x2+k2xi) − ei(k1+k2)xi)[ξk1]〈p1p2〉δ
4
(
〈θ2ik1〉

)

〈p1k1〉〈k1|q|ξ]〈k1|q|k1]〈k1k2〉〈k1p2〉〈pi−1k1〉〈k2pi〉
× · · · = 0 . (5.8)

Firstly we note that as an integral in Minkowski space I vanishes and thus we are perfectly

at liberty to add the integral (5.8) to W
(1,0)
n,m . The identity I = 0 can be seen straightfor-

wardly by observing that the contributions of the two terms inside the parentheses cancel

against each other after shifting q → q+ k1 in the second term (since 〈k1|q = 〈k1|(q+ k1)).

Secondly we note that the integrand of (5.8) is precisely what is needed to recover gauge

invariance of the integrand of W
(1,0)
n,m : the spurious pole of the first term at 〈k1|q|ξ] = 0

cancels the spurious pole of the diagram (5.1). Furthermore the other term similarly cancels

the pole of the diagram with k1, k2 both coming from point xi. Thus, for the relevant poles

6More precisely, to obtain this dual expression as a Fourier integral, we take the expression (5.4), replace

x2i with q in the rational terms, leaving the exponential terms as they are, multiply by eiqx2i and integrate

over d4q. The careful reader will note that the exponents of (5.4) and (5.8) are different. In fact the two

displayed exponentials are related via (e−ix2iy2 − e−ix2iy1) = e−iy1x1(ei(k1x2+k2xi) − ei(k1+k2)xi)eiy3xi and

we have simply absorbed the factors e−iy1x1eiy3xi into the ellipsis. If the full exponential factors for the

entire expressions were written out in both cases they would precisely agree (see footnote 5).
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we have diagrammatically

x2

xi

k1

k2

...
...

p1 p2

pi−1pi

+ res I +

x2

xi

k1k2

...
...

p1 p2

pi−1pi

= 0

(5.9)

Also note that since we are simply adding zero to the sum of Feynman diagrams, to

obtain a manifestly gauge invariant integrand, this means the original sum of Feynman

diagrams, as integrals in Minkowski space is gauge invariant as expected, despite appear-

ances. Since the complex spurious poles cancels in the gauge invariant integrand, we are

now allowed to Wick rotate it and perform the Fourier transform in Euclidean space. At

this point we use the simple Euclidean integration procedure given by eq. (C.4), essen-

tially replacing q everywhere in the integrand with the corresponding term multiplying q

in the exponent. Amusingly after doing this the term I is no longer vanishing, but gives a

non-vanishing result and furthermore, as we explain in the following section, it is identified

directly to the corresponding edge terms of the dual diagram.

As a final comment we emphasise that the addition of I can also be viewed as simply

a neat trick done in order to perform the Fourier transform of the W
(1,0)
n,m sector: the sector

is gauge invariant, and in principle the Fourier transform could be performed directly in

Minkowski space. However by adding I and thus removing spurious poles at the level of

the integrand we are able to Wick rotate and make use of the simple Euclidean Fourier

transform (C.4). The final result should be the same of course whichever method is used

to compute it.

5.4 Summary of the duality mechanism

We are now in a position to pull everything together and prove the duality W
(1,0)
n,m = W

(0,1)
m,n ,

eq. (2.31). Having shown the ξ-independence of W
(1,0)
n,m (by including integrals similar to

the I in (5.8) above, obtained from edge diagrams of W
(0,1)
m,n ) we can now Wick rotate all

the contributing diagrams (since there are no remaining complex poles to obstruct this)

and perform the Euclidean Fourier transform according to eq. (C.4). We then recognise

that cusp diagrams are directly equivalent to their graph duals, just as for the MHV sector

(e.g. (5.1) equates to (5.2) after multiplication of the appropriate Parke-Taylor factors).

Then there are edge diagrams of the W
(1,0)
n,m sector (such as (5.3)) which have no dual

in the W
(0,1)
m,n sector, but which in fact give zero after performing the Euclidean Fourier

transform. Thus the duality still holds for these diagrams. Finally there are non-vanishing

edge diagrams of the W
(0,1)
m,n sector, such as (5.4). Although these have no dual diagrams

in the W
(1,0)
n,m sector, we find it necessary to add equivalent terms to this sector (e.g. the

expression I in (5.8)) in order to ensure the absence of spurious poles at the level of the
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integrand. As explained above this addition does not affect the Wilson loop form factor

since the integral vanishes in Minkowski space. However it is crucial for ensuring we have

an integrand without spurious (complex) poles and hence can safely Wick rotate. Then we

find that the Euclidean space integrals, I, are equal (up to multiplication by the appropriate

Parke-Taylor factors) to the dual edge diagrams contributing to W
(0,1)
m,n .

In summary then at the Grassmann level κ+ σ = 1 the duality works as follows:

W (1,0) sector W (0,1) sector

(Minkowski)
Wick
←→ (Euclid)

cusp diagrams ←→ cusp diagrams

edge diagrams ←→ 0

added terms I = 0 ←→ edge diagrams

6 Concluding remarks

In this paper we have given a proof of a new duality for Wilson loop form factors at the

first non-trivial NMHV-like level and in the Born approximation. Can we go beyond?

Consider the general duality (2.32) in the Born approximation. In this case the cusp

diagrams involve several propagators (see figure 1) and the corresponding edge diagrams

also have a more complicated structure. In particular we need diagrams involving higher-

order edge terms in the expansion of the Wilson lines Ei+1,i, eq. (3.10). Also, we encounter

diagrams of the mixed type, with cups-to-cusp and cusp-to-edge propagators. Nevertheless

the mechanism of spurious pole cancellation is expected to be essentially the same.

We can start with the cusp diagrams for which the duality is evident since it is a duality

of planar graphs. These diagrams provide the physical poles corresponding to vanishing

invariant masses, (ki + · · · + kj−1)
2 = y2ij = 0, or to the distance between two distant

points of the Wilson loop contour becoming lightlike, x2ij = 0. However they contain

various complex spurious poles. These poles are removed by adding the appropriate mixed

and edge diagrams. For each spurious pole there are correction terms obtained by sliding

an external leg along a propagator. The mechanism is expected to work iteratively, first

removing the poles of the pure cusp diagrams, then of the mixed, etc.

We can also think of the duality beyond the Born approximation. The loop corrections

to the vacuum expectation value of the Wilson loop create UV-divergences. At loop level

the scattering amplitude suffers from IR-divergences. Since the Wilson loop form factor

is a hybrid observable interpolating between the two, its perturbative corrections are both

UV- and IR-divergent.7 So one needs to introduce a regularisation which can handle both

types of divergences. Instead, we can consider the duality for the four-dimensional loop

integrands corresponding to Lagrangian insertions into the Born-level object.

In the planar limit the loop integrands are unambiguously well-defined rational func-

tions. So it is natural to expect that the duality works for them similarly to the Born

7Notice that the divergent part of the Wilson loop form factor automatically satisfies the duality rela-

tion (2.12). Namely, the IR divergencies of Wn,m match the UV divergences of Wm,n and vice versa.
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x1

x2

x3

x4
y0

y0

y1

y1

y2
y2

y3

y3
y4

y4

y5
y5

y6 y6

Figure 4. Diagrammatic representation of the duality relation W
(0,0)
4,6 ↔ W

(0,0)
6,4 in the one-loop

approximation.

approximation. Indeed, using the effective Feynman rules of appendix B.2 together with

the Euclidean Fourier integration rules8 of appendix C one can see that the cusp diagrams

are dual to each other as loop integrands. The corresponding edge diagrams play an aux-

iliary role cancelling spurious complex poles. The duality (2.12) is again translated into

a planar graph duality. In figure 4 we give an example of the duality in the MHV×MHV

sector in the one-loop approximation. There the Wilson loop contour is purely bosonic and

the scattered particles are (+1) helicity gluons (this is equivalent to explicitly performing

the integration over the superspace variable related to point y0 which the effective rules

naturally give us). In the left diagram we introduce the region momenta y0, y1, . . . , y6 as-

sociated with faces and represent the momentum space integral as an integration over y0.

Multiplying it by the Parke-Taylor prefactor we obtain the contribution to W
(0,0)
4,6 ,

∫
d4y0

eix23y2eix12y3eiy0x31 [ξ|y10y04|ξ]
3

y210y
2
04[ξ|y04|k4〉〈k6|y10|ξ]〈p3|y10|ξ][ξ|y10|k1〉〈k3|y04|ξ][ξ|y04|p4〉

×
〈p4p1〉〈p1p2〉〈p2p3〉〈k6k1〉〈k1k2〉〈k2k3〉〈k3k4〉

〈k1p2〉〈p2k2〉〈k2p1〉〈p1k3〉
. (6.1)

In the right diagram we use the Euclidean Fourier transform to write it down immediately

in coordinate space and integrate over position y0 of the interaction vertex. Its contribution

to W
(0,0)
6,4 coincides with (6.1). So we see the duality at the level of the integrand.

There are several directions for further investigations. It is well known that the Born-

level amplitudes have a remarkable dual superconformal symmetry which, combined with

the native superconformal symmetry, results in a Yangian structure [31, 35–37]. As a result,

the form of the amplitude is completely determined by this powerful symmetry and the

requirement of absence of spurious poles. In this context we may ask the question if the new

duality found in this paper could be a manifestation of some hidden symmetry? The first

step in this direction should be to elucidate the role of conformal symmetry. It is supposed

to simultaneously act on the Wilson loop component of the form factor as a local symmetry,

and on its amplitude component as a non-local symmetry. This issue is under investigation.

8We cannot fully justify applicability of the Fourier transform in Euclidean space until we have checked

for integrand level cancellation of spurious poles, but we assume this here.
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It would also be interesting to understand how to properly regularise the loop correction

integrals so that the duality still holds at loop level. Another challenging problem is to

find a strong coupling or AdS/CFT analog of this duality.
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A Chiral lightlike Wilson loop in LHC superspace

A.1 Chiral lightlike Wilson loop

The conventional formulation of a chiral supersymmetric Wilson line on a segment of the

line in (x, θ)−superspace

xαα̇(t) = xαα̇ − t pαp̃α̇ , θAα (t) = θAα − t ωApα , t ∈ [0, 1] , (A.1)

has the form (recall (2.27))

E = P exp

{
−i

∫ 1

0
dt

[
1

2
p̃α̇pαAαα̇(x(t), θ(t)) + ωApαAαA(x(t), θ(t))

]}
. (A.2)

The corresponding covariant derivatives D = ∂ + A transform under a gauge group with

ordinary, harmonic-independent parameters,

D → eτ(x,θ) D e−τ(x,θ) . (A.3)

Consequently the Wilson line transforms as follows:

E → eτ(x(1),θ(1)) E e−τ(x(0),θ(0)) . (A.4)

A complete gauge-invariant lightlike Wilson loop is obtained by gluing together n consec-

utive segments and closing the contour (with the identification n+ 1 ≡ 1),

Wn =
1

N
tr

n∏

i=1

Ei+1,i . (A.5)
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A.2 Bridge transformation to LHC superspace

For our purposes we need to express the Wilson loop (A.5) in terms of the unconstrained

prepotentials A++, A+
α̇ from (3.1). To this end we need to relate the covariant derivatives

D with the transformation (A.3) to the derivatives ∇ with the transformation (3.3). The

key observation is that the harmonic derivative ∂++ needs no connection for the gauge

group with harmonic-independent parameters τ(x, θ), D++ = ∂++. This suggests to relate

it to ∇++ from (3.2) by a generalised gauge transformation,

∂++ = h−1∇++h = h−1(∂++ +A++)h (A.6)

or equivalently

A++(x, θ+, u) = −(∂++h)h−1 = h ∂++h−1 . (A.7)

Here the ‘parameter’ h(x, θ, u) depends on all the LHC superspace variables. It undergoes

gauge transformations under both gauge groups,

h → eΛ(x,θ
+,u) h e−τ(x,θ) . (A.8)

In the Abelian case this becomes δh(x, θ, u) = Λ(x, θ+, u) − τ(x, θ) and we see that the

combined gauge transformations of both types cannot gauge away the entire content of

the general superfield h. Hence, despite the appearance h is not a pure gauge. In the

same way, (A.6) and (A.7) are not gauge transformations but rather field redefinitions. We

call the new object h a ‘gauge bridge’9 relating the τ−frame with harmonic-independent

parameters and the Λ−frame with analytic parameters.

Relation (A.7) is a differential equation on the harmonic sphere S2. In it we consider

the chiral-analytic prepotential A++ as given and the bridge h as the unknown. This

equation has a solution defined up to arbitrary τ and Λ gauge transformations, so the

bridge h cannot be obtained unambiguously from the prepotential.

Once the bridge has been found, it can be used to convert any gauge covariant object

from the τ−frame to the Λ−frame or vice versa. In particular, all covariant derivatives D

can be converted to ∇,

∇ = hD h−1 (A.9)

transforming according to (3.3). Then we can do the same with the Wilson line (A.2):

E = h(x(1), θ(1), u) E h−1(x(0), θ(0), u) (A.10)

with the gauge transformation

E → eΛ(x(1),θ
+(1),u) E e−Λ(x(0),θ+(0),u) . (A.11)

Note that we use the same harmonic variable u all along the segment.

Conversely, starting from the Λ−frame Wilson line and transforming it back to the

τ−frame, we obtain an object which does not depend on the harmonics:

E = h−1(x(1), θ(1), u) E(u) h(x(0), θ(0), u) , ∂++E = 0 . (A.12)

9The terminology originates from the harmonic superspace formulation of N = 2 SYM [38]. A similar

object exists in the Ward construction for self-dual non-supersymmetric Yang-Mills [39, 40].

– 26 –



J
H
E
P
0
4
(
2
0
1
8
)
0
2
9

Indeed, the harmonic dependence of the Λ−frame Wilson line (A.10) comes from the bridge

h. The inverse transformation (A.12) removes the bridge and with it the u−dependence.

This property allows us to choose the harmonics u on a given segment as we like. A

judicious choice [5, 26] is to identify the harmonic u+ with the chiral spinor defining the

direction of the lightlike line,

u+α ≡ pα , (A.13)

and u− with the SU(2) conjugate p̄α. With this choice we obtain (see (A.1))

E = P exp

{
−i

∫ 1

0
dt

[
1

2
p̃α̇pαAαα̇(x(t), θ(t), |p〉) + ωApαAαA(x(t), θ(t), |p〉)

]}

= P exp

{
−i

∫ 1

0
dt

[
1

2
p̃α̇A+

α̇ (x(t), θ(t), |p〉) + ωAA+
A(x(t), θ(t), |p〉)

]}

= P exp

{
−
i

2

∫ 1

0
dt p̃α̇A+

α̇ (x(t), 〈pθ〉, |p〉)

}
. (A.14)

In the last relation we have used the Λ−frame property A+
A = 0, i.e. ∇+

A = ∂+
A . The gauge

connection contributing to the Wilson line is the prepotential A+
α̇ (x, θ

+, u) from (3.1) with

θ+A = u+αθAα (t) = pα(θAα − tωApα) = 〈pθA〉. So, the only dependence on the position along

the lightlike segment is in the space-time coordinate x(t).

Let us now glue together the different segments of a Wilson loop according to (A.5).

Consider two adjacent segments:

Ei,i−1 = h−1(xi, θi, pi−1) Ei,i−1 h(xi−1, θi−1, pi−1)

Ei+1,i = h−1(xi+1, θi+1, pi) Ei+1,i h(xi, θi, pi) . (A.15)

In their product Ei+1,iEi,i−1 the bridges at the cusp point i depend on the same superspace

coordinates xi, θi but on different harmonics pi−1 and pi. The two adjacent bridges define

a new object,

h(xi, θi, pi) h
−1(xi, θi, pi−1) := U(xi, θi; pi, pi−1) . (A.16)

This object has been discussed in detail in [30]. The bridge h(x, θ, u) relates the

harmonic-independent τ− gauge frame and the analytic Λ−gauge frame. The new bridge

U(x, θ;u, v) = h(x, θ, u) h−1(x, θ, v) (A.17)

is inert under the τ -frame gauge transformations but transforms with respect to two ana-

lytic frames with harmonics v and u (see (A.8)),

U(x, θ;u, v) → eΛ(x,θ
+,u) U(x, θ;u, v) e−Λ(x,θ+,v) . (A.18)

We call this object a bilocal bridge, where the biloclality refers only to the harmonic vari-

ables. An explicit expression for U in terms of the prepotential A++ from (3.1) can be

found by solving the harmonic differential equation that follows from (A.17) and from the

definition (A.6) of the bridge h,

∇++
u U(u, v) = 0 , (A.19)

with the obvious boundary condition U(u, u) = 1. The solution [41] is given in (3.9).
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In conclusion, coming back to the closed Wilson loop (A.5), we obtain the formulation

of the chiral lightlike Wilson loop in LHC superspace by gluing together Wilson line seg-

ments (A.14) and using bilocal bridges (A.17) as ‘glue’, eq. (3.8), where Ei+1,i is defined

in (3.10). Comparing the gauge transformations of the bilocal bridge U (A.18) and of the

Wilson line segments E (A.11), we clearly see the role of the bridges: they adjust the

transformation properties of the segments at the cusp points.

A.3 Comments on the twistor formulation of Mason and Skinner

The construction of lightlike Wilson loops presented here is similar in spirit to the twistor

formulation of Mason and Skinner in [5]. After establishing the LHC/twistor dictionary

(see [23]), we can make a detailed comparison.

The noticeable difference concerns the claim in [5] that the entire Wilson loop can be

written as a product of ‘parallel propagators’ U [5, 24, 42],

WM&S
n =

1

N
tr

n∏

i=1

U(xi, θi; pi, pi−1) . (A.20)

Equation (6.16) (see also eq. (2.17)) in [5] displays this form of the Wilson loop. Comparing

with our formulation (3.8), we see that the Wilson line edge factors Ei+1,i are missing

in (A.20). One would wonder how such an incomplete expression can be gauge invariant?

Indeed, from (A.18) we see that the product U(xi+1, θi+1, pi+1, pi)U(xi, θi, pi, pi−1) is not

gauge invariant at point i; the role of the edge factor Ei+1,i is precisely to adjust the

transformation properties.

The attentive reader may notice that on each segment of the Wilson loop Mason and

Skinner impose the condition p̃α̇A+
α̇ = 0 (in our notation; see the text before their equation

(6.14)). This condition would indeed trivialise (3.10) but it is not clear where it comes from.

It looks like a ‘floating gauge condition’, i.e. the light-cone gauge ξα̇A+
α̇ = 0 (B.1) but with

ξ ≡ p̃i for each segment. In our understanding, if we change the gauge-fixing condition

from one segment of the Wilson loop to the other, we would break gauge invariance. The

edge contribution Ei+1,i in (3.8) is an indispensable part of the definition of the Wilson

loop. In section 5 we have shown explicit examples where the edges contribute essential

pieces of the complete NMHV Wilson loops. In fact, they are responsible for obtaining a

gauge-invariant, i.e. ξ−independent result.

B Feynman rules

B.1 Propagators and on-shell states

To quantise the theory we use the light-cone (or axial or CSW) gauge [25, 43]

ξα̇A+
α̇ = 0 , (B.1)

where the gauge-fixing parameter ξα̇ is an antichiral commuting spinor (“reference spinor”).

This gauge has the advantage that the cubic Chern-Simons term in (3.5) vanishes, so the

interaction comes only from LZ (3.6). However, it introduces specific spurious poles in the
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propagators which require careful treatment. We find that the correct way is to implement

all Feynman rules in momentum space, even though the Wilson loop is defined in position

space. The Fourier integrals from position to momentum space are initially defined in

Minkowski space. Only after we have made sure that the sum of all Feynman diagrams is

free from spurious poles, we can Wick rotate to Euclidean space and evaluate the Fourier

integrals by the simple formulas in appendix C.

The Feynman rules in the gauge (B.1) have been worked out in [23] in position space

and their momentum space equivalents in [30]. Here we summarise the effective rules after

the Grassmann and harmonic integrations at the vertices have been carried out.

The propagators are determined from the (non-diagonal) quadratic part of the Chern-

Simons Lagrangian (3.5):10

〈A++(q, θ+1 , u1)A
++(−q, θ+2 , u2)〉 = 4πδ2

(
〈u+1 |q|ξ]

)
δ(u1, u2) δ

4
(
〈u+1 θ12〉

)
, (B.2)

〈A+
α̇ (q, θ

+
1 , u1)A

++(−q, θ+2 , u2)〉 =
4iξα̇

〈u+1 |q|ξ]
δ(u1, u2) δ

4
(
〈u+1 θ12〉

)
, (B.3)

and 〈A+
α̇A

+

β̇
〉 = 0. The harmonics are auxiliary variables which are integrated out in gauge-

invariant quantities. The harmonic integrations originate from the interaction vertices in

the Lagrangian LZ (3.6) and in the bilocal bridge U (3.9). They are implemented with the

help of delta functions. Firstly, the harmonic delta-function δ(u1, u2) identifies u±1 = u±2 ,

so each line effectively carries only one harmonic. Secondly, the remaining harmonic of

the propagator 〈A++A++〉 is integrated out by means of the delta-function δ2, eq. (B.2),

resulting in the substitution u+ → q|ξ] and the Jacobian factor 1/q2, i.e.
∫

du δ2
(
〈u+|q|ξ]

)
R(u) =

1

π q2
R(q|ξ]) , (B.4)

for a homogeneous function of degree zeroR(u). In the effective Feynman rules all harmonic

integrations are already implemented.

Another effective Feynman rule concerns the emission of n external states and of one

propagator from an interaction vertex in the Lagrangian LZ . Denoting by K =
∑n

1 ki and

QK =
∑n

1 |ki〉ηi the total (super)momentum of the n particles and using the Feynman

rules (B.2) we find:
∫

d4x0d
8θ0

〈
(k1, η1) . . . (kn, ηn)|LZ(x0, θ0)A

++(x, θ+, u)
∣∣ 0〉

=

∫
d4x0d

8θ0 e
iKx0+QKθ0

∫
d4q

(2π)4
eiq(x0−x)

q2
δ4 (〈θ0 − θ|q|ξ])

1

[ξ|q|k1〉〈k1k2〉 . . . 〈kn|q|ξ]

=
eiKx+QKθ

K2

δ4 (〈QK |K|ξ])

[ξ|K|k1〉〈k1k2〉 . . . 〈kn|K|ξ]
. (B.5)

The prepotential A++ plays the leading role. The diagrams with propagators

〈A++A++〉 provide the main contribution (cusp diagrams). The prepotential A+
α̇ and the

propagator 〈A++A+
α̇ 〉 appear in edge diagrams which are needed to restore gauge invari-

ance (i.e., to eliminate the reference spinor ξ and its spurious poles). The only dependence

10The bilinear term in LZ is treated as a bivalent vertex.
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on A+
α̇ comes from the edges Ei+1,i of the Wilson loop. The prepotential A+

α̇ slides along

an edge of the Wilson loop contour, see (3.10). At NMHV level we deal with the linear

approximation of the Pexp. The corresponding line integral concerns only the exponential

factors (Fourier or wave function), e.g.
∫ 1
0 dt eiq(xi−tpi) = 1

i(qpi)

(
eiqxi − eiqxi+1

)
.

In the following we deal mostly with harmonics u+ carrying U(1)-charge (+1), so we

omit the + index of the harmonics and the Grassmann variables for the sake of brevity.

B.2 Effective Feynman rules

To obtain effective Feynman rules we carry out all harmonic and Grassmann integrations.

B.2.1 Vertices

The bilocal bridge U(x, θ; p1, p2), eq. (3.9), at the lowest order in the coupling equals 1:

p2p1
= 1 (B.6)

Higher-order vertices in the expansion of U(x, θ; p2, p1). In this example the line with

u2 ends on a superstate (k, η) and depicts particle emission. The harmonic is identified

with the particle momentum, u2 → |k〉. The other lines are internal. If an internal line

depicts the propagator 〈A++(q, u)A++(−q, u)〉, its harmonic is substituted by u+ → q|ξ],

see eq. (B.4). If an internal line depicts the propagator 〈A++A+
α̇ 〉, then u+ is identified

with the lightlike direction spinor |p〉 of the edge where the prepotential A+
α̇ lives.

p2p1

u1

u2
un

=
〈p1p2〉

〈p1u1〉〈u1u2〉 . . . 〈unp2〉
(B.7)

Interaction vertex LZ , eq. (3.6). Lines i = 1, 3 correspond to particle emission. The

other lines are internal. The harmonics are identified as above.

u1

u2

u3

un =
1

〈u1u2〉〈u2u3〉 . . . 〈unu1〉

(B.8)

B.2.2 Propagators

1. Propagator 〈A++A++〉 between two Wilson loop cusps. The harmonic of the ver-

tices (B.7) and (B.8) where this propagator ends is replaced by u+ → q|ξ].

(x1, θ1, q|ξ]) (x2, θ2, q|ξ])
=

∫
d4q

4π2
eiqx12

1

q2
δ4
(
〈θ12|q|ξ]

)
(B.9)

2. Emission of a superparticle with (super)momentum (k,Qk ≡ η|k〉) from a cusp of the

Wilson loop. The wave function 〈k,Qk|A
++(x, θ, |k〉)|0〉 is

(
x, θ, |k〉

)
(k,Qk, |k〉)

= eikx+Qkθ (B.10)
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3. Emission of a superparticle from an interaction vertex LZ .

(k,Qk, |k〉)
= 1 (B.11)

4. Propagator 〈A++A++〉 between an interaction vertex and a cusp (x, θ). The momen-

tum K and supercharge QK flow into this line from the side of the vertex.

(x, θ,K|ξ])(K,QK ,K|ξ])
=

1

K2
eiKx+QKθδ4

(
〈QK |K|ξ]

)
(B.12)

5. Interaction vertex connected with a Wilson line segment W12 by a propagator

〈A++A+
α̇ 〉 sliding along the edge parametrised by x(t) = x1 − t|p〉[p|, p ≡ x1 − x2,

t ∈ [0, 1]. The (super)momentum (K,QK) flows into this line from the side of the

vertex.

(x2, θ2, |p〉)

(x1, θ1, |p〉)

(K,QK , |p〉)
=

[pξ]eQKθ1

〈p|K|ξ] 〈p|K|p]
δ4
(
〈QKp〉

)(
eiKx1 − eiKx2

)

(B.13)

6. Cusp (x0, θ0) connected with W12 by a propagator sliding along the edge. Note that

〈pθ10〉 = 〈pθ20〉.

(x0, θ0, |p〉)

(x2, θ2, |p〉)

(x1, θ1, |p〉)

=

∫
d4q

4π2

[pξ]

〈p|q|ξ]〈p|q|p]
δ4
(
〈θ01p〉

)(
eiqx01 − eiqx02

)

(B.14)

C Fourier transforms

In this paper we encounter Fourier integrals of the type
∫

d4q
eiqx

q2
R([ξ|q) , (C.1)

where R([ξ|q) is a homogeneous function of degree zero of the spinor [ξ|q. The way this

integral is computed heavily depends on the space-time signature. In Euclidean space we

can use the following trick. First, we insert a harmonic integral over S2 and write
∫

d4q
eiqx

q2
R([ξ|q) = π

∫
d4q eiqx

∫
du δ2([ξ|q|u+〉)R(u+) . (C.2)
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The role of the complex delta function is to identify the SU(2)L harmonic u+ ∼ q|ξ], up

to a phase factor which drops out in the homogeneous function R(u+). The factor 1/q2 is

the corresponding Jacobian (for detail see appendix A in [23]). Then we decompose the

dot product

2(q · x) = [ξ̄|q|u+〉[ξ|x|u−〉+ [ξ|q|u−〉[ξ̄|x|u+〉 − [ξ̄|q|u−〉[ξ|x|u+〉 − [ξ|q|u+〉[ξ̄|x|u−〉

in the basis formed by the SU(2)L harmonics u±α and their SU(2)R analogs ξα̇, ξ̄α̇ with

〈u+u−〉 = 1 and [ξξ̄] = 1. Next we swap the harmonic and Fourier integrals and use the

delta function to lift the integral over the complex variable [ξ|q|u+〉 (and its conjugate

[ξ̄|q|u−〉). The remaining Fourier integral over [ξ|q|u−〉 produces another delta function, so

∫
d4q eiqx δ2([ξ|q|u+〉) = 4π2δ2([ξ̄|x|u+〉) . (C.3)

Finally, we do the harmonic integral with the help of the new delta function and obtain

∫
d4q

4π2

eiqx

q2
R([ξ|q) =

1

x2
R([ξ̄|x) . (C.4)

As an example, consider the integral

∫
d4q

4π2

eiqx

q2
[ξ|q|p1〉

[ξ|q|p2〉
=

1

x2
[ξ̄|x|p1〉

[ξ̄|x|p2〉
. (C.5)

Its computation in Euclidean signature is straightforward, as shown above. However, were

this integral to be evaluated with Minkowski signature, we would have to deal with the

complex pole at [ξ|q|p2〉 = 0. This is a rather nontrivial task which we need not address.

Another type of Fourier integral that we encounter is obtained by combining two

integrals of the type (C.5):

∫
d4q

4π2
eiqx

[ζξ]

[ξ|q|p2〉[ζ|q|p1〉
=

1

〈p1p2〉

∫
d4q

4π2

eiqx

q2

[
[ξ|q|p1〉

[ξ|q|p2〉
−

[ζ|q|p1〉

[ζ|q|p2〉

]

=
[ζ̄ ξ̄]

[ξ̄|x|p2〉[ζ̄|x|p1〉
. (C.6)

We remark that in Minkowski signature, with the choice [ζ| = p̄1, this integral becomes

a contact term ∼ δ(x · p1). At the same time, in Euclidean signature it is a rational

function. This example clearly illustrates the drastic difference between the two space-

time signatures. It also explains why we prefer to do all our Fourier integrals after the

Wick rotation to Euclidean space.

D Cancellation of spurious poles: boundary cases

Here we discuss in more details the cancellation of spurious poles between cusp and edge

diagrams at the Grassmann level κ+ σ = 1.
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MHV×NMHV sector. From the discussion in section 5.3 we see that spurious poles

in the W (0,1) sector are cancelled by nearby diagrams. In particular, in (5.5) we see that

spurious poles of the type [ξ|x2i|p2〉 = 0 are cancelled using similar diagrams with the leg

p2 shifted from the right end to the left end of the propagator or vice versa. Eventually

however one will run out of free legs to shift in this way and we refer to these situations as

boundary cases. The case where there are no more legs to shift to the right is covered by the

edge diagram as in (5.6). We need however to consider the case when there are not enough

legs on the right to shift left. More precisely we need to consider the case when there are

just two legs entering the propagator from the right. Then if we were to shift the final

propagator to the left this would leave a diagram with just one leg entering the propagator

which vanishes. So which diagram cancels the spurious pole in this case? The answer is

that the pole is canceled by a similar diagram where two legs have shifted, for example

p1

p2p3

... +

p2p1

p3

... = 0

(D.1)

Here leg p1 has shifted left as expected but leg p3 has simultaneously shifted right. One

can straightforwardly check that the spurious pole in question cancels between these two

diagrams.

Finally then there arises the situation where there is no leg (such as p3 in the example)

to shift to the right in this way. In this final case it turns out that the spurious pole is

canceled by an edge diagram with a single leg entering the propagator. Such a diagram is

allowed unlike the similar vertex diagram with one leg entering the propagator.

So for example we get the mutual cancellation of the spurious poles in the following

diagrams:

p2p1

p3
p4

... + p3

p2
p1

p4

... +

p3

p4

p2
p1

... = 0

(D.2)

If there had been no leg p4 in the above situation, the single legged propagator would simply

continue around the Wilson loop, cancelling all spurious poles, until it did reach a leg.

We note that the edge diagram with the single leg entering it thus serves a crucial

purpose in cancelling spurious poles, but that these are different types of spurious poles to

the type of pole the generic edge diagrams cancel (compare the positions of the spurious

poles in (D.2) with those of (5.6)).

NMHV×MHV sector. We also need to consider the various boundary cases of the

W (1,0) sector. Here we need to show cancellation of spurious poles at the level of the
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integrand. Firstly consider the spurious pole cancellation illustrated in (5.7). There we

see that spurious poles of the form [ξ|q|p2〉 = 0 cancel with nearby diagrams where the

propagator slides around the Wilson loop. This procedure continues unimpeded until

either one end of the propagator meets a leg, or the two ends of the propagator get too

close to each other. In the former case there is a remaining spurious pole with apparently

no diagram to cancel it. This is precisely the case discussed in (5.9)) where one introduces

the expression I which cancels the spurious pole in question. In the latter case we end up

with a propagator stretched between two adjacent vertices. In fact for this case there is no

remaining spurious pole to cancel. This diagram only has two spurious poles (rather than

four) which have already been cancelled by nearby diagrams.

So to summarise, in this sector all the boundary cases take care of themselves, following

the introduction of the integrands I discussed in (5.8).
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