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Abstract

In this paper, two high-order finite element models are investigated for the solution of two-dimensional wave prob-

lems governed by the Helmholtz equation. Plane wave enriched finite elements, developed in the Partition of Unity

Finite Element Method (PUFEM), and high-order Lagrangian-polynomial based finite elements are considered. In the

latter model, the Chebyshev-Gauss-Lobatto nodal distribution is adopted and the approach is often referred to as the

Spectral Element Method (SEM). The two strategies, PUFEM and SEM, were developed separately and the current

study provides data on how they compare for solving short wave problems, in which the characteristic dimension

is a multiple of the wavelength. The considered test examples include wave scattering by a rigid circular cylinder,

evanescent wave cases and propagation of waves in a duct withrigid walls. The two approaches are assessed in terms

of accuracy for increasing SEM order and PUFEM enrichment. The conditioning, discretization level, total number

of storage locations and total number of non-zero entries are also compared.
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1. Introduction

The finite element method has been used for decades as a numerical tool for solving various engineering wave

problems thanks to its ability to deal with complexities related to geometry and material properties. For practical

ease, low order polynomial based elements have been employed and these require the use of many nodal points per

wavelength to achieve acceptable accuracy. Usually, at lowfrequency, the knownrule of thumbleads to use about

ten nodal points per wavelength in linear elements to obtainengineering accuracy results. However, for short wave

problems, as well as the discretization error the pollutionerror [1, 11] was found to affect the solution and hence the

number of nodal points per wavelength has to be further increased.
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With the aim to reduce the computational cost and improve thesolution accuracy, various methods based on field

enrichment have been proposed. For Helmholtz wave problems, the field enrichment was carried out by incorpo-

rating plane waves or Bessel functions in the approximated wave field. Proposed methods include the least-squares

method [33], the partition of unity method [18, 31, 30, 28, 20], the ultra weak variational formulation [26, 27], the gen-

eralised finite element method [44, 45, 46], the discontinuous enrichment method [6, 36], the oscillated finite element

polynomials [3], the stable discontinuous Galerkin method[24] and the phase reduction finite element method [7].

Enriched elements were also developed within the frameworkof the boundary element method such as the partition

of unity boundary element method [9] or the isogeometric wave-enriched boundary element method [25]. Some of

the above techniques have been extended to elastic wave problems [2, 42, 22], fluid-structure interaction [40], flow

acoustics [37] and wave propagation in poro-elastic media [19]. For more information, the reader is directed to the

reviews presented in [4] and more recently in [17].

High order polynomial based finite elements were also developed and their performance assessed for the solution of

wave problems governed by the Helmholtz equation. Within the framework of the discontinuous enrichment method,

two quadrilateral elements employing 16 and 32 plane waves,respectively, and featuring four and eight Lagrange

multiplier degrees of freedom per edge were presented and their performance compared to that of Q4 for the solution

of two-dimensional waveguide and acoustic scattering problems [12]. The construction of high order finite elements

may use integrated Legendre polynomials resulting in the hierarchicalp-FEM. Such elements were developed for the

solution of three-dimensional Helmholtz problems [15] andfor the case of convected wave propagation [16]. Re-

cently, a high-order polynomial method, based on Lobatto polynomials, and the wave-based discontinuous Galerkin

method are compared for the solution of two-dimensional Helmholtz problems [23]. The use of conventional La-

grange polynomials were also considered to construct high order elements. These were used to solve, for example,

interior acoustic problems and their performance has been assessed against high order elements with shape functions

based on Bernstein polynomials [38]. Iso-geometric elements with non-uniform rational B-splines (NURBS) shape

functions were also developed resulting in N-FEM. They werecompared to SEM andp-FEM high order approaches

for the solution of Lamb wave propagation problems [8]. Highorder continuous and discontinuous Galerkin methods

were compared for the solution of smooth and non-smooth two dimensional scattering problems in terms of the com-

putational cost and concluded that high order methods were more efficient [13]. In the above indicated polynomial

based approaches, the order of the element shape functions is moderately high as it is considered up to the twelfth

order, such as in reference [23].

PUFEM has been thoroughly investigated for acoustic and elastic wave problems and attempts have been made to

compare its performance to that of the standard FEM [2, 29]. However, in the latter references, low order elements

have been considered for FEM and hence it is intended here to increase the orderp to hopefully claim a fair com-

parison. Various families of polynomials could be considered for high order elements such as Bernstein or Lobatto

polynomials [38]. These were shown to have advantages over the usual Lagrange polynomials. Indeed, elements

based on high order Lagrange polynomials cannot benefit fromthe use of static condensation for eliminating the bub-
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ble functions to reduce the memory requirement and improve the conditioning, which is the case of the other families

of high order elements mentioned above [21, 39]. Despite this and for practical reasons, the considered high order

elements in this paper are based on conventional Lagrange polynomials. However, they are defined on a specific nodal

distribution, the Chebyshev-Gauss-Lobatto. These elements belong to the SEM family [34, 35], which is a particular

high order method but must not be confused with the Spectral Finite Element Method [14]. The current work assesses

both PUFEM and SEM for the solution of Helmholtz problems with increasing wave numbers.

The paper is organized as follows. The next section presentsthe formulation of the considered Helmholtz problem. It

recalls the weak form of the problem and its numerical approximation by either SEM or PUFEM. Section 3 presents

numerical results for various selected problems and last, in Section 4, some concluding remarks are drawn.

2. Problem formulation and finite element models

In this section, the Helmholtz problem with Robin boundary condition is formulated and the finite element models,

namely SEM and PUFEM, are presented. LetΩ ⊂ R
2 be a bounded domain with a smooth boundaryΓ. For the wave

field U, we assume that the time variation is such thatU(x, y, t) = u(x, y)eiωt whereu = u(x, y) is the unknown time

independent wave field,ω is the circular frequency and i stands for the complex imaginary number such that i2 = −1.

The Helmholtz problem foru is then defined by

−∆u− k2u = 0 in Ω, (1)

∇u.n + iku= g on Γ. (2)

In expressions (1) and (2),∆ is the Laplace operator,∇ is the gradient vector andk is the wavenumber such that

λ = 2π/k is the wavelength. The termg represents a boundary source onΓ andn denotes the outward normal unit

vector defined everywhere onΓ.

The weak formulation of the presented problem is obtained bymultiplying the Helmholtz equation (1) by a smooth

test functionv = v(x, y) and integrating over the domainΩ such that

−
∫

Ω

(∆u+ k2u)v dΩ = 0. (3)

Equation (3) involves second derivatives ofu. Using the integration by parts to the integrand with secondorder

derivatives, the following equation is obtained.

∫

Ω

(∇u.∇v− k2uv) dΩ −
∮

Γ

(∇u.n) v dΓ = 0. (4)

Introducing the Robin boundary condition (2) , the previousexpression becomes

∫

Ω

(∇u.∇v− k2uv) dΩ + ik
∮

Γ

u v dΓ =
∮

Γ

gv dΓ. (5)
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The aim now is to find an approximate solutionuh of the weak form (5) using either high-order Lagrange polynomial

based finite elements (SEM) or elements with plane wave enrichment (PUFEM).

2.1. SEM model

Let M = {Ω1, .....,ΩN} be a partition ofΩ into N uniform non-overlapping elementsΩe, e = 1, ...,N. Each sub-

domainΩe is given through a coordinate transformationr = Le(ξ) between the real spacer = (x, y)T ∈ Ω and the local

systemξ = (ξ, η)T ∈ L. The sub-domains are chosen to be quadrilaterals with the geometry described by the classical

4-node interpolation functions and henceL = [−1, 1]2. The field unknown variable over eachn-node elementΩe is

approximated by

uh =

n
∑

j=1

N ju j, (6)

whereN j stands for the Lagrangian polynomial interpolation functions onL andu j represents the nodal values cor-

responding to the vertices ofΩe. The degreep of the polynomial interpolation functionsN j depends on the number

of nodes assigned to the sub-domain. For example, if the approximation (6) is linear thenp = 1 andn = 4. For a

quadratic approximation,p = 2 andn = 9. In general, for an approximation of degreep the number of vertices per

sub-domain would be (p+ 1)2.

For a degreep, the setp+ 1 of Lagrange interpolation functions in one dimension are defined by

N j(ξ) =
p+1
∏

i=1
i, j

(ξ − ξi)
(ξ j − ξi)

, j = 1, 2, ..., p+ 1, (7)

with the property

N j(ξi) =

{

1, i = j

0, i , j
for 1 ≤ i, j ≤ p+ 1. (8)

For low order finite elements, it is usual and practical to useequi-spaced nodal distribution. However, it is well known

that for high-order elements this distribution does not lead to good performance due to the Runge’s phenomenon

and hence a particular nodal distribution is adopted. As mentioned previously, high order approaches prefer other

families of functions such as Bernstein or Lobatto but in this work Lagrange based high-order finite elements with

the Chebyshev-Gauss-Lobatto nodal distribution are used.In one dimension and forξ ∈ [−1, 1], the nodal points are

located at the points with

ξi = − cos

(

(i − 1)π
p

)

, i = 1, 2, ..., p+ 1. (9)

Lagrange interpolation functionsN j(ξ, η) for the two dimensional elements used in this work are easily defined by

following expression (7) and in the same way the vertices locations with respect to theη coordinate can be obtained

by following (9).

A Galerkin approach is used, for which the test functions arechosen such thatv = N j , and the resulting finite element
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approximation of the weak formulation (5) then reads: Finduh of the form (6) and for allj = 1, ...., (p+ 1)× (p+ 1)

such that
∫

Ω

(∇uh.∇N j − k2uhN j) dΩ + ik
∮

Γ

uh N j dΓ =
∮

Γ

g Nj dΓ. (10)

For the evaluation of the integrals involved in the weak form(10), a Gauss-Legendre scheme is adopted for which a

numbernint = 2p− 1 of integration points would integrate exactly polynomials of orderp or less.

2.2. PUFEM model

In the PUFEM model, the sub-domains are chosen to be bi-linear quadrilaterals with the geometry described by

the classical 4-node interpolation functions. At each vertex, the unknown variableu j of expression (6) is expanded

into a linear combination ofq plane wavesψl with directions encompassing the two dimensional space. These are

given by

ψl = eikdl .r, (11)

with dl = (cosθl , sinθl)T andθl = 2π l/q for l = 1, 2, ..., q. The PUFEM approximation of the unknown field variable

within a sub-domainΩe is then given by

uh =

4
∑

j=1

q
∑

l=1

N j ψl A
l
j . (12)

The unknowns of the problem are no more the coefficientsu j but the amplitude factorsAl
j of the plane waves. For

notation convenience, the product of the linear shape function N j and the plane waveψl is written asPr = N j ψl , with

r = ( j − 1)q+ l. A Galerkin approach is also adopted here and hence taking the test functionv = Pr . The resulting

PUFEM approximation of the weak form (5) then reads: Finduh of the form (12) and for allr = 1, ...., 4q such that

∫

Ω

(∇uh.∇Pr − k2uh Pr ) dΩ + ik
∮

Γ

uh Pr dΓ =
∮

Γ

g Pr dΓ. (13)

The integrals of expression (13) involve highly oscillatory functions and hence a high order Gauss-Legendre quadra-

ture scheme is used for which the number of integration points is chosen to accommodate the multi-wavelength size

of the elements. The effect of the numerical integration on the PUFEM has been investigated in past work [29, 10].

As a result, the empirical expression giving the numbernint = [10× h/λ] + 2 to ensure enough integration points are

used with respect to each spacial direction is adopted. It isworth noting that semi-analytical integration procedures

were also developed, such as in [5, 10], to reduce the computational cost but they were not used in this study.

Since Galerkin weighting is used in both weak forms (10) and (13) the global matrix of the resulting system is sym-

metric and block banded. A skyline storage is used with a steering vector to locate the elements and the solution is

computed using a direct solver based onLDLT decomposition whereLT is the transpose of the lower triangular matrix

L andD is a diagonal matrix [32].
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3. Numerical results analysis

In this section, the performance of PUFEM and SEM is first assessed for the solution of a wave scattering problem

model. Then they are assessed for the solution of test problems considering evanescent waves and wave propagation

in a duct with rigid walls. The assessment of both approachesis carried out for different ordersp of the Lagrangian

interpolation functions for SEM and different numbersq of enrichment functions for PUFEM, while the mesh is

refined at high frequencies;.i.ethe corresponding wavelength is a small fraction of a characteristic problem dimension,

for example the element sizeh.

The performance is measured through the relative error using theL2-norm. It is given by

ǫ2 =
||u− uh||L2(Ω)

||u||L2(Ω)
, (14)

with u being the exact solution of the considered problem anduh the approximate solution obtained by either SEM or

PUFEM. The discretization level in terms of degrees of freedom per wavelength is indicated by the parameterτ given

by

τ = λ

√

totdo f
Ωarea

, (15)

wheretotdo f stands for the total number of degrees of freedom required for the solution andΩarea is the area of

the computational domain. Other parameters of interest,totsysandtotnze, are considered which represent the total

number of storage locations of the system matrix to solve andthe total number of non-zero entries, respectively. Fi-

nally, the conditioning of the system matrix, denoted byκ, is also considered and is computed using the 1-norm. All

computations are carried out in Fortran with double-precision complex numbers.

3.1. Wave scattering by a rigid circular cylinder

Both PUFEM and SEM models are assessed for a wave scattering problem. The computational domain is chosen

to be a square of unit size defined byΩ = [1, 2] × [1, 2]. The following analytical model

u = −
∞
∑

m=0

imεm
J′m(ka)
H′m(ka)

Hm(kr) cosmθ (16)

is imposed on the boundaryΓ of the computational domainΩ through the source termg of expression (2). The above

model (16) represents the solution of the scattering of a horizontal plane wave by a rigid circular cylinder of unit

radiusa centred at the origin of the Cartesian system axes. In expression (16),r andθ are the polar coordinates of a

considered point,Hm andJm are respectively the Hankel and Bessel functions of the firstkind and orderm, andεm is

defined byε0 = 1, εm = 2 for all m≥ 1.

The performance of each model is measured in terms of theL2-errorǫ2 and by considering the discretization levelτ,

condition numberκ, total number of storage locationstotsysand the total number of non-zero entriestotnze.

The wave scattering problem is solved by both approaches forthe wave numberska= 16π, 40π and 100π. For a given
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orderp for SEM or enrichment numberq for PUFEM the mesh grid is refined to carry out anh-convergence study,

for each wave number case, which leads to an increase in the total number of degrees of freedom for the problem

solution. For SEM, it is obvious that for low values ofp we can consider many mesh refinements as low numbers of

nodes are involved per element in the mesh grid, such as forp = 10 where many refinements are carried out, while for

higher values ofp less cases of mesh refinement are possible to consider similar numberstotdo f as high numbers of

nodes per element are used. This is clearly seen forp = 50π where only two mesh grids are considered atka= 100π.

The results of Figure 1 show the values of theL2-error for all cases of wave numbers when increasing the total number

of degrees of freedomtotdo f through mesh refinements, for both approaches. For SEM, theL2-error decreases with

the increase oftotdo f at a rate which increases with the orderp. This is also true for PUFEM for which theL2-error

decreases with the increase oftotdo f at a rate which increases with the numberq of approximating plane waves.

For the case ofka = 16π, for example, the rate of convergence of SEM withp = 10 is pretty similar to the rate of

convergence of PUFEM withq = 20. In the same way, the SEM results forp = 20 and 30 exhibit a similar rate

shown by the results of PUFEM withq = 40. Looking at PUFEM withq = 10 and SEM withp = 10, we can see that

PUFEM requires less degrees of freedom than SEM to achieve the same level of accuracy up tototdo f = 2 × 103,

where the two lines cross each other and provide an accuracy level ofǫ2 = 10−3, after which SEM requires less degrees

of freedom than PUFEM to achieve the same accuracy. The same observation is made on PUFEM withq = 20 and

SEM with p = 30 for which the results show a similar accuracy of,ǫ2 = 10−5, aroundtotdo f = 2× 103. Before this

crossing, PUFEM uses less degrees of freedom than SEM to provide the same level of accuracy but after the crossing

SEM uses less degrees of freedom than PUFEM for the same accuracy.

The above observations also apply to the other cases of wave numbers,ka= 40π and 100π, in the sense that increasing

the orderp for SEM and the numberq for PUFEM leads to higher rates of convergence though for PUFEM some of

the results do not show straight lines. Forka= 40π, PUFEM withq = 20 is shown to require less degrees of freedom

than SEM withp = 20 to provide same quality results up to abouttotdo f = 7 × 103. If we increasep to 30 while

keepingq = 20, the crossing occurs at abouttotdo f = 3 × 103. For higher orders ofp and higher numbers ofq

similar crossings may occur at very high values oftotdo f but such values are not presented in the results, especially

atka= 100π where none of the crossings occurred.

Overall, to achieve a prescribed accuracy, it is clear that as the orderp increases the total number of degrees of freedom

required in the problem solution decreases. This also applies to PUFEM for which the results show that increasing

the numberq of enriching plane waves leads to a reduction of the requiredtotdo f to achieve the same accuracy. For

ka = 100π, in the case of SEM, to achieve a level of accuracy of 10−3 about 7× 104 degrees of freedom are required

for p = 10. This number decreases to about 3× 104 for p = 50. For PUFEM, to achieve a similar accuracy the

total number of degrees of freedom is just under 2× 104 for q = 40. It decreases to about 7× 103 for q = 80 and

to about 4× 103 for q = 160. However, it is worth mentioning that while mesh refinement is practical and usual in

SEM approach, for PUFEM it is preferred to keep the mesh grid unchanged and adopt further enrichment. Indeed,

PUFEM and other wave-based approaches usually rely on a coarse mesh grid incorporating multi-wavelengths per
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Figure 1: RelativeL2-error for PUFEM and SEM for different values of the wave number.

nodal spacing and use increasing numbersq of enrichment functions to accommodate the highly oscillatory solutions.

The behaviour of the condition number for both SEM and PUFEM is presented in Figure 2 for the same parameters

considered in Figure 1. For the case of SEM, the increase ofκ with p or totdo f is overall small. For PUFEM, however,

κ increases sharply withtotdo f. For instance, SEM provides condition numbers in the order of 105 whereas PUFEM

provides condition numbers which increase significantly astotdo f increases or the numberq of approximating plane

waves is increased. In fact, ill-conditioning is an inherent feature of PUFEM but despite the high values ofκ, PUFEM

continues to provide good quality results with decreasingL2-error astotdo f increases through mesh refinement or by

increasing the numberq of approximating plane waves.
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Figure 2: Condition number for PUFEM and SEM for different values of the wave number.

In Figure 3, the total number of non-zero entries,totnze, indicating the storage requirements for the final system to

solve is presented with respect to the total number of degrees of freedom,totdo f, for the same parameters considered

above. As expected, for both SEM and PUFEM, the total number of non-zero entries increases exponentially ash-

refinement is carried out, for a givenp or givenq. Moreover, asp andq increase,totnzealso increases due to the

elementary matrices becoming larger, (p+ 1)× (p+ 1) for SEM and 4q× 4q in PUFEM, withp andq. Nevertheless,

as already noticed, while there are some comparable numbersbetween SEM and PUFEM for the wave number cases

ka= 16π and 40π, it is clear at the higher wave numberka= 100π SEM requires more degrees of freedom and hence

exhibits large numbers of non-zero entries to achieve similar quality of results as PUFEM.
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Figure 3: Non-zero entries for PUFEM and SEM for different values of the wave number.

In all numerical tests carried out above, the computationaldomain was meshed into uniform mesh grids with

square elements of the same size. In the next numerical tests, the mesh grid is distorted such as shown in Figure 4. A

distortion ratio is defined by dividing the largest element edge by the smallest one in the same mesh grid. Therefore,

Figure 4(a) shows an undistorted mesh grid with the defined ratio equal to one, Figure 4(b) represents an intermediate

distortion case and Figure 4(c) shows the extreme distortion for which the ratio is equal to 10. The mesh grids contain

25 elements. In the case of PUFEM, 4-node elements are used with q plane wave enrichment at each node. For SEM,

each element contains (p + 1)2 nodes so that the interpolation functions are of degreep. The plane wave scattering

problem dealt with above is considered again here, forka = 8π and 16π, with SEM and PUFEM for different orders

p of the interpolation polynomials and numbersq of approximating plane waves, respectively. TheL2-error is shown

in Figure 5 as a function of the distortion ratio.
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(a) (b) (c)

Figure 4: (a) Undistorted mesh grid, (b) intermediate distortion and (c) extreme distortion.
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Figure 5: RelativeL2-error for PUFEM and SEM for different values of the wave number on distorted mesh grids.

Overall, Figure 5 shows that some of the results are affected by the increase of the distortion ratio and hence the

L2-error has increased, such as for SEM withp = 10 and PUFEM withq = 20, while others show a practically flat

L2-error, such as for SEM withp = 20 and PUFEM withq = 40. This is due to the change in the discretization

levelτ which varies with the distortion ratio. Indeed, for the undistorted mesh grid, the average number of degrees of

freedom per wavelength is the same at all elements. It is about 6.7 for PUFEM withq = 20 and 12.7 for SEM with

p = 10, for the case ofka = 8π. For this wave number, these levels are about 9.5 for PUFEM with q = 40 and 25.2

for SEM with p = 20. As the mesh is distorted, the average number of degrees offreedom per wavelength at element

level will vary such that it is high in the small elements and low at the large ones. Therefore theL2-error would be

affected by the large elements incorporating less degrees of freedom per wavelength. As the wave number increased

from 8π to 16π, leading to half of the above mentioned discretization levels, theL2-error seems to be affected for SEM

with p = 10 and PUFEM withq = 20, due to the lower number of degrees of freedom per wavelength within the large
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elements. However, for SEM withp = 20 and PUFEM withq = 40 the results remain practically unchanged thanks

to the discretization levels which remained relatively high even for the large distorted elements.

3.2. Exponentially decaying wave problems

It is well known that the performance of wave-based methods tends to be reduced when dealing with problems

involving evanescent waves. In this section, two further test cases of practical interest are considered. The first case

deals with the propagation of waves in a duct with rigid walls, which involves propagating and decaying modes, and

the second one involves evanescent waves.

3.2.1. Wave propagation in a duct

The first test example deals with the propagation of a wave in aduct with rigid walls. It is taken from reference

[41]. The computational domainΩ = [0, 2] × [0, 1] is considered with the Robin condition (2) on its boundaryΓ

through the source termg. The solution of the problem is given by

u(x, y) = cos(απy)(B1e
−ikxx + B2e

ikxx), (17)

wherekx =
√

k2 − (απ)2. For k > απ, the solution exhibits propagating modes, otherwise, we are dealing with an

evanescent wave problem. The coefficientsB1 andB2 can be found by solving the equation

i





















kx −kx

(k− kx)e−2ikx (k+ kx)e2ikx
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. (18)

In reference [41], the ultra weak variational formulation and PUFEM were assessed in solving the problem stated

above for the wave numbers 20, 40 and 80 using mesh grids basedon triangular elements. In this work, PUFEM and

SEM are used on uniform mesh grids with square elements to solve the above problem for the wave numberska= 40,

80 and 160. Here, the parametera represents a unit of length such thatka is dimensionless. For each case of wave

number, two different values ofα, which give the highest-propagating mode and the lowest-evanescent mode, are

considered. For illustration purpose, Fig.6 shows the analytical solution (17) forka = 40 withα = 12 corresponding

to a propagating wave andα = 13 corresponding to an evanescent wave. Obviously, ask increases the values ofα

leading to propagating or evanescent modes increase as well.
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Figure 6: Waves in a duct forka= 40, (a) propagating mode forα = 12 and (b) evanescent mode forα = 13.

To increase the discretization levelτ, the mesh size is refined for the SEM approach while for PUFEM the number

qof enriching plane waves is increased. This is anh-approach for SEM while for PUFEM it is aq-approach, equivalent

to thep-approach. This is deliberately adopted because it is usualto adopth-refinements in the case of SEM but for

PUFEM it is more practical to keep the mesh grid of the computational domain unchanged and increase the numberq

of field enrichment functions.

For PUFEM, a mesh grid of 2 by 4 square elements is used for the wave numberska= 40 and 80, and a mesh grid with

4 by 8 square elements is used forka = 160. Tables 1, 2 and 3 display the computedL2-error and the discretization

level, presented between brackets, for the considered cases.
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Table 1: Wave propagation in a duct. RelativeL2-error and discretization level for SEM and PUFEM forka= 40.

SEM PUFEM

p=10 p=20 p=30

3.8× 10−5 (5.7) 2.0× 10−6 (4.6) 3.8× 10−5 (3.4) 1.2× 10−2 (1.9)

5.0× 10−7 (9.0) 6.0× 10−7 (6.8) 9.0× 10−7 (6.8) 8.8× 10−4 (2.4)

α = 12 5.0× 10−7 (11.2) 5.0× 10−7 (11.2) 7.0× 10−7 (10.1) 5.6× 10−5 (2.7)

5.0× 10−7 (13.4) 6.0× 10−7 (13.4) 5.0× 10−7 (13.4) 1.9× 10−6 (3.0)

8.7× 10−5 (5.7) 8.5× 10−6 (4.6) 2.0× 10−4 (3.4) 3.9× 10−1 (1.9)

1.1× 10−6 (9.0) 1.0× 10−6 (6.8) 1.2× 10−6 (6.8) 4.1× 10−2 (2.4)

α = 13 1.0× 10−6 (11.2) 1.0× 10−6 (11.2) 1.0× 10−6 (10.1) 4.1× 10−3 (2.7)

9.0× 10−7 (13.4) 1.0× 10−6 (13.4) 1.0× 10−6 (13.4) 1.2× 10−5 (3.0)

As expected, the error decreases as the mesh grid is refined for SEM with a given orderp and by increasing

the numberq of enriching plane waves for PUFEM. This is valid for both values ofα representing propagating and

evanescent modes. For all cases, PUFEM requires less degrees of freedom per wavelength in comparison to SEM

in order to reach a prescribed accuracy. While SEM requires more degrees of freedom per wavelength, this number

decreases asp increases. For example, in the case ofka = 40, the lowest PUFEML2-errors are 1.9 × 10−6 and

1.2× 10−5, for propagating and evanescent modes respectively, and are both obtained withτ = 3.0. The nearest SEM

discretization level is 3.4 withp = 30 and theL2-errors are 3.8× 10−5 and 2.0× 10−4 , for propagating and evanescent

modes respectively. At the higher frequencyka = 80, the lowest PUFEML2-errors are obtained withτ = 1.9. Such

errors may be obtained with SEM withτ greater than 3 even withp = 30, for both propagating and evanescent waves.

This also applies to the highest frequency caseka= 160 where theL2-error of 3.0× 10−5 for the propagating mode is

obtained withτ = 1.9 using PUFEM. An equivalentL2-error requires more than 3 degrees of freedom per wavelength

using SEM. A similar remark is drawn for the evanescent mode too.
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Table 2: Wave propagation in a duct. RelativeL2-error and discretization level for SEM and PUFEM forka= 80.

SEM PUFEM

p=10 p=20 p=30

5.8× 10−4 (4.5) 7.2× 10−4 (3.4) 6.0× 10−5 (3.4) 1.0× 10−2 (1.5)

2.0× 10−6 (7.3) 3.0× 10−5 (5.6) 1.2× 10−6 (5.1) 7.6× 10−3 (1.7)

α = 25 1.0× 10−6 (8.4) 1.0× 10−6 (7.8) 1.0× 10−6 (6.7) 2.8× 10−4 (1.8)

9.0× 10−7 (9.5) 1.0× 10−6 (8.9) 1.0× 10−6 (8.4) 2.5× 10−5 (1.9)

8.5× 10−4 (4.5) 1.4× 10−4 (3.4) 2.1× 10−4 (3.4) 1.9× 10−1 (1.5)

7.8× 10−6 (7.3) 7.1× 10−6 (5.6) 2.1× 10−6 (5.1) 4.9× 10−2 (1.7)

α = 26 1.7× 10−6 (8.4) 1.7× 10−6 (7.8) 1.9× 10−6 (6.7) 8.5× 10−3 (1.8)

1.7× 10−6 (9.5) 1.7× 10−6 (8.9) 1.7× 10−6 (8.4) 2.8× 10−4 (1.9)

Table 3: Wave propagation in a duct. RelativeL2-error and discretization level for SEM and PUFEM forka= 160.

SEM PUFEM

p=10 p=20 p=30

5.9× 10−3 (3.6) 8.4× 10−3 (2.8) 5.1× 10−2 (2.5) 1.7× 10−2 (1.6)

5.9× 10−5 (5.6) 4.9× 10−5 (3.9) 6.1× 10−5 (3.4) 2.5× 10−3 (1.7)

α = 50 1.9× 10−5 (6.4) 1.5× 10−5 (4.5) 1.3× 10−5 (4.2) 1.2× 10−4 (1.8)

1.4× 10−5 (8.4) 1.4× 10−5 (5.0) 1.4× 10−5 (5.0) 3.0× 10−5 (1.9)

6.9× 10−3 (3.6) 2.5× 10−2 (2.8) 1.0× 10−1 (2.5) 2.3× 10−3 (1.6)

7.5× 10−5 (5.6) 7.2× 10−5 (3.9) 9.9× 10−5 (3.4) 9.6× 10−4 (1.7)

α = 51 2.9× 10−5 (6.4) 2.4× 10−5 (4.5) 2.3× 10−5 (4.2) 4.5× 10−5 (1.8)

2.4× 10−5 (8.4) 2.4× 10−5 (5.0) 2.4× 10−5 (5.0) 1.4× 10−4 (1.9)
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For all considered wave numbers, the results also show that the solution requires more degrees of freedom per

wavelength to reach a certain accuracy for the evanescent wave problem in comparison to the propagating mode prob-

lem. For example, in the case ofka = 40, PUFEM leads to results withǫ2 = 1.2× 10−2 and 8.8× 10−4 with τ = 1.9

and 2.4, respectively, in the case of the propagating mode. These errors increased to about 3.9× 10−1 and 4.1× 10−2,

respectively, in the case of the evanescent mode. This observation is also valid for the SEM approach.

3.2.2. Evanescent wave case

The second test case is taken form reference [43]. It deals with the numerical solution of an evanescent wave

problem in a square domainΩ = [−1, 1] × [−1, 1], on the boundary of which the Robin condition (2) is applied with

the solution of the problem being

u = eiβkye−k
√
β2−1(x+1). (19)

The evanescent wave (19) propagates in they-direction and decays in thex-direction depending on the values ofβ > 1

andk. In [43], the solution was obtained using the Ultra Weak Variational Formulation with either plane waves or

Bessel basis functions over a uniform triangular mesh grid.

In this work, the same problem is revisited and solved at relatively high frequencieska = 25, 50 and 100. For such

values ofka, the parameterβ is chosen to be equal to 1.001 and 1.5 to consider different rates of decay in thex-

direction. This is depicted in Figure 7, which shows the behaviour of the model solution given in expression (19) for

ka= 25 and 100. It is obvious that for the higher wave numberka more wavelengths are displayed in they-direction

and that for the higher coefficientβ a shaper decay occur in thex-direction, which represent challenging test cases.
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Figure 7: Evanescent wave variations in the computational domain for different values ofka andβ.
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Table 4 summarises the results in terms of theL2-error and the discretization level, presented between brackets,

for the three cases of the wave number. For SEM, uniform mesh grids are considered and for PUFEM, a mesh grid of

2 by 2 square elements is used for the wave numberska = 25 and 50, and a mesh grid with 4 by 4 square elements

is used forka = 100. The same approach used for the case of wave propagation in a duct is also followed herei.e.

to increase the discretization level, mesh refinements are carried out for SEM while for PUFEM the mesh grid is

kept unchanged and the number of approximating plane waves is increased. Again, this is deliberately adopted for

the reason stated earlier. Moreover, for PUFEM, on top of theplane wave enrichment results, mentioned by PW,

plane waves and evanescent waves enrichments, noted by PW+EW are also considered, for which two exponentially

decaying waves are added to the plane waves. These are chosento beeiβkye−k
√
β2−1(x+1) ande−iβkye−k

√
β2−1(x+1). Note

that the discretization levelτ remains practically unchanged as it is the second digit ofτ which is affected.

In general, the results show that increasing the discretization levelτ improves theL2-error for both approaches, SEM

and PUFEM with PW. For SEM, as the orderp increases, the discretization levelτ required to achieve a prescribed

accuracy decreases but PUFEM with PW seems to provide similar quality results for significantly lower values of

the discretization levelτ. For example, forka = 25, PUFEM with PW provides an error of order 10−6 with τ = 2.7

whereas an error of the same order is achieved withτ = 10.2 for p = 10 and withτ = 7.7 for p = 20 and 30. For

ka= 50, PUFEM with PW provides an error of order 10−6 with τ = 1.7, a number which is almost three times lower

than that required forp = 30 in order to achieve the sameL2-error. Similarly, forka = 100 PUFEM with PW and

τ = 1.8 provides an error of 10−5 whereas the same error is provided with SEM at significantly higher numbers ofτ.

For PUFEM with PW+EW, the results show lowerL2-errors at very low levels of the discretization levelτ, in com-

parison to the results of PUFEM with PW. It is obvious that theincorporation of the two evanescent waves in the wave

field enrichment has significantly improved the performanceof the model for the lowest values of the discretization

level. For example, in the case ofka = 25, PUFEM with PW+EW provides anL2-error of 1.4× 10−5 with τ = 2.1

while PUFEM with PW and with the same discretization level provides anL2-error of 8.8× 10−2. This improvement

is noticed in all cases of wave numbers. It is also noticed that further increasing the number of approximating plane

waves does not reduce theL2-error. This is due to the fact that the good performance of PUFEM to deal with evanes-

cent wave problems is due to the exponentially decaying waves added to the approximating plane waves. It is also

known that PUFEML2-errors stagnate after reaching a certain level of accuracyand further increasingτ does not

improve the error. This is observed for PUFEM with PW in the case ofka = 25 for τ = 2.7 and 3, and in the case

of ka = 50 for τ = 1.7 and 1.8. Overall, the lowest levels ofL2-error are achieved by the SEM approach but with

significantly higher discretization levels.
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Table 4: Evanescent wave test case. RelativeL2-error and discretization level for SEM and PUFEM forka= 25, 50, 100 andβ = 1.001.

SEM PUFEM

p=10 p=20 p=30 PW PW+EW

ka= 25

7.0× 10−4 (6.4) 3.3× 10−4 (5.2) 1.5× 10−2 (3.9) 8.8× 10−2 (2.1) 1.4× 10−5 (2.1)

5.3× 10−6 (10.2) 1.5× 10−6 (7.7) 1.3× 10−6 (7.7) 9.0× 10−5 (2.4) 3.2× 10−6 (2.4)

1.0× 10−7 (15.2) 2.0× 10−7 (12.7) 9.0× 10−7 (11.4) 3.2× 10−6 (2.7) 3.2× 10−6 (2.7)

8.0× 10−8 (22.8) 9.0× 10−8 (17.7) 5.0× 10−7 (15.2) 3.2× 10−6 (3.0) 3.2× 10−6 (3.0)

ka= 50

3.4× 10−2 (4.5) 4.4× 10−2 (3.8) 1.5× 10−2 (3.8) 1.6× 10−2 (1.5) 6.4× 10−6 (1.5)

5.3× 10−6 (10.1) 6.1× 10−6 (6.4) 2.5× 10−6 (5.7) 8.2× 10−4 (1.6) 6.4× 10−6 (1.6)

1.5× 10−6 (11.4) 1.6× 10−6 (7.6) 2.3× 10−6 (7.6) 8.1× 10−6 (1.7) 7.1× 10−6 (1.7)

2.0× 10−7 (13.9) 2.0× 10−7 (11.4) 9.0× 10−7 (9.5) 8.0× 10−6 (1.8) 7.5× 10−6 (1.8)

ka= 100

4.3× 10−3 (5.4) 3.3× 10−3 (4.4) 1.8× 10−2 (3.8) 1.7× 10−2 (1.3) 1.2× 10−5 (1.3)

1.2× 10−3 (6.0) 4.0× 10−5 (5.7) 9.5× 10−5 (4.7) 1.3× 10−3 (1.5) 1.2× 10−5 (1.5)

1.7× 10−4 (7.3) 6.2× 10−6 (6.3) 2.6× 10−6 (5.7) 7.9× 10−4 (1.6) 2.1× 10−5 (1.6)

3.2× 10−5 (8.5) 1.9× 10−6 (7.6) 2.7× 10−6 (6.6) 1.3× 10−5 (1.8) 1.3× 10−5 (1.8)
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The same problem is considered again but this time with the coefficient β = 1.5. This leads to a very sharp

exponential decrease of the evanescent wave given by expression (19) and hence it is numerically more challenging

than that corresponding toβ = 1.001.

Table 5: Evanescent wave test case. RelativeL2-error and discretization level for SEM and PUFEM forka= 25, 50, 100 andβ = 1.5.

SEM PUFEM

p=30 PW+EW

ka= 25

7.5× 10−1 (3.9) 2.2× 10−6 (2.1)

1.8× 10−5 (7.7) 1.6× 10−6 (2.4)

9.4× 10−7 (11.4) 1.6× 10−6 (2.7)

6.0× 10−7 (15.2) 1.7× 10−6 (3.0)

ka= 50

7.5× 10−1 (3.8) 5.2× 10−6 (1.5)

1.2× 10−2 (5.7) 5.3× 10−6 (1.6)

1.8× 10−5 (7.6) 6.9× 10−6 (1.7)

2.0× 10−6 (9.5) 4.5× 10−6 (1.8)

ka= 100

7.5× 10−1 (3.8) 7.7× 10−5 (1.3)

2.4× 10−1 (4.7) 2.6× 10−5 (1.5)

1.2× 10−2 (5.7) 1.2× 10−5 (1.6)

4.4× 10−4 (6.6) 6.4× 10−5 (1.8)

Table 5 shows the obtained values of theL2-error with the corresponding discretization levels for the wave number

ka = 25, 50 and 100. For SEM, only the orderp = 30 is considered and for PUFEM both equally distributed

progressive plane waves and the two exponentially decayingwaves considered above are used in the approximating

field enrichment (PW+EW). It is worth noting that PUFEM with PW did not produce goodquality results for this

case of the coefficientβ = 1.5 representing a very sharp decay of the evanescent wave (Figure 7). SEM results show
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a progressive decrease of theL2-error as the discretization level increases. For less thanabout 4 degrees of freedom

per wavelength, SEM results are not of good quality. In the case PUFEM, with PW+EW, all results displayL2-errors

of the order of 10−5 or 10−6 even for the lowest discretization level,τ = 1.3, thanks to incorporating exponentially

decaying waves in the enrichment field. TheL2-error seem to be stagnating in spite of the increase ofτ through

the increase of the number of approximating progressive plane waves, which are less crucial than the exponentially

decaying waves for this problem. In the above test case, the inclusion of the evanescent wave (19) in the wave basis

leads to better results because it corresponds to the exact solution. In a general case, where noa-priori knowledge of

the solution is available, it is difficult to propose a robust model to efficiently solve the problem. In such case, the use

of polynomial-based elements would be more practical.

4. Conclusions

In this paper, two high order finite element approaches are used to solve wave problems governed by the Helmholtz

equation in two dimensions. In one approach, referred to as SEM, the Lagrangian polynomial based finite elements

with Chebyshev-Gauss-Lobatto nodal distribution are considered with high orders, up top = 50. In the other ap-

proach, PUFEM is considered with oscillatory functions in the form of progressive plane waves or including expo-

nentially decaying waves. The performance of each approachis assessed in terms of results quality and required

degrees of freedom per wavelength. The condition number, the total number of required storage locations and the

total number of non-zero entries in the final system to solve are also compared.

For the considered problems, the results show that PUFEM provides good quality results with a low number of de-

grees of freedom per wavelength, especially for relativelyhigh frequencies where the element size incorporates many

wavelengths. Good quality results are obtained with less than 2 degrees of freedom per wavelength. In such cases,

the final system to solve is drastically reduced in comparison to SEM and hence the number of storage locations is

also reduced. However, it is also shown that further increasing the discretization level by increasing the number of

enriching plane waves does not always enhance the results beyond a certain level due to the ill-conditioning issue

which is inherent to the plane wave enrichment technique.

For SEM, as the orderp increases, the required number of degrees of freedom per wavelength to provide results with

a prescribed level of accuracy decreases and, in general, itremains higher than that required by PUFEM. This is espe-

cially seen at the highest considered order for SEM,p = 50, and high numberq of enrichment functions for PUFEM.

At a lower order, for examplep = 10 or 20, SEM may lead to a similar performance obtained by PUFEM with low

number of enriching plane waves, such asq = 10 or 20.

For problems involving evanescent waves, SEM provides goodquality results but again with a higher discretization

level in comparison to PUFEM. For the latter approach, incorporating exponentially decaying waves in the enrichment

field significantly enhances its performance, especially for cases with a sharp decay where the efficiency of PUFEM

with progressive plane wave enrichment is significantly reduced.

In view of the results presented in this work and given the cumbersome task of creating high order elements mesh

grids, especially for engineering problems of industrial scale, it seems more practical to use low order elements and

incorporate field enrichment. Moreover, it is always possible for practitioners to choose the number and type of en-

richment functions for a given frequency and mesh size to obtain good quality results while keeping the condition

number within acceptable limits. However, if the wave field exhibits sharp decay behaviour and noa− priori knowl-

edge of the solution is available, then polynomial-based elements would be a more practical option.
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