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Abstract

In this paper, two high-order finite element models are itigaged for the solution of two-dimensional wave prob-
lems governed by the Helmholtz equation. Plane wave ertifihite elements, developed in the Partition of Unity
Finite Element Method (PUFEM), and high-order Lagrangiahynomial based finite elements are considered. In the
latter model, the Chebyshev-Gauss-Lobatto nodal digtabus adopted and the approach is often referred to as the
Spectral Element Method (SEM). The two strategies, PUFENMSEM, were developed separately and the current
study provides data on how they compare for solving shortewaoblems, in which the characteristic dimension
is a multiple of the wavelength. The considered test exasipleude wave scattering by a rigid circular cylinder,
evanescent wave cases and propagation of waves in a ducigidtivalls. The two approaches are assessed in terms
of accuracy for increasing SEM order and PUFEM enrichmehe donditioning, discretization level, total number

of storage locations and total number of non-zero entriesso compared.
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1. Introduction

The finite element method has been used for decades as a nahteol for solving various engineering wave
problems thanks to its ability to deal with complexitiesated to geometry and material properties. For practical
ease, low order polynomial based elements have been endpdoykthese require the use of many nodal points per
wavelength to achieve acceptable accuracy. Usually, affeguency, the knownule of thumbleads to use about
ten nodal points per wavelength in linear elements to ol#agineering accuracy results. However, for short wave
problems, as well as the discretization error the polluémor [1, 11] was found toféect the solution and hence the

number of nodal points per wavelength has to be further as=é.
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With the aim to reduce the computational cost and improvestiletion accuracy, various methods based on field
enrichment have been proposed. For Helmholtz wave probldradield enrichment was carried out by incorpo-
rating plane waves or Bessel functions in the approximataeeviield. Proposed methods include the least-squares
method [33], the partition of unity method [18, 31, 30, 28], 20e ultra weak variational formulation [26, 27], the gen-
eralised finite element method [44, 45, 46], the discontirstenrichment method [6, 36], the oscillated finite element
polynomials [3], the stable discontinuous Galerkin metH@d] and the phase reduction finite element method [7].
Enriched elements were also developed within the framewbtke boundary element method such as the partition
of unity boundary element method [9] or the isogeometricavaariched boundary element method [25]. Some of
the above techniques have been extended to elastic wavlem®2, 42, 22], fluid-structure interaction [40], flow
acoustics [37] and wave propagation in poro-elastic met¥ [For more information, the reader is directed to the
reviews presented in [4] and more recently in [17].
High order polynomial based finite elements were also d@esl@and their performance assessed for the solution of
wave problems governed by the Helmholtz equation. Withénftamework of the discontinuous enrichment method,
two quadrilateral elements employing 16 and 32 plane waesgectively, and featuring four and eight Lagrange
multiplier degrees of freedom per edge were presented amdabrformance compared to that of Q4 for the solution
of two-dimensional waveguide and acoustic scatteringlprab [12]. The construction of high order finite elements
may use integrated Legendre polynomials resulting in teeahchicalp-FEM. Such elements were developed for the
solution of three-dimensional Helmholtz problems [15] dadthe case of convected wave propagation [16]. Re-
cently, a high-order polynomial method, based on Lobattgrgmmials, and the wave-based discontinuous Galerkin
method are compared for the solution of two-dimensionahttelitz problems [23]. The use of conventional La-
grange polynomials were also considered to construct higarelements. These were used to solve, for example,
interior acoustic problems and their performance has bssgsaed against high order elements with shape functions
based on Bernstein polynomials [38]. Iso-geometric eleémetith non-uniform rational B-splines (NURBS) shape
functions were also developed resulting in N-FEM. They wemepared to SEM ang-FEM high order approaches
for the solution of Lamb wave propagation problems [8]. Hagtler continuous and discontinuous Galerkin methods
were compared for the solution of smooth and non-smooth tmemsional scattering problems in terms of the com-
putational cost and concluded that high order methods were efficient [13]. In the above indicated polynomial
based approaches, the order of the element shape functiomsderately high as it is considered up to the twelfth
order, such as in reference [23].
PUFEM has been thoroughly investigated for acoustic anstielaave problems and attempts have been made to
compare its performance to that of the standard FEM [2, 2@léVer, in the latter references, low order elements
have been considered for FEM and hence it is intended heretedse the ordgy to hopefully claim a fair com-
parison. Various families of polynomials could be consédefor high order elements such as Bernstein or Lobatto
polynomials [38]. These were shown to have advantages beeusual Lagrange polynomials. Indeed, elements
based on high order Lagrange polynomials cannot benefitfinemse of static condensation for eliminating the bub-
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ble functions to reduce the memory requirement and improeebnditioning, which is the case of the other families
of high order elements mentioned above [21, 39]. Despiteahd for practical reasons, the considered high order
elements in this paper are based on conventional Lagrargegoials. However, they are defined on a specific nodal
distribution, the Chebyshev-Gauss-Lobatto. These elermiong to the SEM family [34, 35], which is a particular
high order method but must not be confused with the SpedméeFElement Method [14]. The current work assesses
both PUFEM and SEM for the solution of Helmholtz problemshwitcreasing wave numbers.

The paper is organized as follows. The next section preglemfermulation of the considered Helmholtz problem. It
recalls the weak form of the problem and its numerical apipnakion by either SEM or PUFEM. Section 3 presents

numerical results for various selected problems and laSection 4, some concluding remarks are drawn.

2. Problem formulation and finite element models

In this section, the Helmholtz problem with Robin boundasgdition is formulated and the finite element models,
namely SEM and PUFEM, are presented. Qat R? be a bounded domain with a smooth boundarifor the wave
field U, we assume that the time variation is such téx,y,t) = u(x, y)eiwt whereu = u(x,Y) is the unknown time
independent wave field, is the circular frequency and i stands for the complex imagimumber such that = —1.

The Helmholtz problem fou is then defined by
~Au-KkKu=0 in Q, (1)

Vun+iku=g on T. (2)

In expressions (1) and (2)\ is the Laplace operato¥, is the gradient vector anklis the wavenumber such that
A = 2r/k is the wavelength. The tergnrepresents a boundary sourceloandn denotes the outward normal unit
vector defined everywhere @n

The weak formulation of the presented problem is obtainethbitiplying the Helmholtz equation (1) by a smooth

test functionv = v(x, y) and integrating over the domagnsuch that

- fQ(Au + Ku)v dQ = 0. (3)

Equation (3) involves second derivativeswof Using the integration by parts to the integrand with secorder

derivatives, the following equation is obtained.

f(Vu.Vv— k?uv) dQ — 9§(Vu.n) vdr=0. (4)
Q r

Introducing the Robin boundary condition (2) , the previexpression becomes

f(Vu.Vv—kzuv)dQ+ik9§uvdF=9§gvdl". (5)
Q r r
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The aim now is to find an approximate solutignof the weak form (5) using either high-order Lagrange poiyiad

based finite elements (SEM) or elements with plane wave lemeat (PUFEM).

2.1. SEM model

Let M = {Q4,.....,Qn} be a partition of2 into N uniform non-overlapping elemeng, e = 1,...,N. Each sub-
domainQ, is given through a coordinate transformatioa L8(£) between the real space= (x,y)" € Q and the local
system¢ = (£,7)" € £. The sub-domains are chosen to be quadrilaterals with theeey described by the classical
4-node interpolation functions and henge= [-1, 1]%. The field unknown variable over eaoode elemen€, is

approximated by
n
Up = Z Njuj, (6)
=1

whereN; stands for the Lagrangian polynomial interpolation fumes onL andu; represents the nodal values cor-
responding to the vertices 6f.. The degree of the polynomial interpolation functior’s; depends on the number
of nodes assigned to the sub-domain. For example, if theoappation (6) is linear thep = 1 andn = 4. For a
quadratic approximatiorp = 2 andn = 9. In general, for an approximation of degneéhe number of vertices per
sub-domain would beg(+ 1)2.

For a degre®, the setp + 1 of Lagrange interpolation functions in one dimension a#negd by

7 (- 5. -
N (é‘:) l_l (f J - 15 2""’ p+ 15 (7)
j
I#-J
with the property

1, i=]

Nj(fi)z{ _ J for 1<i,j<p+1 (8)
0, i#]

For low order finite elements, it is usual and practical toecpai-spaced nodal distribution. However, it is well known
that for high-order elements this distribution does notllém good performance due to the Runge’s phenomenon
and hence a particular nodal distribution is adopted. Astimeed previously, high order approaches prefer other
families of functions such as Bernstein or Lobatto but irs thvbrk Lagrange based high-order finite elements with
the Chebyshev-Gauss-Lobatto nodal distribution are useahe dimension and far € [-1, 1], the nodal points are
located at the points with

& = ((' pl)”), i=1,2 .., p+1 9)

Lagrange interpolation functioris;j(¢, n) for the two dimensional elements used in this work are gatgfined by
following expression (7) and in the same way the verticeatioas with respect to the coordinate can be obtained
by following (9).

A Galerkin approach is used, for which the test functionschiesen such that= N;, and the resulting finite element
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approximation of the weak formulation (5) then reads: Rip@f the form (6) and for alj = 1, ....,(p+ 1) x (p+ 1)

such that
f(Vuh.VNj —kzuth) dQ+ik§Uh N; dI' = ég N; dr. (20)
Q r r

For the evaluation of the integrals involved in the weak f¢fi), a Gauss-Legendre scheme is adopted for which a

numbemiy; = 2p — 1 of integration points would integrate exactly polynorsiaf orderp or less.

2.2. PUFEM model

In the PUFEM model, the sub-domains are chosen to be birlipezdrilaterals with the geometry described by
the classical 4-node interpolation functions. At eachesgrthe unknown variable; of expression (6) is expanded
into a linear combination off plane waves); with directions encompassing the two dimensional spaceséare
given by

U = eikd|.l” (11)

with d, = (cos, sing)" ande, = 2 1/qfor| = 1,2,...,q. The PUFEM approximation of the unknown field variable

within a sub-domaiif), is then given by

q
Un = ZZN,— WA (12)

4
=1 1=1

The unknowns of the problem are no more thefioentsu; but the amplitude factorA'j of the plane waves. For

notation convenience, the product of the linear shape iflomd{; and the plane wavg, is written asP; = N;j ¢, with

r =(j—1)g+ 1. A Galerkin approach is also adopted here and hence takintegt functiornv = P,. The resulting

PUFEM approximation of the weak form (5) then reads: Ripdf the form (12) and for alt = 1, ...., 4q such that

f (Vun.VP; — Kup P;) dQ + ik 9§ U Py dI' = 9§ g P dr. (13)
Q T T

The integrals of expression (13) involve highly oscillgtéunctions and hence a high order Gauss-Legendre quadra-
ture scheme is used for which the number of integration pamthosen to accommodate the multi-wavelength size
of the elements. Theffect of the numerical integration on the PUFEM has been iiyegstd in past work [29, 10].

As a result, the empirical expression giving the numfagr= [10 x h/1A] + 2 to ensure enough integration points are
used with respect to each spacial direction is adopted.wbith noting that semi-analytical integration procedures
were also developed, such as in [5, 10], to reduce the cortimudhcost but they were not used in this study.

Since Galerkin weighting is used in both weak forms (10) dr8) the global matrix of the resulting system is sym-
metric and block banded. A skyline storage is used with aisig&ector to locate the elements and the solution is
computed using a direct solver based.dd." decomposition wherk" is the transpose of the lower triangular matrix

L andD is a diagonal matrix [32].



3. Numerical results analysis

In this section, the performance of PUFEM and SEM is first ssese for the solution of a wave scattering problem
model. Then they are assessed for the solution of test pnstdensidering evanescent waves and wave propagation
in a duct with rigid walls. The assessment of both approachearried out for dierent orderg of the Lagrangian
interpolation functions for SEM and fiierent numbers| of enrichment functions for PUFEM, while the mesh is
refined at high frequencies;ethe corresponding wavelength is a small fraction of a chiaratic problem dimension,
for example the element site

The performance is measured through the relative errogukel ,-norm. It is given by

_lu = unll, @)

& - (14)

IUllLy@)
with u being the exact solution of the considered problemwayitie approximate solution obtained by either SEM or

PUFEM. The discretization level in terms of degrees of foergber wavelength is indicated by the parametgiven

by
/totdo f
=A s 15
’ Qarea ( )

wheretotdof stands for the total number of degrees of freedom requirethf® solution ande, is the area of

the computational domain. Other parameters of intetestysandtotnze are considered which represent the total
number of storage locations of the system matrix to solvethadotal number of non-zero entries, respectively. Fi-
nally, the conditioning of the system matrix, denotedkbis also considered and is computed using the 1-norm. All

computations are carried out in Fortran with double-pienisomplex numbers.

3.1. Wave scattering by a rigid circular cylinder

Both PUFEM and SEM models are assessed for a wave scattedhgm. The computational domain is chosen

to be a square of unit size definedQy= [1, 2] x [1, 2]. The following analytical model

=y J/(ka)

_ m m

u= g iMem e (ka) Hm(kr) cosny (16)
m=0

is imposed on the boundaryof the computational domaif2 through the source tergof expression (2). The above
model (16) represents the solution of the scattering of &botal plane wave by a rigid circular cylinder of unit
radiusa centred at the origin of the Cartesian system axes. In egijoreé16),r andd are the polar coordinates of a
considered pointd,, andJy, are respectively the Hankel and Bessel functions of theliingt and ordem, andep, is
defined byep = 1,em =2 forallm> 1.
The performance of each model is measured in terms df fkexrore, and by considering the discretization level
condition numbek, total number of storage locatiotstsysand the total number of non-zero entrietnze
The wave scattering problem is solved by both approachakdéovave numbeilsa = 167, 40r and 10G. For a given
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orderp for SEM or enrichment numbey for PUFEM the mesh grid is refined to carry outlaeconvergence study,
for each wave number case, which leads to an increase in tiddentomber of degrees of freedom for the problem
solution. For SEM, it is obvious that for low values pfve can consider many mesh refinements as low numbers of
nodes are involved per element in the mesh grid, such gs#ot0 where many refinements are carried out, while for
higher values op less cases of mesh refinement are possible to considerrsimitegbergotdo f as high numbers of
nodes per element are used. This is clearly seep fob0r where only two mesh grids are consideredat 100r.
The results of Figure 1 show the values of theerror for all cases of wave numbers when increasing thériataber
of degrees of freedonotdo f through mesh refinements, for both approaches. For SEM, tieeror decreases with
the increase afotdof at a rate which increases with the orgerThis is also true for PUFEM for which thie,-error
decreases with the increasetofdo f at a rate which increases with the numbef approximating plane waves.
For the case oka = 16n, for example, the rate of convergence of SEM with= 10 is pretty similar to the rate of
convergence of PUFEM withh = 20. In the same way, the SEM results for= 20 and 30 exhibit a similar rate
shown by the results of PUFEM withh= 40. Looking at PUFEM witlg = 10 and SEM withp = 10, we can see that
PUFEM requires less degrees of freedom than SEM to achieveaime level of accuracy up totdof = 2 x 10%,
where the two lines cross each other and provide an accueaeldfe, = 1073, after which SEM requires less degrees
of freedom than PUFEM to achieve the same accuracy. The shagvation is made on PUFEM with= 20 and
SEM with p = 30 for which the results show a similar accuracyegf= 107°, aroundtotdof = 2 x 10%. Before this
crossing, PUFEM uses less degrees of freedom than SEM tadprthe same level of accuracy but after the crossing
SEM uses less degrees of freedom than PUFEM for the samesagcur
The above observations also apply to the other cases of wawberska = 407 and 10@, in the sense that increasing
the orderp for SEM and the numbeg for PUFEM leads to higher rates of convergence though forEMBome of
the results do not show straight lines. kar= 407, PUFEM withq = 20 is shown to require less degrees of freedom
than SEM withp = 20 to provide same quality results up to abtattlof = 7 x 10°. If we increasep to 30 while
keepingg = 20, the crossing occurs at abdotdof = 3 x 10°. For higher orders op and higher numbers af
similar crossings may occur at very high valuedaitio f but such values are not presented in the results, especially
atka = 100r where none of the crossings occurred.
Overall, to achieve a prescribed accuracy, it is clear th#tt@ordep increases the total number of degrees of freedom
required in the problem solution decreases. This also eppdi PUFEM for which the results show that increasing
the numben of enriching plane waves leads to a reduction of the requottb f to achieve the same accuracy. For
ka = 100r, in the case of SEM, to achieve a level of accuracy of Hbout 7x 10* degrees of freedom are required
for p = 10. This number decreases to abowt 30 for p = 50. For PUFEM, to achieve a similar accuracy the
total number of degrees of freedom is just under 20* for q = 40. It decreases to aboutx710® for q = 80 and
to about 4x 10° for g = 160. However, it is worth mentioning that while mesh refinatrie practical and usual in
SEM approach, for PUFEM it is preferred to keep the mesh gnichanged and adopt further enrichment. Indeed,
PUFEM and other wave-based approaches usually rely on aeoagsh grid incorporating multi-wavelengths per
7
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Figure 1: Relative_-error for PUFEM and SEM for dierent values of the wave number.

nodal spacing and use increasing numlgesEenrichment functions to accommaodate the highly oscithasolutions.

The behaviour of the condition number for both SEM and PUFEpfrésented in Figure 2 for the same parameters
considered in Figure 1. For the case of SEM, the increasevith p or totdo fis overall small. For PUFEM, however,
« increases sharply wittotdo f. For instance, SEM provides condition numbers in the orflébdwhereas PUFEM
provides condition numbers which increase significantlyoédo f increases or the numbgiof approximating plane
waves is increased. In fact, ill-conditioning is an inherfeature of PUFEM but despite the high valuexdPUFEM
continues to provide good quality results with decreasipgrror asotdo f increases through mesh refinement or by

increasing the numbeyof approximating plane waves.
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Figure 2: Condition number for PUFEM and SEM foffdrent values of the wave number.

In Figure 3, the total number of non-zero entri@gnze indicating the storage requirements for the final system to
solve is presented with respect to the total number of degreeeedomiotdo f, for the same parameters considered
above. As expected, for both SEM and PUFEM, the total numbabn-zero entries increases exponentialljnas
refinement is carried out, for a givemor giveng. Moreover, ag and( increasefotnzealso increases due to the
elementary matrices becoming larggr{1) x (p + 1) for SEM and 4 x 4qin PUFEM, with p andg. Nevertheless,
as already noticed, while there are some comparable nurbbsveen SEM and PUFEM for the wave number cases

ka= 167 and 4G, it is clear at the higher wave numba = 100r SEM requires more degrees of freedom and hence
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exhibits large numbers of non-zero entries to achieve amjlality of results as PUFEM.
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Figure 3: Non-zero entries for PUFEM and SEM fofteient values of the wave number.

In all numerical tests carried out above, the computatidioahain was meshed into uniform mesh grids with
square elements of the same size. In the next numerical tiestsiesh grid is distorted such as shown in Figure 4. A
distortion ratio is defined by dividing the largest elemetge by the smallest one in the same mesh grid. Therefore,
Figure 4(a) shows an undistorted mesh grid with the defintol egual to one, Figure 4(b) represents an intermediate
distortion case and Figure 4(c) shows the extreme distoftiowhich the ratio is equal to 10. The mesh grids contain
25 elements. In the case of PUFEM, 4-node elements are usied plane wave enrichment at each node. For SEM,
each element containg ¢ 1)> nodes so that the interpolation functions are of degre€he plane wave scattering
problem dealt with above is considered again herekéor 87 and 16r, with SEM and PUFEM for dferent orders
p of the interpolation polynomials and numberef approximating plane waves, respectively. Theerror is shown

in Figure 5 as a function of the distortion ratio.
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Figure 4: (a) Undistorted mesh grid, (b) intermediate digin and (c) extreme distortion.
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Figure 5: Relativd_,-error for PUFEM and SEM for dlierent values of the wave number on distorted mesh grids.

Overall, Figure 5 shows that some of the results difected by the increase of the distortion ratio and hence the
Lo-error has increased, such as for SEM witke- 10 and PUFEM withg = 20, while others show a practically flat
Lo-error, such as for SEM witlp = 20 and PUFEM withq = 40. This is due to the change in the discretization
level T which varies with the distortion ratio. Indeed, for the wtdited mesh grid, the average number of degrees of
freedom per wavelength is the same at all elements. It ist&@dor PUFEM withg = 20 and 12.7 for SEM with
p = 10, for the case dfa = 8. For this wave number, these levels are about 9.5 for PUFER qv= 40 and 25.2
for SEM with p = 20. As the mesh is distorted, the average number of degréeseafom per wavelength at element
level will vary such that it is high in the small elements and lat the large ones. Therefore thg-error would be
affected by the large elements incorporating less degrees@ddm per wavelength. As the wave number increased
from 8r to 16w, leading to half of the above mentioned discretizationleubel,-error seems to beff@cted for SEM

with p = 10 and PUFEM withg = 20, due to the lower number of degrees of freedom per waviiemvithin the large
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elements. However, for SEM with = 20 and PUFEM withg = 40 the results remain practically unchanged thanks

to the discretization levels which remained relativelyrh&yen for the large distorted elements.

3.2. Exponentially decaying wave problems

It is well known that the performance of wave-based methedds to be reduced when dealing with problems
involving evanescent waves. In this section, two furthet tases of practical interest are considered. The first case
deals with the propagation of waves in a duct with rigid walkich involves propagating and decaying modes, and

the second one involves evanescent waves.

3.2.1. Wave propagation in a duct
The first test example deals with the propagation of a wavedunc with rigid walls. It is taken from reference
[41]. The computational domaif2 = [0, 2] x [0, 1] is considered with the Robin condition (2) on its boundgry

through the source tergn The solution of the problem is given by
u(x,y) = cos(wry)(Ble’ikXX + Bzeikxx), a7)

whereky, = +/kZ — (anm)2. Fork > an, the solution exhibits propagating modes, otherwise, veedaaling with an

evanescent wave problem. The fluBentsB; andB, can be found by solving the equation

. Kx —ky B.| |1
[ ) . =] |. (18)
(k- ke ke (k+ kx)eZ'kx] {Bz] [o]

In reference [41], the ultra weak variational formulatiardePUFEM were assessed in solving the problem stated
above for the wave numbers 20, 40 and 80 using mesh grids bageidngular elements. In this work, PUFEM and
SEM are used on uniform mesh grids with square elementsve gut above problem for the wave numbleais= 40,

80 and 160. Here, the parameterepresents a unit of length such tlkatis dimensionless. For each case of wave
number, two dfferent values ofr, which give the highest-propagating mode and the lowestescent mode, are
considered. For illustration purpose, Fig.6 shows theydical solution (17) forkka = 40 with @ = 12 corresponding

to a propagating wave and = 13 corresponding to an evanescent wave. Obviouslliasreases the values of

leading to propagating or evanescent modes increase as well
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Figure 6: Waves in a duct fdta = 40, (a) propagating mode fer= 12 and (b) evanescent mode for= 13.

To increase the discretization lewelthe mesh size is refined for the SEM approach while for PUFEdvhumber
g of enriching plane waves is increased. This i©r@approach for SEM while for PUFEM it is@approach, equivalent
to the p-approach. This is deliberately adopted because it is uswalopth-refinements in the case of SEM but for
PUFEM it is more practical to keep the mesh grid of the compartal domain unchanged and increase the nurgber
of field enrichment functions.
For PUFEM, a mesh grid of 2 by 4 square elements is used fordlre numberka = 40 and 80, and a mesh grid with
4 by 8 square elements is used kar= 160. Tables 1, 2 and 3 display the compultgeerror and the discretization

level, presented between brackets, for the considered.case
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Table 1: Wave propagation in a duct. Relatlveerror and discretization level for SEM and PUFEM kar= 40.

SEM

p=10 p=20

p=30

PUFEM

38x105(5.7) 20x 107 (4.6)
6.0x 107 (6.8)
50x 1077 (112)

6.0x 1077 (13.4)

5.0x 107 (9.0)
50x 107 (11.2)
50x 107 (134)

a=12

38x107°(3.4)
9.0x 107 (6.8)
7.0x 1077 (10.1)
50x 1077 (134)

1.2x 102 (1.9)
8.8x 1074 (2.4)
56x 1075 (2.7)
1.9x 1078 (3.0)

85x 10°° (4.6)
10x 10°° (6.8)

8.7x107°(5.7)
1.1x 1076 (9.0)
10x 1076 (11.2)
9.0x 1077 (134)

10x 1078 (112)
10x 1076 (13.4)

a=13

20x 10 (3.4)
12x 107 (6.8)
10x 1078 (10.1)
10x 1078 (13.4)

3.9x 101 (1.9)
41x1072(2.4)
41% 103 (2.7)
1.2x 1075 (3.0)

As expected, the error decreases as the mesh grid is refin@Efd with a given ordep and by increasing
the numben of enriching plane waves for PUFEM. This is valid for bothues ofa representing propagating and
evanescent modes. For all cases, PUFEM requires less degrbeeedom per wavelength in comparison to SEM
in order to reach a prescribed accuracy. While SEM requie®rdegrees of freedom per wavelength, this number
decreases ap increases. For example, in the casekaf= 40, the lowest PUFEM_,-errors are ® x 1076 and
1.2 x 1075, for propagating and evanescent modes respectively, @abdn obtained withr = 3.0. The nearest SEM
discretization level is 3.4 witlp = 30 and the_,-errors are Bx 10°° and 20x 104, for propagating and evanescent
modes respectively. At the higher frequerkay= 80, the lowest PUFENML,-errors are obtained with = 1.9. Such
errors may be obtained with SEM withgreater than 3 even with = 30, for both propagating and evanescent waves.
This also applies to the highest frequency dese 160 where thé.,-error of 30 x 107° for the propagating mode is

obtained withr = 1.9 using PUFEM. An equivalerit,-error requires more than 3 degrees of freedom per wavéiengt

using SEM. A similar remark is drawn for the evanescent mode t
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Table 2: Wave propagation in a duct. Relatlveerror and discretization level for SEM and PUFEM kar= 80.

p=10

SEM

p=20

p=30

PUFEM

a=25

5.8x 1074 (4.5)
2.0x 107 (7.3)
10x 10°% (8.4)
9.0% 1077 (9.5)

7.2x 107 (3.4)
30x 1075 (5.6)
10x 1076 (7.8)
10x 1076 (8.9)

6.0x 1075 (3.4)
12x 107 (5.1)
1.0x 1078 (6.7)
1.0x 1076 (8.4)

1.0x 1072 (1.5)
7.6x 1072 (1.7)
2.8x 1074 (1.8)
2.5% 107 (1.9)

a =26

8.5x 1074 (4.5)
7.8x 107 (7.3)
17 x 1076 (8.4)
1.7 x 1076 (9.5)

14x 107 (3.4)
7.1x 107 (5.6)
17x10°(7.8)
17x10°(8.9)

21x10%(3.4)
21x107°(5.1)
19x10°(6.7)
17x10°(8.4)

1.9x 1071 (15)
49x102(1.7)
8.5x 1073 (1.8)
2.8x 1074 (1.9)

Table 3: Wave propagation in a duct. Relatlveerror and discretization level for SEM and PUFEM kar= 160.

p=10

SEM

p=20

p=30

PUFEM

a =50

5.9x 1073 (3.6)
5.9x 1075 (5.6)
19x 10°5 (6.4)
1.4x 10°5 (8.4)

84x 1072 (2.8)
49x 1075 (3.9)
15x 1075 (4.5)
14x 1075 (5.0)

51x 1072 (2.5)
6.1x 1075 (3.4)
13x 1075 (4.2)
14 x 10°5 (5.0)

1.7x 1072 (1.6)
25x1073 (1.7)
1.2x 1074 (1.8)
3.0x107°(1.9)

a =51

6.9x 1073 (3.6)
7.5x 107 (5.6)
29x 107 (6.4)
2.4x 107 (8.4)

25x1072(2.8)
7.2x107°(3.9)
24x10°° (4.5)
24x10°°(5.0)

10x 107 (2.5)
9.9 x 1075 (3.4)
23x10°5 (4.2)
24 % 10°5 (5.0)

2.3x 1073 (1.6)
9.6x 107 (1.7)
45x10°°(18)
1.4x 107 (1.9)
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For all considered wave numbers, the results also show hkeagdlution requires more degrees of freedom per
wavelength to reach a certain accuracy for the evanescestpvablem in comparison to the propagating mode prob-
lem. For example, in the case kd = 40, PUFEM leads to results with = 1.2 x 1072 and 88 x 107* with 7 = 1.9
and 2.4, respectively, in the case of the propagating modesderrors increased to abol® 8 10! and 41 x 1072,

respectively, in the case of the evanescent mode. This\aigan is also valid for the SEM approach.

3.2.2. Evanescent wave case
The second test case is taken form reference [43]. It dedsthe numerical solution of an evanescent wave
problem in a square domaid = [-1, 1] x [-1, 1], on the boundary of which the Robin condition (2) is apghigth

the solution of the problem being
U = elAkyak VB-10c+1) (19)

The evanescent wave (19) propagates injtld@ection and decays in thedirection depending on the values®$ 1
andk. In [43], the solution was obtained using the Ultra Weak &&oinal Formulation with either plane waves or
Bessel basis functions over a uniform triangular mesh grid.

In this work, the same problem is revisited and solved ativelly high frequenciega = 25, 50 and 100. For such
values ofka, the parameteg is chosen to be equal to 1.001 and 1.5 to consid@erdint rates of decay in the
direction. This is depicted in Figure 7, which shows the éha of the model solution given in expression (19) for
ka = 25 and 100. It is obvious that for the higher wave nuni@emore wavelengths are displayed in fadirection

and that for the higher céigcients a shaper decay occur in tleirection, which represent challenging test cases.
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(a) ka= 25,5 = 1.001 (b) ka= 100,58 = 1.001

(c) ka=25,4=15 (d) ka=100,8 = 1.5

Figure 7: Evanescent wave variations in the computatiooaiain for diferent values okaandp.

17



Table 4 summarises the results in terms of lthesrror and the discretization level, presented betweeckbets,
for the three cases of the wave number. For SEM, uniform medk gre considered and for PUFEM, a mesh grid of
2 by 2 square elements is used for the wave numieees 25 and 50, and a mesh grid with 4 by 4 square elements
is used forka = 100. The same approach used for the case of wave propagatioduct is also followed heriee.
to increase the discretization level, mesh refinements améed out for SEM while for PUFEM the mesh grid is
kept unchanged and the number of approximating plane waviesrieased. Again, this is deliberately adopted for
the reason stated earlier. Moreover, for PUFEM, on top ofph@e wave enrichment results, mentioned by PW,
plane waves and evanescent waves enrichments, noted b{EPVére also considered, for which two exponentially
decaying waves are added to the plane waves. These are ¢hdma¥ek VE-10¢1) andeBkvgk VF-16+1) Note
that the discretization levelremains practically unchanged as it is the second digitwliich is dfected.
In general, the results show that increasing the disctaizéevelr improves the_,-error for both approaches, SEM
and PUFEM with PW. For SEM, as the ordeincreases, the discretization lewetequired to achieve a prescribed
accuracy decreases but PUFEM with PW seems to provide siqukaity results for significantly lower values of
the discretization levet. For example, foka = 25, PUFEM with PW provides an error of order #@vith r = 2.7
whereas an error of the same order is achieved with10.2 for p = 10 and withr = 7.7 for p = 20 and 30. For
ka = 50, PUFEM with PW provides an error of order#@vith = = 1.7, a number which is almost three times lower
than that required fop = 30 in order to achieve the sanhg-error. Similarly, forka = 100 PUFEM with PW and
7 = 1.8 provides an error of 16 whereas the same error is provided with SEM at significarigiér numbers of.
For PUFEM with PW-EW, the results show lowdr,-errors at very low levels of the discretization lewglin com-
parison to the results of PUFEM with PW. It is obvious thatiti@rporation of the two evanescent waves in the wave
field enrichment has significantly improved the performamicthe model for the lowest values of the discretization
level. For example, in the case ké = 25, PUFEM with PW-EW provides arl_p-error of 14 x 107° with 7 = 2.1
while PUFEM with PW and with the same discretization levelpdes an_,-error of 88 x 1072. This improvement
is noticed in all cases of wave numbers. It is also noticetlftivéher increasing the number of approximating plane
waves does not reduce the-error. This is due to the fact that the good performance dflPM to deal with evanes-
cent wave problems is due to the exponentially decaying svadeled to the approximating plane waves. It is also
known that PUFEML,-errors stagnate after reaching a certain level of accuaadyfurther increasing does not
improve the error. This is observed for PUFEM with PW in theecafka = 25 forr = 2.7 and 3, and in the case
of ka = 50 forr = 1.7 and 1.8. Overall, the lowest levels bf-error are achieved by the SEM approach but with

significantly higher discretization levels.
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Table 4: Evanescent wave test case. Reldtprerror and discretization level for SEM and PUFEM kar= 25,50, 100 and3 = 1.001.

SEM

PUFEM

p=10

p=20

p=30

PW

PW-EW

ka= 25

7.0x 10 (6.4)
5.3x 107 (10.2)
1.0x 107 (15.2)
8.0x 1078 (22.8)

33x10%(5.2)
15x 1078 (7.7)
20x 107 (127)
9.0x 108 (17.7)

15x 1072 (3.9)
13x 1078 (7.7)

90x 107 (114)
50x 1077 (15.2)

88x 102 (2.1)
9.0x 1075 (2.4)
32x10°%(2.7)
32 x 107 (3.0)

14x 1075 (2.1)
32x 107 (2.4)
32x 107 (2.7)
32x 107 (3.0)

ka= 50

3.4x 1072 (4.5)
5.3x 1076 (10.1)
1.5x 1076 (11.4)
2.0x 107 (139)

44x 1072 (3.8)
6.1x 107 (6.4)
16 x 10°° (7.6)
20x 107 (114)

15% 1072 (3.8)
25x 1078 (5.7)
2.3x 1078 (7.6)
9.0x 1077 (9.5)

1.6 1072 (1.5)
82x 104 (1.6)
81x 1076 (L17)
80x 107 (1.8)

6.4 x 107 (1.5)
6.4x 107 (1.6)
7.1x 108 (1.7)
7.5x 1076 (1.8)

ka= 100

43x 1073 (5.4)
1.2x 107 (6.0)
1.7x10%(7.3)
3.2x107°(8.5)

33x 1072 (4.4)
40x 1075 (5.7)
6.2x 1076 (6.3)
1.9x 107 (7.6)

18x 1072 (3.8)
95x 1075 (4.7)
2.6 107 (5.7)
2.7 x 1076 (6.6)

17x 1072 (1.3)
13x 103 (L5)
7.9x 107 (1.6)
13x 1075 (1.8)

12x 1075 (1.3)
12x 1075 (1.5)
21x10°(L6)
13x 1075 (1.8)
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The same problem is considered again but this time with tlefficents = 1.5. This leads to a very sharp
exponential decrease of the evanescent wave given by expmgd9) and hence it is numerically more challenging

than that corresponding = 1.001.

Table 5: Evanescent wave test case. Reldtperror and discretization level for SEM and PUFEM kar= 25,50, 100 and3 = 1.5.

SEM

p=30

PUFEM

PW+EW

ka= 25

75x 101 (3.9)
1.8x107°(7.7)
9.4x 107 (114)
6.0x 1077 (15.2)

22x10°(2.1)
16x10°°(2.4)
16x10°°(2.7)
17x107°°(3.0)

ka= 50

75% 101 (3.8)
1.2x 1072 (5.7)
1.8x 1075 (7.6)
2.0x 107 (9.5)

52x 1076 (1.5)
53x 107 (1.6)
6.9x10°(1.7)
45x 107 (1.8)

ka= 100

7.5x 1071 (3.8)
2.4x 107t (4.7)
1.2x 1072 (5.7)
4.4% 107 (6.6)

7.7x10°°(1.3)
26x107°(15)
12x10°°(1.6)
6.4x107°(1.8)

Table 5 shows the obtained values of theerror with the corresponding discretization levels fa thave number
ka = 25, 50 and 100. For SEM, only the ordpr= 30 is considered and for PUFEM both equally distributed
progressive plane waves and the two exponentially decayavgs considered above are used in the approximating
field enrichment (PWEW). It is worth noting that PUFEM with PW did not produce gamuahlity results for this

case of the cdéicients = 1.5 representing a very sharp decay of the evanescent waugr¢FiQ SEM results show
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a progressive decrease of thgerror as the discretization level increases. For less @t 4 degrees of freedom
per wavelength, SEM results are not of good quality. In treedUFEM, with PWEW, all results display.,-errors

of the order of 10° or 10°% even for the lowest discretization level,= 1.3, thanks to incorporating exponentially
decaying waves in the enrichment field. Thgerror seem to be stagnating in spite of the increase thirough

the increase of the number of approximating progressiveeplgaves, which are less crucial than the exponentially
decaying waves for this problem. In the above test casenttiesion of the evanescent wave (19) in the wave basis
leads to better results because it corresponds to the edlatibs. In a general case, where agriori knowledge of

the solution is available, it is flicult to propose a robust model tfiieiently solve the problem. In such case, the use

of polynomial-based elements would be more practical.

4. Conclusions

In this paper, two high order finite element approaches aé tessolve wave problems governed by the Helmholtz
equation in two dimensions. In one approach, referred toEdd, $he Lagrangian polynomial based finite elements
with Chebyshev-Gauss-Lobatto nodal distribution are immed with high orders, up tp = 50. In the other ap-
proach, PUFEM is considered with oscillatory functionshie form of progressive plane waves or including expo-
nentially decaying waves. The performance of each apprizaaksessed in terms of results quality and required
degrees of freedom per wavelength. The condition numberntatal number of required storage locations and the
total number of non-zero entries in the final system to sofeeatso compared.

For the considered problems, the results show that PUFEM@es good quality results with a low number of de-
grees of freedom per wavelength, especially for relatii frequencies where the element size incorporates many
wavelengths. Good quality results are obtained with leas thdegrees of freedom per wavelength. In such cases,
the final system to solve is drastically reduced in compartsoSEM and hence the number of storage locations is
also reduced. However, it is also shown that further indnegihie discretization level by increasing the number of
enriching plane waves does not always enhance the resyisitbe certain level due to the ill-conditioning issue
which is inherent to the plane wave enrichment technique.

For SEM, as the ordqu increases, the required number of degrees of freedom p&levayth to provide results with

a prescribed level of accuracy decreases and, in geneeh#ins higher than that required by PUFEM. This is espe-
cially seen at the highest considered order for SIpM, 50, and high numbeg of enrichment functions for PUFEM.

At a lower order, for example = 10 or 20, SEM may lead to a similar performance obtained by B ®ith low
number of enriching plane waves, suchgas 10 or 20.

For problems involving evanescent waves, SEM provides gpdity results but again with a higher discretization
level in comparison to PUFEM. For the latter approach, ipooaiting exponentially decaying waves in the enrichment
field significantly enhances its performance, especiallycéses with a sharp decay where tifieceency of PUFEM

with progressive plane wave enrichment is significantlyuisdl.

In view of the results presented in this work and given the loeirsome task of creating high order elements mesh
grids, especially for engineering problems of industr@ls, it seems more practical to use low order elements and
incorporate field enrichment. Moreover, it is always pogsfbr practitioners to choose the number and type of en-
richment functions for a given frequency and mesh size tainlood quality results while keeping the condition
number within acceptable limits. However, if the wave fielthibits sharp decay behaviour andae priori knowl-
edge of the solution is available, then polynomial-basethehts would be a more practical option.
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