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1 Introduction

The valuation of non-market ecosystem services has attracted growing academic interest,

derived from the demand for their integration into economic decision-making (Loomis,

2005). Evidence to date suggests that non-market services account for a substantial

share of ecosystem values (Caparrós, Campos and Montero, 2003; Wusteman et al.,

2014) and often outweigh market services (Bateman et al., 2011).

From the society’s perspective, the optimal allocation of land to competing uses is

an economic decision task which requires non-market valuation. Forestry, for example,

produces multiple ecosystem services, many of which are like public goods and provided

without explicit market transactions (e.g. landscape, biodiversity, carbon sequestration).

Replacing this land use with, say, croplands or grasslands would result in other non-

market services (e.g. pollination, open space) which may be valued differently.

Stated preference techniques facilitate the valuation of non-market services from

different land uses, by allowing the researcher to consider a range of prospective ecosys-

tem scenarios for which no suitable revealed preference data exist (Layton and Brown,

2000). The discrete choice experiment (DCE) is probably the most popular stated

preference technique for studying willingness-to-pay (WTP) for non-market ecosystem

services (Layton and Brown, 2000; Huber, Hunziker and Lehmann, 2011; Johnson et

al., 2012; Schulz, Breustedt and Latacz-Lohman, 2013). This technique enables esti-

mating trade-offs across different levels and types of ecosystems services associated with

competing land uses.

Mediterranean forestry ecosystems provide an empirical research context which may

benefit from the application of the DCE technique. Here, both human interventions

and natural processes drive land use competition that has been recognized as a contem-

porary policy challenge (Doblas-Miranda et al., 2014). For instance, land management

promoting hunting uses is expected to result in replacement of the current grasslands by

shrublands over time. In addition, the abandonment of traditional agroforestry activi-

ties and the natural mortality of trees are expected to lead to gradual replacement of

forestlands by shrublands. Since the main effects of these land use changes will not be

3



observed within a few decades, it is important to employ a technique that can enable the

valuation of prospective ecosystem scenarios. In the United States, the DCE technique

has already been applied in the analysis of land use competition, very often with a focus

on the conversion of land from agricultural to urban uses (e.g. Duke and Ilvento, 2004).

It is difficult, however, to transpose the related evidence to Europe where land zoning

regulations are much stricter, making this type of conversion less relevant.

A well-known policy affecting Mediterranean forests is the European Common Agri-

cultural Policy (CAP). Under Council Regulation No. 2080/92, the CAP subsidizes

reforestation of agricultural lands to increase the provision of forestry-related ecosystem

services. In the Mediterranean area, it has preferentially subsidized reforestation using

native oaks which are likely to provide higher biodiversity than other species (Santos

et al., 2006). In particular, Council Regulation No. 2080/92 sets an additional premium

for the renovation and improvement of cork oak stands.

There is, however, little evidence that can facilitate a holistic economic assessment

of reforestation in this context. Several features of a reforestation program may affect

the future appearance and biodiversity of forests, and induce variations in landscape

and biodiversity values across programs. Reforestation programs can also have non-

environmental spillover effects on the local economy, for example by providing more

outdoor recreation opportunities and boosting employment. There is a need for non-

market valuation studies which cover such a broad range of potential outcomes that may

influence public preferences for a reforestation program.

We develop an integrative empirical strategy to analyze data from a choice experi-

ment involving cork oak reforestation programs in the Alcornocales Natural Park (ANP).

Located in the southern Spanish region of Andalućıa, the ANP is a large protected area

which mostly comprises cork oak woodlands. The experiment sampled on-site visi-

tors to this natural park. The program attributes include environmental (reforestation

technique, biodiversity, forest surface) and social (jobs and recreation sites created) out-

comes. Our modeling approach brings together four discrete choice methods which have

not been jointly exploited before, though each of them has received a degree of atten-

tion in the recent years. We explore their joint usage to conduct an in-depth analysis
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of public preferences for reforestation. We anticipate that our approach can be broadly

exploited in other stated and revealed preference studies in non-market valuation.

First, instead of eliciting one choice out of several alternatives, the experiment elicits

the full ranking of alternatives from most to least preferred. The extra information thus

gained can improve statistical precision (Beggs, Cardell and Hausman, 1981) and facil-

itate empirical identification of flexible choice models (Layton, 2000; Berry, Levinsohn

and Pakes, 2004; Train and Winston, 2007). As Scarpa et al. (2011) point out, the

former advantage makes rankings especially attractive as an elicitation format for envi-

ronmental valuation studies that often require sampling from very specific populations

(e.g. visitors to a particular location as in our study): a small target population size

makes it inherently difficult to obtain an adequate sample size. It is therefore impor-

tant to consider developing econometric methods for rank-ordered data, to complement

the continual effort to understand better and improve ranking survey designs (Caparrós,

Oviedo and Campos, 2008; Chang, Lusk and Norwood, 2009; Scarpa et al., 2011; Akaich,

Nayga, and Gil, 2013; Louviere, Flynn and Marley, 2015). The existing approach to an-

alyzing rank-ordered data usually exploits extensions and variants of the exploded logit

(Chapman and Staelin, 1982), both within (Chang, Lusk and Norwood, 2009; Scarpa

et al., 2011; Resano, Sanjuan and Albisu, 2012; Othman and Rahajeng, 2013; Varela

et al., 2014) and outside (Fok, Paap and Van Dijk, 2012; Yoo and Doiron, 2013) the

environmental valuation literature. Our strategy adds to the empirical practitioner’s

toolkit an approach building on the nested rank-ordered logit of Dagsvik and Liu (2009)

that allows for more plausible substitution patterns. Unlike the exploded logit, the

nested rank-ordered logit does not exhibit the independence-of-irrelevant-alternatives

property (even without incorporating a mixture specification).

Second, we augment the baseline nested rank-ordered logit model with a finite mix-

ture or latent class specification of person-specific random utility parameters. The re-

sulting model operationalizes Train’s (2009, pp.167-168) conceptualization of “mixed

nested logit.” The finite mixture accommodates interpersonal heterogeneity in system-

atic tastes for the observed attributes describing alternatives, while the nested logit

structure captures correlated residual tastes for a nested subset of alternatives. The
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model thus relaxes the common stochastic assumption that once interpersonal hetero-

geneity in systematic tastes is taken into account, behavioral errors can be treated as

independently and identically distributed.

Third, the underlying random utility function is parameterized in the WTP space

of Train and Weeks (2005). This allows estimating the population distribution of WTP

for each outcome directly, instead of transforming initial preference parameter estimates

to derive that distribution. The WTP space makes it convenient to apply and interpret

finite mixture models. These models have received growing attention in the non-market

valuation literature due to their non-parametric appeal (Claassen, Hellerstein and Kim,

2013; Shulz, Breustedt and Latacz-Lohman, 2013), but proliferate the number of pa-

rameters in return for the increased flexibility.

Finally, we compute individual-level statistics to develop further insight into (i)

where on the population WTP distribution each person in our sample lies, and (ii) the

expected demographic profile of individuals in each preference class. The first issue is

addressed by individual-specific coefficients (Train, 2009, Ch 11), which measure what

each individual’s WTP is expected to be. Examining the distribution of these coefficients

over all respondents facilitates the discussion of which specific reforestation outcomes

would appeal to more individuals. The second issue is addressed by computing the

weighted average of sample characteristics where each individual’s posterior probability

of membership in a particular class serves as weights, in a similar manner to Hess et al.

(2011, p.13). We believe this is a promising way to investigate the association between

taste heterogeneity and observed demographic characteristics in the context of heavily

parameterized finite mixture models, which are not amenable to repeated estimation of

several demographic specifications.

Our preferred model identifies four classes of preferences. The level of status quo

aversion and the WTP coefficients on “environmental” and “social” outcomes vary quite

distinctively across all classes, with one exception: the WTP for biodiversity is compa-

rable across two largest classes which make up a dominant majority of the ANP visitor

population. The latent class nested logit specification allows us to verify that account-

ing for those four classes almost fully explains why someone who ranks a reforestation
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program above the status quo also tends to rank another reforestation program above

the status quo, without relying on the within-nest error correlation which cannot be as

readily interpreted as unobserved preference heterogeneity. There are apparent varia-

tions in the ANP visitors’ characteristics that distinguish two minority classes from the

dominant majority, as well as from each other.

The remainder of this paper is organized as follows. Section 2 summarizes the

relevant policy background and the stated preference data to be analyzed. Section 3

describes our modeling strategy and estimation method. Section 4 presents the empirical

results. Section 5 concludes.

2 Application and data

We analyze rank-ordered data which originate from the stated preference survey of

Caparrós, Oviedo and Campos (2008). The data source study, however, did not exploit

the rank-ordered data in full as it focused on the statistical comparison of implied choices

from a rank ordering experiment with actual choices from a parallel (pick-one) choice

experiment. The authors recoded the data from the former experiment as if only the

most preferred alternative in each choice scenario were observed. We exploit the full

rank ordering of alternatives in each scenario to estimate a richer behavioral model,

which provides a more complete description of public preferences for reforestation. The

remainder of this section presents the selected features of the underlying survey that are

immediately relevant to our analysis.

2.1 Survey background

The immediate context of the survey is cork oak reforestation in the Alcornocales Natural

Park (ANP) in Spain. Located in the southwest of the region of Andalućıa, the ANP

is a large protected forest (1,677 km2) comprising mainly cork oak woodlands. The

ANP is a popular outdoor recreation site, and forestry activities in the ANP (e.g. cork

harvesting, grazing and hunting) make a significant contribution to the local economy.

The cork oak is a native species from the Mediterranean basin and has a particularly

large presence in the south of Portugal and Spain, though it can be also found in other
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countries including Morocco and Tunisia. In the south of Spain, the cork oak faces

a regeneration and aging problem due to natural mortality accentuated by a disease

known as La seca. This problem will eventually lead to the loss of cork oak woodlands,

as dead trees will be gradually replaced by shrublands or bare lands. At the time of the

survey, it was forecast that the ANP would lose 20% of its cork oak woodlands in 30

years.

Under the Common Agricultural Policy (CAP), the regional government of An-

dalućıa has subsidized landowners who reforest their lands, and provided larger subsidies

to promote the use of a native species like the cork oak. Ovando et al. (2007) estimate

that between 1993 and 2000, a total of 83,435 hectares of mixed and pure cork oak stands

were planted in Spain. The survey we analyze was conducted mainly to study public

preferences, quantified as willingness-to-pay (WTP), for conserving and increasing the

cork oak forest area in the ANP.

In a recent update to the principles of administering the CAP programs, poten-

tial environmental benefits (e.g. landscape, biodiversity, climate change mitigation) are

highlighted as major justifications for the reforestation subsidies (European Commis-

sion, 2014). Although the survey we analyze was conducted in 2002-2003, our empirical

findings are still relevant to the ANP where the regeneration problem continues, and

more broadly to contemporary reforestation policies which intend to integrate public

preferences into the evaluation of programs with non-market benefits. There are several

non-market valuation studies on alternative forestry management practices (e.g. Boyle

et al., 2001; Hoyos et al., 2012), but these practices do not affect non-market ecosys-

tem services as much as reforestation does. In particular, given a particular land use

(forestry), landscape and biodiversity tend to remain relatively similar across alternative

management practices. Moreover, land use changes like reforestation usually cost more

and involve bigger implications for the local economy. Studies analyzing non-market

benefits of reforestation tend to have a specialist focus, for example on the number of

trees planted (Cameron et al., 2002; Kraczwyck, 2012) or on carbon sequestration and

soil erosion alongside recreational aspects of forests (Mogas et al. 2006).

We analyze data from an experiment that considers the cork oak. This native
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Mediterranean species has been experiencing a regeneration problem, and faces po-

tential land use competition from shrub encroachment and from other species which are

easier to establish (e.g. Stone pine). Our valuation study simultaneously addresses a

broad array of attributes relevant to assessing reforestation programs. These include

environmental outcomes associated with landscape and biodiversity values; the empiri-

cal results will thus be highly relevant to policy-making based on the recent update to

the CAP. The attributes also include non-environmental social outcomes that may be

considered as additional justifications for providing reforestation subsidies. Our study

thus expands the available information on non-market values that can be used in land

use policy formulations. Our findings can be viewed both as direct evidence from the

ANP, and indicative evidence for other Mediterranean forest ecosystems where native

tree species are facing similar problems.

2.2 Survey design

The rank ordering experiment consisted of eight different choice scenarios per respon-

dent, and was completed by 450 recreation visitors who were recruited on-site at the

ANP. In each scenario, the respondent faced a choice set of three alternatives (two re-

forestation programs and the status quo) and ranked them from most to least preferred.

The decision to sample on-site visitors was motivated by concerns over the potential

relevance of reforestation programs in the ANP to a broader population. Extending

the sampling frame, for example to the general population of the Andalućıa region or

that of Spain, would have weakened the relevance of reforestation programs to many

respondents, increasing the non-response rates and, more importantly, the probability

that the respondents do not find the choice task consequential. As Carson and Groves

(2007) argue, for consequentiality to hold in a stated preference survey, it is important

that the respondents care about the potential benefits of the program in question. When

the reforestation program focuses on a relatively limited area (a natural park) and on a

single tree species (cork oaks) as in our study, active users are likely to make up most

of the concerned population; reforestation programs are more likely to be relevant (e.g.

in a cost-benefit analysis) to passive users of the general population when the programs
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target larger and/or several areas within a region or a country.

Before completing the experiment, each respondent received an information booklet

describing the current situation (the status quo) of the cork oak forest area in the ANP

and different types of reforestation programs. In addition, the respondents were told that

the regional government was planning to carry out a reforestation program to stop the

current trend in the loss of the cork oak forest area in the ANP, and that the survey was

going to collect information about their preferences to inform the regional government’s

program design. Such scripts were inserted to increase the respondents’ perception that

their responses to the hypothetical experiment would influence the actual design of the

program, which is another condition for consequentiality (Carson and Groves, 2007).1

The booklet described five attributes characterizing a reforestation program and each

attribute’s possible levels. Then, it announced that the respondents would face a series

of choice scenarios where each scenario comprises two alternative reforestation programs

and the status quo (which had been already described to them). It also explained that

each alternative program included a one-off increase in the regional income tax that

would finance implementation of the program; and that the status quo option involved

no increase in the regional income tax and no reforestation program. After reading

the booklet, the respondents faced eight choice scenarios with different reforestation

alternatives resulting from different combinations of attribute levels. In each scenario,

they were asked to rank three alternatives (two reforestation programs and the status

quo) from most to least preferred. All questionnaires were administered by trained

interviewers who clarified any question about the booklet and the survey.

The use of the regional government’s income tax as payment-vehicle was to increase

the perception that the agency in charge of the reforestation program could enforce

payment.2 In Spain, regional governments are not only responsible for managing natural

parks, but also have authorities to impose and collect a share of income taxes. We note

that most of the ANP’s visitors are from local areas and potentially pay some income

taxes to the regional government of Andalućıa: indeed, only 2.7% of our sample lived

outside Andalućıa.

Table 1 summarizes the definition and possible levels of each program attribute.
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Three of the five attributes describe environmental outcomes of reforestation: BIO mea-

sures the biodiversity of the new forest area, NAT influences what the new forest will

look like (a natural forest vs. a homogeneous plantation) and SUR measures the new

forest’s surface area. The other two attributes describe “social” outcomes, referring to

more recreation sites (REC) and new jobs in the local economy (EMP). Recall that at

the time of the survey, it was forecast that the ANP would lose 20% of today’s surface

area in 30 years; the levels of SUR measure the new forest’s surface area in terms of

percentage points gained relative to this status quo level of loss.

[Insert Table 1 about here]

The status quo is fully defined as: no trees, no technique, no additional recreational

area, no new job, 20% reduction of the current forest surface and no tax raise. This

definition is operationalized by setting all of the five attributes to zero. Our model

specifications will include a reforestation program intercept, allowing “no technique” to

be distinguished from “artificial plantation.”

The experiment had a main effects design for the five attributes by selecting sixteen

treatments from the universe of 1,024 possible combinations (44 × 22) of the attribute

levels in Table 1. A full design of 120 choice sets (C16
2 ) was obtained by forming pairwise

combinations of these sixteen treatments. This design permits identification of the main

effects of attributes and all effects between treatments.

3 Model and estimation

Our latent class nested rank-ordered logit (LC-NROL) model exploits the modeling

framework of Dagsvik and Liu (2009) for rank-ordered data, and operationalizes the

mixed nested logit approach that Train (2009, pp.167-168) has conceptualized. The

resulting model is like a mixed multinomial logit model (McFadden and Train, 2000)

in that it incorporates person-specific random parameters to capture panel correlation

over 8 choice scenarios and interpersonal heterogeneity in systematic tastes. Once the

random parameters are realized, our model is like a nested multinomial logit model

(McFadden, 1978) in that it allows correlated unsystematic tastes for the reforestation
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alternatives. Our model is parameterized in the willingness-to-pay space of Train and

Weeks (2005), to combine the resulting convenience of interpretation with the flexibility

of a non-parametric mixing distribution of the random parameters.

3.1 Nested rank-ordered logit (NROL)

In what follows, we initially focus on the nested rank-ordered logit (NROL) of Dagsvik

and Liu (2009) that forms the kernel of our mixed model. Let n = 1, 2, · · · , N index a

person; t = 1, 2, · · · , Tn a choice scenario; and j ∈ J = {1, 2, 3} an alternative. In our

data, N = 450, and j = 1, 2 are reforestation programs which comprise a nest while

j = 3 is the status quo. 447 respondents completed all 8 scenarios (Tn = 8) while 3

respondents completed only 6 scenarios (Tn = 6).

Following the random utility maximization model of McFadden (1974), suppose that

in scenario t, person n derives utility Unt,j from alternative j ∈ J = {1, 2, 3}

Unt,j = Vnt,j + εnt,j (1)

where Vnt,j is the systematic utility component which depends on the observed attributes

and εnt,j is the unsystematic utility component or error term. When εnt,j is i.i.d. type 1

extreme value, the resulting probabilistic choice model is the multinomial logit (MNL)

model that exhibits the independence of irrelevant alternatives (IIA) property (McFad-

den, 1974) which, in a nutshell, implies implausibly that a reforestation program and

the status quo are equally attractive as substitutes for another reforestation program.

As Herriges and Phaneuf (2002) illustrate extensively in another context, McFad-

den’s (1978) nested multinomial logit (NMNL) model can capture the notion of the

reforestation programs being better substitutes for each other than the status quo. The

IIA property is relaxed by accommodating positively correlated tastes for the refor-

estation programs. Specifically, εnt,j in (1) are postulated as draws from a generalized

extreme value distribution with the joint distribution function

Pr(εnt,1 ≤ εnt,1, εnt,2 ≤ εnt,2, εnt,3 ≤ εnt,3) = ew (2)

where w ≡ −(e−εnt,1/τ + e−εnt,2/τ )τ − e−εnt,3 .
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The probability that i ∈ J is the utility-maximizing alternative, Pnt,i(J) = Pr(Unt,i =

maxj∈J Unt,j), then becomes:

Pnt,i(J) =
eVnt,i/τ (eVnt,1/τ + eVnt,2/τ )τ−1(
eVnt,1/τ + eVnt,2/τ

)τ
+ eVnt,3

for i ∈ {1, 2} (3)

Pnt,3(J) =
eVnt,3(

eVnt,1/τ + eVnt,2/τ
)τ

+ eVnt,3
for i = 3. (4)

Parameter τ in (3) and (4) is often called the dissimilarity coefficient because (1 − τ2)

= corr(εnt,1’
εnt,2) measures unobservable similarity between the nested alternatives

(Ben-Akiva and Lerman, 1985, p.289).3 Whether τ lies in the [0, 1] interval can be

used to test for whether the modeled behavior is generally consistent with the random

preferences that (1) and (2) specify (Train, 2009, p.81).

The random utility maximization model in (1) can also serve as a conceptual basis

for the econometric analysis of rank-ordered data, as shown by Beggs, Cardell and

Hausman (1981). Suppose that in scenario t, person n ranked alternatives i, k, l as the

most, second-most, and least preferred respectively, where i, k, l ∈ J and i 6= k 6= l.

Let rnt,ikl denote such a rank ordering. Much as the probability of a choice can be

derived as that of a particular realization of possible utility-maximizing choices, Pnt,ikl

or the probability of rnt,ikl can be derived as that of a particular realization of possible

preference orderings: Pnt,ikl = Pr(Unt,i > Unt,k > Unt,l). The main challenge has been

that apart from the case of the i.i.d. extreme value εnt,j implying IIA, the probability

of a rank ordering is difficult to derive analytically. Dagsvik and Liu (2009) propose

the following way around this challenge to obtain the rank-ordered data counterpart to

NMNL.4

In obtaining the probability of a rank ordering rnt,ikl, Pnt,ikl = Pr(Unt,i > Unt,k >

Unt,l), NROL exploits logical links between choice probabilities that exist regardless of

which type of joint distribution is postulated for the error terms. To begin with, consider

a pair of alternatives k and l. There are three rank orderings in which alternative k is

preferred to another alternative l so as to make the statement Unt,k > Unt,l true. First,

k is the most preferred and l is the second most preferred: Unt,k > Unt,l > Unt,i. Second,

k is the most preferred, and l is the least preferred: Unt,k > Unt,i > Unt,l. Finally, k
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is the second most preferred and l is the least preferred: Unt,i > Unt,k > Unt,l. Next,

note that the first and second of these rank orderings collectively describe the case when

k is the most preferred out of 3 available alternatives: i.e. Unt,k = maxj∈J Unt,j . The

binary choice probability, Pr(Unt,k > Unt,l), can therefore be decomposed in terms of

multinomial choice and rank-ordering probabilities as follows

Pr(Unt,k > Unt,l) = Pr(Unt,k = max
j∈J

Unt,j) + Pr(Unt,i > Unt,k > Unt,l) (5)

since Pr(Unt,k = maxj∈J Unt,j) = Pr(Unt,k > Unt,l > Unt,i) + Pr(Unt,k > Unt,i > Unt,l).

By rearranging (5), one can express the probability of a rank ordering rnt,ikl as a differ-

ence between binary and multinomial choice probabilities

Pr(Unt,i > Unt,k > Unt,l) = Pr(Unt,k > Unt,l)− Pr(Unt,k = max
j∈J

Unt,j). (6)

Equation (6) is a very general result that applies to any internally consistent system

of choice probabilities, and does not rely on any particular property of a generalized

extreme value distribution. To complete the derivation of NROL, the random utility

function in (1) and the associated stochastic assumption in (2) need be used to obtain

specific functional forms of Pr(Unt,k > Unt,l) and Pr(Unt,k = maxj∈J Unt,j). The latter

equals the NMNL probability in (3) and (4) above, and can be written as Pnt,k(J) using

the earlier notation. Next, consider the former or binary probability that alternative

k is preferred to another alternative l when the choice set comprises k and l alone:

Pnt,k({k, l}) = Pnt,k({l, k}) = Pr(Unt,k > Unt,l). In case the pair {k, l} comprises one

reforestation program (j = 1 or j = 2) and the status quo (j = 3), this probability takes

the usual binary logit functional form:

Pnt,k({1, 3}) = Pnt,k({3, 1}) =
eVnt,k

eVnt,1 + eVnt,3
for k ∈ {1, 3} and (7)

Pnt,k({2, 3}) = Pnt,k({3, 2}) =
eVnt,k

eVnt,2 + eVnt,3
for k ∈ {2, 3}

since then two underlying error terms εnt,k and εnt,l are independent, meaning εnt,k−εnt,l

follows the standard logistic distribution. In case the pair comprises two reforestation
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programs, j = 1 and j = 2, this probability still takes the binary logit form but the

index function is now scaled by dissimilarity coefficient τ

Pnt,k({1, 2}) = Pnt,k({2, 1}) =
eVnt,k/τ

eVnt,1/τ + eVnt,2/τ
for k ∈ {1, 2} (8)

since a positive correlation (i.e. 1 − τ2 > 0) between εnt,1 and εnt,2 makes the variance

of their difference smaller than that of a standard logistic random variable. Then, based

on (6), one can immediately obtain the functional form of the probability of a rank

ordering rnt,ikl as a difference between two well-known quantities, namely binary logit

and NMNL probabilities:

Pnt,ikl = Pnt,k({k, l})− Pnt,k(J). (9)

The NROL formula (9) is a closed-form expression since its right-hand side terms

can be replaced with closed-form expressions in (3), (4), (7), and (8). The sample

log-likelihood function of the NROL model can be constructed in the usual manner by

summing the log of the probability of an actually observed rank ordering across the

sample, much as the sample log-likelihood function of the NMNL model is constructed

by summing the log of the probability of an actually observed choice across the sample.

For instance, suppose that person n ranked alternatives 2, 3, and 1 respectively as the

most, second-most and least preferred alternatives in scenario t. Then, this particular

observation rnt,231 contributes ln(Pnt,231 ) = ln(Pnt,3({1, 3}) − Pnt,3(J)) to the sample

log-likelihood where Pnt,3({1, 3}) and Pnt,3(J) are as defined in (7) and (4). As the

right-hand side of (9) suggests, coding a maximum likelihood estimation routine for this

baseline NROL model requires only about as much programming effort as coding a self-

written routine for the NMNL model. In our experience, this baseline NROL model can

be readily estimated using any of usual gradient-based optimization methods including

Newton, BHHH and BFGS.
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3.2 Latent class NROL in the willingness-to-pay space

We now turn to a more specific discussion of our LC-NROL model which mixes (9) over

a discrete distribution. The systematic utility Vnt,j is often parameterized in what Train

and Weeks (2005) call the preference space. In this space, our specification is

Vnt,j = αnASC
RF
j + x

′
nt,jβn − λnTAXnt,j for j ∈ J (10)

where ASCRFj = 1[j 6= 3] is the nest dummy for the reforestation programs, TAXnt,j is

the tax payment for j, and xnt,j is the vector of other observed attributes. As described

earlier, these variables are set to 0 for the status quo, meaning that Vnt,3 is normalized

to 0. All attributes enter xnt,j linearly, except the forest surface area (SUR) for which

we also include its square: since a larger forest area leaves less land for other uses,

more of this attribute may not always be preferred. αn, βn and λn are person-specific

random parameters. Following the recent land use studies of Claassen, Hellerstein and

Kim (2013) and Schulz, Breustedt and Latacz-Lohman (2013), the joint distribution of

these parameters, i.e. mixing distribution, is specified as discrete, to approximate the

interpersonal taste distribution without imposing a particular shape on it. This finite

mixture or latent class approach has a nonparametric flavor (Train, 2008), much as it

does in the context of duration analysis (Heckman and Singer, 1984).5

As in other non-market valuation studies, the main parameters of interest include

the willingness-to-pay (WTP) for specific attributes, or ωn = βn/λn. All results to be

reported in the next section are obtained by specifying Vnt,j in the WTP space of Train

and Weeks (2005) to estimate the distribution of ωn directly. Specifically, the utility

function (10) is re-parameterized as:

Vnt,j = λn(
αn
λn
ASCRFj + x

′
nt,j(βn/λn)− λn

λn
TAXnt,j) (11)

= λn(κnASC
RF
j + x

′
nt,jωn − TAXnt,j)

so that κn and ωn become relevant random parameters in lieu of αn and βn. In the case

of finite mixture models, moving from the preference space to the WTP space makes
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it more convenient to obtain the distribution of ωn while preserving the postulated

preference structure: the optimal mass points in the parametric space remain invariant

to such a move so long as λn is non-zero at each point.6 This invariance contrasts with

the case of popular continuous mixture models which imply two different preference

structures in the two different spaces (Train and Weeks, 2005; Scarpa, Thiene and

Train, 2008).

As noted above, our model specifies the error term εnt,j to follow a generalized

extreme value distribution that allows for a positive correlation between the two refor-

estation program’s error terms, εnt,1 and εnt,2. In the standard mixed logit framework,

the error term εnt,j is i.i.d. type 1 extreme value and it is sometimes the desire to

approximate this type of correlation that motivates inclusion of a random alternative-

specific constant like αn in (10) (Herriges and Phaneuf, 2002). Even though εnt,j is i.i.d.

over alternatives, the resulting composite error terms for the reforestation programs,

(αn + εnt,1) and (αn + εnt,2), would exhibit a positive correlation when the correlation

is computed over the population of decision makers; the shared error component αn

ensures that someone with a larger composite error for one reforestation program tends

to have a larger one for the other program too. The positive correlation thus induced is

a property which pertains to the population and arises from interpersonal taste hetero-

geneity, and does not pertain to an individual decision maker. In the standard mixed

logit framework, an individual decision maker tends to consider reforestation programs

and the status quo equally attractive once their observed attributes are taken into ac-

count, as one can see by noting that conditional on person-specific utility parameters,

the probability of a rank ordering takes the form of the ROL formula that exhibits the

IIA property.

Accommodating a positive correlation in εnt,j directly, instead of relying on person-

specific utility parameter αn to approximate it, allows our model to provide a more

general description of individual choice behavior. Our modeling approach allows for

that an individual decision maker tends to find reforestation programs better substi-

tutes for each other than the status quo even after taking into account their observed

attributes: conditional on person-specific utility parameters, our approach has the prob-
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ability of a rank ordering specified as the NROL formula that does not exhibit the IIA

property. As a stochastic assumption, a positive correlation in εnt,j over reforestation

alternatives which leads to the NROL formula is arguably not only more general but

also more natural than independence, since behavioral noises associated with evaluat-

ing each reforestation program’s attractiveness relative to the status quo are likely to

be positively correlated. In addition, a positive correlation in εnt,j over reforestation

alternatives may reflect inadequate specification of interpersonal taste heterogeneity.

Since person-specific random utility parameters multiply alternative-specific attributes

(ASCRFj ,xnt,j , TAXnt,j), unless taste heterogeneity is adequately modeled, some as-

pects of taste heterogeneity would enter alternative-specific idiosyncratic errors εnt,j

like error components (Train, 2009, pp.139-141). Such error components vary with the

observed attributes, in terms of which reforestation programs are positively correlated in

that they deliver improvement (relative to the status quo) in social and environmental

outcomes in return for an increase in taxes.

Of course, the presence and extent of such a positive within-nest correlation are

an empirical question, and likely to vary from application to application. We note

that much as the NMNL model nests the MNL model, the NROL model nests the ROL

model as a special case arising when the dissimilarity coefficient τ = 1 (equivalent to zero

within-nest correlation). Our modeling approach allows one to test directly, via τ , for

whether there is a within-nest correlation that remains after modeling interpersonal taste

heterogeneity, whereas the standard mixed logit approach assumes such a correlation

away. In other words, our approach allows the presence of correlated evaluative noises,

and also a possible misspecification of taste heterogeneity, to be treated genuinely as an

empirical question that can be explored using the usual methods of statistical inference.

For estimation, the sample log-likelihood function is constructed by bringing (9)

and (11) together. Let θn = (λn, κn,ωn), and θc = (λc, κc,ωc) for c = 1, 2, · · · , C

where C is the number of mass points, or “classes”, to be pre-specified. Replacing θn

in (11) with θc, and then substituting the resulting expression into the NROL formula

(9) gives Lnt,ikl(τ,θc), the likelihood of observing person n’s rank ordering in scenario

t conditional on that she is in class c. The corresponding likelihood of observing her
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sequence of rank orderings over Tn scenarios is then

Ln|c(τ,θc) =

Tn∏
t=1

∏
{i,k,l}∈Q

Lnt,ikl(τ,θc)
rnt,ikl (12)

where Q is the set of all possible rank orderings i.e. permutations of {1, 2, 3}; and rnt,ikl

equals 1 if her actual rank ordering in scenario t is as listed in the second set of subscripts

and 0 otherwise. For later reference, we define rn as a collection of such rank ordering

indicators over Tn scenarios.

Since her class is not known, the unconditional likelihood of this sequence is obtained

by averaging or mixing Ln|c(τ,θc) over c. Let πc = Pr(θn= θc) denote the population

share of class c. Person n’s contribution to the sample likelihood is then

Ln(τ,θ,π) =

C∑
c=1

πcLn|c(τ,θc) (13)

where θ = (θ1,θ2, · · · ,θC) and π = (π1, π2, · · · , πC−1) with πC ≡ 1 −
∑C−1

c=1 πc by

normalization. Formula (13) is the likelihood of person n’s rank orderings, rn, under

our LC-NROL model. It is functionally identical to the likelihood of the usual latent

class MNL model (see for example, Claassen, Hellerstein and Kim, 2013), apart from

that summand Ln|c(τ,θc) is the likelihood of a class-specific NROL model, instead of

that of a class-specific MNL model.

All estimates of (τ ,θ,π) in Section 4 have been computed by applying the method of

maximum likelihood. As usual, the maximum likelihood estimates of those parameters

can be obtained by maximizing the sample log-likelihood lnL =
∑N

n=1 lnLn(τ,θ,π) with

respect to (τ ,θ,π). The estimates that maximize lnL can also be obtained by maximizing

the expected complete data log-likelihood Q =
∑N

n=1

∑C
c=1 hnc[lnπc + lnLn|c(τ,θc)],

which lends itself more easily to numerical optimization by allowing the estimates of

(τ ,θ) and π to be updated in two separate tasks from iteration to iteration. This latter

approach is called the expectation-maximization (EM) algorithm (Bhat, 1997; Train,

2008). We follow the hybrid estimation strategy of Bhat (1997) by using the final EM

solution as starting values for maximizing lnL directly, to double-check convergence and
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compute standard errors.7 Appendix 1 summarizes the EM algorithm for estimating our

LC-NROL model and other computational details.

In the EM algorithm’s objective function Q, hnc refers to person n’s posterior prob-

ability of membership in class c. It measures how likely she is in that class given her

observed behavior rn, and is a derived statistic based on model parameters being esti-

mated (τ,θ,π) and the data: it is not an extra parameter to be estimated directly. It

is defined as

hnc = Pr(θn=θc|rn) =
πcLn|c(τ,θc)∑C
s=1 πsLn|s(τ,θs)

=
πcLn|c(τ,θc)

Ln(τ,θ,π)
. (14)

Person n’s posterior probability of membership in class c or hnc is larger (smaller) than

the population share of that class or πc, which may be viewed as her prior probability,

when her behavior can be fitted better (worse) by assuming that she is in class c than by

mixing her likelihood over all classes: that is, by Ln|c(τ,θc) than by Ln(τ,θ,π). Note

that πc is primarily a quantity that pertains to the population since it is the population

share of class c, and does not vary across individuals n = 1, 2, ..., N . But then there

is a πc chance that a randomly sampled individual from the population is a member

of class c, and it is in this sense that πc can be interpreted as a quantity pertaining to

an individual, more specifically as her prior probability of membership in class c. By

contrast, hnc is inherently a quantity that pertains to a particular individual n, since it

is this individual’s posterior probability of membership in class c that is conditioned on

the observed sequence of her rank orderings in several choice scenarios.

Since the EM algorithm entails evaluation of each individual’s posterior probabilities,

hnc for n = 1, 2, ..., N and c = 1, 2, ...C, the use of the EM algorithm makes it convenient

to compute individual-specific coefficients (Train, 2009, Ch 11) as follows.

E(ωn|rn) =
C∑
c=1

hncωc (15)

Given our WTP-space parameterization, these coefficients can be interpreted as the

expected values of person n’s WTP that our model allows us to infer from her behavior.

Note that since the posterior probabilities hnc vary across individuals, these coefficients
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vary across individuals too. The distribution of these coefficients across 450 people in

our sample will be examined to complement the analysis of taste heterogeneity in the

population captured by θ and π.

4 Empirical findings

Following the common practice (Train, 2008; Claassen, Hellerstein and Kim, 2013; Keane

and Wasi, 2013; Shulz, Breustedt and Latacz-Lohman, 2013; Yoo and Doiron, 2013), we

use the Bayesian Information Criterion (BIC) to choose the optimal number of classes.

Our preferred model features four classes and 36 parameters. To facilitate the subsequent

interpretation of this model, our discussion begins with the estimation results for more

restrictive models involving fewer parameters.

4.1 Baseline model estimates

The first two columns of Table 2 report the nested multinomial logit (NMNL) model

and the nested rank-ordered logit (NROL) model, which assume interpersonal taste

homogeneity. Each coefficient measures the marginal WTP for a particular attribute in

es, except for the coefficients on SUR and its square SUR2 which jointly measure the

marginal WTP for the forest surface area.8 To facilitate interpretation, Figure 1 plots

the cumulative willingness-to-pay (WTP) for changing the forest surface area from the

status quo (SUR = 0) to shown levels. For the NMNL estimation, the data have been

recoded as if we only observed the most preferred alternative in each scenario.

[Insert Table 2 about here]

[Insert Figure 1 about here]

In both models, the dissimilarity coefficient τ lies between 0 and 1, satisfying the

sufficient condition for consistency with random utility maximization (Train, 2009, p.81).

The implied within-nest correlation, 1 − τ2, is quite large: 0.97 in NMNL and 0.93 in

NROL.9

The WTP estimates are only slightly smaller in NROL and practically the same in

both models. Including an extra native tree species (BIO) in the program is valued at
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some e20, almost as much as an extra recreation site (REC) and 30 new jobs (30 ×

EMP). The use of natural regeneration instead of artificial plantations (NAT) is valued

at some e30. The quadratic term of SUR is negative, indicating a decreasing marginal

valuation of the forest surface area: Figure 1 shows that the marginal WTP is mostly

positive over the proposed range of increases, with the cumulative WTP peaking at

some e60 near the highest increase.

While both models arrive at the same substantive results in terms of attribute valua-

tion, NROL delivers more precise estimates than NMNL. The marginal utility of money

(TAX × -1), the alternative-specific constant for reforestation programs measuring the

aversion to the status quo (ASCRF) and the dissimilarity coefficient (τ) are significant

at the 1% level in NROL, and by contrast insignificant at any conventional level in

NMNL.10 Both ASCRF and τ parameters can explain why when someone’s utility from

one reforestation option is higher than the status quo, her utility from the other refor-

estation option is also likely to be higher. Berry, Levinsohn and Pakes (2004) and Train

and Winston (2007) report similar findings on the substitution parameters of normal

error-component logit models for rank-ordered data.

The precise estimate of τ in NROL (0.26) is also about 60% larger than its imprecise

counterpart in NMNL (0.16). But the implied within-nest correlation is still quite large

at 0.93. In a revealed preference study, observing all relevant attributes is difficult and

it is natural to consider unobserved attributes shared by nested alternatives as the main

source of such a correlation (Ben-Akiva and Lerman, 1985, pp.285-294). In a stated

preference study, however, it may be more natural to consider omitted interpersonal

taste variation as the main source. A careful experimental design would have most

of key attributes observed as the descriptors of choice scenarios, leaving less room for

omitted attributes that could induce subjective evaluative noises to be correlated over

alternatives. As Train (2009, pp.139-141) explains, omitted taste heterogeneity can be

observationally equivalent to omitted shared attributes.

In Table 2, the 2-class version of the latent class NROL (LC-NROL) model is re-

ported in the third (Class 1) and fourth (Class 2) columns. The average of class-specific

estimates, weighted by their population shares, is reported in the last column (Mean).
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This average can be interpreted as the estimated population mean of each random utility

parameter in the WTP space. Specifically, let θn,k be one of random utility parameters

in θn, and θc,k be the corresponding class-specific parameter in θc, where θn and θc are

as defined in the previous section. The population mean of θn,k, then, can be estimated

by plugging the estimates of πc and θc,k into the following formula

E(θn,k) =
C∑
c=1

Pr(θn = θc)θc,k =
C∑
c=1

πcθc,k (16)

where πc is the population share of class c and the total number of classes C = 2 in the

present context.

The results present prima facie evidence that the high within-nest correlation re-

sulted from omitted taste heterogeneity as suspected. Capturing two preference seg-

ments leads to an increase in τ from 0.26 to 0.89, implying a substantial decline in

the within-nest correlation from 0.93 to 0.21. Class 2 makes up 95% of the popula-

tion who value both environmental and “social” outcomes of reforestation. They have

a similar preference structure as found in NROL. Class 1 captures the remaining 5%

who have evidently distinct preferences. This minority is unlikely to find any refor-

estation program more attractive than the status quo. They have preferences for the

status quo (ASCRF < 0, c.f. ASCRF > 0 for the majority), are much more tax-sensitive

(TAX × −1 = 0.035, c.f. 0.014 for the majority), and accordingly have smaller WTP,

most of which are insignificant both practically and statistically.

4.2 Preferred 4-class LC-NROL model estimates

Table 3 reports our preferred 4-class LC-NROL model, and Figure 2 plots the implied

cumulative WTP for changing the forest surface area from the status quo to shown

levels. The last column of Table 3, as in Table 2, presents the estimated population

mean of each parameter that is derived using equation (16), where C = 4 now. This

model appears to capture the main aspects of the underlying taste heterogeneity well

enough to nearly eliminate the within-nest correlation.

[Insert Table 3 about here]
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[Insert Figure 2 about here]

The dissimilarity coefficient τ is now 0.99, implying a very modest correlation of

about 2%. Put another way, consider the question of why someone who prefers a refor-

estation program to the status quo is also likely to prefer another reforestation program

to the status quo. The present model addresses this question with reference to her sys-

tematic tastes for the observed attributes, without relying on the residual correlation

in εnjt which cannot be as readily interpreted. The estimated heterogeneity features a

“complex” structure, in the sense of Keane and Wasi (2013, p.1032), as each class is

quite distinct from another in terms of its valuation of different attributes.

Class 1 makes up 4% of the population and resembles their counterpart in the 2-

class LC-NROL model of Table 2. They show preferences for the status quo, and have

small and insignificant WTP for most attributes. Their only significant WTP is for the

forest surface area. Figure 2 illustrates that for maintaining the current size of the forest

surface area (SUR = 20), this class is willing to pay e38, more than others except Class

3. The amount grows to e47 for increasing the size by 20% (SUR = 40) around at which

the marginal WTP turns negative, but even then it is not large enough to reverse their

preferences for the status quo (ASCRF = -e116).

The remaining three classes exhibit preferences for reforestation (ASCRF > 0), and

may be viewed as a breakdown of the dominant majority segment in the 2-class model.

The two largest segments are Class 2 and Class 3, making up 52% and 41% of the

population respectively. Both classes are willing to pay more than e18 for the use

of an additional tree species (BIO), but their preferences for the other attributes are

remarkably different.

Class 2 represents those who are primarily concerned with what we have called “so-

cial” outcomes. Only this class has statistically significant WTP for an extra recreation

site (REC) and an additional job in the local economy (EMP). Moreover, their WTP of

e45 for REC and e1.38 for EMP are evidently larger than any other class’s, including

Class 3 who are willing to pay e5 for REC and e0.29 for EMP. Interestingly, Class

2 also has rather large and negative WTP of -e18 for the use of natural regeneration

(NAT), meaning that their preferred implementation technique is artificial plantation.
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This estimate agrees with their preferences for social outcomes, though it is statistically

insignificant. The use of artificial plantation may be associated with a boost to the local

economy over and above the impact of EMP, as it requires more initial investment and

subsequent maintenance expenditure than natural regeneration.

In contrast, Class 3 represents those who are primarily concerned with the natural

appearance and size of the forest area, or the “environmental” outcomes of reforestation.

They value the use of natural regeneration at e84, which is much larger than the second

largest amount of e11 that Class 4 is willing to pay. As Figure 2 shows, over the whole

range of proposed increases, they are also willing to pay visibly more than Class 2 for

any given increment of the forest surface area; and over most of this range, they are also

willing to pay more than any other class. Thus, people in this class place greater weight

on the potential landscape values of reforestation which are to be realized in the future,

and less on the direct social benefits.

Class 4, making up 3% of the population, captures those who have some preferences

for reforestation but are also highly cost-sensitive: ASCRF is still positive but much

smaller, and TAX× -1 is much larger, than in Class 2 and Class 3. In line with their large

TAX× -1 or marginal utility of money, they have small WTP for most attributes, though

they qualitatively resemble Class 3 in weighting the future environmental outcomes more

than the immediate social outcomes. They are thus likely to consider the costs of some

reforestation programs unjustified by the proposed outcomes.

For comparison with our preferred model, we have also estimated two standard mixed

ROL models in the WTP space: “independent” and “correlated” mixed ROL models.

Apart from the WTP space parameterization, these models are like the mixed ROL

models of Layton (2000), Calfee, Winston and Stempski (2001), Train and Winston

(2007) and Train (2008) which conceptualize an observed rank ordering as a realization

of random preference orderings. Following Train and Weeks (2005), our specification

assumes a multivariate normal distribution of random utility parameters ln(λn), κn

and ωn, where the notations refer to the random utility function in equation (11).

The independent mixed ROL model assumes away all correlations between 8 random

utility parameters, and requires estimating 16 coefficients comprising each parameter’s
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population mean and standard deviation. The correlated mixed ROL model comes

much closer to our preferred model in terms of flexibility of the mixing distribution,

as it accommodates the full set of such correlations, thereby requiring estimation of

44 coefficients (8 means; 8 standard deviations; 28 covariances).11 Both models are

estimated via the method of maximum simulated likelihood, using 1000 Halton draws

for Monte Carlo integration. Table A1 in Appendix 2 summarizes the results.

In the present application, all three models (LC-NROL, independent and correlated

mixed ROL) turn out to be similar in terms of the estimated mean WTP for reforestation

outcomes. But for an analyst who would like to impose a minimal set of a priori

assumptions on the distribution of random utility parameters and that of error terms, our

modeling approach provides distinctive advantages in terms of flexibility, and potentially

also in terms of computational convenience. Since the ROL formula implicitly imposes

τ = 1 a priori, neither of the mixed ROL models allows verifying directly whether that

model eliminates the within-nest correlation which is a key feature of the NMNL and

NROL results in Table 2. We also note that using our self-written program in TSP

International, it took slightly over 26 minutes (including the time spent on the EM

algorithm’s iterations) to execute the production run for the LC-NROL model; using

the default settings of Stata command -mixlogitwtp- (Hole, 2015), it took about 68

minutes to estimate the independent mixed ROL model and almost 31 hours to estimate

the correlated mixed ROL model.12 Making direct comparisons of the three models in

terms of run time is difficult partly because we used two different software packages, and

inherently because each model involves different sets of parameters. In our view, the

results nevertheless provide a convincing indication that the LC-NROL model provides

a computationally attractive alternative to the mixed ROL models.

4.3 Individual-specific WTP coefficients

Our preferred LC-NROL model has identified distinct preference segments which are four

major mass points in the population taste distribution. This does not mean that one of

the four segments will be able to describe every individual’s tastes exactly. As Clarke

and Muthen (2009) suggest, it may be appropriate to think of a specific individual as
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having “fractional membership” in all classes, with her tastes possibly lying somewhere

between the four major mass points. We present individual-level statistics which use

the posterior probability hnc in equation (14) as a measure of each person n’s fractional

membership in class c.

Table 4 summarizes individual-specific WTP in our sample of 450 respondents, com-

puted using formula (15) and the estimated 4-class model. For the forest surface area

(SUR), the individual-specific cumulative WTP for improving this attribute from 0 to a

specified level has been computed in an analogous manner to Figure 2. Since each of 450

respondents has her own individual-specific WTP, the summary statistics are computed

over 450 data points where each data point pertains to a particular respondent.

[Insert Table 4 about here]

As discussed earlier, each respondent n’s individual-specific WTP can be viewed as

what that respondent’s WTP is expected to be, on the basis of how she actually ranked

alternatives in each scenario. Put another way, consider a hypothetical case where one

can present each respondent with a very large number of choice scenarios, say 150,

without inducing fatigue and heuristics. This would allow one to estimate the NROL

model separately for each of 450 respondents using 150 observations on that respondent,

thereby obtaining 450 sets of NROL estimates in total. Then, one may proceed to

analyze within-sample taste heterogeneity by studying the distribution of these 450 sets

of individual-specific estimates. In realistic settings, of course, each respondent can be

asked to complete only so many choice scenarios (in our case, 8 scenarios) making it

difficult to operationalize and justify such individual-level estimation. By combining the

estimated population taste distribution (that is, the results presented in Table 3) with

each person’s observed sequence of rank orderings in 8 scenarios, nevertheless, one can

still obtain individual-specific WTP and analyze its distribution as one would analyze

the distribution of individual-specific NROL results in the hypothetical case.

The distribution of individual-specific WTP calls for some caution against interpret-

ing the earlier class-specific results as though every person’s tastes could be exactly de-

scribed by one of the four classes. For most attributes, the interquartile range (Q3−Q1)

of individual-specific WTP is narrower than what the direct comparisons of Class 2
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and Class 3, together making up 93% of the population, would suggest. This means

that many respondents cannot be exactly classified into one particular class, though

most of respondents have quite a large posterior probability of being in one of the four

classes: over the 450 respondents, the first quartile, median and third quartile of the

maximum posterior membership probability, max(hn1, hn2, hn3, hn4), are 0.68, 0.86 and

0.96 respectively.

But otherwise, this distribution reinforces the main policy implications of the class-

specific results. For instance, our earlier findings showed that both Class 2 and Class 3

valued biodiversity but were very different in their valuation of other outcomes. Here,

an extra tree species (BIO), the use of natural regeneration (NAT), and an additional

recreation site (REC) are comparable in terms of the median and mean of the individual-

specific WTP. But interpersonal variations in the WTP are only minimal for BIO,

whereas they are sizable for REC and even larger for NAT. The policymaker could

anticipate that a reforestation program prioritizing the improvement of biodiversity is

likely to attract wider support than those prioritizing that of the other attributes. Also,

in line with the diminishing marginal WTP for the forest surface area (SUR) found in

all classes except Class 4, interpersonal variations in the cumulative WTP for a given

increase in SUR are smallest at the highest level of increase as the marginal WTP

approaches 0. In this case, the policymaker could expect wide agreement when the

proposed surface area increase is close to the highest level and less agreement when it

is smaller.

4.4 Preference segments and individual characteristics

We now turn to the question of the expected characteristics of individuals whose pref-

erences are best approximated by a particular mass point in the population taste distri-

bution, i.e. class of preferences. Such an analysis provides an opportunity to check the

plausibility of preference parameters estimated from stated preference data, by compar-

ing them against characteristics related to the environmental goods being valued (e.g.

in our application, the use and knowledge of the natural park in question). In addition,

when a large number of demographic characteristics are at disposal, it is rather com-
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putationally cumbersome to search for observed heterogeneity in preference parameters

by repeatedly estimating random parameter model specifications that incorporate dif-

ferent subsets of interaction terms involving those characteristics and attributes. For a

finite mixture model like ours, such demographic specification search is also complicated

by that the optimal number of classes as indicated by a model selection criterion may

vary depending on which subsets of the interaction terms are included.13 In such cases,

variations in the expected characteristics across classes may provide practically useful

insight into potential observed heterogeneity in preferences.

The approach we take is to produce the weighted sample characteristics as in Hess

et al. (2011, p.13). Specifically, suppose that zn is a personal characteristic of interest,

say person n’s age. Using a sample of N people and a model specifying C classes, the

expected age of someone in class c can be computed as

N∑
n=1

(
hnc∑N
n=1 hnc

)
zn. (17)

where hnc refers to person n’s posterior probability of membership in class c as defined

in equation (14). The weighting of zn in formula (17) is based on the notion of fractional

class membership: in total,
∑N

n=1 hnc individuals in the sample belong to class c since

a fraction hnc of person n belongs to class c.

Table 5 reports the actual mean characteristics of our sample, followed by the ex-

pected characteristics of each class. In Appendix 2, Table A2 provides the full definition

of these characteristics. The deviations from the actual mean tend to be much more

pronounced for the two smallest segments, Class 1 and Class 4, than Class 2 and Class

3. Many of those deviations provide a further insight into our earlier findings on the

former two classes.

[Insert Table 5 about here]

As discussed earlier, both Class 1 and Class 4 have small and insignificant WTP for

most outcomes of reforestation. Now, this finding may be associated with their relatively

tight budget constraints. Someone in either class is expected to have a smaller per capita

monthly family income than the sample mean. For Class 1, the likelihood of being in
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employment is much smaller too. While both classes also feature higher likelihoods

of having a university degree and visiting the Alcornocales Natural Park (ANP) for

active tourism (e.g. hiking, climbing, cycling), it is difficult to speculate on a specific

mechanism through which those characteristics may influence the WTP.

Recall that Class 1 stood out from other classes including Class 4 in terms of pre-

ferring the status quo to reforestation. Now Class 1 stands out in terms of the use

and knowledge of the ANP: they visit the park more at both extensive and intensive

margins, and are more likely to be satisfied with their current visit. Moreover, their

expected spending on the current visit is close to the sample mean, in contrast to that

of Class 4 which is much smaller, despite both classes facing relatively tight budget

constraints. The use and knowledge variables can be viewed as measures of preferences

that the respondents directly reported, whereas our estimated model yields measures

of preferences inferred from their ranking responses. The expected profile of Class 1 in

terms of use and knowledge suggests that they like the ANP as it is today and may see

a little need for any substantial change. This agrees with their estimated preferences for

the status quo and insignificant WTP for all outcomes but the forest surface area (SUR),

a 20-point increase in which is required to maintain today’s surface area 30 years later.

The results support that our model provides a good approximation to the underlying

public preferences.

That the expected profiles of Class 2 and Class 3 resemble each other so closely

is rather surprising because their preferences are remarkably different: the immediate

social outcomes are of primary concern to Class 2 whereas the long-term environmen-

tal outcomes are to Class 3. Considering that these two classes make up 93% of the

population, it appears to be the case here that as usual, much of interpersonal taste het-

erogeneity cannot be explained with reference to observed individual characteristics. In

a contingent valuation study, Nunes and Schokkaert (2003) find that variables measur-

ing attitudes towards donation and specific environmental issues explain interpersonal

variations in the WTP, even when most of usual observed characteristics do not. Such

attitudinal information, however, is not available in our data.
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5 Conclusion

We have specified and estimated a latent class nested rank-ordered logit model to an-

alyze preferences for cork oak reforestation in the Alcornocales Natural Park (ANP),

Spain. Our preferred 4-class model shows that a vast majority of the ANP visitors have

positive willingness-to-pay (WTP) for some subsets of five reforestation outcomes under

consideration. Accounting for those four classes almost fully explains why someone who

ranks a reforestation program above the status quo also tends to rank another refor-

estation program above the status quo, without resorting to the within-nest correlation

in the unsystematic component of utility that is more difficult to interpret than het-

erogeneous WTP. There is much heterogeneity in the valuation of environmental and

social outcomes across the two largest preference segments in our study. The two other

preference segments have statistically insignificant and also often practically small WTP

for most outcomes, but they make up less than 10% of the population. The empirical

findings have broad implications for policy making and future research as follows.

Two aspects of the estimated public preferences call for more integrative evalua-

tion of tax-financed reforestation programs, such as those promoted by the European

Common Agricultural Policy. First, a substantial fraction of the ANP visitors place

greater weight on the social outcomes of a reforestation program (new jobs and recre-

ation areas in our application) than environmental outcomes per se. At least when the

area to be reforested makes a significant contribution to the local economy as the ANP

does, social benefits would deserve due consideration alongside environmental benefits.

Second, biodiversity (measured as the number of native species used in reforestation)

emerges as an important attribute for most visitors, with small variations in the WTP

distribution at both the population and sample levels. Prioritizing biodiversity would

therefore increase certainty over public support for a reforestation program. This finding

is also of particular relevance to the growing interest in the use of reforestation to deter

climate changes, which takes carbon sequestration as the main objective. Deploying a

single fast-growing species would help meeting this goal rapidly and perhaps at lower

monetary costs. However, public preferences for biodiversity and landscape may not
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be compatible with the plantation of species with high potential for carbon sequestra-

tion (e.g. eucalyptus). This implication also applies to bioenergy policies promoting the

plantation of exotic species for biomass production (e.g. the species Paulownia, which

originates from China, has been recently tested in the southern forestlands of Spain for

its potential use in bioenergy production).

In the presence of land use competition, designating any area for reforestation is

likely to generate both assenting and dissenting voices. The estimation results suggest

that public opinion on a reforestation project is more likely to be homogeneous when

the affected area is larger: the dispersion of the individual-specific WTP for the forest

surface area becomes smaller relative to its mean when the incremental area becomes

larger, due to the diminishing marginal WTP. An immediate practical implication is that

a possible controversy surrounding a small scale pilot project would not be necessarily

carried over to a full scale project.

Understanding the association between the individual’s background and preferences

will be a step towards reconciling studies involving different samples and policy contexts.

In the present study, we find that the expected profiles of individuals in the two minor

segments with small WTP are quite distinct from that of the rest, in terms of experiences

with the ANP and socioeconomic characteristics. No evident variation, however, exists

across individuals with large WTP for social outcomes and those with large WTP for

environmental outcomes. It is to be seen if collecting deeper background information on

each person, such as metrics of their general attitudes towards environmental and other

public goods, could help developing insights into the sources of heterogeneity in public

preferences for reforestation.

We conclude with further remarks on the directions for future research. The re-

spondent population in the present study comprises the recreational users of the ANP.

These users represent an important part of the relevant population that benefit from

cork oak reforestation in the ANP. Our analysis is partly limited because the sampling

scope does not incorporate passive users from a more general population, although it

is unclear what the optimal scope of an extended sampling framework should be. In

the context of our latent class approach, it is possible that further research using more
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broadly sampled data with passive users identifies more nuanced preference segments.

Biodiversity in the present study was a count of different native tree species to inhabit

the reforested area. Our finding on its suitability as a target attribute warrants the anal-

ysis of other aspects of biodiversity too, by incorporating outcome measures in terms of

wildlife and flora. Finally, following up on the earlier discussion in relation to climate

change policies, the relative valuation of biodiversity and the time required to complete

reforestation can be advanced as a research question of contemporary policy relevance.
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Notes

1Several empirical studies have recently shown the importance of consequentiality by

comparing stated preference surveys (Herriges et al., 2010); financially binding experi-

ments with different provision rules with a stated preference survey (Vossler and Evans,

2009; Vossler et al., 2012); and a real referendum with a stated preference survey (Vossler

and Watson, 2013). These studies find that WTP differs depending on whether or not

respondents believe that the survey is minimally consequential, and that hypothetical

WTP and real WTP converge when respondents believe that their responses will have an

impact on policy design. Although these studies focused on discrete choice referendum

questions, the implications of consequentiality may apply to the hypothetical scenarios

in other survey-based discrete choice methods.

2Carson and Groves (2007) recommend the use of coercive payment vehicles, such as a

tax, in a preference elicitation survey as they are incentive-compatible.

3Note that when τ = 1, formulas (3) and (4) simplify to the MNL model.

4The idea of using choice probabilities to derive a rank-ordering probability has been

proposed by McFadden (1986), who acknowledges the related contributions of Falmagne

(1978) and Barberá and Pattanaik (1986). Layton and Levine (2003) exploit it to derive

a probit model for partially ranked (best-worst) data in the presence of a large number

of alternatives, and develop an accompanying Bayesian estimation algorithm. Layton

and Lee (2006a; 2006b) exploit it to develop likelihood ratio tests for the poolability of

different formats of stated preference responses, including rankings and ratings. To our

best knowledge, however, the study of Dagsvik and Liu (2009) is the first one to derive

and estimate the nested rank-ordered logit model which relaxes IIA of the exploded logit

while maintaining a closed-form likelihood.

5The latent class approach can be exploited for a number of distinctive modeling uses.

Building on the idea of Heckman and Singer (1984), our usage of the latent class ap-

proach is to specify a type of mixed logit specification which is called, inter alia, fi-

nite mixture logit, discrete mixture logit, or non-parametric mixed logit (Train, 2008;

Claassen, Hellerstein and Kim, 2013; Keane and Wasi, 2013; Yoo and Doiron, 2013). As
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the last name, due to Train (2008), makes explicit, this specification uses a discrete dis-

tribution with C support points as a tool to obtain a non-parametric approximation to

the unknown population distribution of random utility parameters, without committing

to a particular parametric form (e.g. multivariate normal) of the population distribu-

tion a priori. Given this objective, it is desirable to specify as many support points

as compatible with a model selection criterion (e.g. Bayesian Information Criterion) to

accomplish a better approximation. For ease of exposition, it is common practice to

adopt the typical latent class parlance and interpret each support point as preference

“class” or “segment”, and the probability mass at each point as “class share” or “prior

probability of class membership”.

An alternative use of the latent class approach is to specify an endogenous segmen-

tation model, a la Bhat (1997). Instead of viewing a discrete distribution as a tool to

obtain a non-parametric approximation, this model makes a stronger structural assump-

tion that there are indeed C different preference classes and decision makers are prob-

abilistically assigned to different classes. The assignment probabilities are sometimes

called class shares and often modeled as a function of demographic characteristics.

The use of the latent class approach to obtain a finite mixture model or an endoge-

nous segmentation model thus has distinct conceptual foundations. Moreover, while the

finite mixture model has class shares (i.e. probability mass points) invariant with respect

to demographic characteristics, in practice it is not necessarily a restricted functional

form of the endogenous segmentation model. As Bhat (1997) points out, the number of

classes, C, that one can empirically identify from a data set tends to be smaller when

class shares are allowed to vary with demographic characteristics: estimating more class

share parameters entails estimating fewer utility parameters. It is therefore difficult

to recast a preferred finite mixture model as an endogenous segmentation model: such

recasting often requires reducing the number of classes, which is at odds with the initial

non-parametric approximation motive of specifying the finite mixture model.

6We have, however, found it useful to follow the advice of Shachar and Nalebuff (2004,

p.388) on numerical optimization and estimate our model in both spaces to double-check

convergence. Over many sets of starting values, the WTP space model often resulted in
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a worse log-likelihood than the equivalent preference space model.

7The estimation routine has been written in TSP International 5.1 and is available from

the authors upon request.

8This latter marginal WTP equals ωSUR + 2ωSUR2SUR.

9Following Layton (2000), Calfee, Winston and Stempski (2001), Berry, Levinsohn and

Pakes (2004), Train and Winston (2007), and Dagsvik and Liu (2009) among others, we

focus on modeling an observed rank ordering as a realized preference ordering, instead

of modeling it as a sequence of choices. When there are three alternatives per choice

set and the ROL model is the true model, a single observation on a rank-ordering can

be exploded into two pseudo-observations on the best and second-best choices made in

sequence (Beggs, Cardell and Hausman, 1981; Train, 2009, pp.156-158). Based on this

type of result, some studies contend that one should test for the poolability of pseudo-

observations on the best and second-best choices a la Chapman and Staelin (1982) and

Ben-Akiva, Morikawa and Shiroish (1992), before making use of rank-ordered data. But

except when one adopts a sequential choice model as the underlying behavioral frame-

work so that a rank ordering is viewed as a sequence of repeated choices instead of a

realized preference ordering (Giergiczny et al., 2013), such testing procedures entail a

stringent maintained assumption that the ROL model is the true model so that the

probability of a rank ordering equals a product of marginal choice probabilities (Haus-

man and Ruud, 1987). The Monte Carlo study of Yan and Yoo (2014) shows that such

testing procedures are highly sensitive to the maintained assumption: even when the

ROL model is a slightly misspecified model (e.g. because the true error distribution is

i.i.d. normal instead of i.i.d. type 1 extreme value), popular tests falsely reject poolabil-

ity almost always in plausible sample size configurations. Both our NMNL and NROL

estimation results reject H0 : τ = 1 at the 1% level, soundly suggesting that the error

terms are not i.i.d. type 1 extreme value.

10Strictly speaking, ASCRF measures the constant utility change from choosing a refor-

estation program using artificial plantation. For simplicity, our discussion treats it as

that from choosing a reforestation program; this is adequate for our purpose because

in all estimation results, the sum of ASCRF and the WTP for natural regeneration
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(NAT) has the same sign as ASCRF. While TAX × -1 is a composite parameter cap-

turing both the marginal utility of money and the overall scale of utility, we abstract

from the conceptual distinction between the two components as they are observationally

indistinguishable.

11A discrete mixing distribution implicitly allows for an unrestricted pattern of correlations

between random utility parameters, as no restriction is placed on how different one

support point (i.e. class-specific preference vector) should be from another.

12All our estimation results were obtained using a Windows 7 PC running on Intel i7-4790

CPU and 32 GB of RAM.

13One may also incorporate demographic characteristics by specifying the population class

shares, πc for c = 1, 2, ..., C, directly as a function of demographic characteristics. From

a statistical perspective, this may be the most appealing way to explore the associa-

tion between demographic characteristics and preference classes. But, as we discuss

in footnote 5, such an “endogenous segmentation model” specification is conceptually

distinct from our use of the latent class approach. Besides, we note that our preferred

4-class model cannot be directly “generalized” by specifying the population shares to

vary with the characteristics listed in Table 5, as the maximum likelihood estimation

routine then fails to achieve convergence, suggesting that the resulting model is not em-

pirically identified. For empirical identification, the dimension of the model may need to

be curtailed by reducing the number of classes, thereby compromising the quality of the

non-parametric approximation and comparability with our preferred model; and also by

reducing the number of demographic characteristics, which would require cumbersome

specification search especially because the optimal number of classes is likely to vary

with which particular subset of characteristics are allowed to affect class shares.
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Appendix 1: Summary of EM algorithm

This appendix summarizes the expectation-maximization (EM) algorithm for estimating our

latent class nested rank-ordered logit (LC-NROL) model. The use of the EM algorithm has

been motivated by generic numerical difficulties associated with estimating finite mixture or

latent class models via direct maximization of the sample log-likelihood function, not by any

peculiar issue arising from estimating the LC-NROL model. While our own program was written

in TSP International 5.1, it does not rely on any of TSP International’s specialized features.

Programming the EM algorithm entails setting up a rudimentary loop over updating tasks (20)

and (21) to be explained below, and can be implemented in any software package that allows

the user to supply a self-written log-likelihood function e.g. Stata (Pacifico and Yoo, 2013).

Unless specified otherwise, we follow the notations introduced in Section 3, and let n =

1, 2, ..., N index individuals and c = 1, 2, ..., C index classes. Our objective is to estimate

three types of parameters: dissimilarity coefficient τ , class-specific preference parameters θ =

(θ1,θ2, · · · ,θC) in the willingness-to-pay space, and the population share of each class π =

(π1, π2, · · · , πC−1). The population share of class C, πC , is not a free parameter to be estimated

since the class shares must add up to 1 and hence πC ≡ 1 −
∑C−1
c=1 πc. As discussed at the be-

ginning of Section 4, the total number of classes C needs be set by the researcher: the common

empirical practice is to estimate several specifications that vary in C, and choose one that results

in the best Bayesian Information Criterion (BIC).

The sample log-likelihood function, lnL(τ,θ,π), can be constructed in the usual manner by

summing the log of each person’s likelihood, Ln(τ,θ,π) in equation (13):

lnL(τ,θ,π) =

N∑
n=1

lnLn(τ,θ,π) =

N∑
n=1

ln

(
C∑
c=1

πcLn|c(τ,θc)

)
. (18)

As explained in detail around equation (12), the kernel function Ln|c(τ,θc) uses class c’s pref-

erence parameters to evaluate the baseline NROL model’s likelihood of observing person n’s

actual sequence of rank orderings over choice scenarios. Since Ln|c(τ,θc) has a closed-form ex-

pression, the sample log-likehood lnL(τ,θ,π) also has a closed-form expression. It is therefore

possible to proceed in the usual manner to compute the maximum likelihood estimates, say

{τML,θML,πML}, by applying gradient-based optimization methods (e.g. Newton method or

quasi-Newton methods like BFGS) to maximize lnL(τ,θ,π) with respect to {τ,θ,π}. But, as

Bhat (1997) and Train (2008) note in the context of latent class multinomial logit models, maxi-

mizing the sample log-likelihood of a finite mixture model tends to be susceptible to convergence
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failures which often arise as a numerical optimizer gets trapped in flat regions of the sample

log-likelihood function.

It turns out that parametric values {τML,θML,πML} that maximize lnL(τ,θ,π) should, in

theory, also maximize another objective function Q(τ,θ,π) and vice versa. The EM algorithm is

an estimation strategy that aims at obtaining {τML,θML,πML} by maximizing this alternative

objective function which is specified as

Q(τ,θ,π) =

N∑
n=1

C∑
c=1

hnc(τ,θ,π)×
(
lnπc + lnLn|c(τ,θc)

)
(19)

=

N∑
n=1

C∑
c=1

hnc(τ,θ,π) lnπc +

N∑
n=1

C∑
c=1

hnc(τ,θ,π) lnLn|c(τ,θc).

hnc(τ,θ,π) refers to person n’s posterior probability of membership in class c or hnc defined in

equation (14), but we change the notation slightly here to emphasize that it is derived from the

set of parameters being estimated. Q(τ,θ,π) may be interpreted as an expected complete data

log-likelihood that views a set of indicators, 1[θn = θc] for n = 1, 2, ..., N and c = 1, 2, ..., C,

as missing data. Maximizing Q(τ,θ,π) is computationally easier and more numerically stable

than maximizing lnL(τ,θ,π) directly because, as we shall summarize shortly, Q(τ,θ,π) can be

maximized with respect to {τ,θ} and π in two separate tasks. While the use of the EM algorithm

to estimate a finite mixture model is common outside discrete choice modeling too, it is Bhat

(1997) who introduced this estimation strategy into the discrete choice modeling literature. Train

(2008; 2009) masterfully summarizes the conceptual foundations and operational aspects of the

EM algorithm for discrete choice models.

Our implementation of the EM algorithm builds on Bhat (1997) and Train (2008; 2009).

Specifically, let superscript s denote candidate estimates obtained at the sth iteration of this

algorithm. Then, at iteration s+ 1, the estimates are updated as follows.

{τs+1,θs+1} = arg max
{τ,θ}

N∑
n=1

C∑
c=1

hnc(τ
s,θs,πs) lnLn|c(τ,θc) (20)

πs+1 = arg max
π

N∑
n=1

C∑
c=1

hnc(τ
s,θs,πs) lnπc (21)

Each person’s posterior class membership probabilities are evaluated at the sth estimates, thereby

influencing computation of the (s + 1)th estimates only as any other type of known sampling

weight would be. Both (20) and (21) therefore represent relatively simple maximization tasks.

The algebraic structure of task (20) is just like that of estimating the baseline NROL model (not

the LC-NROL model) using C years of data, allowing for year-specific coefficients and accounting
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for sampling weights: it can be readily solved by a maximum likelihood estimation program

coded for the baseline NROL model. Our own program for estimating the baseline NROL

model initially uses the BHHH method, a quasi-Newton method which is the default optimizer

for maximum likelihood estimation in TSP International, and double-checks convergence by

supplying the BHHH solution as starting values for executing the Newton method. The second

updating task (21) is even easier to solve since it does not require any numerical optimization.

An analytic solution to (21) can be derived and coded as

πs+1
c =

∑N
n=1 hnc(τ

s,θs,πs)∑N
n=1

∑C
l=1 hnl(τ

s,θs,πs)
for c = 1, 2, ..., C

using that πC ≡ 1−
∑C−1
c=1 πc.

Once starting values are provided for initial estimates at s = 0, the EM algorithm proceeds by

repeatedly updating the candidate estimates as above until ∆ lnLs+1 = lnL(τs+1,θs+1,πs+1)−

lnL(τs,θs,πs) is small enough. Our own program uses the following set of starting values. To

initialize the dissimilarity coefficient and class shares, we assume no within-nest correlation and

equal class sizes i.e. τ0 = 1 and π0
c = 1/C for all c = 1, 2, ..., C. To initialize class-specific

preference parameters, θ0 = (θ01,θ
0
2, · · · ,θ

0
C) , we randomly partition the sample into equally

sized C subsamples and estimate the ROL model on each subsample: then, the ROL estimates

from the cth subsample are used as starting values for class c’s parameters, θ0c . Our program

takes the (s + 1)th estimates as the final estimates if ∆ lnLs+1 is smaller than 0.0001% of

lnL(τs,θs,πs): call these final estimates {τEM ,θEM ,πEM}.

There are two drawbacks inherent in the EM algorithm as implemented here. First, as one

may infer from the updating tasks (20) and (21), it does not produce valid standard errors

of the final estimates, {τEM ,θEM ,πEM}. Second, while {τEM ,θEM ,πEM} are equivalent to

{τML,θML,πML} in theory, they may diverge in practice since the EM algorithm may declare

convergence prematurely, or even in case the model is empirically unidentified: its stopping

criterion is based on ∆ lnLs+1 and does not execute checks on the gradient and Hessian of

lnL(τs+1,θs+1,πs+1). To obtain standard errors and double-check convergence, therefore, we

have followed the hybrid estimation strategy of Bhat (1997) that uses {τEM ,θEM ,πEM} as

starting values for direct maximization of lnL(τ,θ,π). The main manuscript reports the result-

ing estimates {τML,θML,πML} and associated standard errors. In our experience, this direct

maximization step always achieves convergence within a very small number of iterations, since

the use of a stringent stopping criterion (0.0001% change in the sample log-likelihood) ensures
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that {τEM ,θEM ,πEM} are almost identical to {τML,θML,πML} in practice as well as in theory.

Since starting values {τEM ,θEM ,πEM} tend to be close to the final solution {τML,θML,πML},

the use of a quasi-Newton method does not bring in practical benefits and our own program

immediately uses the Newton method for this direct maximization step.
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Appendix 2: Supplementary tables

[Insert Table A1 about here]

[Insert Table A2 about here]
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Figure 1. Baseline results on WTP for increasing cork oak forest area

Note: This figure is based on the results in Table 2. The vertical axis measures the willingness-to-pay

(WTP) for changing SUR from 0 (the status quo level or 20% decline from today’s forest area) to shown

levels. The levels of 20 and 40 in SUR, for example, indicate 0% change and 20% increase from today’s

forest area, respectively.
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Figure 2. Preferred results on WTP for increasing cork oak forest area

Note: This figure is based on the results in Table 3. All other information is the same as provided in

the note to Figure 1.

51



Table 1. Reforestation program attributes and associated levels

Acronym Definition of attribute Levels

BIO Number of native tree species used in =1,2,3,4.
reforestation, always including the cork oak.

NAT Reforestation technique to be used. =0 for artificial plantation,
=1 for natural regeneration.

SUR Resulting forest surface area. =10,20,40 and 60 for 10% less,
the same, 20% more, 40% more
than what is available today.

REC Number of new recreational areas to be created. =0 for no new area,
=2 for two new areas.

EMP Number of permanent jobs created. =20,40,60,80.

TAX One-off increase in the regional government’s =6,12,24,48 in es.
income tax for this year.
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Table 2. Baseline estimation results

LC-NROL
NMNL NROL Class 1 Class 2 Mean

BIO 20.55*** 18.06*** 1.20 21.10*** 20.13***
(2.99) (2.55) (2.30) (2.63) (2.51)

NAT 32.47*** 29.50*** 2.71 33.61*** 32.10***
(5.81) (5.10) (5.42) (4.68) (4.47)

SUR 2.28*** 2.14*** 1.49** 2.31*** 2.27***
(0.51) (0.47) (0.76) (0.51) (0.49)

SUR2 -0.019*** -0.018*** -0.020* -0.019*** -0.019***
(0.006) (0.006) (0.010) (0.007) (0.006)

REC 20.14*** 17.60*** 0.44 20.41*** 19.43***
(4.34) (3.89) (5.24) (3.84) (3.66)

EMP 0.75*** 0.66*** -0.12 0.77*** 0.72***
(0.13) (0.11) (0.12) (0.11) (0.10)

TAX × -1 0.003 0.004*** 0.035*** 0.014*** 0.015***
(0.003) (0.001) (0.007) (0.002) (0.002)

ASCRF 1080.65 572.19*** -45.30** 247.66*** 233.32***
(1682.11) (203.36) (18.22) (44.50) (42.32)

τ 0.16 0.26*** 0.89***
(0.22) (0.08) (0.09)

share 0.05*** 0.95***
(0.01) (0.01)

logL -2632.16 -3034.04 -2532.84
BIC 5319.30 6123.07 5175.64
# param 9 9 18

Note: Standard errors are in parentheses. *, **, *** indicate statistical significance at the 10%, 5% and

1% levels respectively. The estimates BIO through EMP measure willingness-to-pay (WTP) for relevant

attributes in es. TAX × -1 is the scale parameter (λn), ASCRF is the alternative-specific constant

(κn) for reforestation programs, and τ is the dissimilarity coefficient: see equation (11). Share is the

population share of each class (πc). For all parameters except class shares, the null hypothesis is zero.

For class shares, the null hypothesis is 1/2. In LC-NROL, column Mean is derived as the weighted

average of class-specific estimates, wherein class shares are used as weights.
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Table 3. Preferred estimation results (LC-NROL)

Class 1 Class 2 Class 3 Class 4 Mean

BIO 3.03 26.27** 19.20** 0.90 21.78***
(3.11) (11.91) (9.67) (2.27) (3.60)

NAT 0.57 -17.55 83.77** 11.24* 25.81
(7.08) (11.86) (35.91) (6.30) (18.07)

SUR 2.64** 1.73 3.88** -1.11 2.56***
(1.09) (1.18) (1.67) (0.77) (0.57)

SUR2 -0.036** -0.007 -0.041** 0.016 -0.021***
(0.015) (0.013) (0.018) (0.011) (0.008)

REC 1.89 45.45** 4.89 -3.73 25.69***
(6.90) (20.94) (7.82) (5.96) (9.93 )

EMP -0.10 1.38** 0.29 0.001 0.84***
(0.16) (0.63) (0.24) (0.126) (0.27)

TAX × -1 0.038*** 0.014** 0.019** 0.047*** 0.018***
(0.010) (0.005 ) (0.008) (0.009) (0.002)

ASCRF -116.94*** 322.39** 187.29** 48.25*** 242.88***
(39.67) (144.55) (83.90) (15.30) (55.99)

τ 0.99***
(0.06)

share 0.04*** 0.52*** 0.41*** 0.03***
(0.01) (0.07) (0.07) (0.01)

logL -2413.81
BIC 5047.54
# param 36

Note: For class shares, the null hypothesis is 1/4. All other information is the same as provided in the

note to Table 2.
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Table 4. Individual-level WTP coefficients: descriptive statistics

Q1 median Q3 mean SD Q3 −Q1
SD

mean
Q3−Q1
mean

BIO 20.32 23.11 25.38 21.78 5.62 5.06 0.26 0.23
NAT -5.03 19.18 54.02 25.81 33.81 59.05 1.31 2.29
REC 11.69 27.30 40.33 25.69 15.03 28.64 0.59 1.11
EMP 0.47 0.89 1.25 0.84 0.43 0.78 0.51 0.93
SUR = 10 18.45 22.72 29.37 23.49 8.14 10.93 0.35 0.47
SUR = 20 34.73 41.17 52.56 42.69 13.85 17.83 0.32 0.42
SUR = 40 59.76 67.86 80.36 68.21 18.60 20.61 0.27 0.30
SUR = 60 77.94 80.01 83.32 76.55 17.64 5.38 0.23 0.07

Note: This table summarizes the distribution of 450 sets of individual-specific willingness-to-pay (WTP)

coefficients. The individual-specific WTP coefficients have been computed for each of 450 respondents

in our sample, by using the estimates in Table 3 to evaluate equation (15). Q1 and Q3 refer to the first

and third quartiles respectively. SD is the standard deviation. For SUR, the reported figures refer to

the individual-specific WTP for changing that attribute from 0 to shown levels.
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Table 5. Actual and weighted sample mean characteristics

Obs Actual Class 1 Class 2 Class 3 Class 4

A. Use and knowledge of ANP

times visited in a yeara 431 1.60 1.88 1.65 1.54 1.60
hours spent visitinga 450 27.82 33.51 28.47 26.92 28.59
money spent visitinga 450 19.73 17.48 20.33 19.93 11.63
don’t find it congested 450 0.81 0.67 0.82 0.80 0.82
satisfied with it 444 0.46 0.60 0.47 0.44 0.44
active tourist 450 0.31 0.49 0.35 0.26 0.44

B. Socioeconomic characteristics
agea 446 34.44 35.39 33.43 34.75 41.39
family incomea 427 1615.22 1677.70 1642.07 1601.42 1460.11
family sizea 448 3.61 4.17 3.49 3.68 3.51
per capita family incomea 425 525.24 422.93 555.41 511.92 466.52
employed 450 0.77 0.60 0.77 0.78 0.75
postgraduate 450 0.39 0.62 0.42 0.35 0.56

Note: ANP stands for Alcornocales Natural Park. The weighted mean for Class c has been computed by

using each person’s posterior probability of membership in class c to weight that person’s characteristics:

see equation (17). Each person’s posterior probabilities have been computed by using the estimates in

Table 3 to evaluate equation (14). Superscript a identifies non-dichotomous variables; all others are

zero-one variables.
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Table A1. Comparison of LC-NROL with mixed ROL estimation results

LC-NROL Independent Mixed ROL Correlated Mixed ROL

Mean Mean Std Dev Mean Std Dev

BIO 21.78*** 19.83*** 13.91*** 19.25*** 11.30***
(3.60) (2.31) (2.46) (1.89) (1.44)

NAT 25.81 32.83*** 59.48*** 38.10*** 53.75***
(18.07) (5.07) (7.10) (4.98) (5.20)

SUR 2.56*** 2.19*** 0.91*** 2.33*** 3.33***
(0.57) (0.44) (0.20) (0.47) (0.38)

SUR2 -0.021*** -0.018*** 0.004 -0.019*** 0.044***
(0.008) (0.006) (0.004) (0.006) (0.005)

REC 25.69*** 21.57*** 44.36*** 22.32*** 36.11***
(9.93) (4.01) (5.95) (3.83) (3.65)

EMP 0.84*** 0.70*** 0.96*** 0.78*** 0.78***
(0.27) (0.10) (0.14) (0.09) (0.08)

TAX × -1 0.018*** -3.78*** 0.01 -3.58*** 0.89***
(0.002) (0.09) (0.20) (0.09) (0.09)

ASCRF 242.88*** 607.03*** 373.52*** 432.29*** 318.17***
(55.99) (105.65) (59.61) (41.10) (32.63)

logL -2413.8 -2397.1 -2358.2
BIC 5047.54 4891.88 5062.94
# param 36 16 44

Note: In LC-NROL, column Mean is taken from our preferred 4-class model in Table 3. In Indepen-

dent/Correlated Mixed ROL, column Mean (Std Dev) reports the population mean (standard deviation)

of a normally distributed random coefficient; in case of the log-normal coefficient λn on TAX × -1, Mean

(Std Dev) reports the mean (standard deviation) of lnλn. Correlated Mixed ROL also includes 28 unre-

ported parameters; the results are available upon request. All other information is the same as provided

in the note to Table 2.

57



Table A2. Individual characteristics and definitions

Characteristic Definition

A. Use and knowledge of ANP

times visited in a year number of times the respondent has visited the Alcornocales
Natural Park (ANP) in the past 12 months.

hours spent visiting hours that the respondent has spent in total in his/her visits
to the ANP.

money spent visiting money spent by the respondent during his/her current visit to
the ANP (e.g. gas, food and parking).

don’t find it congested =1 if thinks that there was a small or appropriate number of
visitors in the ANP area he/she visited on the interview date.

satisfied with it =1 if satisfaction from his/her current visit to ANP has surpa-
ssed his/her initial expectations.

active tourist =1 if the main reason for the current visit to the ANP is any
kind of active tourism (e.g. biking, hiking, climbing).

B. Socioeconomic characteristics
age age in years
family income monthly family income in es.
family size number of members of the respondent’s family.
per capita family income monthly family income in es divided by family size.
employed =1 if has a permanent job or a permanent source of income.
postgraduate =1 if has a university/college degree.
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