RPRRRRERE
ORARWNROOONOU A W N P

N
N o

N N N DN P B
w N Pk O ©

NN
(2

The influence of weathering and soil organic matteon Zn isotopes in soils

Opfergelt S-3, Cornélis J. %2 Houben D? Givron C!, Burton K.W, Mattielli N>

LEarth and Life Institute, Université catholiquelamivain, Croix du Sud bte L7.05.10, 1348 Louvain-
la-Neuve, Belgium

2 Gembloux AgroBio-Tech, Université de Liege, Av. idehal Juin 27, 5030 Gembloux, Belgium

3 UniLasalle, rue Pierre Waguet 19 BP 30313, 6002&uBais, France

4 Department of Earth Sciences, Durham Universitg1BLE, Durham, United Kingdom

5 Laboratoire G-TIME, Université libre de Bruxell&P 160/02, 50, Av. Franklin Roosevelt, 1050
Brussels, Belgium

*Corresponding author : UCL/ELIE, Croix du Sud 2 hf7.05.10 1348 Louvain-la-Neuve, Belgium,
Tel: +32 10 47 36 22, Fax: +32 10 47 45 25, E-mgdlphie.opfergelt@uclouvain.be

aThese authors contributed equally to this work aredfirst co-authors

Highlights
* Soil 3°Zn more influenced by soil organic matter than bgeral constituents
e Znloss by acidification and with dissolved orgatécbon yields light so#%zn
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« Stable organic carbait®Zn may record a Zn contribution of undecomposeamigC
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Abstract

Zinc is an essential micronutrient that is ultilhateleased during mineral weathering. In soilgamic
matter plays a key role in influencing Zn partitiegnand therefore on Zn biogeochemical cyclingl Soi
organic matter is partitioned between carbon teamore readily available for decomposition by
microorganisms, and more stable carbon transigmdgerved from decomposition. The role of the
stable pool of soil organic matter on Zn biogeocigahcycling remains poorly understood. The pool
of stable carbon is controlled by combination witimeral constituents or is material that is inticafly
resistant to decomposition. The Zn stable isot@pedractionated by interactions between Zn and soi
mineral and organic constituents. This study repthe Zn isotope composition of five Icelandic soil
profiles derived from the same parent basalt aadatterized by contrasting degrees of weatheridg an
organic matter conten$%zZn = +0.10 + 0.05 to +0.35 + 0.02 %o), the distribatof reactive mineral
constituents available to form associations witth @g@anic matter, and the amount of stable organic
carbon. Throughout these soils, #i&n isotope variations are little influenced by nradeconstituents,
but rather by soil organic matter content. Thest daggest that a combination of organic matter
accumulation and Zn loss by leaching is requireeiqaain the observed decrease in Zn concentration
in soils and lighter soi6°Zn with increasing organic carbon content. Theseilte suggest that the
presence of stable organic carbon in soils provalgmol of light Zn, attributed to the Zn isotope
signature of organic matter partially preservedifidecomposition. Crucially, this stable organidcar
pool may also contribute to the formation of thghtiZn isotope sink reported in organic-rich marine

sediments, a key output required to explain thewicemass balance of Zn isotopes.

Keywords: volcanic soil, Zn isotopes, soil organic matteeathering, basalt, stable carbon
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1. Introduction

Zinc is an essential micronutrient involved in kaycesses such as photosynthesis (Frassinetti et al
2006), as such there is a growing effort to ob&airaccurate understanding of the Zn biogeochemical
cycle at the Earth’s surface. The current undeditgnof the oceanic mass balance of Zn isotopes
suggests that the main Zn inputs to the ocearramerivers and dust (Little et al., 2014), and thatial

in organic-rich marine sediments acts as a siflght Zn isotopes (Little et al., 2016). In the aocs,

the Zn concentrations in surface water are cowiddly biological uptake (e.g., Morel and Price,200
Bermin et al., 2006). It has been suggested thahs&ociation, and burial, with sinking particulate
organic matter and potentially Zn sulfide precifiata in buried sediments, could act as a sinkifgt|

Zn (Little et al., 2014, 2016).

Soil organic matter (SOM) plays a complex role imgartitioning in soils. Whereas solid organic reatt
decreases Zn solubility by sorbing Zn on to surfacetional groups (Boguta and Sokolowska, 2016),
the complexation of Zn with dissolved organic comnpads increases Zn solubility and mobility (Weng
et al., 2002; Houben and Sonnet, 2012). Soil organic matter turnover is an additionalgass which can
affect Zn solubility as Zn released during litterxcdmposition may be leached into the soil or become
sorbed by the organic matter of the soil surfacgh€®l et al., 2009). Moreover, with organic matter
transformation, metallic elements such as Zn apgnessively incorporated and retained into organo-
mineral associations. The progressive decompoditi@oil organic carbon (OC) and its reactivity lwit
mineral surfaces in soil aggregates leads to theldpment of organic molecules characterized by
variable mineralization rates depending on theteasibility for enzymatic activity (Lehmann and
Kleber, 2015). The SOM is partitioned in a contimuaf organic molecules between a “labile” and
“stable” pool. The “labile” carbon is more readéyailable for decomposition by microorganisms
(Schmidt et al., 2011), while the “stable” carberbriefly preserved from decomposition in a mineral
protected organic carbon (MP-OC) pool, i.e., a doaditon of organic matter associated with mineral
constituents, and/or recalcitrant organic carborO@®), i.e., intrinsically resistant to decompositio
(Chenu and Plante, 2006; Mikutta et al., 2006). The presence of reactive mineral constituentsfinat
MP-OC is controlled by the soil weathering degreg.(Mikutta et al., 2009; Lawrence et al., 2015;
Kleber et al., 2015). The pool of Zn associatedhstable soil OC potentially constitutes a sinkZof
preserved in soils, which might also exist in oigaich sediments. To date, most studies investigat
the impact of SOM on Zn biogeochemical cycling haredominantly focused on the relative
contribution of dissolved organic matter and bullt srganic matter on Zn mobilit§Sauvé et al., 2000;

Fan et al., 2016; Boguta and Sokolowska, 2016). By contrast, the specific role of the stable pufdbOM

on Zn biogeochemical cycling remains poorly underdt

The stable isotopes of Zn provide the potentidbetier understand interactions between Zn and soill
constituents, includingnetal oxides (Juillot et al., 2008; Balistrieri et al., 2008; Bryan et al., 2015;
Pokrovsky et al., 2005), phyllosilicates (Guinoisefal., 2016)nd organic matter (Jouvin et al., 2009;

3
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Gélabert et al., 2006Kafantaris et al., 2014; John and Conway, 2014). Heavy Zn isotopes are
preferentially adsorbed on to the surface of ddides (birnessite; Bryan et al., 2015) and Fe-oxides,
with a higher fractionation factor for poorly crgline Fe-oxides (ferrihydrite) than for crysta#ifre-
oxides (goethite)Jqillot et al., 2008; Balistrieri et al., 2008). Heavy Zn isotopes are also preferentially
retained by sorption onto kaolinite (Guinoiseaalet2016). With organic matter, there is a pref@e
retention of heavy Zn isotopes on phenolic siteguified humic acids (Jouvin et al., 2009), whish
also confirmed for surface complexation onto thgaaic coating of diatom cell walls (Gélabert et al.
2006) or bacteria (Kafantaris et al., 2014). Zinobitization by plant roots or root exudates
preferentially releasdsavy Zn isotopes (Smolders et al., 2013; Houben et al., 2014). Within the plant,
heavy Zn isotopes sorb onto the root surface, ghd Zn isotopes are preferentially transported int
aerial plant partsArnold et al., 2010; Aucour et al., 2011; Jouvin et al., 2012; Moynier et al., 2009;
Weiss et al., 2005; Viers et al., 2007, 2015; Couder et al., 2015; Tang et al., 2016; Caldelas and Weiss,
2017). Plant litter at the soil surface is therefgenerally isotopically lighter, and organic matte
decomposition is considered to lead to the retardfdieavier Zn isotopes by humification (Vierakt
2015).

Zinc isotope compositions of soils are anticipatecde offset from the composition of the parent
material by the removal or addition of significgipls of fractionated Zn, driven by mineral or origa
constituentgVance et al., 2016; Moynier et al., 2017). In soils in which OC is included in a stable OC
pool, organic carbon is briefly preserved from daposition(Chenu and Plante, 2006; Mikutta et al.,
2006). Such work suggests that the presence ditdesOC pool in soils provides the potential to
preserve a pool of Zn with an isotope signatureoafanic matter partially preserved from
decomposition: this pool of Zn is currently not smered in the understanding of Zn isotope behaviou
in soils (Moynier et al., 2017). This study invegsties Zn isotope variations in a suite of five doelic
soil profiles derived from the same parent basadt@haracterized by contrasting degrees of wealtperi
and organic matter content. The distribution ofcte@a mineral constituents (available to form an
association with SOM) controlled by the soil weaithg degree, and the amount of stable OC within
the total OC have been assessed by chemical amdtatagical analysis and selective extractions of Fe
Al, Si, and C. These data provide a framework vegtigate the influence of weathering and soil oiga
matter on Zn isotope fractionation in soils, andengpecifically, the role of the stable pool of SOM

Zn biogeochemical cycling.

2. Materials and methods
2.1 Environmental setting

Five typical Icelandic soil type#i{stic Andosol, HA; Histosol, H; Haplic Andosol, BA; Gleyic Andosol,
GA; Vitric Andosol V; TUSS, 2014) under grassland were selected for this studyc{Elric Annex 1).
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The soil profiles were described following the VWoReference Base for Soil Resources (IUSS, 2014
Electronic Annex 2) and sampled by horizon. Thmate in the area is temperate, with a mean annual
precipitation (MAP) of 1017 mm.yrand a mean annual temperature (MAT) of 4.6°C.sSait
characterized by seasonal freeze-thaw cycles (Gttrackt al., 2008). The underlying lithology is
basaltic. The soil profiles have been charactenmesiously for their Mg and Mo isotope composigon
(Opfergelt et al., 2014; Siebert et al., 2015).

The five soil profiles can be divided into two gpsuas a function of drainage: the freely drainels so
V-BA-GA and the poorly drained soils HA-H. ProfilgsBA, and GA are characterised by a neutral pH
and a low organic carbon content (pH 6.0.% 5.4 £ 2.9 % C; Table 1), in contrast to profiles HA and

H which are acidic and organic rich soils (pH 4.8 £ 0.6; 21 £ 9 % C; Table 1; Opfergelt et al., 2014).
The primary minerals present in these soils, aegite, Ca-rich plagioclase, magnetite, and votcani
glass directly reflects the mineralogy of the thibte basalt, typical of the Tertiary basalts of $fe
Iceland (Hardarson et al., 2008; Moulton et al., 2000). In volcanic soils, short-range ordered or poorly
crystalline phases (i.e., aluminosilicates anckées) are formed first (e.g., Thompson et al., 2011;
Delmelle et al., 2015): with increasing time foil sievelopment, the poorly crystalline phases tiams

to more crystalline minerals. Among the five saibfiles, the weathering degree increases in the
following order: Basalt<V<BA<GA<H<HA (Opfergelt &tl., 2014), with an increasing clay content
(fraction <2um) from the first group of soils V-BBA to the second group of soils HA-H (Opfergelt et
al., 2014). The samples selected for the presedy stomprise at least the top 40 cm of each sofilpr

to integrate a range a soil weathering degree aandge of soil organic carbon content, and as$ess t

influence on the Zn isotope fractionation in soils.

2.2 Characterization of reactive soil mineral constiti®

The mineral phases playing a key role in SOM stediibn in soils (Fe-oxyhydroxides such as
ferrinydrite and goethite, and poorly crystallinluinaino-silicates such as allophane) have been

guantified through selective extractions of Fe,ad Si.

Iron was selectively extracted from different saliquots using dithionite-citrate-bicarbonate (DCB)
(Fey; Mehra and Jackson, 1960), ammonium oxalate (Fe&; Blakemore et al., 1981), and Na-
pyrophosphate (FeBascomb, 1968) and measured by ICP-AES. The DCBwetetble Fe provides an
estimate of the content of free iron oxides insaik., poorly crystalline and crystalline Fe-addThe
oxalate-extractable Fe is used as an indicatoroofly crystalline Fe-oxides. The pyrophosphate-
extractable Fe is used as an indicator of organceRglexes, and is used together with pyrophosphate
extractable Al (Al) to estimate metal complexed with organic ligafidgese extractions are, however,
to be considered with caution. Magnetite can béypdissolved by oxalate and contribute tq Feg.,
Walker et al., 1983). The dithionite extractiorusially considered to not dissolve magnetite, botes
studies report magnetite dissolution with DCB (e.g., Kostka and Luther, 1994; Henkel et al., 2016).
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Pyrophosphate is a dispersing agent anday include the contribution of Fe-oxide nanopaitttes

in addition to the organically-bound Fe (Jeanrog &uillet, 1981), even if this contribution is rexd

by the centrifugation and filtration of the extrathese selective extractions are not fully quatve,
but can, nevertheless, be used as indicators oéleve evolution of the mineral phases duringgbil
development under identical soil parent materibk Fe/Fe; ratio is used as a reflection of the relative
proportion of short-range ordered Fe oxyhydroxi¢fesrihydrite) in the global pool of Fe-oxides.
Within the total iron content (Fein soils, the F¢Fa ratio reflects the relative proportion of Fe-oxdde

in the total Fe pool in soil.

The organic carbon released after dispersion bypynephosphate (£ was quantified by combustion
(Shimadzu Total OC analyzer, detection limit < 2.I'jgand provides an indication of the amount of

OC associated with orgamoetallic complexes (Cornu and Clozel, 2000; Cornu et al., 2008).

The oxalate-extractable Si (pivas determined by ICP-AES to estimate the quanfitSi associated
with poorly crystalline aluminosilicates (allopham@s an indicator of the evolution of the minefahges

in soils with weathering. The 86, however, to be considered with caution becaakmnic glass might
also be partly dissolved using this protocol, pattirly at pH values below 6 (Oelkers and Gislason,
2001; Arnalds and Gislason, 2002; Wolff-Boenisch et al., 2004).

2.3 Characterization of soil organic carbon distributio

The content of total OC was quantified in the saiinplegOpfergelt et al., 2014; Table 1). Within the
total OC, the stable OC is here defined as the pbblaOCI-resistant OC (Siregar et al., 2005). The
oxidizing NaOCI attack (pH 8) is reported to be ofn¢he most efficient and reliable method to isela

a stable OC (NaOGeksistant OC), without dissolving pedogenic oxides (Mikutta et al., 2005; Siregar

et al., 2005; von Liitzow et al., 2007). We quantified the stable OC by mixing 3 g of aiedrsoil with

30 ml of 6 wt % NaOCI (adjusted to pH 8). The Na@@hted soil was then washed (shaken and
centrifuged) with de-ionized water until the sabmiwas chloride free (i.e. no reaction with AgNO
occurred). The samples were then dried at 105 #hamogenized before collecting a subsample for

total OC measurement by flash dry combustion.

Within the stable OC pool, the amount of mineratpcted (MP-OC) and recalcitrant (R-OC) organic
carbon was distinguished. The R-OC is here defemedhe OC pool resistant against NaOCI and
insoluble in HF (Mikutta et al. 2006) and the MP-@@bl can be estimated by the difference between
the stable OC and the R-OC. The NaOCl-treated sswpkre subsequently extracted with HF in order
to dissolve mineral constituents and associated T@. grams of dried soil sample were transferred
into pre-weighed centrifuge bottles and treated fimoes with 20 ml 10% HF. The samples were shaken
for 2h, centrifuged (4000 rpm; 15 min) and the supernatant discarded. The residues were washed five
times with 20 ml deionized water, dried at 105°@¢ dhe weights recorded. The OC content was

measured on ground subsamples of the HF-treatklysitdsh dry combustion. After HF treatment, the

6
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absolute amount of OC was calculated using the @eat measured in the sample residuum, and the
weights of the initial and residual sample. The @€/Stable-OC and R-OC/Stable-OC ratios are used
to reflect the proportion of MP-OC and R-OC in #tiable organic carbon pool.

2.4 Measurements of Zn concentration and Zn isotopgositions in soils

Zinc isotope analyses were carried out on the parasalt and the soil horizons (Table 1). Zinc
concentrations in these samples were measured®¥ME (Open University, UK) after soil digestion
in concentrated HF:HN©4:1 volume ratio, and recovery in 2% HNO3. Theuaacy was assessed
using the reference materials BHVO-2 and SLRS-4fifeheyan et al., 2001). The analytical precision

was + 6%, with a detection limit < 0.0M.

Sample preparation for Zn isotope measurementwegadissolution and Zn purification. Crushed soil
samples (~ 2 mg) were dry-ashed for 24 hours at@ &) remove organic matter (Couder et al., 2015).
The dry-ashed samples were dissolved by applyiaedritacid digestion technique (with concentrated
14 M HNG; 24 M HF and re-dissolution in 6 M HCI) in a Tefl@avillex® beaker placed on a hot plate
(120°C) for evaporation until dryness (Couder et 2015). The Zn was then purified by a novel
chromatographic separation technique on micro-cotutoaded with 0.2 ml AG1-X8 resin. This
method involves successive additions of acids: &N (for column conditioning and sample loading),
1IN HCI (for matrix rinsing) and 1N HNEQHBr (for zinc fraction elution) (Couder et alQZ5). Upon
separation the eluate was dried down and digestedl@0uL concentrated HNgxo dissolve potential

co-eluted organics. The Zn yield values were highan 98% and procedural blanks wer2 ng of Zn.

Zinc isotope ratios were measured on a Nu pladw@-ICP-MS in wet plasma mode (ULB, Belgium).
Zn (and Cu, for the doping technique) isotopic cosifons were measured by static multi-collection.
Nickel contributions were systematically correchgdmonitoring mass 627Ni). Mass discrimination
effects were corrected by using simultaneous eatemrmalization (Cu-doping method) and standard-
sample bracketing with a in-house Zn-Cu standahdtisa (previously calibrated against the JMC-
Lyon-03-0749L Zn and NIST SRM 976 Cu reference déad solutions) (Mattielli et al. 200®etit et

al. 2008). Every sample wasalysed at least in triplicate; the Zn isotopic composition IS expressed in
%o in 5°6Zn relative to a standard solution following EqwhereRzis the®Zn/f“Zn isotopic ratio of
the samplegampl@ and of the bracketing standard&d(l andstd?):

R
Seeznsamme :]_OOOX ( Zn)sample -1 Eq 1
05( RZn ) stdl + 05( RZn ) std2

During data acquisition, repeated measurementseointhouse Zn and Cu standard solution gave an
average®®Zn value of 0.00+0.03%. (2SD) (n~200). Repeated memsents of the Zn standard solution
JMC-Lyon-03-0749L gaveé®®Zn = +0.11+ 0.03%. (2SD)n(= 17) relative to our in-house standard

solution. The3%%Zn values of the samples measured relative toreboiise standards were converted

7
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to the IMC-Lyon-03-0749L Zn standard using the emtional conversion equation (Hoefs, 2008). All
Zn isotope compositions are reported relative eodiMC-Lyon-03-0749L. Measurements of a basaltic
reference material BCR-1 at 0.18 + 0.07%. (2SD¥ @), are consistent with tf€Zn composition of
BCR-1 reported in the literature (e @20 = 0.07 %o, Viers et al., 2015; 0.26 £ 0.05 %o, Viers et al., 2007
0.32 + 0.13 %0, Cloquet et al., 200&29 + 0.12 %oChapman et al., 2006; 0.20 + 0.09 %o, Archer and
Vance, 2004 0.26 + 0.04 %o, Sivry et al., 2008). The bulk sa@hwgple HA Al was fully replicated
(including column chemistry) and yielded undistiiginable3®®Zn values: 0.23 + 0.01 %a(= 2) and
0.23 £ 0.04 %o1f = 2).

3. Results

3.1 Distribution of soil mineral constituents antdlsle organic carbon

The stable-OC content ranges from 0.9 + 0.5 % BAYGA soils to 3.9 + 1.8 % in HA-H soils (Table
1). The five soils can be subdivided in two grofipsthe OC stabilization as a function of the sail
weathering degree. In V-BA-GA, the least weatheseits, stable soil OC is mainly found as MP-OC
(MP-OC/StabledC from 0.77 to 0.90; Table 1). This MP-OC is largely associated with amorphaiig
poorly crystalline minerals, as indicated by a kig¢MP-OC/Stable-OC ratio with an increased
proportion of poorly crystalline Fe-oxides (highex/Fe; ratic; Figure 1a), and to a lesser extent with a

higher proportion of poorly crystalline aluminosdtes, such as allophane (Figure 1b).

The HA-H soils, more weathered and poorly draireed,characterized by a lower MP-OC/Stable-OC
ratio (from 0.50 to 0.72; Table 1), and a lower contribution from poorly crystallife-oxides (lower
Fey/Fey ratio;, Figure 1a), to stabilize OC. Instead, the proportion of oigally complexed Fe and Al
are higher in these soils. This is indicated byghdr proportion of pyrophosphate-extractable Fa an
Al (higher Fg/Fa and Al/AlY) in HA-H soils than in V-BA-GA soils (Figure 2a @r2b). These
components contribute, as insolubilizing agentshéostabilization of OC partly quantified in thegb

of R-OC.

3.2 Zinc concentrations and Zn isotope variatiansails

Zinc concentrations in Icelandic soils range frdt®169 ug.g (Table 1), and decrease with increasing
total organic carbon content in soils (Figure 3)e Zn isotope compositioa®Zn) of the basalt is +0.21
+0.05 %o (Table 1). Th&*®Zn values of soils range from +0.10 + 0.05 to +@:3502 %o (Table 1). The
8%Zn isotope compositions of soils are similar orvigathan the basalt at soil pH above 6, whereas
below pH 6, the3®®Zn of soils are both heavier (HA) and lighter (Hpamn the basalt (Figure 4a).
Importantly, the lighte®¢Zn of soils are found in those with a higher amafrdrganic carbon (Figure
4b).



257

258

259
260
261
262
263
264
265
266

267
268
269
270
271
272
273
274
275
276
277

278
279
280
281
282
283
284
285

286
287
288
289
290
291

4. Discussion

4.1 Influence of mineral constituents on Zn isoteg@eations in soils

The parent basalt ha$®Zn isotope composition (+0.21 + 0.85; Table 1) well in agreement with the
distribution reported for igneous rockxcluding ultramafic rocks; +0.31 = 0.12 %o,n = 77; Moynier

et al., 2017). Thé®Zn isotope composition of the Icelandic soils (fréfh10 + 0.05 to +0.35 + 0.02
%o; Table 1), derived from basalt and aged ~10 kyr(Alshalds, 2008), is close to the rangedé#n
reported for volcanic soils derived from basalthaatsimilar age in Hawaii (+0.24 to +0.41 %o forlsoi
of 0.3 and 20 kyrVance et al., 2016). More generallys®®Zn in Icelandic soils are within the range of
8%Zn reported for soils in the literature (-0.2 to.#%.; Bigalke et al., 2013; Weiss et al., 2007; Viers

et al., 2007; Aranda et al., 2012; Juillot et al., 2011; Aucour et al., 2015; Tang et al., 2012).

With increasing soil development, silicate weathgand precipitation of secondary minerals are kmow
to largely influence element mobility and retentiarsoils. Silicate mineral dissolution prefereltyia
releases light Zn isotopes in the aqueous phabe iearly stage of dissolution (with 30-40% of #re
pool released, both with proton or ligand promades$olution Weiss et al, 2014) then moves back to
release the initial mineraf®zZn composition. Zinc isotope fractionation in eastpage silicate mineral
dissolution may occur in soils, but the impact loa bulk soil3°*Zn composition is likely limited with
bulk mineral dissolution. Isotope fractionation aepanying weathering has also been reported for
black shales that contain sulfides (eFgrnandez and Borrok, 2009; Lv et al., 2016). However, there is
no evidence for the presence of sulfides in thdistlsoils, and no volcanic hydrothermal systetién
vicinity of the site, so any contribution from Zsotope fractionation associated with sulfides (&giji

et al., 2011; Chen et al., 2014) is considered unlikely.

Zinc isotopes in soils may be fractionated by apison onto Fesxides (Juillot et al., 2008; Balistrieri

et al., 2008; Pokrovsky et al., 2005), with heavy Zn isotopes being preferentially atlsdrat the surface
of Fe-oxides. However, in Icelandic soils, theradscorrelation between tl5€5Zn of the soils and the
Fe oxide content estimated from the/Fe ratio (R = 0.03). There is no correlation either between th
8%€Zn of soils and the proportion of poorly crystadlife-oxides estimated from the,fFe; ratio (R =
0.02), despite the fact that a higher fractionataartor is reported for poorly crystalline Fe-oxgdéan
for crystalline Fe-oxide@uillot et al., 2008; Balistrieri et al., 2008). Therefore, interaction between Zn

and Fe-oxides appears not to be a major contrdiiopr on the Zn isotope variations in these soils

Zinc isotopes in soils may also be fractionatedadgorption onto kaolinite (Guinoiseau et al., 2016)
However, the clay fraction in these volcanic s@lslominated by poorly crystalline aluminosilicates
such as allophane. Crystalline clay minerals siuglsraectite and kaolinite are only found in trace
amounts in the HA (Opfergelt et al., 2014), andadsorption onto kaolinite is likely limited in agd
soil conditions (Gu and Evaj08) such as in HA soil (pH 4.8 to 5.3; Table 1). Therefore, interaction

between Zn and kaolinite is unlikely to be the madmtrolling factor on the Zn isotope variations in

9
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these soils. Even if the fractionation factor has lmeen determined, Zn adsorption likely also ogcur
onto allophane. However, there is no correlatidnvben the3®®Zn of soils and the Stontent used as
an indicator of the presence of allophané£R.04). Therefore, interaction between Zn anopilane

is not likely to control Zn isotope variations iails.

The Zn isotope compositions of soils may also bectdd by atmospheric contribution of Zn to thd,soi
either anthropogenic and/or natural. There is Balloontamination from industry or urban areasien t
vicinity of our site, indicating that Zn isotopeétionation in these soils is unlikely to be asatsd with
polluted Zn sources (Borrok et al., 2009; Cloquet et al., 2006, 2008; Juillot et al., 2011; Sivry et al.,
2008; Chen et al., 2008, 2009; Bigalke et al., 2010; Fekiacova et al., 2015). Atmospheric dust input on
Icelandic soils is dominated by volcanic materiaimly basaltic from volcanic ash deposition during
eruptionor resuspended volcanic material (Sigfusson et al., 2008; Arnalds et al., 20QIWittmann et al.,
2017). Volcanic ash input contributes to soil fanmprocesses in Icelandic soils (Arnalds, 2008)iand
characterized by &°Zn isotope composition similar to the one of thiégarent material. Atmospheric
Zn input from rainfall and sea spray may also dbuate to the soils. The Zn concentration in rain in
Iceland can be considered as low (based on a Zeeotnation of 5.7 ppb in Langjokull ice from the
West Iceland glacier the closest to the site (Ebedt Annex 1)it is the same order of magnitude as the
Zn concentration in Greenland ice at 2.7 ppb) inedatb the rain in Paris which contains betweeaidd
115 ppb Zn, most likely due to anthropogenic coimation (Chen et al., 2008). The Zn concentration
in seawater producing sea spray is even lower (e.g., from 0.007 to 0.6 ppb; Bermin et al., 2006) with a
8%Zn of 0.5 %o (e.g., Little et al., 2014). Relative the total soil Zn reservoir (51 to 144 kg'ha
calculated from the total Zn concentration in $8@ to 169 pg.g; Table 1) and the bulk density of the
soil (0.22 to 0.78 g crif) Opfergelt et al., 2014), a Zn contribution frominfall and sea spray is

considered as negligible and is not expected &rafhe bulk s0i§®Zn.

4.2 Influence of vegetation uptake on Zn isotop@trans in soils

Light Zn isotopes are preferentially transportet iaerial plant parts, therefore, the biologicatalgp

of Zn by vegetation is a factor that may influettee3®®Zn in soils(Jouvin et al., 2012; Moynier et al.,
2009; Weiss et al., 2005; Viers et al., 2007, 2015; Smolders et al., 2013; Couder et al., 2015; Tang et al.,
2016 Caldelas and Weiss, 2017). The Zn concentration in Icelandic grass repoitethe literature
ranges from 14 to 85 pgtde.g., Johannesson et al., 2007; Gudmundsson and Thorsteinsson, 1980).
Considering a high Zn concentration in vegetatian,(104 pg.g for HA Al as the topsoil litter; Table
1), the yearly Zn uptake by vegetation ranges f2/& to 520 g Zn hayr?, taking into account the
vegetation biomass produced (from 2 to 5 T ! for hay-making; Opfergelt et al., 2014; Arnalds et
al., 2016). Relative to the total soil Zn resersit to 144 kg h& as calculated in section 4.1), the Zn
uptake in vegetation only represents 0.1% to 0.7% @ soil Zn reservoir, which indicates that the

amount of Zn exported by harvested vegetation igrpected to affect the bulk sé6%zn.
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4.3 Contribution from organic matter to the Zn ¢ variations in soils

The Zn concentrations in soils are lower in HA-A4} 16 pg.g) than in V-BA-GA (150 + 14 ugy
Table 1). This may result from a combination oflig dilution of the Zn pool associated with theenal
constituents by an increasing organic matter camtetne HA-H soils (Figure 3), and/or (ii) a prese

favouring Zn loss from the HA-H soils relative tetV-BA-GA soils.

The part of the vegetation that returns to the awd forms the litter contributes to the accumatatf
organic matter in soils, and provides a sourcégbt IZn isotopes from plant aerial parts. Consiuga
Zn concentration in the litter such as measurederHA Al litter (105 pg.g; Table 1) and a maximum
content in organic carbon of 30 % (higher orgaidon contenin H O6; Table 1), if the total organic
carbon content is considered as litter, then thedfcentration in the organic carbon pool is esiaha
to be ~31 pugg This calculation suggests that in organic-riciissmne third of the total soil Zn
concentration (96 to 169 pghglable 1) may originate from the soil organic carbon pool accumulated
from the litter. Therefore, organic matter accurtiahais likely to contribute to the observed lighin

isotope composition in soils with increasing orgacarbon content in HA-H soils (Figure 4b).

Zinc leaching from soils may contribute to a Znsldi®©om the poorly drained organic-rich HA-H soils
relative to the well-drained V-BA-GA soils. HA-H ik®oare acidiqpH 4.8 + 0.6; Table 1) relative to V-
BA-GA soils (pH 6.7 + 0.7; Table 1), and previous studies have reported that the low pH atlpads
may be responsible for a high Zn release from the#s, resulting in a progressive depletion ofshi
metal pool (e.g., Tipping et al., 2003). Additidgalthe release of dissolved organic compounds,
especially in rewetting periods (Fenner et al.,130@as also found to favour the leaching of Ztigh

the formation of soluble metal-organic complexeslfiz et al., 1998; Houben et al., 2013). Soll
acidification and complexation with organic ligandebilize preferentially heavy Zn isotopes (Houben
et al., 2014; Balistrieri et al., 2008; Markovicadt, 2017; Fujii et al., 2014; Moynier et al., 201As a
result, Zn leaching likely contributes to the Zsddrom HA-H soils and to the relative enrichment i

light Zn isotopes in these organic-rich soils (Feydb).

4.4 Influence of the presence of stable organibcaron Zn isotope variations in soils

A key observation in each soil profile (HA, H, B&A, V) is that the higher the proportion of stable
OC in the total organic carbon content, the lighker Zn isotope composition in the soil (Figure.4c)
The stable OC pool comprises organic matter agsacisith mineral constituents (mineral-protected
organic carbon, MP-OC), and/or organic carbon ristdally resistant to decompaosition (recalcitrant
organic carbon, RC) (Chenu and Plante, 2006; Mikutta et al., 2006). Previous work (Viers et al., 2015)
suggests that the humification of litter (which migiresults in a pool of stable organic carbon
intrinsically resistant to decomposition, 3C; Berg and McClaugherty, 2008; Mikutta et al., 2005,
2006) leads to release of the lighter Zn isotopesolution and thus preserves the heavy Zn isotiopes

the humification products such as aromatic strestuiThese findings are consistent with studies
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showing that Zn adsorption and complexation withanic compounds or biological surfaces favour the
heavy Zn isotopes (Jouvin et al., 2009, Gélabert et al., 2006; Wanty et al., 2013; Kafantaris et al., 2014).
Accordingly, an increasing amount of stable OG@rifen by humification, should result in enrichment

in heavy Zn isotopes in soils.

This contrasts with our observations of lighter i8atope composition in the soils with increasing
proportion of stable OC (Figure 4c). This appaneicbnsistency is likely explained by the lower
contribution of R-OC to the stable OC pool relatteethe MP-OC pool in Icelandic soils (Table 1
Electronic Annex 3). The pool of stable OC is mgidbminated by MP-OC, which is thought to
comprise organic materials protected against bicébgattack (Baldock and Skjemstad, 2000).
Therefore, the enrichment in light Zn isotopes wéithincreasing proportion of stable OC likely résul
from the stabilization of plant-derived Zn-orgasmmpounds, which are usually relatively enriched in
light Zn isotopeslpuvin et al., 2012; Moynier et al., 2009; Weiss et al., 2005; Viers et al., 2007, 2015;
Couder et al., 2015; Tang et al., 2016; Caldelas and Weiss, 2017), through association with the soll
mineral matrix. This interpretation is in line wightevious studies that report plant-derived Zn fein
mainly found in organo-metallic complexes assodiamth the clay fraction which are relatively

resistant to biodegradation (Quenea et al., 2009).

4.5 Implications

This study suggests that the presence of stablénGBils dominated by mineral-protected organic
carbon is likely to favour the preservation of freisotope signature of partially decomposed ogani
matter, and thereby contributes to form a sinkigtitl Zn isotopes in soils. This suggests that the Z
isotope composition of the stable soil OC pool ddag considered as an archive of an original oogani
matter Zn contribution to the soil, and may be eresd in erosive products of soils (Vance et 8l16).
Considering that organic carbon is also stabilimeather environments than soils such as lake oinmma
sediments, for example by association with minghalses (e.g., Lalonde et al., 2012), and that Eght
isotopes may be delivered to sediments via uptékigttd Zn by phytoplankton and settling particles
(John et al., 2007; Peel et al., 2009), this study supports the finding that organic-riedisnents may well
constitute a sink of light Zn isotopes (Little &t 2016), and further suggests that this is lik@lybe
partly due to a Zn pool associated with stable mirgaarbon, although direct field verification diig

hypothesis requires further study of lake or masiegiments.

5. Conclusion

The influence of weathering and organic matter oisgtope fractionation in soils has been investiga

in five Icelandic soil profiles derived from thensa parent basalt and covering contrasting degriees o
weathering and organic matter content. The rolil@fstable pool of soil organic matter on Zn isetop
fractionation was specifically investigated by qiifging the reactive mineral constituents availatde

form association with soil organic matter, and #&meount of stable organic carbon within the total
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organic carbon content.

Throughout the range of soil weathering degree real/én this study, the influence of mineral
constituents such as secondary clay minerals, Ee®xr sulfides or atmospheric depositior5&iZn
variations in soils in soils appears to be limitidcontrast, the influence of soil organic matte6Zn
variations in soils appears to be more importane data suggest that the decrease in Zn concensati
and lighters®®Zn in soils with increasing organic carbon conteart be explained by a combination of
(i) litter contribution to the soil and organic meataccumulation, thereby diluting the Zn soil @onit
from the mineral constituents and providing a sewt light Zn isotopes from the aerial part of the
vegetation, and (ii) Zn leaching due to acidic abods and to complexation by dissolved organic
compounds decreasing the Zn concentration in aailsfavouring the loss of heavy Zn isotopes, and

hence leaving soils with a light&t®zn.

More specifically, the data indicate that the pneseof stable organic carbon in soils providesa pb

Zn with an isotope signature attributed to #fZn of organic matter partially preserved from
decomposition. The observations suggest that tabqf light Zn occurs when the stable organic oarb

is dominated by mineral-protected organic carbdre pool of Zn associated with the stable organic
carbon is likely to contribute to a sink of light Botopes in soils, and should be considereddriuture

in order to understand the fractionation of Znagets in soils. A similar pool of Zn is likely tomtmibute

to the light sink of Zn isotopes reported in organch marine sediments (Little et al., 2016), whic

provides a perspective for further investigatiopdo®l that of soil alone.
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Figure captions

Figure 1. Evolution of the proportion of mineral-protectadanic carbon (MP-OC) in the stable organic
carbon (Stable-OC) as a function of: (a) the propoerof oxalate-extractable Fe dren the DCB-
extractable Fe (Re data in V soil not presented due to a poterga@itribution from magnetite
dissolution to Fe(see methods section 2.2; Feo/Fey >1 in V); (b) the proportion of oxalate-extractable
Si (Sb) in the total Si content in soils (BiSoil types: Histic Andosol, HA; Histosol, H; Haplic Andosol,
BA; Gleyic Andosol, GA Vitric Andosol, V.

Figure 2. Evolution of the proportion of recalcitrant orgasa&rbon (R-OC) in the stable organic carbon
(Stable-OC) as a function of: (a) the proportiorpgfophosphate-extractable Fe {F@ the total Fe
content in soils (kg (b) the proportion of pyrophosphate-extractabl€¢Ad}) in the total Al content in

soils (Ak). Soil acronyms as in Figure 1.

Figure 3. Evolution of the bulk soil Zn concentration (ug&y a function of the total organic carbon

content (%) in soil. Error bars are included in slgenbols. Soil acronyms as in Figure 1.

Figure 4. Evolution of the bulk soil Zn isotope compositidit®Zn in %o, +£2SD) as a function of: (a)
the soil pH measured in water (pi); (b) the total organic carbon content (%) in;5@il the proportion
of stable OC (stable OC/total OC). The horizontshed line represents #f€Zn value of the basaltic

parent material of the soil. Soil acronyms as guFe 1.
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718 Table 1.Characterization of soils and parent basalt: [@dil total organic carbon content (OC), stable
719 OC including the mineral protected OC (MP-OC) amalrecalcitrant OC (R-OC), Zn concentration and
720  Zn isotopic compositions (%o) (+ 2SD) in soils arakhlt. Thed®®Zn results are reported relative to the
721  JMC-Lyon-03-0749L.Soil types: Histic Andosol, HA; Histosol, H; Haplic Andosol, BA; Gleyic
722  Andosol, GA; Vitric Andosol, V.

Stable-OC

Soil horizon ~ Depth pHwo® Total OC @ X . Zn 5%7n 2SD
MP-OC~ R-OC
cm % % % Hg.g” %o %o

HA Al 0-15 5.32 18.52 241 1.33 105 +0.23 0.04
HA A2 15-26 4.89 16.94 2.15 0.85 135 +0.29 0.03
HA Bwl 26-40 4.82 14.49 1.26 0.53 131 +0.35 0.02
H o1 0-13 6.18 21.00 2.38 1.59 111 +0.22 0.03
H 02 13-26 5.10 22.94 3.40 3.38 96 +0.16 0.06
H 06 72+ 456 30.39 - - 105 +0.10 0.05
BA Al 0-21 6.35 7.29 0.88 0.14 147 +0.19 0.03
BA A2 21-40 6.40 7.92 1.15 0.13 135 +0.16 0.03
GA Al 0-12 6.22 9.51 1.16 0.19 144 +0.32 0.04
GA A2 12-29 6.30 6.20 0.92 0.13 160 +0.28 0.03
GA Bw2 43-56 6.34 6.76 - - 169 +0.19 0.04
GA C 56-64 6.57 2.70 - - 152 +0.23 0.02
Y, A 09 777 0.32 0.17 0.04 161 +0.26 0.06
Y, B/C 9-33 8.20 0.26 0.18 0.05 158 +0.19 0.07
Y, C 33+ - - - - 127 +0.23 0.06
Parent basalt 132 +0.21 0.05
# data from Opfergelt et al., 2014

723 ® Stable-OC = Mineral protected (MP-OC) + Recalcitrant (R-OC)

724

725
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Electronic Annex 1.
Location map of the soil sites (HA, H, BA, GA, V) in Iceland. Histic Andosol, HA; Histosol,

H; Haplic Andosol, BA; Gleyic Andosol, GA; Vitric Andosol, V. Soil types are given according
World Reference Base for Soil Resources (IUSS, ROIHe soil map is based on Arnalds
(2004) and Arnalds and Gretarsson (2001).
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Electronic Annex 2.

Soil profiles description according to the Worldf&ence Base for Soil Resources (IUSS, 2014). ¢isti
Andosol, HA; Histosol, H; Haplic Andosol, BA; Gleyic Andosol, GA; Vitric Andosol, V.

Soil ID Horizon Depth (cm) Color (Munsell)

Texture Structure

Limit with below horizon

HA Al 0-15 7.5YR 3/4 silt loam - gradual and regular
A2 15-26 7.5YR 4/4 silt loam - gradual and regular
Bwl 26-40 7.5YR 3/3 silt loam - gradual and regular
H o1 0-13 7.5YR 3/2 - - gradual and regular
o2 13-26 7.5YR 3/2 - platy structure gradual and regular
06 72+ 10YR 2/2 - -
BA Al 0-21 7.5YR 3/3 silt granular gradual and regular
A2 21-40 10YR 3/6 silt loam granular/sub-angular blocky gradual and regular
GA Al 0-12 7.5YR 3/3 sandy loam granular gradual
A2 "12-29 7.5YR 2.5/3 silt loam subangular/granular abrupt and regular
Bw2 43-56 10YR 4/3 sandy loam fine to medium subangular blocky abrupt and wavy
C 56-64 5YR 3/4 - fine to medium subangular blocky abrupt and wavy
\Y A 0-9 7.5YR 2.5/1 sand - gradual
B/C "9-33 7.5YR 4/4 and 7.5YR 3/2 silt loam - abrupt
C 33+ GLEY2 2.5/10B gravel no structure

26



756
757
758
759
760

761

762

Electronic Annex 3.

Evolution of the bulk soil Zn isotopic compositi@gd®®Zn in %., +2SD) as a function of: (a) the
proportion of mineral protected organic carbon (RE) in the total organic carbgsool; (b) the
proportion of recalcitrant organic carbon (R-OCjhe total organic carbon pool. No data availabte f

MP-OC and R-OC for H 06, GA Bw2, GA C. Soil acrorg/as in Electronic Annex 1.
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