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SUMMARY 

Coordination of endomembrane biogenesis with cell cycle progression is considered 

to be important in maintaining cell function during growth and development. We 

previously showed that disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE 

(PAH) activity in Arabidopsis thaliana stimulates biosynthesis of the major 

phospholipid phosphatidylcholine (PC) and causes expansion of the endoplasmic 

reticulum. Here we show that PC biosynthesis is repressed by disruption of the core 

cell cycle regulator CYCLIN-DEPENDENT KINASE A;1 (CDKA;1) and that this 

repression is reliant on PAH. Furthermore, we show that CDKs phosphorylate PAH1 

at serine 162, which reduces both its activity and membrane association. Expression 

of a CDK-insensitive version of PAH1 with a serine 162 to alanine substitution 

represses PC biosynthesis and also reduces the rate of cell division in early leaf 

development. Together our findings reveal a physiologically important mechanism that 

couples the rate of phospholipid biosynthesis and endomembrane biogenesis to cell 

cycle progression in Arabidopsis. 

 

INTRODUCTION 

Plant growth and development are primarily driven by the production of new cells 

(Polyn et al., 2015). In addition to DNA replication, cell proliferation requires an 

approximate doubling of core structural components such as the endomembrane 

system prior to each division (Jackowski, 1994; 1996). Phospholipids are the main 

building blocks of the plant endomembrane system (Ohlrogge and Browse 1995) and 

hence their biosynthesis must occur in conjunction with cell cycle progression. 

Temporal changes in phospholipid metabolism over the course of the cell cycle have 
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been well-documented in mammals, fungi, algae, dinoflagellates and bacteria 

(Jackowski, 1994; Saitoh et al., 1996; Janero and Barrnett, 1981; Kwok and Wong, 

2005; Joseleau-Petit et al., 1984; Knacker et al., 1985). Similar changes must also 

take place in plants but surprisingly they have yet to be described, possibly because 

of difficulties in generating highly synchronised plant cell cultures (Kwok and Wong, 

2005). Furthermore, there is currently no mechanistic understanding of how 

phospholipid biosynthesis is coupled to the cell cycle in plants. 

The cell cycle is governed by conserved molecular machinery in which the core 

components are serine/threonine kinases, known as cyclin-dependent kinases (CDKs) 

(Inzé and De Veylder, 2006; Gutierrez, 2009; Polyn et al., 2015). The link between 

CDK activity and phospholipid biosynthesis is perhaps best understood in the budding 

yeast Saccharomyces cerevisiae where the enzyme Mg2+-dependent phosphatidic 

acid phosphohydrolase (Pah1p) is a direct target for multisite phosphorylation by both 

cell division cycle 28 (Cdc28p) and phosphate metabolism 85 (Pho85p) (Santos-Rosa 

et al., 2005; Choi et al., 2011; 2012). Together Cdc28p and Pho85p modulate a range 

of cellular processes in response to environmental stimuli (Enserink and Kolodner 

2010). Pah1p catalyses the conversion of phosphatidic acid (PA) to diacylglycerol 

(DAG), which is a key step controlling the partitioning of carbon flux between 

membrane and storage lipid biosynthesis in S. cerevisiae (Carman and Henry, 2007). 

Pah1p is an amphitropic enzyme that switches between a phosphorylated soluble 

inactive form and a dephosphorylated membrane-bound active form (Choi et al., 

2011). Pah1 is dephosphorylated by the nuclear envelope morphology 1 – sporulation 

7 (Nem1p–Spo7p) protein phosphatase complex at the nuclear-endoplasmic reticulum 

(ER) membrane allowing the protein to associate with the membrane via a short N-

terminal amphipathic helix (Karanasios et al., 2010; Choi et al., 2011). 
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Pah1p membrane disassociation and inactivation resulting from multisite 

phosphorylation by Cdc28p and Pho85p, leads to elevated levels of the enzymes’ 

substrate (PA), which is the precursor for the cytidine diphosphate-diacylglycerol 

(CDP-DAG) pathway. This pathway is able to synthesise all phospholipid classes in 

S. cerevisiae (Carman and Henry, 2007). Accumulation of PA also enhances the 

expression of a suite of phospholipid biosynthetic genes and causes dramatic 

expansion of the nuclear-ER membrane (Santos-Rosa et al., 2005; Carman and 

Henry, 2007). The genes that are induced form part of the inositol-responsive circuit 

in S. cerevisiae (Carman and Henry, 2007). Expression of these genes is induced by 

the inositol requiring 2 – inositol requiring 4 (Ino2p-Ino4p) transcription factor complex, 

but is blocked by interaction of the repressor protein overproducer of inositol 1 (Opi1p) 

with Ino2p (Carman and Henry, 2007). Accumulation of PA relieves Opi1p-mediated 

repression of gene expression because it ties Opi1p to a protein called suppressor of 

choline sensitivity 2 at the nuclear–ER membrane (Loewen et al., 2004). 

Orthologs of S. cerevisiae Pah1 are also present in higher eukaryotes where 

they are often termed lipins (Carman and Henry, 2007). In both animals and plants, it 

has been shown that disruption of lipins can enhance PA content, trigger changes in 

nuclear and/or ER membrane morphology (Golden et al., 2009; Gorjánácz et al., 2009; 

Ugrankar et al., 2011; Mall et al., 2012; Han et al., 2012; Bahmanyar et al., 2014; 

Eastmond et al., 2010) and alter gene expression (Finck et al., 2006; Donkor et al., 

2009; Peterson et al., 2011; Eastmond et al., 2010; Craddock et al., 2015). In the case 

of Caenorhabditis elegans, although defects in nuclear and ER morphology are 

accompanied by a perturbation in phospholipid composition, total phospholipid content 

does not increase significantly (Bahmanyar et al., 2014). Arabidopsis thaliana contains 

two Pah1p orthologs called PAH1 and PAH2, which appear to be expressed in all 
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tissues (Nakamura et al., 2009; Eastmond et al., 2010). Analysis of a double mutant 

shows that extra-plastidial phospholipid content almost doubles and both the rate of 

phosphatidylcholine (PC) biosynthesis and turnover increases markedly (Eastmond et 

al., 2010; Wang et al., 2014; Craddock et al., 2015). In A. thaliana there are also gross 

changes in ER morphology, but unlike C. elegans there is no obvious defect in the 

nucleus (Eastmond et al., 2010; Bahmanyar et al., 2014). These data suggest that 

plants may use PAHs as a hub in the regulatory network governing phospholipid 

biosynthesis and endomembrane biogenesis (Eastmond et al., 2010; Craddock et al., 

2015). 

The mechanism by which PAH inactivation enhances phospholipid (and in 

particular PC) production in A. thaliana differs markedly from that of S. cerevisiae. This 

is because the inositol-responsive circuit found in S. cerevisiae (Carman and Henry, 

2007) is not conserved in higher eukaryotes and A. thaliana also does not use PA to 

synthesise PC via the CDP-DAG pathway, because it cannot directly methylate 

phosphatidylethanolamine (PE) (Keogh et al., 2009). Instead it converts ethanolamine 

to choline by methylation mainly at the phospho-base level and uses the nucleotide 

(also known as Kennedy) pathway to assemble PC from CDP-choline and DAG 

(Keogh et al., 2009). Because DAG is the product of the reaction catalysed by PAH it 

is counterintuitive that disruption of this enzyme should lead to an increase in PC 

biosynthesis (Eastmond et al., 2010). However, characterisation of the pah1 pah2 

mutant shows that A. thaliana possesses additional routes to synthesise DAG 

(Nakamura et al., 2009; Eastmond et al., 2010) and isotopic labelling experiments 

indicate that the rate of PC biosynthesis is more limited by the availability of CDP-

choline, supplied by the enzyme cytidine 5'-triphosphate: phosphocholine 

cytidylyltransferase (CCT) (Kinney et al., 1987; Eastmond et al., 2010). Analysis of PC 
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biosynthesis in the pah1 pah2 mutant suggests that enhanced metabolic flux through 

the pathway is mainly a result of increased CCT activity (Eastmond et al., 2010; 

Craddock et al., 2015). In many eukaryotes CCT activity is determined by local 

membrane lipid composition with a relative enrichment of anionic lipids such as PA 

and its CDP-DAG pathway derivatives phosphatidylinositol (PI) and 

phosphatidylglycerol (PG) acting as a stimulant (Cornell and Northwood, 2000; 

Jackowski and Fagone, 2005). Arabidopsis CCT1 activity can also be stimulated by 

anionic lipids and expression of a lipid-insensitive version partially mimics the pah1 

pah2 phenotype by stimulating both PC biosynthesis and ER proliferation (Craddock 

et al., 2015). These data suggest that in the pah1 pah2 mutant, PC biosynthesis 

increases to compensate for an imbalance in membrane lipid composition (Craddock 

et al., 2015). Interestingly, Szymanski et al., (2014) also reported that disruption of 

CDP-DAG SYNTHASE2 not only reduces PI and PG levels in A. thaliana, but also 

those of PC and PE. 

Regardless of the precise mechanism of action, PAH activity has the potential 

to modulate phospholipid biosynthesis in A. thaliana (Eastmond et al., 2010; Wang et 

al., 2014; Craddock et al., 2015). This study aimed to investigate how PAH activity is 

governed, and particularly whether it might be coupled to cell cycle progression via the 

action of CDKs, as has been shown in S. cerevisiae (Santos-Rosa et al., 2005; 

Karanasios et al., 2010; Choi et al., 2011; 2012). A. thaliana contains twelve CDKs 

that are classified into six groups, but only class A and class B CDKs have been 

implicated in core cell cycle regulation in plants (Inzé and De Veylder, 2006; Gutierrez, 

2009). Among A. thaliana CDKs, S. cerevisiae Cdc28p and Pho85p share the greatest 

sequence similarity with CDKA;1, which is the only class A CDK present in A. thaliana 

and is distinguished by the conserved PSTAIRE cyclin-binding motif (Nowack et al., 



8 
 

2012) that is also found in both Cdc28p and Pho85p. CDKA;1 is expressed throughout 

the cell cycle (Segers et al., 1996), both in tissues with active cell division and also 

those with proliferative competence (Martinez et al., 1992). CDKA;1 can complement 

the S. cerevisiae cdc28Δ mutant suggesting that it functions in both G1 to S and G2 

to M phase transitions (Ferreira et al., 1991). Mutant analysis in A. thaliana has 

confirmed that CDKA;1 is necessary for entry into S phase and thus for both mitotic 

cell division and endoreduplication (Nowack et al., 2012). We therefore focused our 

investigation on whether CDKA;1 might play a role in governing PAH activity in A. 

thaliana. 

 

RESULTS 

Disruption of CDKA;1 enhances PAH activity and supresses PC biosynthesis  

In Arabidopsis thaliana it is possible to obtain null mutants in CDKA;1 (Nowack et al., 

2012), but their growth is so severely retarded that biochemical analysis is 

problematic. However, weaker alleles of cdka;1 (referred to here as cdka;1D and 

cdka;1DE) have been created by transforming cdka;1 plants with construct expressing 

phosphomimicry versions of CDKA;1 that have greatly reduced kinase activity 

(Dissmeyer et al., 2007; 2009). The cdka;1D line expresses a copy of CDKA;1 with a 

T161D substitution and the cdka;1DE line a copy with T14D and Y15E substitutions 

(Dissmeyer et al., 2007; 2009). To determine whether CDKA;1 function effects the 

activity of PAH in A. thaliana we performed enzyme assays (Eastmond et al., 2010) 

on extracts from developing rosette leaves of wild type, cdka;1D and cdka;1DE (Figure 

1). PAH activity was increased by ~50% in both cdka;1D and cdka;1DE on a per unit 

fresh weight basis (Figure 1a). To investigate whether CDKA;1 function also effects 
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phospholipid metabolism we measured the rate of PC biosynthesis in the leaves by 

monitoring the incorporation of [methyl-14C]choline into lipids (Eastmond et al., 2010). 

The rate of biosynthesis was ~30% lower in cdka;1D and cdka;1DE plants than in wild 

type when expressed on a per unit fresh weight basis (Figure 1b). The total PC content 

of cdka;1D and cdka;1DE leaves was also lower (Table S1). Since a reduction in PAH 

activity leads to stimulation of PC biosynthesis and ER biogenesis in A. thaliana 

(Eastmond et al., 2010; Wang et al., 2014; Craddock et al., 2015), it is logical that the 

increase observed in cdka;1D and cdka;1DE plants may be responsible for the 

suppression of the pathway. 

 

Suppression of PC biosynthesis by CDKA;1 is dependent on PAH activity 

To investigate whether the elevated PAH activity in cdka;1D leaves is derived from 

PAH1 and/or PAH2 and whether this increase is responsible for the suppression of 

PC biosynthesis we created a pah1 pah2 cdka;1D triple mutant (Figure 1). The 

increase in PAH activity detected in cdka;1D leaves was suppressed in pah1 pah2 

cdka;1D (Figure 1a) and therefore is attributable to the PAH1 and/or PAH2 proteins, 

and not to other lipid phosphatases that are responsible for the remaining PAH activity 

present in pah1 pah2 (Nakamura et al., 2009; Eastmond et al., 2010). The rate of 

incorporation of [methyl-14C]choline into lipids in cdka;1D was also recovered in the 

pah1 pah2 background to a rate that is substantially higher than wild type (Figure 1b). 

Leaf area, cell number and cell size of pah1 pah2 cdka;1D plants were not significantly 

different (P > 0.05) to those of cdka;1D (Table S2) suggesting that the growth defects 

caused by CDKA;1 disruption (Dissmeyer et al., 2007) cannot be rescued by relieving 

the repression of phospholipid synthesis. Considered together these data suggest that 
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CDKA:1 supresses PAH activity and enhances PC biosynthesis, and that CDKA;1 

exerts its effect on PC production in A. thaliana through PAH. 

 

PAH1 is sufficient to mediate the effect of CDKA;1 on PC biosynthesis 

A. thaliana contains two PAH genes with overlapping expression patterns (Eastmond 

et. al. 2010). Single pah1 and pah2 mutants have no obvious morphological 

phenotypes (Eastmond et. al. 2010). However, the pah1 mutant does exhibit a 

significant (P < 0.05) reduction in PAH activity and elevated rate of PC biosynthesis 

(Figure 2). PAH1 is therefore the predominant isoform in this tissue. We have 

previously shown that constitutive expression of hemagglutinin (HA) tagged PAH1 

under the control of the CaMV 35S promoter can complement the pah1 pah2 mutant 

(Craddock et al., 2015). To determine whether CDKA;1 can exert its effect on PC 

biosynthesis through PAH1 we introduced the same Pro35S:PAH1-HA T-DNA 

insertion event into the pah1 pah2 cdka;1D background via crossing (Figure 1). The 

increase in PAH activity detected in cdka;1D leaves, but suppressed in pah1 pah2 

cdka;1D, was rescued by Pro35S:PAH1-HA (Figure 1a). Furthermore, the rate of 

incorporation of [methyl-14C]choline into lipids that was supressed in cdka;1D, but 

recovered in pah1 pah2 cdka;1D, was again suppressed by Pro35S:PAH1-HA (Figure 

1b). These data suggest that the activity of PAH1 is supressed by CDKA;1 and that, 

in the absence of PAH2, this suppression is sufficient to stimulate PC biosynthesis. 

 

CDK-cyclin complexes can phosphorylate PAH1 in vitro and inhibit its activity 
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To investigate whether PAH1 is a substrate for CDK-cyclin complexes, histidine x 6 -

tagged PAH1 was expressed in Escherichia coli and affinity purified as previously 

described (Eastmond et al., 2010). In vitro phosphorylation assays were carried out 

on the recombinant protein using p13Suc1-bound CDK-cyclin complexes isolated from 

A. thaliana flower bud extracts (Dissmeyer et al., 2007) and [γ-32P]ATP (Figure 3). 

Kinase activity was detected, which required the presence of both the protein substrate 

(His6-PAH1) and the CDKA;1-containing complex (Figure 3a). CDKs commonly 

phosphorylate the consensus site S/T-P in target proteins (Nowack et al., 2012) and 

anti-pS/pT-P antibodies (α-MPM2) have previously been used to detect Cdc28p and 

Pho85p dependent phosphorylation of Pah1p (Santos-Rosa et al., 2005; Choi et al., 

2011; 2012). Using α-MPM2 antibodies we were also able to detect CDK-dependent 

phosphorylation of His6-PAH1 by immunoblotting (Figure 3a). To screen directly for 

CDK-dependent phosphorylation sites the products of unlabelled reactions were 

separated by gel electrophoresis. His6-PAH1 was then subjected to tryptic digestion 

and the resulting peptides were separated via liquid chromatography and analysed by 

tandem mass spectrometry (LC-MS/MS). As shown previously (Eastmond et al., 

2010), diagnostic mass fingerprints could be identified for 33 peptides, representing 

43% coverage of the PAH1 protein. In addition to these peptides, a single 

phosphorylated peptide was also detected (FYDFQDDPP[pS]PTSEYGSAR) with a 

modification that corresponds to serine 162 in the intact native protein (Figure S1). 

Evidence from multiple proteomics studies contained in the PhosPhAt 4.0 database 

(Durek et al., 2010) suggests that this site is also phosphorylated in vivo (Jones et al., 

2009; Ito et al., 2009; Nakagami et al., 2010; Reiland et al., 2011; Zhang et al., 2013; 

Wang et al., 2013). To investigate whether CDK-dependent phosphorylation of His6-

PAH affects its activity, enzyme assays were also performed on the reaction products. 



12 
 

CDK treatment led to a ~65% reduction in PAH activity (Figure 3b). These data 

suggest that PAH1 can be phosphorylated and inactivated by CDKs in vitro and that 

S162 is a target. 

 

CDKA;1 is required for in vivo PAH1 phosphorylation 

To investigate whether CDKA;1 activity effects the in vivo phosphorylation state of 

PAH1, and whether S162 plays a role in this, we created a dephosphorylated version 

of PAH1-HA containing a S162A substitution (Dissmeyer and Schnittger, 2011) and 

expressed it in pah1 pah2 under the control of the CaMV 35S promoter. In S. 

cerevisiae, phosphorylation of Pah1p by Cdc28p and Pho85p reduces its 

electrophoretic mobility (Santos-Rosa et al., 2005; Choi et al., 2011; 2012). Therefore, 

we immunoprecipitated PAH1-HA and PAH1S162A-HA from pah1 pah2 leaf extracts 

and PAH1-HA from pah1 pah2 cdka;1D leaf extract and performed gel electrophoresis 

followed by immunoblotting (Figure 4). From the pah1 pah2 genetic background α-HA 

antibodies detected PAH1-HA bands of differing mobility, whereas from pah1 pah2 

cdka;1D a single dominant band was detected with the same mobility as the lowest 

band present in pah1 pah2 (Figure 4a). From pah1 pah2 expressing PAH1S162A-HA 

the single lower band was also dominant (Figure 4a). Using α-MPM2 antibodies we 

were also able to detected a band in immunoprecipitates from pah1 pah2 expressing 

PAH1-HA, but were unable to from pah1 pah2 cdka;1D expressing PAH1-HA or pah1 

pah2 expressing PAH1S162A-HA (Figure 4a). To confirm that the shift in mobility and 

signal detected by α-MPM2 were both due to phosphorylation of PAH1-HA, 

immunoprecipitates were treated with Calf intestinal alkaline phosphatase (CIP) prior 
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to immunodetection (Figure 4b). Together these data suggest that PAH1 is 

phosphorylated at S162 in a CDKA;1-dependent manner. 

 

Phosphorylation of PAH1 is necessary for stimulation of PC biosynthesis 

To investigate whether the phosphorylation state of PAH1 at S162 plays a role in 

governing PAH activity and PC biosynthesis in A. thaliana, we introduced 

35S:PAH1S162A-HA into the pah1 pah2 cdka;1D background (Figure 1). PAH activity 

in pah1 pah2 leaves expressing PAH1S162A-HA was significantly higher (P < 0.05) than 

in those expressing the wild type form of PAH1-HA (Figure 1a). This was in spite of 

the fact that the abundance of protein is very similar (Figure 4a). By contrast, 

expression of PAH1S162A-HA and PAH1-HA from the same transformation events in 

pah1 pah2 cdka;1D plants resulted in no significant difference (P > 0.05) in PAH 

activity (Figure 1a). The rate of incorporation of [methyl-14C]choline into PC in pah1 

pah2 leaves expressing PAH1S161A-HA was also significantly lower (P < 0.05) than in 

pah1 pah2 leaves expressing PAH1-HA, but there was no significant difference 

(P>0.05) in pah1 pah2 cdka;1D leaves (Figure 1b). These data suggest that CDKA;1-

dependent phosphorylation of PAH1 at S162 supresses PAH activity and through this 

action enhances PC biosynthesis. 

 

Phosphorylation of PAH1 effects membrane association as well as activity 

The phosphorylation status of Pah1p determines the protein’s localisation, as well as 

its activity in S. cerevisiae. The N-terminus of Pah1 contains an amphipathic helix 

responsible for membrane binding and phosphorylation by Cdc28p and Pho85p 
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causes a conformational change that disassociates the protein from the membrane 

(Karanasios et al., 2010; Choi et al., 2011; 2012). In A. thaliana, both C- and N-

terminally tagged PAH1 and PAH2 are predominantly soluble proteins when 

expressed under the CaMV 35S promoter (Nakamura et al., 2009; Eastmond et al., 

2010). However, sequence analysis (Gautier et al., 2008) suggests that the 

amphipathic helix found at the N-terminus in S. cerevisiae Pah1p might also be a 

conserved feature in PAH1 and PAH2 (Figure S2). To study whether phosphorylation 

of PAH1 affects the localisation of the protein we used immunoblotting to monitor 

PAH1-HA protein distribution in subcellular fractions of pah1 pah2 leaf extracts 

expressing either PAH1-HA or PAH1S162A-HA (Figure 5). In the case of PAH1-HA, the 

majority of protein was detected in the soluble (150,000g supernatant) fraction and 

only traces were detected in the microsomal membrane fraction (150,000g pellet) 

(Figure 5a). This finding is consistent with those of Nakamura et al., (2009) who 

previously performed fractionation experiments on extracts from leaves expressing 

PAH1 tagged at the C-terminus with green fluorescent protein (GFP). However, in 

extracts from pah1 pah2 leaves expressing PAH1S162A-HA, a more even distribution 

of protein was detected between the microsomal membrane fraction and the soluble 

fraction (Figure 5a). The membrane fraction from pah1 pah2 leaves already contains 

PAH activity, which must be derived from other lipid phosphatases (Nakamura et al., 

2009). However, enzyme assays performed on the different fractions from pah1 pah2 

leaves expressing PAH1-HA or PAH1S162A-HA show that the proportion of PAH activity 

in the membrane fraction is significantly (P < 0.05) enhanced in the case of PAH1S162A-

HA (Figure 5b). Together these data support the hypothesis that phosphorylation of 

PAH1 by CDKA;1 reduces membrane association as well as activity. 
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Phosphorylation of PAH1 is required for normal rates of cell division 

We have shown that expressing the dephosphorylated version of PAH1 in A. thaliana 

results in enhanced PAH activity and membrane residency in leaves and that 

consequently the rate of PC biosynthesis is repressed (Figure 1&5). To investigate 

whether this has an impact on leaf growth and development, wild type (Col-0) plants 

and pah1 pah2 plants expressing either PAH1-HA or PAH1S162A-HA were grown 

alongside each other and their phenotype compared (Figure 6). Wild type plants and 

pah1 pah2 plants expressing PAH1-HA were indistinguishable at rosette stage. 

However, pah1 pah2 plants expressing PAH1S162A-HA exhibited a small but significant 

reduction (P < 0.05) in the area of mature rosette leaves (Figure 6a). The effect of 

PAH1S162A-HA expression on leaf growth was investigated in more detail. Microscopic 

analysis of the abaxial surface of mature leaves showed that the number of epidermal 

cells was significantly reduced (P < 0.05) in pah1 pah2 plants expressing PAH1S162A-

HA, as compared to either wild type or pah1 pah2 plants expressing PAH1-HA (Figure 

6b). By contrast, the average area of each cell was significantly (P < 0.05) increased 

(Figure 6c). These data suggest a defect in the rate (or duration) of cell division (De 

Veylder et al., 2001). To study this further, we performed kinematic analysis of cell 

division and expansion in the first true leaf pair of WT and pah1 pah2 expressing 

PAH1S162A-HA (DMp1). In both genotypes, leaf area and abaxial epidermal cell 

number increased exponentially until around day ten to twelve and then the rates 

decreased (Figure 7a and b). Average cell area also remained stable in both 

genotypes until day ten and then began to increase exponentially (Figure 7c). In both 

genotypes the calculated rate of cell division was greatest at the earliest time point 

(day six) and declined (Figure 7d), as cell expansion accelerated (Figure 7c). These 

data suggest that the period of most rapid cell division is not substantially altered in 
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DMp1. However, within this phase (day six to ten) the rate was consistently lower in 

DMp1 than in WT (Figure 7d). These data suggest that phosphorylation of PAH1 at 

S162 is required for normal rates of cell division (De Veylder et al., 2001).  Since we 

have shown that phosphorylation of S162 in PAH1 is reduced in leaves of the cdka;1D 

mutant, our data support the hypothesis that CDK-specific suppression of PAH1 

catalytic function drives sufficient endomembrane production to allow normal rates of 

mitotic cell division during leaf growth and development in A. thaliana. 

 

DISCUSSION 

In this study, we have provided evidence that the core cell cycle regulator CDKA;1 

(Nowack et al., 2012) stimulates the rate of PC biosynthesis in Arabidopsis thaliana 

by phosphorylating the enzyme PAH. This post-translational modification reduces the 

catalytic activity of PAH and also impairs protein association with the membrane, 

where its substrate resides. We have previously shown that suppression of PAH 

activity enhances phospholipid content and causes ER proliferation (Eastmond et al., 

2010). The mechanism of PAH action is yet to be fully understood, but the increase in 

the rate of PC biosynthesis would appear to be caused by activation of the rate-limiting 

enzyme CCT (Craddock et al., 2015). Taken together our data provide a mechanistic 

link to explain how phospholipid biosynthesis in plant cells is coordinated with cell 

cycle progression. We have also shown that expression of a de-phosphorylated form 

of PAH1 uncouples PC biosynthesis from CDKA;1 and reduces the rate of mitotic cell 

division in the leaf. This suggests that CDKA;1 phosphorylation of PAH1 plays a 

physiologically important role in plant growth and development. Defects in the 

biosynthesis of fatty acids and lipids have been shown to impair cell division in many 
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eukaryotic systems (Cornell et al., 1977; Tercé et al., 1994; Saitoh et al., 1996; Al-Feel 

et al., 2003, Kwok and Wong 2005; Bach et al., 2011; Atilla-Gokcumen et al., 2014). 

At the most basic level coupling between the two processes is considered to be 

important because membranes are a basic building block of the cell and their 

constituent phospholipids must increase in mass prior to each division (Jackowski 

1994; 1996). There is evidence that specific molecular species of membrane lipids 

also play specialised roles in cell division (Al-Feel et al., 2003; Bach et al., 2011; Atilla-

Gokcumen et al., 2014) and may even act as signals to govern cell cycle progression 

(Koeberle et al., 2013; Chauhan et al., 2015). 

It is accepted that phospholipid metabolism changes dynamically over the 

course of the cell cycle with the pattern varying depending on species (Jackowski 

1994; 1996). For yeasts such as S. cerevisiae and Schizosaccharomyces pombe that 

undergo closed cell division there is a burst of phospholipid biosynthesis upon entry 

to mitosis in order to support the rapid expansion of the nuclear envelope (Santos-

Rosa et al., 2005; Makarova et al., 2016). In accordance with this, CDK-dependent 

phosphorylation of both S. cerevisiae Pah1p and its S. pombe ortholog Ned1 (nuclear 

elongation and deformation protein 1) increases upon G2 to M transition (Santos-Rosa 

et al., 2005; Makarova et al., 2016). By contrast in mammalian cells, which undergo 

open cell division, net accumulation of phospholipids is generally associated with cell 

(and nuclear) expansion during S phase (Cornell et al., 1977; Jackowski 1994). 

Interestingly in the yeast S. japonicas, which also uses open cell division, Ned1 is not 

hyperphosphorylated during G2 to M transition despite being a CDK substrate 

(Makarova et al., 2016). Unfortunately, it is not known how phospholipid metabolism 

varies over the course of the cell cycle in plants (Kwok and Wong, 2005). However, 
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given that plants employ open cell division, it is possible that phospholipid 

accumulation might also be associated with S phase. 

 Our data suggest that PAH1 phosphorylation by CDKA;1 at S162 is important 

for enzyme function, but it remains possible that additional sites are also 

phosphorylated in a CDK-dependent manner. PAH1 contains multiple putative target 

sites containing the minimal consensus sequence S/T-P and our proteomic analysis 

provided incomplete coverage (Figure S1). Nevertheless, S162 is so far the only S/T-

P site to have been identified by in vivo proteomic studies (Durek et al., 2010). In S. 

cerevisiae, Pah1p is phosphorylated at three sites by Cdc28p and at seven by Pho85p 

(Choi et al., 2011; 2012). Not all sites are of equal importance. Disruption of some 

individual sites leads to a significant reduction in Pah1p activity and membrane 

association but the largest effect results from simultaneous disruption of all (Choi et 

al., 2012). Pah1p has been shown to be the target of several other kinases, including 

protein kinase A (Su et al., 2012) and protein kinase C (Su et al., 2014). The 

mammalian Pah1p ortholog lipin-1 is also phosphorylated by mTORC1 (mechanistic 

target of rapamycin complex1) (Peterson et al., 2011). Data contained in the PhosPhAt 

4.0 database (Durek et al., 2010) suggests that PAH1 is phosphorylated at non S/T-P 

sites and therefore is also likely to be targeted by other kinases. These kinases could 

regulate PAH activity and localisation in response to various stimuli, as has been 

shown in S. cerevisiae (Su et al., 2012; 2014). PAH1 is mostly present in the cytosol, 

both when expressed in Nicotiana benthaminana leaves (Eastmond et al., 2010) and 

S. cerevisiae (Mietkiewska et al., 2011). However, Mietkiewska et al. (2011) have 

shown that in cells of S. cerevisiae cultured with oleic acid, PAH1 will also localise in 

the nucleus. The functional significance of this response is unknown but in mammals 

the nuclear localisation of lipin-1 is also controlled by phosphorylation (Peterson et al., 
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2011). Although mutant analysis suggests that PAH2 plays a less important role in A. 

thaliana leaves than PAH1 (Figure 2), the two genes do clearly overlap in function 

(Eastmond et al., 2010). Interestingly the PhosPhAt 4.0 database contains evidence 

to show that PAH2 is also phosphorylated at several sites including S524 (Durek et 

al., 2010), which corresponds to the consensus S/T-P. Hence PAH2 may also be 

phosphorylated by CDKA;1, and indeed by other kinases. 

In S. cerevisiae dephosphorylation of Pah1p by the Nem1p–Spo7p protein 

phosphatase complex on the nuclear-ER membrane, plays a vital role in activating the 

enzyme and in allowing it to associate with the membrane (Choi et al., 2011; 2012; 

Karanasios et al., 2010). This complex (and its function) is also conserved in animals 

(Kim et al., 2007; Han et al., 2012), but it has yet to be identified or characterised in 

plants. The catalytic subunit Nem1p and its animal ortholog C-terminal domain nuclear 

envelope phosphatase 1 (CTDNEP1) are related to the small C-terminal domain 

phosphatase 1 (SCP1), which is a protein that dephosphorylates the highly conserved 

heptad repeats in the C-terminal domain of RNA polymerase II (Hsin and Manley, 

2012). A. thaliana contains a family of SCP1-like proteins but those members that have 

been characterised to date do not localise to the nuclear envelope (Feng et al., 2010). 

The regulatory subunit Spo7p and its animal ortholog, nuclear envelope phosphatase 

1-regulatory subunit 1 (NEP1-R1), are very small transmembrane proteins that share 

little sequence similarity with one another (Han et al., 2012) and standard 

bioinformatics tools do not reveal any obvious homologues in A. thaliana. 

Understanding how PAH1 is dephosphorylated and whether a functionally analogous 

phosphatase complex to Nem1p–Spo7p is involved will require further work. 

In conclusion our data suggest that PAH1 is a direct target for phosphorylation 

by CDKA;1–cyclin complexes in A. thaliana and that this post-translational 
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modification plays an important physiological role in determining the rate of 

phospholipid biosynthesis. Given that CDKA;1 is a core cell cycle regulator and is 

instrumental in controlling both the G1 to S and G2 to M transitions (Nowack et al., 

2012) it is likely that its phosphorylation of PAH1 helps to coordinate phospholipid 

biosynthesis with fluctuations in demand for membrane biogenesis that must take 

place at these key stages in cell cycle progression (Jackowski 1994; Santos-Rosa et 

al., 2005). In plants, a detailed description of how phospholipid metabolism changes 

over the course of the cell cycle is still lacking (Kwok and Wong, 2005). Further work 

will be required to address this knowledge gap and also to attain a more complete 

understanding of the underlying mechanisms that couple PAH1, and other key lipid 

metabolic enzymes, to the core cell cycle machinery. 

 

EXPERIMENTAL PROCEDURES 

Plant material and growth conditions 

The construction of the Arabidopsis thaliana transgenic lines pah1 pah2 (DM), pah1 

pah2 Pro35S:PAH1-HA (DMP), cdka;1D and cdka;1DE have been described 

previously (Eastmond et al., 2010; Craddock et al., 2015; Dissmeyer et al., 2007; 

2009). Seeds of A. thaliana were surface–sterilised, applied to agar plates containing 

half-strength MS salts (Sigma-Aldrich) and imbibed in the dark for 4 d at 4°C after 

which the plates were then placed vertically in a growth chamber set to 22°C 16 h 

light/18°C 8 h dark; PPFD = 250 μmol m−2 s−1. After 7 days the seedlings were 

transplanted to soil and grown under the same conditions as described above. PCR 

performed on genomic DNA was used to genotype T-DNA mutants (Eastmond et al., 

2010; Dissmeyer et al., 2007). 
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PC radiolabelling and PAH enzyme assays 

Radiolabel feeding experiments were carried out using rosette leaves that were cut 

into 2 mm diameter strips with a razor blade. They were then placed in vials containing 

0.5 mL of half-strength MS salts supplemented with 1 mM [methyl-14C]choline chloride. 

The leaf tissue was vacuum infiltrated for 5 min and, following incubation at 22°C with 

gentle agitation for up to 3 h, the tissue was blotted dry and frozen in liquid nitrogen. 

Lipid extraction and analysis of the labelled PC were performed using the methods 

described by Tasseva et al. (2004). PAH assays were performed on total 

homogenates and immunoprecipitates obtained from rosette leaves using the method 

described by Craddock et al. (2015). The PC content was also directly quantified from 

total tissue extracts using the enzyme-coupled fluorometric procedure described 

previously (Eastmond et al., 2010). 

 

Creation of DNA constructs and transformation 

PAH1S162A was created from a PAH1 template in entry vector pDONR207 as 

previously described in (Craddock et al., 2015) using the Quikchange Lightning Site-

Directed Mutagenesis Kit (Agilent Technologies) and primers 5’-

ATGATTTTCAGGATGATCCTCCTGCGCCAACCTCAGAATATGGAAGTGCT-3’ and 

5’-AGCACTTCCATATTCTGAGGTTGGCGCAGGAGGATCATCCTGAAAATCAT-3’. 

The gene cassette was then cloned into the destination vector pEG101 using the 

Gateway LR clonase enzyme mix (Invitrogen Ltd.). Transformation of the plasmids 

into Agrobacterium tumefaciens strain GV3101 was achieved by heat shock and into 
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Arabidopsis wild type and pah1 pah2 by the floral-dip method (Clough and Bent, 

1998). Herbicide resistance was used to select transformants containing T-DNA 

insertions and homozygous lines were crossed into pah1 pah2 cdka;1D (TM). 

 

PAH protein extraction and analysis 

Subcellular fractionation, protein extraction, quantification, sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting were performed 

as described previously (Craddock et al., 2015) but with the following minor 

modifications. Phosphoenolpyruvate carboxylase activity was measured in subcellular 

fractions using the method described by Gregory et al. (2009). Detection of 

phosphorylated PAH1-HA by immunoblotting was carried out with leaf extracts 

prepared according to the method of Dissmeyer et al., (2007), using an ice cold 

extraction buffer containing phosphatase and protease inhibitors. 

Immunoprecipitations were then performed by incubating 1 mg of total leaf protein with 

40 μg of α-HA antibodies and 100 μl of protein A-Sepharose CL-4B beads (10% slurry, 

w/v) in a total volume of 0.5 ml. Immune complexes were collected by centrifugation 

at 1,500 g for 20 s and were washed repeatedly before being used directly for SDS-

PAGE or pre-treated with calf intestine alkaline phosphatase (CIP) solution at 37 ºC. 

In addition to using anti-HA antibodies, membranes were also probed using anti-

(phosphoserine/phosphothreonine)-proline (α-MPM2), anti-His6 (α-His), anti-luminal-

binding protein 2 (α-BiP2) or anti-PSTAIRE antibodies from EDM Millipore, Abcam, 

Agrisera and Santa Cruz Biotechnology, respectively.  

 



23 
 

Recombinant PAH1 expression and in vitro phosphorylation assays 

Heterologous expression of His6-PAH1 in E. coli and affinity purification were 

performed essentially as previously described (Eastmond et al., 2010), but with the 

following modifications. A pellet of E. coli strain ArcticExpress RIL (Stratagene) cells 

equivalent to 400 ml of culture was washed once with 20 mM Tris-HCl buffer, pH 8.0 

and the cells resuspended in 20 ml of Buffer A: 20 mM sodium phosphate (pH 7.4), 

0.5 M NaCl, 20 mM imidazole, 7 mM 2-mercaptoethanol, 1% (v/v) Triton X-100, 5% 

(v/v) glycerol, 1:20 (v/v) Protease Inhibitor Cocktail (Sigma-Aldrich), and 50 ul 

Lysozyme (100 mg per ml). Cells were disrupted by six short bursts of sonication of 

10 sec with a microtip each followed by intervals of 30 sec for cooling. Centrifugation 

at 40,000g for 30 min at 4oC was used to remove cell debris. A 20 µm filter was used 

to filter the supernatant (cell lysate) and the sample loaded on a 1 ml Ni2-NTA column 

(GE Healthcare) followed by a 10 mL wash with Buffer A. His6-tagged proteins were 

then eluted from the column in 1 ml fractions with a total of 10 ml of Buffer A containing 

500 mM imidazole. SDS-PAGE was used to analyse the fractions which were then 

stained with Colloidal Coommassie Brilliant Blue G-250. Pooled enzyme preparations 

were dialysed against 20 mM sodium phosphate (pH 7.4) containing 10% (v/v) glycerol 

and 7 mM 2-mercaptoethanol before being stored at -80 oC. 

CDK-cyclin complexes were purified from A. thaliana flower buds using p13Suc1-

Sepharose beads and used for kinase assays following the protocols described by 

Dissmeyer and Schnittger (2011). Each reaction contained: 30 µl of washed beads 

together with 8.5 μl of water, 3.5 μl each of 500 mM Tris-Cl (pH 7.8), 150 mM MgCl2, 

50 mM EGTA, and 10 mM DTT and 5 μl of His6-PAH1 (~0.1 mg ml-1). The addition of 

4.1 μl of water, 0.3 μl of 1 mM Li-ATP, and 6 μCi of [γ-32P]ATP (220 TBq/mmol) started 

the reactions, which were then incubated for 60 min at room temperature. To terminate 
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the reactions, the mixtures were spotted onto P81 phosphocellulose paper: the papers 

were then washed five times with 75 mM phosphoric acid and subjected to scintillation 

counting. Proteomic analysis of unlabelled reaction products was performed following 

the procedures previously described in Rajangam et al. (2013). In brief, the protein 

was digested in gel with trypsin, the peptides were resolved using ultra-performance 

liquid chromatography (UPLC) and analysed by a Quadrupole Time-of-Flight mass 

spectrometer (Q-ToF MS). The data were used to interrogate the National Center for 

Biotechnology Information non-redundant database using a MASCOT tandem MS/MS 

search (http://www.matrixscience.com) to identify PAH1 peptides. 

 

Analysis of leaf growth 

A kinematic analysis (De Veylder et al., 2001) of the abaxial epidermal cells of the first 

true leaf leave pair between 6 to 22 days after sowing (DAS) was performed following 

the method described by (Nelissen et al., 2013), except that leaves between 6 and 10 

DAS were stained with propidium iodide and images were obtained using confocal 

microscopy. Older leaves were cleared with 70% (v/v) ethanol and mounted in 100% 

(v/v) lactic acid. The leaves were imaged using a binocular microscope and abaxial 

epidermal cells from two positions (Nelissen et al., 2013) were imaged with an 

Axiophot microscope (Zeiss) using differential interference contrast optics. Cell 

outlines were generated by hand and analysed using ImageJ (http://rsbweb.nih.gov/ij/) 

and the average cell area and estimated number of cells per leaf were calculated by 

dividing leaf blade area by cell area. The rate of cell division was calculated as the 

relative rate of increase in cell number over the course of time. To achieve this the 

logarithmic values of the average cell number were locally fitted with a five-point 

http://www.matrixscience.com/
http://rsbweb.nih.gov/ij/
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quadratic function, of which the first derivative was the cell division rate (Nelissen et 

al., 2013). 

 

Statistical analysis 

The GenStat (2011, 14th edition; ©VSN International Ltd, Hemel Hempstead, UK) 

statistical system was used to carry out Student's t-tests or one-way analysis of 

variance (ANOVA). For ANOVA, following significant (P < 0.05) F-test results, means 

were compared using the appropriate least significant difference value at the 5% (P = 

0.05) level of significance, on the corresponding degrees of freedom. 

 

Accession Numbers 

Sequence data from this article can be found in the GenBank/EMBL data libraries 

under the following accession numbers: PAH1, At3g09560; PAH2, At5g42870; 

CDKA;1, At3g48750. 
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Figure 1. Effect of CDKA;1 and PAH disruption on PAH activity and PC biosynthesis. 

Total PAH activity (a) and rate of [methyl-14C]choline incorporation into PC (b) were 

measured in leaf tissue of wild type (WT), cdka;1D and cdka;1DE, pah1 pah2 (DM), 

pah1 pah2 cdka;1D (TM), pah1 pah2 (DMP) or pah1 pah2 cdka;1D (TMP) expressing 

PAH1-HA under the CaMV 35S promoter and pah1 pah2 (DMp) and pah1 pah2 

cdka;1D (TMp) expressing PAH1S162A-HA under the CaMV 35S promoter. Values are 

the mean ± SE of measurements on four separate pools of leaf material from each 

genotype. Asterisks denote a statistically significant difference from WT (P < 0.05). 
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Figure 2. Effect of PAH1 and PAH2 disruption on PAH activity and PC biosynthesis 

single mutants. Total PAH activity (a) and rate of [methyl-14C]choline incorporation into 

PC (b) and were measured in four-week-old leaf tissue of wild type (WT), pah1, pah2 

and pah1 pah2 (DM). Values are the mean ± SE of measurements on four separate 

pools of leaf material from each genotype. Asterisks denote a statistically significant 

difference from WT (P < 0.05). 
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Figure 3. Phosphorylation of recombinant His6-PAH1 by purified p13Suc1-bound CDK-

cyclin complexes. (a) CDK-dependent incorporation of 32P from [γ-32P]ATP into PAH1 

protein. Inset is an immunoblot probed with anti-pS/pT–P (α-MPM2) antibodies. Two 

bands are present here because purified His6-PAH1 is partially degraded (Eastmond 

et al., 2010). (b) Inhibition of PAH1 activity by incubation with ATP and CDK-cyclin 

complexes. Values are the mean ± SE of measurements on four separate incubations. 

Asterisks denote a statistically significant difference from PAH1 alone (P < 0.05). 
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Figure 4. Effect of CDKA;1 disruption and S162A substitution on in vivo 

phosphorylation state of PAH1. Immunoblots of immunoprecipitated PAH1-HA 

separated on a 7.5% SDS-PAGE gel and probed with α-HA or anti-pS/pT–P (α-MPM2) 

antibodies. (a) Immunoprecipitate from pah1 pah2 Pro35S:PAH1-HA (DMP), pah1 

pah2 cdka;1D Pro35S:PAH1-HA (TMP) and pah1 pah2 Pro35S:PAH1S162A-HA (DMp). 

(b) Immunoprecipitate from pah1 pah2 Pro35S:PAH1-HA before and after treatment 

with Calf intestinal alkaline phosphatase (CIP) solution.  
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Figure 5. Effect of PAH1 non-phosphorylated S162A substitution on sub-cellular 

localisation. (a) Immunoblot of membrane-bound (M) and soluble (S) protein fractions 

separated on a 12% SDS-PAGE gel. (b) Proportion of PAH activity present in the 

membrane versus soluble fraction. DMP is pah1 pah2 expressing PAH1-HA and DMp 

is pah1 pah2 expressing PAH1S162A-HA. The ER marker protein BiP2 is shown in (a) 

as a control. In (b) values are the mean ± SE of measurements on three separate 

fractionation experiments and the proportion of phosphoenolpyruvate carboxylase 

(cytosolic marker) activity in the membrane fraction was < 0.01 in both DMP and DMp. 

The asterisk denotes a statistically significant difference from DMP (P < 0.05). 
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Figure 6. Effect of PAH1 non-phosphorylated S162A substitution on mature leaves. A 

comparison of leaf area (a) cell number (b) and cell area (c) for the first leaf pair of 

four-week-old wild type (WT) plants and pah1 pah2 plants expressing PAH1-HA 

(DMP) or PAH1S162A-HA (DMp). Two independent transformation events (1 & 2) were 

analysed for each construct. Values are the mean ± SE of measurements on leaves 

from three to six plants of each genotype. Asterisks denote a statistically significant 

difference from WT (P < 0.05). 
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Figure 7. Kinematic analysis of leaves expressing PAH1S162A. Leaf area (a) cell 

number (b) cell area (c) and cell division rate (d) for the first leaf pair of wild type (WT) 

plants and pah1 pah2 plants expressing PAH1S162A-HA (DMp1). Values are the mean 

± SE of measurements on leaves from three to eight plants of each genotype. 
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Supplemental Data 

Table S1. Leaf PC content of all genotypes. 

Genotype PC content (relative units) 

WT (wild type) 1.00 ±0.11 

cdkA;1D (cdka;1 ProCDKA;1:CDKA;1T161D) 0.76 ±0.09* 

cdkA;1DE (cdka;1 ProCDKA;1:CDKA;1T14D-Y15E) 0.72 ±0.07* 

DM (pah1 pah2) 1.89 ±0.16* 

DMP1 (pah1 pah2 Pro35S:PAH1-HA) 0.97 ±0.09 

DMP2 (pah1 pah2 Pro35S:PAH1-HA) 0.96 ±0.07 

DMp1 (pah1 pah2 Pro35S:PAH1S162A-HA) 0.81 ±0.04* 

DMp2 (pah1 pah2 Pro35S:PAH1S162A-HA) 0.79 ±0.06* 

TM (pah1 pah2 cdkA;1D) 1.82 ±0.14* 

TMP (pah1 pah2 cdkA;1D Pro35S:PAH1-HA) 0.73 ±0.08* 

TMp (pah1 pah2 cdkA;1D Pro35S:PAH1S162A-HA) 0.73 ±0.10* 

PC content was measured on a per unit fresh weight basis and values are the mean 

± SE from four separate pools of leaf material from each genotype. Asterisks denote 

a statistically significant difference from WT (P < 0.05). 
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Table S2. Leaf morphology of selected genotypes. 

Genotype Leaf area (mm2) Cell number Cell area (µm2) 

cdkA;1D  7.1 ±0.1 4304 ±120 1650 ±25 

TM  6.8 ±0.2 4099 ±171 1659 ±39 

Values are the mean ± SE of measurements on the abaxial surfaces of mature leaves 

from three plants of each genotype. 

 

 

 

  



48 
 

 

(a) 
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GTGELREGFDPLSRLERTESDCNRRFYDFQDDPPSPTSEYGSARFDNLNVESYGDSQGSDSEVVLVSIDGHILTA

PVSVAEQEAENLRLNTPQFHLAPGDGTEFCEGNTEFASSETPWDTEYIDKVEESSDTANIASDKVDAINDERNDL

DSHSRDNAEKDSHDAERDLLGSCLEQSELTKTSENVKSEEPGPTFEDRNLKEGEFPLRTIMENDRSEDEVTIESI
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EFKIACLEDIRKLFPTDYNPFYAGFGNRDTDELSYRKLGIPKGKIFIINPKGEVATGHRIDVKKSYTSLHTLVND

MFPPTSLVEQEDYNPWNFWKLPIEEVE 

(b) 

 

Figure S1. Proteomic analysis of PAH1 phosphorylated in vitro by purified CDK-cyclin 

complexes. (a) Sequence of His6-PAH1 showing 33 tryptic peptides (red/green) 

indentified by LC-MS/MS, following a Mascot MS/MS Ions Search (P < 0.05). 

Coverage = 43%. His6 tag sequence in blue. (b) MS/MS fragmentation of peptide 

FYDFQDDPP[pS]PTSEYGSAR (underlined in A) identified following in vitro CDK-

dependent phosphorylation. Calculated mass = 2257.8841, ion score = 63, matched 

b ions: b(4), b(5), b(6), b(7), b(8), b(10)-98, b(14), b(15), matched y ions: y(5), y(6), 

y(7), y(9), y(11), y(12)-98, y(12), y(13), y(14), y(16)++, y(17)-98++, precursor origin 

neutral loss: +. 
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Figure S2. HeliQuest α-helix analysis (http://heliquest.ipmc.cnrs.fr/) of N-terminal 18 

aa for yeast Pah1p and Arabidopsis PAH1 and PAH2 (left to right). Hydrophobicity = 

0.476, 0.604 & 0.462; hydrophobic moment = 0.557, 0.365 & 0.482 µH; net charge = 

2, 1 & 2 z; hydrophobic face = AIVVWLM, LLGVVIVVGM & YAGIVIVVGMY. N- and 

C-termini highlighted in red. Nonpolar residues in yellow. 
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