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Abstract 

Debris-flow fans form a ubiquitous record of past debris-flow activity in mountainous areas, and 

may be useful for inferring past flow characteristics and consequent future hazard. Extracting 

information on past debris flows from fan records, however, requires an understanding of debris-

flow deposition and fan surface evolution; field-scale studies of these processes have been very 

limited. In this paper, we document the patterns and timing of debris-flow deposition on the surface 

of the large and exceptionally active Illgraben fan in southwestern Switzerland. We use terrain 

analysis, radiocarbon dating of sediment fill in the Illgraben catchment, and cosmogenic 10Be and 

36Cl exposure dating of debris-flow deposits on the fan to constrain the temporal evolution of the 

sediment routing system in the catchment and on the fan during the past 3200 years. We show 

that the fan surface preserves a set of debris-flow lobes that were predominantly deposited after 

the occurrence of a large rock avalanche near the fan apex at about 3200 years ago. This rock 

avalanche shifted the apex of the fan and impounded sediment within the Illgraben catchment. 

Subsequent evolution of the fan surface has been governed by both lateral and radial shifts in the 
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active depositional lobe, revealed by the cosmogenic radionuclide dates and by cross-cutting 

geometrical relationships on the fan surface. This pattern of frequent avulsion and fan surface 

occupation provides field-scale evidence of the type of large-scale compensatory behavior 

observed in experimental sediment routing systems. 

 

Keywords: fans; lobes; avulsion; debris flows; Switzerland; cosmogenic radionuclide dating 

 

1. Introduction 

Debris flows are a ubiquitous process in mountain environments around the world, and represent a 

major physical hazard to populations and infrastructure. Deposition of sediment by repeated flows 

results in the construction of debris-flow fans that can potentially record information on past flow 

size, timing, composition, and depositional pattern (Schumm et al., 1987; Harvey, 2011). Such fans 

are therefore a potentially powerful archive of debris-flow processes (e.g., Whipple and Dunne, 

1992; Dühnforth et al., 2007; d’Arcy et al., 2015; de Haas et al., 2015a, 2015b), hazard (e.g., 

Hubert and Filipov, 1989; Helsen et al., 2002; Stoffel et al., 2008a; Arattano et al., 2010; de Scally 

et al., 2010), and sediment supply (e.g., McDonald et al., 2003; Dühnforth et al., 2008; Hornung et 

al., 2010; Savi et al., 2014). Reading that archive, however, and extracting quantitative information 

about past debris flows, requires that we understand the pattern and timing of debris flow 

deposition on fans so that the evolution of the fan can be reconstructed. 

 

Much recent work on fluvial fans and fan deltas has shown that they grow and evolve by a 

sequence of autogenic avulsion, fan-head incision or trenching, and backfilling (e.g., Kim and Muto, 

2007; Nicholas and Quine, 2007; Powell et al., 2012; Reitz and Jerolmack, 2012; van Dijk et al., 

2009, 2012), leading to migration of the active locus of deposition in space and time and filling of 

the available accommodation (Straub et al., 2009). This autogenic sequence can be modified or 

overprinted by allogenic forcing of fan development caused for example by large landslides or rock 

avalanches that drive external variations in sediment supply (e.g., Davies and Korup, 2007; Korup 

et al., 2010). By comparison, there has been little work on whether fans built by debris flows share 

this evolutionary model, or how they are affected by external events such as large landslides. 
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Debris-flow fans are known to occupy different depositional lobes over time (Suwa and Okuda, 

1983; Blair and McPherson, 1994; Stoffel et al., 2005; Dühnforth et al., 2007; Ventra and Nichols, 

2014; d’Arcy et al., 2015), and switching between lobes has been linked to internal and external 

controls on fan development (Dühnforth et al., 2008; Ventra and Nichols, 2014). Schumm et al. 

(1987) and de Haas et al. (2016) documented cyclic alternations of avulsion, channelization, and 

backstepping of the active depocenter on experimental debris-flow fans, and de Haas et al. (2016) 

argued that debris-flow fans are therefore likely governed by the same large-scale compensatory 

behavior as fluvial fans and fan deltas, albeit via different physical processes. To date, however, 

there are very few well-documented and well-dated examples of this behavior on active field-scale 

debris-flow fans.   

 

Studies of debris-flow fan surface evolution to date have tended to focus on arid environments 

such as the western USA, where vegetation and post-emplacement sediment reworking are 

minimized and primary debris-flow depositional features are more easily preserved (e.g., Whipple 

and Dunne, 1992; Kim and Lowe, 2004; Staley et al., 2006; Frankel and Dolan, 2007; Dühnforth et 

al., 2007). Despite the frequency of debris flows in more humid environments such as the Swiss 

Alps (Hürlimann et al., 2003; Schlunegger et al., 2009), quantitative reconstruction of the timing 

and patterns of deposition on alpine debris-flow fans remains fairly limited. A number of studies 

have used dendrochronology to establish the timing and magnitude of debris flows on fans in the 

Swiss Alps (e.g., Stoffel et al., 2005, 2008a, 2008b, 2014; Bollschweiler and Stoffel, 2010; Stoffel, 

2010; Arbellay et al., 2010). This approach typically is limited to the last few hundred years 

(Bollschweiler and Stoffel, 2010) and cannot therefore capture the evolution of the fan surface over 

Holocene time scales. It is therefore not clear whether alpine debris-flow fans record similar 

patterns of avulsion, channelization, and backstepping, nor what time scales are required to 

completely resurface a large fan in these settings. 

 

Here, we begin to address these knowledge gaps by documenting the evolution of the Illgraben fan, 

in southwestern Switzerland, as recorded by the debris-flow deposits that are visible on the fan 

surface. The Illgraben is one of the largest fans in the Swiss Alps and is exceptionally active, with 
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an average of 3-5 debris flows per year (Hürlimann et al., 2003; McArdell et al., 2007; Schlunegger 

et al., 2009). The characteristics, morphology, and patterns and mechanisms of erosion and 

deposition in these flows have been very well documented (McArdell et al., 2007; Berger et al., 

2011; Schürch et al., 2011), as have their contributions to catchment-scale sediment transfer 

(Schlunegger et al., 2009; Bennett et al., 2013, 2014; Burtin et al., 2014). Previous studies of the 

fan, however, are limited to quantification of the near-surface stratigraphy (Franke et al., 2014) and 

short-term evolution of the fan surface as recorded by dendrochronology (Stoffel et al., 2008a; 

Arbellay et al., 2010). To understand the longer-term development of the entire fan surface, we 

combine geomorphic mapping and analysis of the fan surface, using high-resolution digital 

topographic data, with the first systematic study of post-glacial depositional ages using in situ 

cosmogenic radionuclide exposure dating on an alpine debris-flow fan. While these techniques 

have previously been combined and applied to arid-region fans (e.g., Dühnforth et al., 2007), this is 

(to our knowledge) the first application to a fan in a more geomorphically active setting such as the 

Alps.  

 

2. Field site 

The Illgraben catchment (Fig. 1) is located on the southern flank of the Rhone Valley, within the 

canton of Wallis in southwestern Switzerland. The catchment covers an area of ca. 9.5 km2 and 

feeds a debris-flow fan with a radius of ~2 km that has developed on the floor of the Rhone Valley. 

Two bedrock units of different lithologies, both highly fractured, dominate the catchment (Gabus et 

al., 2008): the northwestern (left) bank of the Illgraben is underlain by Upper Triassic dolomites and 

marbles, whilst the southeastern (right) bank is mainly underlain by Lower Triassic quartzites (Fig. 

1). Both units are steeply dipping to the southeast. 

 

Sediment is supplied to the Illgraben catchment-fan system by frequent landslides and debris flows 

within the catchment, as documented by Schlunegger et al. (2009) and Bennett et al. (2012). This 

material accumulates within the trunk channel of the Illgraben and is re-entrained in debris flows 

that reach the fan (Bennett et al., 2013) and in most cases the Rhone River (Schlunegger et al., 

2009; Berger et al., 2011; Schürch et al., 2011). Bennett et al. (2014) showed that episodicity in 
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sediment delivery to the fan, at least on decadal time scales, can be understood as a product of 

stochastic variations in sediment supply and of a critical runoff necessary for debris-flow 

generation. Delivery of sediment to the fan is complicated by the presence of at least two large 

rock avalanche deposits (>106 m3). The most recent rock avalanche, referred to herein as the rock 

avalanche in the upper Illgraben, occurred in 1961 and transferred a volume of ~3.5 x 106 m3 of 

material to the Illgraben trunk channel. An older, previously-undated rock avalanche deposit is 

located near the fan apex (Gabus et al., 2008). Given its position, it is possible that its 

emplacement has (i) directly affected patterns of deposition on the Illgraben fan surface, and (ii) 

temporarily impounded sediment within the catchment upstream of the deposit, leading to time-

variable sediment supply and potentially causing formation or abandonment of lobes on the fan. By 

determining the time of emplacement of the rock avalanche, compared to depositional ages of 

sediments in the catchment and debris-flow deposits on the fan surface, we should be able to 

untangle these potential effects. 

 

Badoux et al. (2008) estimated the volume of the Illgraben fan to be ~500 x 106 m3. The currently 

active channel follows the approximate centerline of the fan and separates the forested western 

half from agricultural and developed land on the eastern half. The active channel is incised by up 

to 20 m into the present-day fan surface. Various authors have contributed to build a record of 

historic and prehistoric debris-flow events that are preserved on the fan surface. A 

dendrogeomorphic analysis of trees affected (but not removed) by debris flows (Stoffel et al., 

2008b) reported six events that affected areas along the active channel between 1793 and 1931, 

but did not identify an 1868 event mentioned by Marchand (1871). Rickenmann et al. (2001) 

documented a total of 46 debris flows between 1932 and 2000, with a gap after the construction of 

a sediment retention dam (checkdam 1 in Fig. 1) during the early 1970s in response to the 1961 

rock avalanche. For the period up to the year 2000, estimates of debris flow volumes are 

uncertain; the largest reported event occurred on 3 June 1961 in response to the rock avalanche 

earlier in the same year and was estimated to have had a volume of ca. 2.5-5.0 x 105 m3 (Badoux 

et al., 2008). Since 2000 the Swiss Federal Institute for Forest, Snow and Landscape Research 

(WSL) has maintained a debris-flow observation station (Hürlimann et al., 2003) at the toe of the 
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fan (Fig. 1) where debris-flow volumes can be estimated from direct observation (McArdell et al., 

2007; Schlunegger et al., 2009; Berger et al., 2011). The 35 flows recorded from 2000 to 2009 

delivered a median total of  ~105 m3 of sediment to the fan per year (McArdell and Berger, 2010). 

Seasonal debris-flow activity peaks between May and October in response to convective 

rainstorms (McArdell et al., 2007; Badoux et al., 2008; Schlunegger et al., 2009). A review of all 

reported debris-flow events and an assessment of topographic maps of the area since 1845 

(Dufour, 1845; Siegfried, 1886, 1907, 1915, 1924, and 1933) indicate that since 1793 no major 

avulsion has occurred and that the presently-active channel down the centerline of the fan was 

already established, and has been recurrently active, since before that time. 

 

Debris-flow deposit ages and sedimentation rates on the fan are not well constrained. Bardou et al. 

(2003) and Gabus et al. (2008) reported radiocarbon dating of the same samples of buried soils 

collected from the ‘lower part of the cone’ along the present-day channel, but exact sample 

locations were not given. These data suggest deposition of 5 m over 1231 ± 70 years and 2 m over 

1354 ± 60 years at the sample locations but cannot be extrapolated to the fan as a whole. Franke 

et al. (2014) documented several distinct radar facies units in the upper 9-10 m of the fan but 

lacked age control on these deposits. The only constraint on the total age of the fan comes from 

Ivy-Ochs et al. (2008), who argued that the Rhone Valley at the position of the Illgraben fan has 

probably remained ice-free since the end of the Gschnitz Stadial at 17-16 ky. The present-day 

Illgraben fan therefore began to accumulate after that time. 

 

3. Methods 

3.1. Terrain analysis 

To establish the spatial pattern of deposition on the fan, we mapped both the undated rock 

avalanche deposit near the fan apex and depositional lobes on the debris-flow fan in the field (Fig. 

2). Field mapping was cross-checked against a LiDAR-derived DEM (the Swisstopo DTM-AV) with 

a 2-m resolution and a 1σ elevation uncertainty of  ±0.5 m, based on a raw point density of 1 point 

per 2 m2. To help in distinguishing different fan lobes, we detrended the DEM of the fan area by 

subtracting a second-order polynomial surface from the DEM within the area outlined in Fig. 1. We 
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then used a semiquantitative description of the surface morphology (Dühnforth et al., 2007) in 

order to distinguish between different depositional lobes. This process included the surface 

roughness over channel-like length scales (~10 m), the dimensions of channels and levees, and 

the presence and size of boulders. The boundaries of fan lobes and their relative chronology were 

established with cross-cutting relationships between channels and downlapping of depositional 

lobes onto older surfaces, which has produced traceable topographic steps on the fan surface. 

Distinction of lobes in the distal parts of the fan became increasingly difficult and speculative (e.g., 

Dühnforth et al., 2007), so our field mapping was limited to a radial distance of ~1.2 km from the 

fan apex. 

 

Fill terraces are present within the Illgraben catchment (Schlunegger et al., 2013), upstream of the 

rock avalanche deposit near the head of the Illgraben fan (Fig. 1). It is important to understand the 

volume and age of this sediment as well as the potential volume of sediment that could have been 

impounded by the rock avalanche, as these may affect the evolution of the fan surface. To 

determine the extent and amount of sediment that is still present, we mapped discontinuous fill 

terraces between the rock avalanche deposit and checkdam 1 on both channel banks (Fig. 1) in 

the field. These terraces pass downstream into, are coplanar with, and are likely coeval with fan 

lobe L9 on the right bank of the Illgraben channel (Fig. 2). We then manually picked elevation 

samples from the DEM to represent these terraces and lobe L9 and interpolated a third-order 

polynomial surface (Fig. 3) to reconstruct a lower fill surface aligned with the present-day active fan 

surface.  

 

We calculated a minimum volume for the rock avalanche deposit at the fan apex from the DEM 

based on the mapped outline of the deposit (Fig. 2), a minimum thickness calculated from the 

lowest outcrop of the deposit at 748 m asl (marked with a star in Fig. 2), and an assumed 

horizontal, planar base. To determine the potential accommodation that was created behind the 

rock avalanche, we then shifted the lower fill surface vertically upward to match the top of the rock 

avalanche deposit, forming an upper bounding fill surface (Fig. 3). This approach assumes that the 

channel bed slope has been more or less constant since emplacement of the rock avalanche, that 
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the available accommodation was completely filled, and that the top of the rock avalanche deposit 

has not undergone substantial erosion; if there has been erosion of the deposit, then our estimated 

accommodation is a minimum. The potential accommodation was then calculated as the difference 

between the DEM and the upper bounding fill surface, using an assumed downstream limit as 

indicated in Fig. 3. We chose the downstream limit of our calculation where the valley shape is still 

well defined. 

 

Finally, to determine the potential effect of the rock avalanche on depositional patterns on the fan, 

as well as evidence of radial shifts in the active locus of deposition, we looked for signs that the 

apex of the fan has shifted over time. We assumed that channels on the fan surface must radiate 

from the fan apex and that the channels follow approximately linear trends, as is commonly 

observed on active debris-flow fans (e.g., Whipple and Dunne, 1992; Dühnforth et al., 2007). Thus, 

by mapping channels or channel fragments on individual fan lobes and projecting them back 

toward the catchment outlet, we can visualize the likely approximate position of the fan apex during 

deposition of that lobe. To do this, we identified 75 channel fragments across different lobes on the 

fan surface and calculated a linear trend for each fragment by connecting its start and end points. 

We projected these trend lines toward the head of the fan and into a search area for the 

reconstruction of the apex. Within this area, we defined a regular raster with a node every 10 m 

and counted the number of channel trend lines that intersected within a circle of 150-m radius 

around each node. This radius approximately matches the width of the catchment outlet and 

allowed us to visualize large-scale shifts in apex position while accounting for the fact that debris-

flow channels are not perfectly linear. 

 

3.2. Cosmogenic exposure dating of boulders on the fan surface 

Absolute depositional ages from the Illgraben fan surface were derived from in situ cosmogenic 

exposure dating of quartzite and carbonate boulders. We selected a total of 16 boulders for 

exposure dating: 12 quartz-rich boulders for dating with 10Be and 4 carbonate boulders for dating 

with 36Cl, distributed among the mapped fan lobes (Tables 1 and 2). We chose boulders that were 

as large as possible in diameter (1.5-6.0 m), that had an upper surface within 25° of horizontal to 
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minimize shielding effects (Dunne et al., 1999), and that appeared to be situated in their original 

depositional context — e.g., embedded in a recognizable debris flow levee or snout rather than 

isolated on the fan surface. For example, we avoided isolated boulders on fan lobes below the 

north flank of the Gorwetsch Grat (Fig. 1), as they may have originated from rockfall after fan 

surface deposition. The boulders consisted of sericitic quartzite, white quartzite, marble, and 

dolomite. Two sampled boulders (samples IG46 and IG60) were located on the rock avalanche 

deposit near the fan apex and were sampled to provide a minimum age of rock avalanche 

emplacement. At each location, we collected >0.5 kg of material from the uppermost 4 cm of the 

surface and as far from the boulder edges as possible, using a hammer and chisel. Sample 

positions were surveyed with a hand-held GPS receiver and were verified and adjusted against the 

DEM and the 1:25,000 topographic map. Locations near channels or prominent topographic 

features are accurate to about ±2 m after this adjustment, while locations in unstructured terrain 

were more difficult to verify and are accurate to about ±10 m. At each location we measured the 

angle to the local horizon at >10 azimuths with a hand-held compass and clinometer to calculate 

the shielding correction (Tables 1 and 2). 

 

Sample preparation and 10Be and 36Cl accelerator mass spectrometry (AMS) measurements were 

carried out at the Laboratory of Ion Beam Physics at ETH Zürich, Switzerland. For 10Be, standard 

procedures were followed to separate pure quartz from the 0.2-0.8 mm fraction of the bulk rock 

samples and for the purification of Be (Ivy-Ochs and Kober, 2008). 10Be/9Be ratios were measured 

with the 6 MV tandem accelerator at ETH Zürich relative to ETH in-house standard S2007N 

(Christl et al., 2013), which is fixed to the 07KNSTD standard of Nishiizumi et al. (2007). The 

weighted average 10Be/9Be long-term, full-process blank ratio of 2.60 ± 0.43 x 10−15 was subtracted 

from the measured sample ratios. Exposure ages were calculated with the Cronus Earth 10Be 

exposure age calculator v. 2.2 (Balco et al., 2008, and updates) using a half-life of 1.39 My and a 

sea level, high-latitude spallation production rate of 3.87 ± 0.19 10Be atoms g−1 y−1 with Lm scaling 

(Balco et al., 2009). A rock density of 2.65 g cm-3 was assumed for the quartzites. 

 

Chlorine was extracted from the <0.4 mm fraction of the crushed whole rock carbonate samples 
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using procedures described by Ivy-Ochs et al. (2004), which is based on the method of Stone et al. 

(1996). Samples were prepared using isotope dilution (Ivy-Ochs et al., 2004) with a carrier of 

99.9% pure 35Cl from Oak Ridge Labs. The Cl ratios were measured with the 6 MV tandem 

accelerator at ETH Zürich. 36Cl/Cl sample ratios were normalized to the ETH internal standard 

K382/4 N with a value of 36Cl/Cl = 17.36 x 10-12 (Christl et al., 2013). Stable 37Cl/35Cl ratios were 

normalized to the natural ratio of 37Cl/35Cl = 31.98%. Measured sample ratios were corrected for a 

full process chemistry blank ratio of 5.6 x 10−15, which amounted to a correction of <13% for the 

four samples. The 36Cl exposure ages were calculated based on the parameters given in detail in 

Alfimov and Ivy-Ochs (2009), with a Ca spallation production rate of 54.0 ± 3.5 36Cl atoms g-1 y-1 

(Stone et al., 1996, 1998). Major and minor element (B, Sm, U, Th) concentrations (Table 3) were 

used to calculate the sample-specific production rates following the procedures in Alfimov and Ivy-

Ochs (2009). A rock density of 2.4 g cm-3 was assumed for the limestone samples. No corrections 

were made for rock surface erosion, vegetation cover, or snow coverage. 

 

3.3. Radiocarbon dating of wood samples 

We determined the chronology of sediment impounded in the catchment, upstream of the rock 

avalanche deposit, with radiocarbon ages established on three pieces of wood (samples S1, S2, 

and S3) found in sediment exposed along the Illgraben channel between checkdams 1 and 10 (Fig. 

3). These samples were embedded in a poorly sorted, massive, matrix-rich boulder diamict on the 

right bank of the Illgraben channel. The samples were located topographically higher than the 

lower fill surface that is continuous with fan lobe L9, but topographically lower than the upper fill 

surface that is continuous with the top of the rock avalanche deposit (Figs. 3 and 4). The samples 

were prepared and dated in the Radiocarbon Lab of the Physical Institute of the University of Bern, 

Switzerland. Radiocarbon dates were calibrated with Oxcal 4.2 (Bronk Ramsey, 2009) using the 

IntCal13 data set (Reimer et al., 2013). 

 

4. Results 

4.1. Geomorphic mapping and terrain analysis 

4.1.1. Lobe deposits 
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The surface of the Illgraben fan was divided in the field into the rock avalanche deposit (RA, Fig. 2) 

and 11 distinct depositional lobes (L1–L11, numbered in decreasing order of relative age). Cross-

cutting relationships show that the rock avalanche was emplaced after deposition of lobe L1 and 

clearly before the deposition of lobe L6 (Fig. 2). While lobes L2, L3, and L4 can be differentiated on 

the basis of their surface morphology, their relative chronology and their age relationships with the 

rock avalanche cannot be determined with certainty from mapping alone. Likewise, the relative 

chronology of the lobes on the eastern and western sides of the active channel cannot be 

compared directly because of a lack of contacts and cross-cutting relationships. Thus, the lobe 

numbering represents our best estimate of the relative timing of deposition across the fan surface. 

 

Lobe L1 consists of one distinct channel, 15-20 m wide and 1-2 m deep, and a number of boulders 

up to 4 m in diameter that form several distinct debris-flow snouts. The channel is clearly truncated 

by channels and levees of lobe L6 at its downstream end, and by the rock avalanche deposit at its 

upstream end. The rock avalanche deposit downlaps onto lobe L1, and the contact is marked by a 

distinct concave break in slope. 

Lobe L2 consists of a series of short, subparallel channels, ~10 m wide and 1-2 m deep, with well-

defined boulder levees. Most of the boulders in the levees are 1-2 m in diameter but range up to 4 

m. At the upstream end of L2, the channels are blocked by snouts of lobe L6, which downlaps onto 

the older lobe L2. 

Lobe L3 is dominated by a long and distinct channel, ~15 m wide and 1-3 m deep, confined 

between broad and relatively smooth levees with no large boulders (all <1 m). The upstream end 

of this channel is clearly truncated by deposits of lobe L7, which downlap onto L3. Two shorter 

channel fragments, which are possibly part of a single channel, can be found to the east of the 

main L3 channel, and are truncated by deposits of lobe L10. 

Lobe L4 consists of a single wide, shallow, poorly-defined channel, which is truncated and 

surrounded by deposits of lobe L8. It appears to be limited to a small window surrounded by L8 

deposits. No boulders are exposed, and the surface morphology outside the channel is smooth. 

Lobe L5 consists of a narrow deposit between the rock avalanche and lobe L1 in the east, and the 

talus slopes beneath the Gorwetsch Grat in the west (Fig. 1). The lobe is dominated by a single 
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channel with well-defined boulder levees. The levees consist of rounded quartzite boulders of up to 

4 m in diameter. Outside of this channel, and clearly distinct from it in terms of lithology and 

depositional geometry, are a number of scattered angular boulders of dolomite and marble (up to 3 

m in diameter), likely originating from isolated rockfalls from the Gorwetsch Grat. At its downstream 

end, lobe L5 is cross-cut and truncated by deposits of lobe L6.  

Lobe L6 is poorly channelized in the proximal part and almost free of channels in the distal part. 

Numerous lobate deposits and snouts create a highly undulating surface with only rare boulders, 

generally <0.5 m in diameter. This lobe clearly truncates older channels on lobes L1, L2, and L5. 

Lobe L7 consists of a number of channels that are up to 16 m wide and 1-3 m deep. They are lined 

by well-defined boulder levees with grain sizes of up to 2 m. Channels in this lobe are truncated by 

deposits of L10. 

Lobe L8 occupies most of the eastern half of the fan. Despite intensive agricultural land use and 

the construction of stone walls and irrigation systems, many individual debris-flow channel 

fragments can still be traced over distances of up to 100 m, incised 1-2 m into the fan surface. 

However, the surface morphology is smooth, boulders are scarce, and the boundaries with lobes 

L4, L9, and L11 were difficult to map precisely. Lobe L8 is, however, clearly older than lobe L9, 

which downlaps onto L8 deposits. Except for the occurrence of a distinct feeder channel at the top, 

lobe L9 is smooth, largely unchannelized, and contains only a few boulders (up to 3 m in diameter) 

close to its downfan boundary. 

Lobe L10 consists mainly of stacked lobate deposits and snouts, with a few boulders of up to 2 m 

in diameter but a generally smooth and unchanneled morphology. Its deposits truncate channels in 

lobes L2, L3, and L7. 

Lobe L11, finally, forms the central axis of the fan and also contains the presently active channel. 

The width of the active channel decreases downfan from ~70 to ~30 m, and its depth varies 

between ~20 m near the fan apex and ~10 m near the fan toe. The channel has conveyed all of 

the historically recorded debris flows from the Illgraben catchment and is currently fixed in place by 

a series of concrete checkdams (Lichtenhahn, 1971; McArdell et al., 2007). The channel contains 

up to two generations of inset fill terraces below the present-day fan surface. A few distinct 

abandoned channels with widths of ~10 m and depths of ~4 m occur to the east of the active 
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channel. Scattered large boulders on this part of the lobe are up to 3 m in diameter but are poorly 

organized. The boundary with lobe L8 is somewhat uncertain because of building construction and 

earthworks on this part of the fan. West of the present channel, there is a prominent abandoned 

channel with a width of 35-45 m and a maximum depth of 10 m, lined by fragments of boulder 

levees. The dimensions and morphology of this paleochannel are comparable to those of the 

active channel, although its age and time of abandonment are not known. Debris-flow deposits on 

lobe L11 clearly downlap onto, and thus post-date, lobe L10. 

 

4.1.2. Rock avalanche deposit 

We estimated the minimum volume of the rock avalanche deposit as ~6 x 106 m3. The surface of 

the rock avalanche deposit is noticeably rougher than that of the rest of the Illgraben fan at an ~10-

m scale, owing to undulations of the deposit itself but also to the abundance of very large boulders 

with diameters of ~10 m or more. The largest boulder measures ~20 m along its longest axis. The 

boulders on the surface of the rock avalanche are mostly unorganized, with the exception of 

several radial, discontinuous linear ridges of 1-3 m width that extend north from the southern limit 

of the deposit (Fig. 2; e.g., Dufresne and Davies, 2009). In some places, these ridges are 

truncated by levees and channels of lobe L6. The western, southern, and eastern margins of the 

rock avalanche deposit appear to have been eroded after emplacement, apparently by debris flows, 

and are very steep (Fig. 3 and profile 5 in Fig. 4). The northern margin has a shallower surface 

slope and may be closer to the original depositional surface of the rock avalanche (profile 5 in Fig. 

4). The internal fabric of the rock avalanche deposit is well exposed along its southern margin by 

an erosion scar of ~30 m height. The clasts that comprise the deposit generally are more angular 

than those found in the active channel and on the fan surface. They consist mainly of white and 

sericitic quartzite (Gabus et al., 2008) and are embedded in a matrix of silty sand with gravel. The 

rock avalanche deposit shows a clear inverse grading over the height of the erosion scar, with the 

largest clasts forming a surface carapace. The lower parts of the exposure consist of finely 

crushed rock with a high degree of secondary cohesion, probably resulting from depositional 

processes. 
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Cross-cutting relationships show that lobe L6 (and all later lobes) definitely post-dates 

emplacement of the rock avalanche, while L1 clearly pre-dates it. Lobes L2-L4 have no direct 

contact with the rock avalanche deposit, so it is impossible to establish their relative timing. Lobe 

L5, however, is confined between the rock avalanche and the wall of the Gorwetsch Grat. The 

contact between L5 and the rock avalanche is not well exposed, and it is therefore possible that 

the rock avalanche overlies (and thus post-dates) at least part of L5. This scenario is unlikely, 

however, because an earlier L5 would have likely overrun lobe L1 as well and would be visible to 

the east of its current confined position. We suggest instead that L5 post-dates the rock avalanche 

and that debris flows during L5 deposition were steered around the rock avalanche deposit toward 

the extreme western margin of the fan. 

 

Emplacement of the rock avalanche appears to have had an important effect on the position of the 

fan apex. Projecting the trends of channel fragments toward the fan head reveals that most 

channels appear to radiate from an elongate patch of high intersection density, oriented NNW-SSE 

(Fig. 5). While the intersection density is highest, not surprisingly, at the present-day fan apex, a 

considerable number of channel trends, particularly those from lobes L2 and L3, intersect in an 

area ~500 m farther south. This secondary area lies just south of and partly beneath the rock 

avalanche deposit (Fig. 5). We infer from this that older fan lobes may have been associated with a 

fan apex that was located about 500 m south of the present-day apex; if lobes L2 and L3 pre-date 

the rock avalanche, then this paleo-fan apex was altered and buried by emplacement of the rock 

avalanche. 

 

4.1.3. Fill in the Illgraben catchment 

Upstream of the rock avalanche, the channel is lined with discontinuous fragments of a fill terrace 

whose surface lies between 5 (upstream, near checkdam 1) and 20 m (downstream, near the 

catchment outlet) above the presently active channel (Fig. 3). A third-order polynomial interpolation 

from 42 elevations picked from these terrace fragments, and from lobe L9 on the fan surface, 

yields a continuous and quasi-planar sediment fill surface (Figs. 3 and 4), with a standard deviation 

of the residuals between known and interpolated elevations of ~3 m. This uncertainty is 
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comparable to the expected variation in elevations on a debris-flow channel, as evidenced from the 

active channel bed and the rest of the Illgraben fan surface. This lower fill surface represents the 

minimum amount of sediment that was impounded within the Illgraben catchment at some point in 

the past. In contrast, the maximum amount of sediment that could be impounded within the 

catchment is set by the elevation of the rock avalanche deposit near the fan apex (Fig. 3). The 

elevation difference between the lower fill surface and the maximum elevation of the rock 

avalanche deposit (profile 5 in Fig. 4), at a similar distance from the fan apex, is 15 m. Thus, to 

simulate the maximum possible elevation and geometry of sediment impounded behind the rock 

avalanche deposit, we shifted the lower fill surface upward by 15 m to establish an upper limiting 

fill surface shown in Figs. 3 and 4. This upper surface coincides with the top of a prominent fill 

terrace near Güetji (profiles 2 and 3 in Fig. 4). It also lies above the sampled and dated wood 

fragments embedded in boulder diamict between checkdams 1 and 10, interpreted here as matrix-

rich debris-flow deposits. 

 

4.2. Depositional chronology and exposure ages from cosmogenic nuclide and 14C dating 

Of the 12 boulders sampled for 10Be, six did not yield enough pure quartz for successful dating. 

Exposure ages were determined for the remaining six quartzite boulders and for all four carbonate 

boulders (Tables 1, 2). Calculated exposure ages of these boulders range from 3220 ± 250 years 

(sample IG60) to 500 ± 140 years (sample IG18; Fig. 6; Tables 1, 2). The oldest dated surface on 

the Illgraben fan is the rock avalanche deposit (IG60), and we take this as a maximum age for 

emplacement of the rock avalanche (assuming no pre-avalanche exposure and inheritance). All 

other dated boulders show exposure ages that are at least 1600 years younger than the rock 

avalanche. Unfortunately, we were unable to find suitable boulders for exposure dating on lobes L3 

and L4, and the samples taken from L1 and L2 did not yield enough quartz for reliable exposure 

dating, so we cannot test our inference from field relationships that lobe L1, and probably L2-L4, 

predated emplacement of the rock avalanche. 

 

As noted above, L6 is the oldest lobe that clearly post-dates the rock avalanche. Exposure ages 

from lobes L6, L7, and L9 (samples IG19C, IG26C, IG29C, IG39, and IG39C) show that major 
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resurfacing of the fan occurred by deposition of these lobes, and lobe L8, beginning around 1500 

years ago. Taking into account the uncertainties on the exposure dates, the exposure ages are 

broadly consistent with the relative chronology of these surfaces, and we infer that deposition on 

lobe L6 occurred first, followed by activity on lobe L8 (undated but clearly younger than L9), L9, 

and then L7. Lobe L10 is the second youngest lobe in the relative and absolute chronology, with 

two samples (IG42 and IG43) yielding similar exposure ages of 690 ± 160 and 790 ± 140 years 

(Fig. 6; Table 1). Lobe L11, which includes the presently active channel, is the youngest lobe, and 

sample IG18 shows that depositional activity started there at least by 500 ± 140 years ago (Fig. 6). 

 

The wood samples taken from sediment fill upstream of the rock avalanche (Fig. 3) yielded 

calibrated radiocarbon ages of 1948-1830 cal BP for S1, 1986-1876 cal BP for S2, and 1990-1893 

cal BP for S3 (Table 4; Schlunegger et al., 2013). These ages are about 1200 years younger than 

the rock avalanche deposit and are consistent with deposition in sediments that were impounded 

by emplacement of the rock avalanche (the upper fill surface of Figs. 3 and 4). 

 

5. Discussion 

5.1. Depositional chronology 

We have established the relative chronology of lobe activity on the Illgraben fan surface (Fig. 2) 

using cross-cutting relationships between different lobes, variations in surface morphology, and the 

geometric relationship of these lobes with the rock avalanche deposit. Cosmogenic nuclide 

exposure dating largely confirms this relative chronology and shows that deposits on the Illgraben 

fan surface are predominantly <3200 years old (Fig. 6). This resurfacing rate is rapid compared to, 

for example, well-dated debris-flow fan surfaces in the western USA (e.g., Dühnforth et al., 2007; 

d’Arcy et al., 2015), perhaps reflecting the higher rates of precipitation and sediment transfer in the 

Swiss Alps. The exposure ages do not necessarily reflect the true time span of depositional activity 

on the different lobes, however, as we cannot assume that we have sampled either the oldest or 

the youngest boulder on each lobe (Dühnforth et al., 2007). We note, also, that although the 

exposure ages are in approximate stratigraphic order, some ages overlap within uncertainty 

between different fan lobes. This overlap may reflect ‘switching’ of deposition back and forth 
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between two adjacent lobes before final abandonment of the older lobe, or exposure of older 

material within a ‘window’ of younger deposits (as with lobes L4 and L8). Inheritance of 10Be or 36Cl 

in the sampled boulders, either from residence in the catchment or previous exposure and 

reworking on the fan, could also be responsible for large age ranges within individual lobes, and 

would lead to ages that are older than the true age of deposition. Neither inheritance mechanism 

can be conclusively ruled out, although we note that at present, sediment delivered to the main 

channel by small debris flows and rock fall in the upper Illgraben catchment (Fig. 1) is efficiently 

and rapidly evacuated to the fan by larger debris flows (Berger et al., 2010; Bennett et al., 2012, 

2013). We therefore regard inheritance arising from long residence times of boulders in the 

catchment as likely to be minor, if present-day rates of catchment activity are indicative of past 

conditions. Abrasion of the boulders during transport in debris flows would also act to minimize the 

effects of inheritance because 10Be accumulated near the rock surface would be preferentially 

removed (Carretier and Regard, 2011). Likewise, clear debris-flow depositional morphologies that 

are preserved on all lobes indicate that reworking and re-entrainment of older deposits is likely to 

be minimal, although it cannot be completely ruled out. 

 

Only one sample from the rock avalanche (sample IG60) has been dated, making our 

interpretation of its emplacement age tenuous. Emplacement was likely to have occurred 

instantaneously (Ivy-Ochs et al., 2009; Stock and Uhrhammer, 2010), but on the other hand 

inherited 10Be from previous exposure makes this a likely maximum age for the rock avalanche. 

This is because boulders that were exposed on the rock face prior to rock avalanche occurrence 

have been found to remain on top of the moving debris (Ivy-Ochs and Schaller, 2009; Ivy-Ochs et 

al., 2009; Stock and Uhrhammer, 2010). Only additional dates from different boulders from the 

surface of the rock avalanche deposit can overcome this uncertainty. 

 

The samples from lobes L6, L7, L9, L10, and L11 are all substantially younger than the rock 

avalanche deposit near the fan apex. We infer that most of the present-day fan surface on the 

western half of the fan was deposited by debris flows after the rock avalanche deposit was 

emplaced. Apart from a single sample on lobe L9, the chronology of lobe deposition on the eastern 
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half of the fan remains more uncertain. Centuries of agricultural land use and construction of stone 

walls, roads, houses, and irrigation ditches have destroyed important geomorphic evidence 

contained in relatively fragile landforms such as levees that may have local relief of as little as 1 m. 

The low number of channel fragments mapped on the eastern half of the fan is a consequence of 

these effects (Fig. 5). Lobe L9 clearly downlaps onto, and thus post-dates, deposition of lobe L8, 

and sample IG19C suggests depositional activity on L9 until at least ~1800 years after the rock 

avalanche. It is very likely that part or all of L8 is also younger than the rock avalanche, but we 

cannot rule out the possibility that some of this lobe pre-dates the rock avalanche or that L8 should 

in fact be split into several distinct lobes. 

 

5.2. Effects of the rock avalanche on fan morphology and sediment storage 

The emplacement of the rock avalanche near the fan apex left a distinct fingerprint on the 

morphology of the fan as a whole. The preservation of lobe L1 is a direct result of the rock 

avalanche, which isolated L1 from the active fan surface and protected it from resurfacing during 

subsequent fan evolution. 

 

The apex reconstruction (Fig. 5) shows that some channel fragments mapped on the fan, 

especially from older lobes like L2 and L3, are associated with a paleo-apex location ~500 m south 

of the present-day apex, and thus those channels would be projected to run underneath the rock 

avalanche deposit. The simplest interpretation is that these channel fragments thus predate the 

rock avalanche. The apex location indicated by these channel fragments (Fig. 5) corresponds to 

the position of the mountain front to the east and west of the Illgraben catchment outlet, making it a 

logical geometry for the early fan; emplacement of the rock avalanche appears to have shifted the 

apex outboard into the Rhone Valley. Unfortunately, we could not use exposure dating to confirm 

the hypothesis that lobes L2 and L3 predate the rock avalanche owing to a lack of suitable sample 

material. 

 

The rock avalanche deposit temporarily raised the local base level for the catchment and created 

additional upstream accommodation. The difference between the reconstructed upper bounding fill 
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surface, which reaches the top of the rock avalanche deposit, and the present topography (Figs. 3 

and 4) yields an approximate estimate of the potential accommodation generated by the rock 

avalanche of ~3 x 106 m3 (about half of the estimated rock-avalanche volume). It is possible that 

this accommodation was at least partly filled by sediment accumulation in the catchment upstream 

of the rock avalanche and below the level of the upper bounding fill surface. In this model, 

sediment accumulation persisted at least locally for at least 1200 years after emplacement of the 

rock avalanche deposit, followed by breaching of the deposit, base-level fall in the catchment, and 

sediment evacuation. Breaching of the rock avalanche appears to have occurred first in a narrow 

corridor to the northwest of the presently active channel (pathway B1, Fig. 6), leading to deposition 

of lobe L5. This phase was followed by breaching in a northern direction (pathway B2, Fig. 6), 

incision through the deposit, and gradual removal of the sediment stored in the catchment, with 

incision extending at least upstream to checkdam 1. Our exposure dating results suggest that this 

incision was gradual, reaching a value of ~15 m by ~1500 years ago using the oldest post-rock 

avalanche exposure ages (samples IG19C, IG26C and IG29C), and ~32 m by today (profile 5, Fig. 

4). It is possible that sediment released by breaching of the rock avalanche has contributed to the 

widespread resurfacing of the fan that began about 1500 years ago, as the latter event is clearly 

younger than the 14C ages obtained from the sediment fill. The observation that lobe L9 is coplanar 

with the lower fill surface in the catchment implies that fan aggradation led to backfilling well into 

the catchment, as observed on other debris-flow fans (e.g., Dühnforth et al., 2007).  

 

This model of relatively rapid sediment storage and release is consistent with three independent 

pieces of evidence: the fact that the exposure age of the rock avalanche deposit (3220 ± 250 

years) is older than the radiocarbon ages from the sediment fill upstream (~1900-2000 years); the 

fact that the radiocarbon ages are older than the exposure age of L9 (1400 ± 100 years), and that 

L9 is coplanar with a lower fill surface in the catchment that is below the dated sediment fill; and 

the fact that the elevation of the toe of the Güetji terrace matches the upper bounding fill surface, 

implying substantial base-level fall. This interpretation is, however, not unique; we note in particular 

that there is limited evidence for thick sediment accumulation in the catchment above the lower fill 

surface, except for the section containing the wood samples and the toe of the Güetji terrace, and 
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no preservation of any higher fill terrace surfaces within the catchment. An alternative explanation 

would be that post-rock avalanche aggradation in the catchment was limited to the lower fill terrace 

and that the Güetji terrace and dated sediment fill have recorded an unrelated episode of local 

deposition. Schlunegger et al. (2013) argued that the dated sediment fill was emplaced when 

sediment transport capacity in the Illgraben catchment was low in comparison to the hillslope-

derived sediment input and that subsequently the relative dominance between the two fluxes has 

changed. Schlunegger et al. (2013) attributed this change to a regional climatically driven trend in 

the relative importance of hillslope sediment supply and channel sediment evacuation that has 

been observed across the Alps during the Holocene (Norton et al., 2008). Our data do not allow us 

to discriminate between these alternative explanations for temporary sediment storage and release 

in the Illgraben catchment over the late Holocene. This case does, however, illustrate the potential 

for external events — in this case, emplacement of the rock avalanche — to affect the patterns of 

deposition on a fan surface, which could complicate efforts to correlate fan surface evolution with 

wider environmental drivers, such as short-term (100s to 1000s of years) climate change. 

 

5.3. Shifts in the locus of deposition on the Illgraben fan 

The pattern of deposition on the Illgraben fan after emplacement of the rock avalanche deposit is 

consistent with repeated lateral and radial shifts in the locus of debris-flow deposition. The lateral 

shifts between lobes (e.g., L5 – L6 – L9 – L7 – L10 – L11) indicate that episodic avulsion has been 

an important process in fan development. Cross-cutting relationships between the lobes show that 

avulsions have been local and global (or fan-scale, between the western and eastern halves) and 

must have therefore involved avulsion nodes at a range of different radial positions from the fan 

apex to downstream. This is an important point because it illustrates that avulsions can occur at a 

variety of scales, and therefore probably by a variety of mechanisms, on a single fan. In terms of 

radial shifts in the depocenter, the presence of clear downlapping relationships between 

successive lobes (lobe L6 onto L2, L7 onto L3, L9 onto L8, and L10 onto L7) are consistent with 

backstepping of deposits toward the fan head. Following L9 deposition, the last episode of 

backstepping was followed by incision into the L9 surface and a basinward shift in deposition, 

allowing accumulation of lobes L10 and L11. The post-rock avalanche deposits on the Illgraben fan 
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are thus consistent with the model of avulsion, incision, and backstepping observed by de Haas et 

al. (2016) in fan experiments and documented for a number of fluvial fan and fan-delta settings 

(Nicholas and Quine, 2007; Clarke et al., 2010; Powell et al., 2012; Reitz and Jerolmack, 2012). 

 

Our interpretation of the fan surface evolution over the past 3200 years is in disagreement with a 

dendrogeomorphic analysis of growth disturbances by debris flows  in Stoffel et al. (2008b). Those 

authors attributed growth disturbances to debris flows impacting trees in the vicinity of sample 

IG60 for several years in the nineteenth and twentieth centuries and as late as 1957. This would 

have required at least a temporary channel bed elevation at profile 5 (Fig. 4) of almost 838 m asl, 

or >15 m higher than the surface of lobe L9 and >32 m above the local channel bed, followed by 

widespread and rapid incision over an area of several tens of thousands of square meters. 

However, such significant change of the channel bed in this area in such a short time is not seen in 

either the relevant topographic maps of the area between 1845 and 1933 (Dufour, 1845; Siegfried, 

1886, 1907, 1915, 1924, and 1933) nor from the 1:25,000 topographic map from 1966 (sheet 1287 

Sierre) and is also in disagreement with our exposure dating of lobe L9 (IG19C, 1400 ± 100 years). 

 

In summary, the changes in the spatial pattern of debris-flow deposition on the Illgraben fan 

surface, constrained by relative and by absolute dating, can be explained by episodic channel 

avulsion, fan-head incision, and backstepping of debris-flow deposits toward the fan apex. This 

basic pattern is complicated by emplacement of a large rock avalanche deposit about 3200 years 

ago. This study yields the first quantitative evidence for these variations in the spatial patterns of 

debris-flow deposition on ~103 y time scales in the Alps and provides valuable field-scale evidence 

for comparison to the results of analogue or numerical simulations of debris-flow fan evolution. Our 

results also illustrate the complexity of fan systems in an active and dynamic erosional 

environment such as the Alps. 

 

6. Conclusions 

Quantitative reconstructions of debris-flow fan evolution in active alpine settings are important for 

understanding past flow occurrence and future flow hazard but remain relatively rare. In this paper, 
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we have reconstructed fan evolution and sediment storage in the Illgraben sediment routing 

system since ~3200 years ago. This reconstruction includes a detailed chronology of lobe 

deposition on the debris-flow fan by means of cosmogenic exposure dating of ten quartzite and 

carbonate boulders. The fan shows evidence for lateral and for radial shifts in the locus of debris-

flow deposition, consistent with a conceptual model of fan surface evolution by channel avulsion, 

fan-head incision, and backstepping toward the fan apex. The pattern is complicated by the 

emplacement of a rock avalanche deposit of at least 6 x 106 m3 volume near the fan apex and 

dated by a single 10Be sample to 3220 ± 250 years. Emplacement of the rock avalanche may have 

led to the upstream trapping of sediment within the Illgraben catchment and appears to have 

shifted the fan apex by about 500 m to the north into the Rhone Valley. In this model, eventual 

breaching of the rock avalanche allowed incision and evacuation of much, but not all, of the stored 

sediment within the catchment and may have contributed to widespread resurfacing of the fan that 

began about 1500 years ago. Debris-flow activity during the last ~500 years was concentrated on 

lobe L11 and, since at least A.D. 1793, has been concentrated in or near the present-day channel. 

Our results illustrate the complexity of fan evolution in alpine settings, where sediment may be 

delivered to fans by a range of different processes and where direct correlation between fan lobe 

development and short-term (100s to 1000s of years) climate change may be complicated by local 

controls on sediment availability.  
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Table 1 
Details of 10Be samples and AMS results 
 

Sample Fan lobe 
Latitude 

(°N) 

Longitude 

(°E) 

Elevation 

(m) 

Shield. 

corr. 

10Be conc. 

(atoms g-1) 

10Be age  

(y ± 1) 

IG60 
Rock 

avalanche 
46.2946 7.6324 824 0.974 24800±1540 3220±250 

IG39 L7 46.3010 7.6242 691 0.982 7100±110 1040±170 

IG42 L10 46.2997 7.6316 740 0.979 4900±110 690±160 

IG43 L10 46.2974 7.6324 767 0.980 5730±950 790±140 

IG18 L11 46.3014 7.6318 727 0.975 3460±960 500±140 
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Table 2 

Details of 36Cl samples and AMS results 

 

Sample Fan lobe 
Latitude 

(°N) 

Long. 

(°E) 

Elev. 

(m) 

Shield. 

corr. 
Cl  

(ppm) 

36Cl conc.  

(atoms g-1) 

36Cl age  

(y ± 1) 

IG26C L6 46.2994 7.6229 694 0.966 36.2±0.6 59600±3300 1560±100 

IG29C L6 46.2980 7.6211 689 0.961 43.7±0.3 57700±3300 1590±120 

IG39C L7 46.3015 7.6243 690 0.982 12.7±0.2 52310±4030 1350±120 

IG19C L9 46.2980 7.6416 739 0.983 8.4±0.3 52310±3260 1400±100 
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Table 3 

Major and trace element concentrations for samples dated with 36Cl 

 

Sample 
Al2O3 

(%) 

CaO 

(%) 

Fe2O3 

(%) 

K2O 

(%) 

MgO 

(%) 

SiO2 

(%) 

TiO2 

(%) 

B 

(ppm) 

Sm 

(ppm) 

Th 

(ppm) 

U 

(ppm) 

IG26C 2.65 47.7 0.84 1.24 1.20 7.62 0.09 33 1.4 1.6 0.93 

IG29C 5.11 38.8 1.47 2.40 2.43 13.3 0.21 n.a. 1.5 3.6 1.75 

IG39C 0.48 55.7 0.22 0.12 0.34 1.10 0.02 n.a. 0.2 0.4 3.22 

IG19C 0.24 53.3 0.19 0.05 0.47 0.91 0 n.a. 0.1 0.2 1.20 

 

Cr2O3, MnO, Na2O, P2O5, Gd below detection limit; n.a., not analyzed.  
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Table 4 

Details of 14C samples and AMS results 

 

Sample 
Laboratory 

number 

Height above 

channel bed (m) 
D14C (‰) 

13C (‰) 
Conv. radiocarbon age 

(y BP ± 1) 

Calibrated age  

(cal BP) 

S1 B-9629 8.0 -215.9±2.2 -23.6±0.2 1950±20 1948-1830 

S2 B-9630 8.0 -217.8±2.3 -23.8±0.2 1970±20 1986-1876 

S3 B-9631 12.2 -219.3±2.2 -24.9±0.2 1990±20 1990-1893 
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Figures 

 

Fig. 1. Overview of Illgraben catchment and fan system. Inset shows Illgraben location in 

southwestern Switzerland. Background hillshade image is derived from Swisstopo DTM-AV digital 

elevation model, with 2-m cell size. Extent of rock avalanche deposits in the Illgraben catchment 

(emplaced in 1961) and at the head of the Illgraben fan (analyzed here) are shown in the cross-

hatched pattern. Colors indicate extents of marble/dolomite and quartzite within the catchment, 

separated by an inactive fault; geology is simplified from Gabus et al. (2008). Selected checkdams, 

and their numbers, are shown by short black lines. Box shows location of Fig. 3. 

 

Fig. 2. Depositional lobes on the Illgraben fan, as determined by field mapping cross-checked 

against the DTM-AV DEM. Lobes are numbered in order of decreasing age, from L1 (oldest) to L11 

(presently active). RA, rock avalanche deposit near fan apex. Note the linear ridges trending north-

south on the surface of the rock avalanche. Star shows the lower elevation limit of the rock 

avalanche deposit at 748 m asl, used for volume reconstruction. Cleared and levelled fields and 

buildings in the town of Susten are visible in the upper-right corner. 

 

Fig. 3. Relationships between sediment fill and rock avalanche deposit near the Illgraben fan apex. 

Rock avalanche deposit is shown in the cross-hatched pattern. The lower fill surface was 

interpolated from spot elevations on fill terraces and the coplanar lobe L9 on the Illgraben fan. The 

upper fill surface was constructed by shifting the lower fill surface upward by 15 m to intersect the 

top of the rock avalanche deposit. Shaded areas show the intersection of topography with each fill 

surface, with a range of ±3 m of elevation uncertainty. White squares show locations of 

radiocarbon samples S1-S3 from within fill on the right bank of the Illgraben channel. Dashed black 

line shows the downstream limit of fill terraces within the Illgraben catchment, taken as the 

downstream fill limit for calculation of sediment volumes. Solid black lines show the locations of 

profiles in Fig. 4. 
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Fig. 4. Topographic profiles across the Illgraben channel. See Fig. 3 for locations. Profiles are 

oriented looking downstream (north to left) and are ordered from upstream (top) to downstream 

(bottom). Dashed lines show the elevation of the upper and lower fill surfaces at the position of 

each profile. White squares in profile 1 show the locations of radiocarbon samples S1-S3. The top 

of a prominent fill terrace at Güetji is shown in profiles 2 and 3. Profile 5 shows the topography of 

the rock avalanche deposit (RA), along with the upward shift of 15 m used to generate the upper 

surface from the lower surface. 

 

Fig. 5. Fan apex reconstruction. Red lines show fragments of channels that were projected back 

toward the fan head to reconstruct the most likely apex position through time. Colors show the 

number of intersections between projected channel fragments; higher intersection numbers should 

correspond to likely fan apex positions. The highest intersection density is found just downstream 

of the rock avalanche deposit (RA), where lobes L6-L10 diverge toward the western sector of the 

fan. High intersection densities are also found to the south of this point, however, especially 

associated with channel fragments from lobes L2 and L3. This is consistent with a northward shift 

of ~500 m in the fan apex, perhaps associated with emplacement of the RA. 

 

Fig. 6. 10Be and 36Cl cosmogenic ages from the Illgraben fan. Lobes as in Fig. 2. Ages are given 

with ±1 uncertainties. See Tables 1 and 2 for analytical details. Upper-right panel shows ages 

ordered by depositional setting and relative lobe age and also shows the radiocarbon ages from fill 

terrace samples in the catchment. B1 and B2 (white arrows) show alternative depositional 

pathways onto the fan. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Highlights: 

 First documentation of timing and patterns of debris-flow deposition on the Illgraben fan 

since 3200 yr ago 

 Fan surface shows evidence for repeated lateral and radial shifts in the active depositional 

lobe 

 Rock avalanche deposition has shifted the fan apex location by c. 500 m 

 Field evidence of repeated avulsion, backstepping of deposits, and fan-head incision 

 Direct correlation between fan deposition and climate change may be complicated by short-

term variations in sediment supply 


