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Using the liminality N-body simulations of Shi et. al., we present the first predictions for galaxy clustering
in f(R) gravity using subhalo abundance matching. We find that, for a given galaxy density, even for an
f(R) model with fR0 = −10−6, for which the cold dark matter clustering is very similar to ΛCDM, the
predicted clustering of galaxies in the f(R) model is very different from ΛCDM. The deviation can be as large
as 40% for samples with mean densities close to that of L∗ galaxies. This large deviation is testable given the
accuracy that future large-scale galaxy surveys aim to achieve. Our result demonstrates that galaxy surveys can
provide a stringent test of General Relativity on cosmological scales, which is comparable to the tests from local
astrophysical observations.

Introduction. With the advent of ever larger galaxy redshift
surveys, there has been a steady improvement in the accuracy
of measurements of galaxy clustering. Upcoming large galaxy
surveys such as the Dark Energy Spectroscopic Instrument
(DESI) survey [1] and the Euclid mission [2] aim to achieve
percent level accuracy on the measurement of galaxy cluster-
ing. The measurements will not only provide an unprece-
dented constraint on the cosmological parameters in ΛCDM
but, as we show, can also produce a stringent test of General
Relativity on cosmological scales.

Modified gravity models change the merger histories and
distributions of cold dark matter subhalos, leading to differ-
ent clustering of subhalos. Matching galaxies to subhalos
is, therefore, a good way to test modified gravity models,
which can avoid having to modelling the complicated bary-
onic physics in different gravity models. In its original form,
the subhalo abundance matching (SHAM) method assumes
that there is a one-to-one relationship between a property of
a subhalo and an observable property of a galaxy. The galaxy
property is usually taken to be the stellar mass. However, un-
like the more strongly gravitationally bound stellar component
of galaxies, the dark matter of a subhalo can suffer from tidal
stripping. A “satellite” subhalo can lose a substantial amount
of mass depending on how close its orbit approaches the cen-
tral part of the halo. The subhalo number density profile is
therefore much shallower than the number density profile of
galaxies in hydrodynamical simulations as well as the num-
ber density profile of galaxies in observations (see Fig.2 in
Ref. [3]). Galaxy properties (here stellar mass) are expected to
be closely connected to host subhalo properties at some epoch
before this disruption. Reference [4] suggests connecting a
galaxy’s stellar mass to a subhalo’s maximum circular veloc-
ity vmax = Max[

√
GM(< r)/r] at the epoch of accretion

(hereafter vacc), whereM is the mass of the subhalo. In a pure
cold dark matter simulation, using vacc can result in more sub-
halos being selected from the central region of a host halo and
yields a much steeper subhalo number density profile, which
in turn leads to a better fit to the observed galaxy clustering on
small scales. An alternative method is to find the peak value
of the maximum circular velocity (i.e. the maximum value of
vmax) over a subhalo’s merger history [5–7] (hereafter vpeak).
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Since the maximum circular velocity vmax is closely related
to the self-gravity of the subhalo, a subhalo at the epoch of
vpeak has the strongest binding force and, thereby, is most sta-
ble against tidal stripping. The subhalo properties therefore
are expected to be tightly correlated with the galaxy stellar
mass at this epoch. This point is partially confirmed by the
state-of-the-art hydrodynamic simulation EAGLE [8, 9]. The
correlation between vpeak of a subhalo and galaxy stellar mass
links theory to observation. If we assume galaxies reside in
subhalos, through a monotonic relation, subhalos selected by
vpeak in a simulation should correspond to galaxies selected
by stellar mass in a galaxy survey. The predicted clustering in
a simulation can, therefore, be compared to the observed clus-
tering directly. SHAM, thus, provides a straightforward way
to test different gravity models.

Here, we investigate, for the first time, galaxy clustering in
modified gravity models using the subhalo abundance match-
ing method. For illustrative purposes we focus on f(R) grav-
ity which is one of the most popular modified gravity mod-
els (see Ref. [10] for review). f(R) gravity introduces an
extra scalar degree of freedom, which mediates a fifth force
that changes the motion of massive particles. However, it
also incorporates a screening mechanism which can suppress
this fifth force in high-density environments [11], therefore
mimicking GR in environments such as our solar system and
the early Universe. These effects can only be addressed us-
ingN -body simulations, which requires an explicit functional
form for f(R). We choose the Hu-Sawicki model [12] with
the index n = 1 [12]. In order to illustrate the robustness
of the SHAM method, we choose the free parameter in the
f(R) model as fR0 = −10−6, for which the model closely
resembles ΛCDM. The relative difference in the non-linear
cold dark matter power spectrum between this f(R) model
and ΛCDM is less than 5% up to k ∼ 10hMpc−1 (see e.g.
Ref. [13]). Hence, this model can hardly be distinguished
from ΛCDM using current cosmological probes such as the
number counts of clusters [14] or weak lensing [15]. The
model has only been tested with local astrophysical observa-
tions (e.g.[16]). However, we shall show that this model still
leaves a significant signature in galaxy clustering and can be
robustly tested on cosmological scales.

N-body simulations We use the liminality simulations pre-
sented in Ref. [17] for the Hu-Sawicki model [12]. The simu-
lations were performed using the ECOSMOG code [13] which
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is based on the N -body code RAMSES [18]. The box size is
Lbox = 64h−1Mpc. The cosmological parameters are Ω0

b =
0.046,Ω0

c = 0.235,Ω0
d = 0.719, h = 0.697, ns = 0.971, and

σ8 = 0.820. The number of particles is N = 5123 and the
mass resolution ismp = 1.52×108h−1M� which is the high-
est resolution cosmological simulation to date of the f(R)
model considered here. The simulation has 122 snapshots be-
tween z = 49 to z = 0. In addition to the f(R) simulation,
we use a ΛCDM simulation with the same box size, resolu-
tion, cosmological parameters, initial conditions and number
of snapshots as for comparison.

In order to perform subhalo abundance matching, we need
two crucial pieces of information: the maximum circular ve-
locity vmax and the merger history of subhalos. Unlike the
case of ΛCDM, vmax in f(R) gravity is not directly related to
the true cold dark matter mass of a subhalo but to an effective
mass which is defined through the modified Poisson equation
[19]

∇φ = 4πGa2δρeff , (1)

where G is Newton’s constant. The effective energy density
δρeff , by definition, incorporates all the effects of modified
gravity. The circular velocity is then given by

v2
cir(r) =

GMeff(< r)

r
,

where Meff is the effective mass enclosed within a radius of
r for a dark matter halo. We therefore need to build effective
halo catalogs [19] from the f(R) simulation. The details are
presented in Ref [19, 20] in which the halos are identified us-
ing a modified version of the AMIGA Halo Finder (AHF) [21].
We build the halo merger tree using the MERGERTREE code
which is part of the AHF package. For comparison we also
consider the standard halo catalog for the f(R) simulation.
The standard halo catalog is simply built from the density field
of cold dark matter. However, we calculate vmax taking into
account the modification of gravity. Thus, in both the effective
and standard halo catalogs, vmax is physically defined.

Subhalo abundance We show in Fig. 1 the cumulative
abundance of subhalos as a function of halo mass M200 (left
panel), and the current maximum circular velocity vmax and
vpeak (right panel). The halo catalog used here includes both
satellite and main subhalos. Note that the f(R) standard halo
catalog uses the true cold dark matter mass while the f(R) ef-
fective halo catalog uses the effective mass for subhalos. The
left panel of Fig. 1 shows that the cumulative mass function
in ΛCDM is well approximated by a power law. However,
the mass function in the f(R) model has a more complicated
shape. At the high mass end, M > 1013h−1M�, the subhalo
number counts in the f(R) model are very close to those in
ΛCDM while at the low mass end, M < 1013h−1M�, the
abundance in the f(R) model is higher than in ΛCDM. This
is due to the screening mechanism in the f(R) model. A mas-
sive halo in the f(R) model is usually screened. There are
no significant differences between a screened f(R) halo and
a ΛCDM halo of the same mass. However, a low mass halo
in the f(R) model is usually unscreened and experiences en-
hanced gravity. The enhanced gravity can speed up the halo

assembly and therefore increases the abundance of halos of a
given mass. Enhanced gravity also leads to a greater effective
mass, which is the dominant effect. This is why the enhance-
ment is more significant in the effective halo catalog of the
f(R) model as shown in Fig. 1.

In the right panel of Fig. 1, we show the abundance of sub-
halos measured in terms of vmax and vpeak. In contrast to halo
masses, the abundances of subhalos measured by vmax and
vpeak in the standard catalog (blue curves) and the effective
catalog (red curves) are very close to one another. This is be-
cause the circular velocity of subhalos in the standard catalog
is calculated taking into account the modification of gravity.
Compared with vmax, using vpeak yields a higher abundance
of subhalos for both the f(R) model and ΛCDM. However,
unlike vmax, using vpeak enhances the abundance of massive
screened subhalos in the f(R) model as well. This is due to
the selection effect of vpeak and the fact that before a satellite
subhalo merges into a screened massive host halo, the satellite
subhalo can be a distinct low mass unscreened main halo. In
order to address this point, in Fig. 2, we plot the mean num-
ber density of satellite subhalos (excluding main subhalos) as
a function of the mass of their host halo. In the left panel of
Fig. 2, subhalos are selected by their current maximum circu-
lar velocity so that vmax > 100km/s. It can be seen that, at
the high mass end, M > 1013h−1M�, due to the screening
mechanism in the f(R) model, the mean satellite subhalo oc-
cupations for the f(R) model and ΛCDM are very similar to
one another and the mean number of selected satellite subha-
los per host halo is proportional to the mass of the host halo
< Nsub >∝ M , consistent with Ref. [22]. However, at the
low mass end, M < 1013h−1M�, using vmax to select sub-
halos tends to recover more satellite subhalos per host halo in
the f(R) model than in ΛCDM since the unscreened halos in
the f(R) model experience enhanced gravity and therefore a
boosted value of vmax. However, as shown in the right panel
of Fig. 2, using vpeak enhances the overall selection of subha-
los in the f(R) model not only for the unscreened halos but
also for the massive screened ones.

SHAM clustering predictions SHAM assumes that there
is a monotonic relation between vpeak of a subhalo and galaxy
stellar mass. We therefore select subhalos in our halo cata-
logs by ranking them in terms of vpeak. By further assum-
ing that the selected subhalos have a one-to-one correspon-
dence to galaxies, in Fig. 3 we show the predicted three-
dimensional galaxy two-point correlation functions for two
different representative galaxy densities (upper panels) as well
as the fractional differences between the f(R) model and
ΛCDM (ξf(R)/ξΛCDM − 1) × 100% (lower panels). Our
measurements of ξ(r) use the CUTE code [23]. For com-
parison, we also present the galaxy clustering predicted us-
ing the current maximum circular velocity vmax to rank sub-
halos (dashed lines). The shaded regions in Fig. 3 repre-
sent 1σ Poisson errors. Note that due to the limited box
size of our simulations, we can only measure ξ(r) on scales
r < 0.1Lbox ≈ 6.4h−1Mpc.

The upper panels of Fig. 3 show that overall the predicted
galaxy clustering in the f(R) model using both vpeak and
vmax is significantly weaker than in ΛCDM. This is because
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FIG. 1. The global cumulative subhalo abundance as a function of halo mass M200 (left), and the current maximum circular velocity vmax

and vpeak (right). Here the subhalo catalogs include both satellite and main subhalos. In ΛCDM, the cumulative subhalo number counts as
a function of mass are well approximated by a power law. However, the mass function in the f(R) model is more complicated. At the high
mass end, M > 1013h−1M�, due to the efficient screening, the cumulative subhalo number counts in the f(R) model are very close to those
in ΛCDM. However, at the low mass end, the abundance of subhalos in the f(R) model is higher than in ΛCDM due to the enhanced gravity
in unscreened halos. The enhancement is more significant in the effective halo catalog of the f(R) model since the effective mass is used in
this case. For the subhalo abundance plotted in terms of vmax and vpeak (right), compared with vmax (dashed lines), using vpeak (solid lines)
enhances the overall abundance of subhalos in the f(R) model even for the most massive ones. In the right panel, the dotted lines show the
abundance of satellite subhalos (excluding main subhalos) selected using vpeak for ΛCDM (black), the f(R) standard halo catalog (blue) and
the f(R) effective halo catalog (red). The abundance of satellite subhalos is relatively complete for the full subhalo samples investigated with
mean number densities < ng >= 0.01[Mpc/h]−3 and < ng >= 0.02[Mpc/h]−3.
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FIG. 2. The mean number of selected satellite subhalos (excluding main subhalos) per host halo as a function of the mass of their host halo
for ΛCDM (black points), the f(R) standard halo catalog (blue points) and the f(R) effective halo catalog (red points), respectively. Left:
subhalos are selected by their current maximum circular velocity vmax > 100km/s. At the high mass end, M > 1013h−1M�, due to the
screening mechanism in the f(R) model, the mean satellite subhalo occupations of the f(R) model and ΛCDM are very similar to one another
and the mean number of selected satellite subhalos per host halo is proportional to the mass of their host halos < Nsub >∝ M . However, at
the low mass end, using vmax tends to select more satellite subhalos per host halo in the f(R) model than in ΛCDM since unscreened halos in
the f(R) model experience enhanced gravity and therefore a boosted value of vmax. Right: similar to the left panel but subhalos are selected
by vpeak. In contrast to vmax, using vpeak enhances the overall selection of subhalos in the f(R) model even for the most massive ones.

in f(R) gravity subhalos in smaller unscreened main halos
are more likely to have higher vpeak and vmax than subha-
los of equivalent masses in large screened main halos due
to the enhanced gravity in the former case. As a result, the
overall effect of using vpeak or vmax is to preferentially se-
lect more subhalos from less massive unscreened halos in the

f(R) model compared to ΛCDM. Since subhalos in less mas-
sive host halos are less clustered, the clustering in the f(R)
model is expected to be weaker than in ΛCDM.

From Fig. 3, it is also interesting to note that even for
the f(R) model with fR0 = −10−6, for which the clus-
tering of the cold dark matter is essentially indistinguish-
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FIG. 3. The predicted three-dimensional two-point galaxy correlation functions from the SHAM model (upper panels). The shaded regions
represent the 1σ Poisson errors. The lower panels show the fractional differences between the f(R) model and ΛCDM. The left panels show
the results for a galaxy density < ng >= 0.01[Mpc/h]−3 and the right panels are for < ng >= 0.02[Mpc/h]−3 . For comparison, the
dashed lines shows the results obtained using the current maximum circular velocity vmax.

able from ΛCDM (e.g. see Ref. [13]), the predicted galaxy
clustering in the f(R) model shows sizeable reductions from
ΛCDM. The maximum reduction is about 40% for both the
< ng >= 0.01[Mpc/h]−3 and < ng >= 0.02[Mpc/h]−3

samples. Moreover, the relative deviations are significant
given the statistical errors as shown in Fig. 3.

In addition to the differences between the f(R) model and
ΛCDM, the predicted galaxy clustering in the effective halo
catalog and the standard halo catalog also show differences
on small scales. This is expected since the two halo catalogs
are essentially different. The differences are due to the dif-
ferent definitions of halo centres as well as the different halo
abundances (see, Fig. 1). However, on large scales, the two
catalogs yield convergent results.

Summary Using the liminality simulations presented in
Ref. [17], we have studied the SHAM predictions for galaxy
clustering in f(R) gravity. We find that, for a given galaxy
density, even for the f(R) model with fR0 = −10−6, for
which the clustering of cold dark matter is very similar to
ΛCDM, the predicted galaxy clustering in the f(R) model is
much weaker than in ΛCDM. The deviation can be as large
as 40% for samples with < ng >= 0.01[Mpc/h]−3 which
correspond to brighter galaxy samples as well as samples
with < ng >= 0.02[Mpc/h]−3 which correspond to slightly
fainter galaxy samples. Moreover, the relative deviations are
robust against statistical errors and the results obtained using
vpeak and vmax in both the effective and standard halo cata-
logs are convergent on scales r > 0.6h−1Mpc.

In modern applications of SHAM, a scatter is usually added
between vpeak of a subhalo and galaxy stellar mass. However,
the scatter indeed has a limited effect on our results. First, the
scatter is constrained to some extent by observations such as
the baryonic Tully-Fisher relation (or its equivalent for early-
type galaxies) (e.g. Ref. [24]), and is usually taken as a fixed
value (e.g Ref. [25]). Second, the scatter only affects the se-
lection of subhalos around a mass cut. Therefore, it only af-

fects the clustering of subhalos with very low number densi-
ties. As shown in Ref. [6], for high density samples, such as
those investigated in this work, the impact of scatter within
the range allowed by observations is negligible.

Another factor that might affect our results is baryonic
physics. However, based on the state-of-the-art hydrodynam-
ical simulation EAGLE [8], which can reasonably reproduce
the observed galaxy properties, Ref. [9] found that the agree-
ment between the predicted galaxy clustering using SHAM
and the simulated galaxy clustering is better than 30% on
small scales r < 1h−1Mpc and better than 10% on scales
larger than r > 1.3h−1Mpc. The deviation shown here be-
tween the f(R) model and ΛCDM is much larger than this
uncertainty and therefore these models should be distinguish-
able. Our results therefore indicate that galaxy surveys, on
cosmological scales, have the potential to constrain modified
gravity models at a similar level to the local astrophysical tests
(e.g. [16]).

Moreover, the SHAM predictions can be practically tested
against current and upcoming observations. SHAM predic-
tions can be directly compared with the galaxy clustering mea-
sured from a volume-limited sample that is complete in stellar
mass. The sample can be constructed from current available
data sets such as the main galaxy sample of the Sloan Digital
Sky Survey (SDSS) [26] in which the number densities of the
faint galaxies can be as high as < ng >= 0.03[Mpc/h]−3

covering the densities investigated in this work. A detailed
analysis using the SDSS data will be presented in a separate
paper. The survey area of the bright galaxy samples (BGS)
from the upcoming DESI survey [1] is twice as large as that of
the SDSS main galaxy sample, and can provide better statis-
tics for testing not only the projected galaxy clustering but
also the redshift-space galaxy clustering.
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