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Abstract: To what extent methane liberated from marine hydrate will enter the ocean during 

a warmer world is unknown. Although methane release due to hydrate dissociation has been 

modelled, it is unclear whether or not methane will reach the seafloor during a warmer world 

and therefore contribute to oceanic and atmospheric budgets. Here we show, using a new 

three-dimensional (3-D) seismic dataset, that some hydrate deposits surround the gas 

chimneys passing through the HSZ. Bottom water warming since the last glacial maximum 

(LGM) is interpreted to cause hydrate dissociation but critically some of the released methane 

was not vented to the ocean. The released gas caused seal failure and free gas entered the 

hydrate stability zone (HSZ) through vertical gas chimneys to where new hydrate 

accumulations formed. This process is a new evidence for methane recycling and could 

account in part for the lack of methane in ice core records that cover warming events during 

the late Quaternary. This research provides new insight into how methane could be recycled 

rather than vented during a warmer world. 
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1 Introduction 

Methane is a potent greenhouse gas and vast quantities of it are locked-up in marine 

hydrate along the continental margins (Kvenvolden, 1993). Methane released from hydrate 

could have a role in accelerated climatic warming, ocean acidification and de-oxygenation 

(Biastoch et al., 2011; Dickens, 2003). There is already potential evidence, such as plumes of 

gas bubbles, for methane liberated from hydrates venting into the ocean due to oceanic 
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warming in the Arctic (Westbrook et al., 2009) and along the US Atlantic margin (Phrampus 

and Hornbach, 2012; Skarke et al., 2014). But isotopic records that cover rapid Quaternary 

climate change events from ice cores of polar region indicate that methane from hydrate is 

not released during periods of rapid warming (Sowers, 2006). Methane stored in hydrate is 

probably a contributor rather than the main source of atmospheric methane budget after the 

last glacial maximum (LGM, Chappellaz et al., 1993). The fundamental question of whether 

large amount of methane from hydrate escapes into oceans and the atmosphere remains 

unanswered. If it did not reach the seabed, how is methane retained in the subsurface?   

 

Hydrates are usually identified in marine settings through the identification of bottom 

simulating reflectors (BSRs) in seismic reflection datasets. BSRs mark the base of the hydrate 

stability zone (BHSZ) below which free gas is often trapped and this configuration yields a 

medium to high acoustic impedance contrast (Shipley et al., 1979). As the water depth 

shallows at continental margins, the BSR also shoals and seismic imaging sometimes shows 

examples of it intersecting the seabed at a water depth between ~350 and ~600 m (Boswell 

and Collett, 2011). In general the ascent of methane into the hydrate stability zone (HSZ) 

should be impeded, as hydrates clogs interconnected pores and fractures (Nimblett and 

Ruppel, 2003). But methane can sometimes pass through the HSZ and arrive at the seabed 

(Liu and Flemings, 2006). Seismic evidence for this methane venting is often gas chimneys 

with pockmark at the seabed and they are thought to represent the occurrence of vertical 

migration of pore fluid (Hovland and Judd, 1988; Cartwright and Santamarina, 2015). 

 

Venting into the atmosphere is not necessarily the fate of gas that has been liberated 

from methane hydrate. Methane could be recycled to the BHSZ (Davies and Clarke, 2010; 

Paull et al., 1994), dissolved into the ocean and replaced by other gases such as oxygen 

during its ascent (McGinnis et al., 2006) and oxidised aerobically in the shallow ocean (Ward 

et al., 1987) or anaerobically in the sub-seabed sediment (Hoehler et al., 2000). Using a new 

3-D seismic survey offshore of Mauritania, we consider the fate of methane liberated due to 

oceanic warming since the LGM as a potential scenario for how marine hydrates will behave 

due to a future warmer world. 
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2 Geological setting 

The area covered by the 3-D seismic survey is offshore of Mauritania (Fig. 1) where the 

water depth ranges from 50 to 1800 m (Fig. 1b). The shelf-slope break occurs at ~120 m 

water depth and the continental slope dips at ~3°. In the southeast of the survey there are a 

number of canyons that are part of the Cap Timiris Canyon system. The study area is located 

between two of these canyons and covers an area of ~23 km
2
 and the uppermost ~100 m of 

the sedimentary succession. It is most likely dominated by the fine-grained hemi-pelagic 

sediment interbedded with turbidite mud and sand, deposited during alternating climatic 

periods of aridity and humidity in the Pleistocene and Holocene (Henrich et al., 2008; 

Zühlsdorff et al., 2007). The gravity cores of GeoB 8507-3 (Fig. 1a) record the uppermost 10 

m-thick sediments in the Timiris Canyon and show that the sedimentation rate averages at 

190 m/my (metres per million years) in the Holocene (Zühlsdorff et al., 2007), but this rate 

may not be typical in the study area. This rate can be up to 685 m/my in the records of GeoB 

8509-2 (Zühlsdorff et al., 2007). The commercial wells, Ras Al Baida-1 and Al Kinz-1, show 

that there are traces of hydrocarbons throughout late Cretaceous and Paleogene sediments 

(Vear, 2005). Gas migration in the marine hydrate system has been documented in the area 

covered by another 3-D seismic survey offshore of Mauritania, which is ~130 km to the south 

of the study area (Davies et al., 2012; Yang and Davies, 2013; Yang et al., 2013; Davies et al., 

2014). 

 

3 Seismic data and methodology 

The 3-D seismic data cover an area of ~3800 km
2
. The bin spacing is 12.5 m × 25 m. 

The recording is cut by a frequency filter of 3 – 200 Hz. The dominant frequency in the upper 

100 m-thick sediment is 55 Hz. These data have a sampling rate of 2 ms and are zero-phased. 

They are displayed in the depth domain after being Kirchoff depth migrated. The velocity 

model for this migration is not provided in this research. A positive polarity is defined by a 

peak on the seismic trace and displayed by a black-red-black seismic loop on the cross 

section, which represents an increase in the acoustic impedance. The extracted seismic 

attributes include RMS (root mean square) amplitude and dip-magnitude. The maps of these 
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attributes are utilised to pinpoint the hydrate/gas and visualise the migration-related features 

(e.g. pockmarks) in an area of interest. 

 

The BSR is picked along the troughs of the seismic traces that together produce a 

reflection usually cross-cutting the stratal reflections. At the places where this cross-cutting 

cannot be identified the BSR depth is inferred by linear interpolation or consistent with the 

high-amplitude, horizon-parallel reflection. A numerical model for 2-D heat conduction is 

used to simulate the location of the present BHSZ (appendix) and validate the interpretation 

of the BSR.    

 

4 Observations 

4.1 Seabed and BSR 

The seabed dips to the southwest and only one pockmark (~200 m in diameter) is found 

to the northeast of the landward terminus of the BSR (Fig. 1b). No seabed amplitude anomaly 

can be seen in or near this pockmark, indicating the absence of the carbonate crust that has 

been documented at venting sites (e.g. Hovland et al., 1987). The BSR is observable over 

most of the region at the water depths of 750 – 1300 m, dipping at ~4° and deepening 

southwestern. On a seismic profile it is characterised by a negative high-amplitude reflection 

and cross-cutting stratal reflections at low angles (<5°) (Fig. 2). The BSR does not intersect 

with the seabed reflection. Instead, it often terminates at ~70 mbsf (metres below the seafloor) 

(Fig. 2a). The seabed intersection depth (SID) is estimated by the numerical model of heat 

conduction to be 711 m (Fig. A.1, appendix), though at some sites outside the study area we 

observe that the SID is ~740 m. 

 

4.2 Seismic chimneys and high-amplitude anomalies 

4.2.1 Seismic chimneys 

15 seismic chimneys have been identified in the study area. They are 130 – 180 m in 

height, 80 – 200 m in diameter and characterised by vertically aligned discontinuities in 

seismic reflections (Fig. 3). The discontinuity takes the form of a localised, sub-circular 

region of positive relief at each reflection above the BSR. The relief is 5 – 10 m and the 
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diameter of the regions of positive relief maximises at the reflections D and E (Fig. 4). Apart 

from the reflections near to the top of the gas chimney (e.g. reflection B, Fig. 3, 4), those 

inside the chimneys have lower amplitude than surrounding reflections. The observations are 

similar to gas chimneys identified offshore mid-Norway (Hustoft et al, 2010). The bases of 

the gas chimneys are identified on the basis of where reflections show no deflection. We also 

see that the alignment of the bases is sub-parallel to the present BSR. The root zone is 30 – 70 

m below the present BSR (Fig. 3). Their tops are located at the reflection immediately below 

the seabed but there is no evidence, such as pockmarks, for their presence at the current 

seabed (Fig. 3). The chimneys are most unlikely to be the velocity pull-up artefacts. Such 

artefacts are characterised by distorted reflections or obscure imaging vertically below the 

anomalous velocity unit, while in this case the reflections in the deep subsurface are intact 

and show no difference with the nearby reflections (Fig. 3).  

  

4.2.2 High-amplitude anomalies 

Around the seismic chimneys, but only detected by mapping certain reflections (D and E, 

Fig. 3c) are sub-circular, sub-elliptical or irregularly shaped high amplitude anomalies that 

have the same polarity with the seabed (Fig. 3 and 4). We term these ‘positive high-amplitude 

anomalies’ (PHAAs). They are ~70 m below the seabed and ~2.4 km away from the 

termination of the BSR in the seaward direction. Chimney 10 for example, is surrounded by 

three regions of high amplitude, each with an irregular geometry. The high-amplitude values 

among these regions occur closest to the chimney (Fig. 4). The isolated PHAA adjacent to 

chimney 7 covers an area of ~0.08 km
2
 and has a sub-elliptical geometry. Its long axis is 

sub-parallel to the dip of the continental slope. The amplitude values of this PHAA are largest 

near the gas chimney and diminish progressively along the reflections towards its periphery. 

In plan-view, chimney 7 is not in the centre of the PHAA. A third example has two associated 

chimneys (8 and 12, Fig. 4). They both are surrounded by PHAAs which coalesce to form a 

larger PHAA with an area of 0.21 km
2
. Again in plan form these two chimneys are not central 

to their respective PHAAs (Fig. 4).  
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5 Interpretation 

5.1 Gas trapped below the BSR 

The amplitude map of the BSR shows a set of high-amplitude bands (Fig. 2).  

Similar bands have been identified before offshore of Mauritania (Li et al. 2016). In both 

examples they have the opposite polarity to the seabed (Fig. 2a), suggesting a decrease in 

acoustic impedance. There are also multiple phase reversals along the BSR (Fig. 2a, c). They 

occur at the edge of the band, where we predict the pores of the thin beds are filled with 

hydrate above the BSR and gas below it, producing high and low acoustic impedance, 

respectively (Fig. 2c). The transition of the seismic phase in a step-like pattern in space 

causes the aligned high-amplitude termination along the BSR. This configuration coincides 

with the other known marine hydrate systems (e.g. Bünz and Mienert, 2004). 

 

Representative seismic lines where these enhanced reflections are present show that the 

gas chimneys root into a zone below the BSR (marked FGZ on Fig. 3). This spatial 

relationship, coupled with the knowledge that the gas chimneys are probably a migration 

pathway for pore fluid (Cartwright and Santamarina, 2015) implies that free gas trapped 

below the BSR was transported to the shallower subsurface. Because there is no evidence for 

pockmarks or indeed any other morphological features at the seabed we propose there was no 

significant escape of methane into the ocean. Therefore, similar to Ivanov et al. (2007), the 

gas chimneys did not intersect a free surface.  

 

5.2 Hydrate deposits 

The PHAAs are interpreted to be primarily caused by gas hydrate deposits that have a 

higher P-wave velocity, probably between 3760 – 4000 m/s (Sloan and Koh, 2008), than that 

of the seawater-filled background sediment. A high hydrate saturation (e.g. >35%, Hornbach 

et al., 2003) can increase the acoustic impedance of hydrate-filled sediment to the level such 

that should be detected on seismic dataset. The thickness of the PHAAs is estimated to be up 

to ~16 m at the seismic scale based on the vertical resolution of ~8 m (the P-wave velocity of 

the seawater-filled sediment is assumed to be 1800 m/s and the vertical resolution is one 

quarter of the wavelength). But gravity cores sampled at the Timiris Canyon indicate the 
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thickness of sands is likely to be no more than 10 m (Zühlsdorff et al., 2007). Therefore, we 

think the PHAA is the seismic response to one or more than one hydrate-containing porous 

sands. 

 

We propose the hydrate accumulations were sourced from free gas transported through 

the gas chimneys. Methane carried within pore fluid migrated through the fractures and then 

flowed laterally along permeable beds in an up dip direction where hydrate would have 

formed around the chimney point source (Davies et al., 2014; Xu and Ruppel, 1999). As the 

PHAAs are discrete regions surrounded by lower seismic amplitudes, our preferred 

interpretation is that hydrate at this level was absent or at a low concentration before the 

chimneys formed and fed the new hydrate accumulations.  

 

Our interpretation suggests that the geometry of the PHAA is the result of methane 

migration after leaving the gas chimneys. Given that the pore fluid could form a frictionless 

buoyant gravity current, its spreading out will be a function of the time, the density difference, 

the input flux and the effective permeability of the porous medium (Lyle et al., 2005). As the 

base of the dipping cap rock can be considered as an inclined plane and there is a density 

contrast between free gas and seawater, the buoyancy has a role in driving the fluid migrating 

up dip, which leads to the ellipsoidal geometry of the PHAA elongated in the direction that is 

parallel to the dip of the continental margin (Vella and Huppert, 2006). Such a pattern of 

migration has been seen in the Sleipner field of the North Sea, where CO2 has been injected 

into subsurface sands. The geometry of the CO2 reservoir can be detected by the seismic 

imaging that displays a comparable high amplitude zone (Boait et al., 2012). Another 

example of this geometry is lateral migration of gas along the BHSZ offshore of Mauritania, 

in which case tear-drop shaped high amplitudes that loop around and envelope point-source 

gas chimney have been imaged (Davies et al., 2014). 

  

It cannot be completely ruled out that the PHAAs are the seismic response to the 

authigenic carbonate-cemented sediment. An example outcropping at the seabed was seen in 

the Gulf of Mexico (Roberts et al., 2006). The carbonate cements could form as a result of 
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anaerobic methane oxidation that develops in the methane-rich environment (Hovland et al., 

1987). But the PHAAs, which are ~70 mbsf, may be too deep for this methane oxidation to 

take place as the sulfate-methane interface (SMI), which is at the base of the sulfate reduction 

zone, is normally at < 70 mbsf (Borowski et al., 1999). 

 

6 Discussion 

6.1 Methane passing through the HSZ 

In general methane entering the HSZ will be trapped within it in some way or added to 

its base when the base of HSZ deepens, but free gas can also exist within or pass through the 

HSZ. Some hypotheses have been proposed to explain this phenomenon. (a) Once gas enters 

the HSZ, it will form hydrates, depleting pore water and therefore increasing its salinity (Liu 

and Flemings, 2006). Furthermore, the hydrate clogging slows the removal of the highly 

concentrated ionised salt (Milkov et al., 2004). The resulting hypersaline pore environment 

will inhibit further hydration (Sloan and Koh, 2008) and this will allow gas for some time to 

pass by (Liu and Flemings, 2006; Liu and Flemings, 2007). (b) Excessive methane may 

consume all in-situ water to form hydrate, which will create a water-free environment in the 

low-permeability sediment without no more gas being trapped (Tréhu et al., 2004). In this 

case all the water can be depleted when the methane accounts for >70.8% of the total volume 

of pore fluid under in-situ conditions (pore water is assumed to be initially saturated with 

methane and the height of the water column above the site is assumed to be 950 m). (c) 

Where the chimney intersects with the BSR, the base of the HSZ is redefined by the vertical 

intrusion of the warm advecting fluid. The perturbation zone, which coincides with the 

outline of gas chimney, is physically stable for gas to exist (Wood et al., 2002). Here either 

one or any combination of these mechanisms may contribute to the process of gas passing 

through the HSZ. 

 

6.2 Model 

We interpret that the gas chimneys did not reach the modern seabed. The vertical 

distance between the tops of the gas chimneys and the seabed reflection cannot be clearly 

identified in the seismic dataset and is probably less than 8 m (vertical resolution). Given that 
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the sedimentation rate ranges from 190 m/my to 685 m/my (Zühlsdorff et al., 2007), the age 

of the gas chimneys is estimated to be up to 12 – 42 kyr. A prominent, millennial-scale 

warming event in the past 12 – 42 kyr is the global warming since the LGM that is interpreted 

to cause the upward shift of the BHSZ and hence the hydrate re-incorporation. The 

interpretation of this shift is consistent with those in offshore of Oregon (Bangs et al., 2005) 

and on the Cascadia margin (Musgrave et al., 2006). To probe into how this hydrate 

re-incorporation took place, we introduce the numerical modelling.  

 

Here we developed a 2-D finite diffusive heat-flow model that allows us to propose how 

the hydrate deposit formed after the LGM (Fig. 5, appendix). The model output of the 

variation of the bottom water temperature (BWT, Bintanja et al., 2008) and the relative sea 

level (RSL, Siddall et al., 2003) are taken as the input into this model to predict the shift of 

the BHSZ since the LGM. We assume that a) the marine sediments are isotropic and 

homogeneous, b) the pressure of pore fluid is hydrostatic and c) gases locked-up in hydrates 

are 100% methane. We determine the geothermal gradient by seeing whether the modelled 

BHSZ at steady state has a good match with its seismic observation (35 
o
C km

-1
, appendix). 

The modelling results show that the BHSZ probably has shoaled by ~60 m since the LGM. 

Although this model affected by the uncertainty of the input data may not suffice to reveal 

what happened in the sutdy area (appendix), other researches, such as offshore of Oregon 

(Bangs et al., 2005), show that the upward shift of the BHSZ may be true at the places other 

than high-latitude zones. The thinning of the HSZ caused dissociation of the hydrate located 

at the BHSZ. The buoyancy of the released gas would have generated excess pore pressure 

that could have led to the development of hydraulic fractures (Xu and Germanovich, 2006). 

Therefore, the gas chimneys are interpreted to form during the period of rapid shallowing of 

the BHSZ, though the accurate timing of this formation is hard to determine. The hydrate 

started to accrete after the gas conduit was established between the sediments below the 

BHSZ and at the level of reflections D and E. Since then the hydrate accretion would 

continue as the BHSZ shoaled (Fig. 5). It is unlikely but cannot be ruled out entirely that the 

spatial relationship between the gas chimneys and the BSR is coincident. 

 



10 

 

6.3 Implications 

The presence of the hydrate deposits implies that some of the gases released from 

hydrate since the LGM were recycled. We propose the sediments above the BHSZ prevent 

the escape of methane. The amount of methane recycled as hydrate can be amplified once this 

process has repeated at multiple horizons (e.g. Davies et al., 2014). But the volume of these 

accumulations is significantly lower than that of sediment that would have undergone 

dissociation after the LGM, which implies there are other mechanisms related to trapping and 

consuming methane. To our knowledge, they involve methane oxidisation (Treude and Ziebis, 

2010), being trapped stratigraphically in situ, or recycled as new hydrate at the base (Davies 

and Clarke, 2010; Paull et al., 1994). To what extent methane can be re-incorporated before 

reaching seabed is still a question to be answered. But this mechanism could account in part 

for why ice cores do not record methane from marine hydrate during episodes of rapid 

climatic warming. 

 

7 Conclusions 

We found some hydrate deposits at tens of metres above the BHSZ in a high-quality 3-D 

seismic survey offshore of Mauritania. They are interpreted to be a good example for the 

re-incorporation of methane into hydrate during oceanic warming after the last glacial 

maximum. The 2-D heat flow model shows that due to this warming the BHSZ could shoal 

by ~60 m. Methane released from hydrate entered the HSZ via vertical fractures and was 

recycled as marine hydrates. From this model we can say methane escape towards the seabed 

was buffered. This offers a new evidence of methane recycling that could in part explain why 

methane from marine hydrates is not thought to be a main contributor to the atmospheric 

budget. 
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Appendix: Two-dimensional heat diffusion model for the BHSZ shift 

We developed a 2-D finite diffusive heat-flow model to show an event of the BHSZ 

shoaling since the LGM. The governing equation for 2-D heat diffusion model is found from: 

 𝜌𝑏𝐶𝑏
𝜕𝑇

𝜕𝑡
= 𝑘𝑥

𝜕2𝑇

𝜕𝑥2
+ 𝑘𝑧

𝜕2𝑇

𝜕𝑧2
 (A.1) 

where 𝑇[Θ] is the sediment temperature, 𝑥[L] and 𝑧[L] are the sediment length and depth 

below the seafloor respectively, 𝜌𝑏[ML
-3

] is the sediment density, 𝐶𝑏[L
2
T

-2
Θ

-1
] is the 

specific heat capacity and 𝑡[T] is time. 𝑘𝑥[MLT
-3

Θ
-1

] and 𝑘𝑧[MLT
-3

Θ
-1

] are the sediment 

thermal conductivities in the horizontal and vertical direction, respectively. The subsurface 

sediment is assumed to be isotropic and homogeneous such that 𝑘𝑥=𝑘𝑧. We assume the 

constant thermal conductivity of 1 W m
-1

 K
-1

, an average bulk density of 2000 kg m
-3

, which 

are consistent with the results recorded in the Global Heat Flow Database and the drilling 

data of Ras El Baida A-1, and a specific heat capacity of 2200 J K
-1

 kg
-1 

(Rempel and Buffett, 

1997). All the gases trapped in hydrates are assumed to be methane and their molecular 

structure to be type І (CH4·5.75H2O). If the temperature for hydrate equilibrium, 𝑇𝑐[Θ], is 

known, the pressure, 𝑃𝑐[ML
-1

T
-2

], can be determined from the empirical equation (Lu and 

Sultan, 2008): 

 𝑃𝑐 = exp((𝐶𝑠𝑆 + 𝐷𝑠)𝑇𝑐) exp(𝐸𝑠𝑆)𝐹𝑠 
(A.2) 

where 𝑆[ML
-3

] is the salinity of pore fluid (35 ‰), equal to that of seawater. 𝐶𝑠[-],𝐷𝑠[-], 

𝐸𝑠[-] and 𝐹𝑠[-] are constants of 0.1711726397, 0.1046133676, -34.14836102 and 

1.010769956×10
-9

, respectively. We calculated the hydrostatic pressure gradient of 10.05 

MPa/km by assuming the seawater density of 1024 kg m
-3

. 

 

Firstly we estimate the location of the present BHSZ and the geothermal gradient by 

using the numerical model that is discretised into 50 m (horizontal) × 10 m (vertical) cells 
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and subjected to the boundary conditions: 

T=𝑇𝑜, 0 ≤ 𝑥 ≤ 32 km, 600 m ≤ 𝑧 ≤ 2200 m, 𝑡=0 

∂T⁄∂z=J , 0 ≤ 𝑥 ≤ 32 km, 𝑧 =2200 m, 𝑡>0 

∂T⁄∂z=0, 0 ≤ 𝑥 ≤ 32 km, 𝑧 =600 m, 𝑡>0 

∂T⁄∂x=0, 𝑥=32 km, 600 m≤𝑧≤2200 m, 𝑡>0 

∂T⁄∂x=0, 𝑥=0, 600 m≤𝑧≤2200 m, 𝑡>0 

where 𝐽[ΘL
-1

] is the geothermal gradient,𝑇𝑜[Θ] is the calculated ocean temperature in 

December 2009 (acquisition time of seismic data). The temperature of ocean water at each 

depth (results are shown in Fig. A.1) is the average of the values over the region 18-22
o 
N, 

17-21
o 
W in December 2009, taken from the World Ocean Database (WOD). The geothermal 

gradient in the study area is unknown and two values of 29 
o
C km

-1 
(Davies et al., 2012) and 

46 
o
C km

-1 
(measured at V29-124 (20.07

o 
N, 19.98

o 
W) in a Ewing-type probe, data from 

Global Heat Flow Database) recorded near the site are taken as the end-members to estimate 

the range of the BHSZ location. Some arbitrary values of the geothermal gradient (integers 

between 29 and 46 
o
C km

-1
, not

 
all the modelling results are shown) are also used to 

determine its value based on the seismic observation. Fig. A.1 shows that at time zero the 

observed BSR is within its predicted zone and the geothermal gradient of 35 
o
C km

-1 
has the 

modelling result that fits most with the observed BSR. The discrepancy between the observed 

and modelled BSR at the depths smaller than 1400 mbsf could be attributed to the subsurface 

temperature regime that does not reach the steady state (c.f. Phrampus and Hornbach, 2012). 

It can also be caused by the uncertainties in salinity and gas composition. The salinity 

increase of pore fluid from 35 ‰ to 40 ‰, which may happen during hydrate formation (Liu 

and Flemings, 2007), can shallow the depth of the BHSZ by 5.9 – 12.5 m in the model (not 

shown in Fig. A.1). The base of hydrates hosting 95% methane and 5% ethane is ~40 m 

shallower than that of hydrates comprising pure methane when the salinity of pore water is 

zero (equation for gas hydrate phase equilibrium is from Lu and Sultan, 2008). The 

geothermal gradient can be better constrained by the known salinity of pore fluid and the 

composition of gas trapped in hydrates, but to our knowledge they have not been documented 

before in the study area.  
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Next we use the numerical model to show the variation of the BHSZ since the LGM and 

to accelerate computing we narrow the modelled region. The model is changed to have a 400 

× 200 cell temperature grid (with 20 m × 3.5 m cell dimensions). The initial and boundary 

condition can be written as: 

T=𝑇𝑜
′, 0 ≤ 𝑥 ≤ 8 km , 600 m ≤ 𝑧 ≤ 1300 m, 𝑡=0 

∂T⁄∂z=J, 0 ≤ 𝑥 ≤ 8 km, 𝑧 =1300 m, 𝑡>0 

∂T⁄∂z=0, 

, 

0 ≤ 𝑥 ≤ 8 km, 𝑧 =600 m, 𝑡>0 

∂T⁄∂x=0, 𝑥=8 km, 600 m≤𝑧≤1300 m 𝑡>0 

∂T⁄∂x=0, 𝑥=0, 600 m≤𝑧≤1300 m 𝑡>0 

where 𝑇𝑜
′[Θ] is the initial temperature at 20 kyr ago. The bathymetry is from Fig. 2a and 

assumed to be unchanged since 20 kyr ago. The parameters of physical properties are shown 

in the table A.1. The data of RSL in the past 20 kyr are acquired by linearly interpolation 

from fig.1 by Siddall et al. (2003) (Fig. A.2a). We use the temperature anomalies in Bintanja 

et al. (2008), which were measured by marine oxygen isotope ratio (δ
18

O) records, to estimate 

the variation of the temperature of deep ocean with time (Fig. A.2b). Heat transfer and time 

during hydrate formation and dissociation are not considered. At each time step the reference 

frame of the vertical shift of the BHSZ is the seabed. Eq. A.1 is discretised in space using 

finite differences and then solved using the MATLAB ordinary differential equation (ODE) 

solver, ODE15s. Time-steps are chosen using the adaptive time-stepping functionality of 

ODE15s. 

 

Fig. A.2c shows the BHSZ shoaled in the past 20 kyr at the site where the water depth is 

825 m (its location is marked by the red triangle in Fig. 5). However, there are uncertainties 

in the modelling and some of them stem from the input values of parameters. Results based 

on different data show different degrees of oceanic warming, such as the data from the 

Paleoclimate Modelling Intercomparision Project Phase 3 (PMIP3, the data can be 

downloaded from https://pcmdi.llnl.gov/projects/esgf-llnl/) indicating that the temperature at 

the water depth of 600 – 900 m have increased by 0.8 – 3.9 
o
C since 20 kyr ago. The data of 

BWT and RSL are not directly measured offshore of Mauritainia and may not suffice to 

reveal what happened in the sutdy area. 
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           Table A.1 Parameters of physical properties used in this model 

Parameter Value 

Seawater density 1024 kg m
-3

 

Sediment density (𝜌𝑏) 2000 kg m
-3 

Specific heat capacity (𝐶𝑏) 2200 J kg
-1

 K
-1 

Thermal conductivity (𝑘𝑥,𝑘𝑧) 1 W m
-1

 K
-1 

Geothermal gradient (J) 35 
o
C km

-1
 

Salinity of pore water (𝑆) 35 ‰ 

Gas composition 100% CH4 

Molecular structure of clathrates Type I 
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Figures 

Fig.1 (a) Location of the 3-D seismic survey. The base map is from the online data provided 

by National Geophysical Data Centre (https://www.ngdc.noaa.gov/). Data of geothermal 

gradient and heat flow was measured at site V29-124 in 1977. (b) Bathymetric map showing 

the morphology of the seabed. Red box – study area. PM – pockmark. (c) The RMS 

amplitude map of the BSR in the study area. Red dashed line marks the landward extent of 

BSR and black dashed lines represent isobaths. The seismic features of bands (B) are 

interpreted in section 5.1. C – canyon, HA – high amplitude, LA – low amplitude in this and 

subsequent figures. 
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Fig.2 (a) A representative seismic section showing the typical features of a BSR and the gas 

accumulations sealed beneath it. B-r-b and r-b-r refer to the black-red-black and red-black-red 

seismic loop, respectively. (b) The RMS amplitude map of the BSR displaying three 

strike-parallel high amplitude bands (marked by I, II and III). (c) Interpretation of the cross 

section X-X’. At the seaward edge of the band feature, phase reversal sometimes can be seen. 

The grey colour represents a set of porous thin beds interbedded with less porous ones. The 

brighter red and yellow colours mark the higher saturation of hydrate and gas, respectively. 

PR – phase reversal.  
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Fig.3 (a) Dip magnitude map of the reflection D. Its depth is marked in Fig. 3c. In plan view 

the positive relief of the chimney is marked in the darker colour. (b) A seismic section 

revealing the spatial location of some seismic chimneys. They are marked by the black box. 

We use another colour scheme to highlight the seismic polarity of reflections of the seabed 

(B’) and D (A’). PHAA – positive high amplitude anomalies, FGZ – free gas zone. (c) Inset 

of chimney 7. Six reflections (named as A–F) are picked to describe the amplitude variation 

around gas chimney and the result is shown in Fig. 4. PM – pockmark. 
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Fig.4 RMS amplitude map of the reflections A–F and the BSR (on the left). Their depths are 

marked in Fig. 3c. Vertical black dotted lines indicate the spatial location of chimneys 7, 8, 10 

and 12. PHAAs at the reflection D and E (outlined by white dashed line) are identical and 

interpreted as hydrate deposits. Note that the amplitude values in the reflection A (the seabed) 

are very high and its colour scheme is different from others. The selected examples of the 

PHAAs are zoomed in (on the right). 
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Fig.5 The modelling result of the BHSZ depth varying with time since the LGM. The 

snapshots at three timings (t1-t3) show how the hydrate deposit formed. The red triangle 

marks the location where the depth of the BHSZ is modelled in appendix. 
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Fig. A.1 The modelled locations of the BHSZ with inputs of different geothermal gradient on 

a seismic cross section. Their correlation with the observed BSR determines the geothermal 

gradient. The averages of the vertical discrepancy between the observed and modelled BHSZ 

for the geothermal gradient of 33,
 
35 and 37

 o
C km

-1 
are 26.45, 10.81 and 18.49 m. The inset 

is the temperature-depth plot of the ocean water. 
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Fig. A.2 The variation of relative sea level (RSL) (a) and bottom water temperature (BWT) (b) 

in the last 20 kyr. The modelled depth of the BHSZ is shown in Fig. c. The site is marked by 

the red triangle in Fig. 5. A gas chimney is observed here. mbsf – metres below seafloor. 


