
RESEARCH ARTICLE

An investigation of modelling and design for

software service applications

Maria Anjum1,2☯*, David Budgen2☯

1 Lahore College for Women University, Department of Computer Science, Lahore, Pakistan, 2 Durham

University, School of Engineering & Computing Sciences, Science Laboratories, South Road, Durham DH1

3LE United Kingdom

☯ These authors contributed equally to this work.

* maria.anjum@gmail.com

Abstract

Software services offer the opportunity to use a component-based approach for the design

of applications. However, this needs a deeper understanding of how to develop service-

based applications in a systematic manner, and of the set of properties that need to be

included in the ‘design model’. We have used a realistic application to explore systematically

how service-based designs can be created and described. We first identified the key proper-

ties of an SOA (service oriented architecture) and then undertook a single-case case study

to explore its use in the development of a design for a large-scale application in energy engi-

neering, modelling this with existing notations wherever possible. We evaluated the result-

ing design model using two walkthroughs with both domain and application experts. We

were able to successfully develop a design model around the ten properties identified, and

to describe it by adapting existing design notations. A component-based approach to

designing such systems does appear to be feasible. However, it needs the assistance of a

more integrated set of notations for describing the resulting design model.

Introduction

The software service paradigm—sometimes termed Software as a Service [1] when taking an

implementation perspective, or ServiceOriented Architecture (SOA) [2], when being viewed

from a design perspective—offers scope for the rapid development of new applications and

systems by providing a model for reusing (distributed) implementation elements. Services can

be viewed as a form of component-based system, using a very constrained but powerful form

of interaction between the components, and with some components being provided by exter-

nal agencies. However, guidelines for good practice in the design of such systems is not readily

available.

To date, research into software services has largely focused upon implementation issues.

We are increasingly well provided with tools and frameworks, as well as having a growing

knowledge about how to employ such concepts as negotiation (to select a specific service) and

composition (to integrate the services) [3, 4]. In contrast, the question of how to actually design

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 1 / 31

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Anjum M, Budgen D (2017) An

investigation of modelling and design for software

service applications. PLoS ONE 12(5): e0176936.

https://doi.org/10.1371/journal.pone.0176936

Editor: Le Zhang, Southwest University, CHINA

Received: November 27, 2016

Accepted: April 19, 2017

Published: May 10, 2017

Copyright: © 2017 Anjum, Budgen. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

included in the paper.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0176936
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176936&domain=pdf&date_stamp=2017-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176936&domain=pdf&date_stamp=2017-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176936&domain=pdf&date_stamp=2017-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176936&domain=pdf&date_stamp=2017-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176936&domain=pdf&date_stamp=2017-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176936&domain=pdf&date_stamp=2017-05-10
https://doi.org/10.1371/journal.pone.0176936
http://creativecommons.org/licenses/by/4.0/


such systems has received less attention from researchers, and most examples of service appli-

cations have so far been relatively simple in terms of their form and complexity [5].

However, for the service paradigm to achieve its full potential to deliver real applications

across a range of domains, we need to find ways of formulating and recording design decisions

about such systems in a more systematic manner. In particular, it is necessary to determine

how the relevant properties of such a system may best be visualised for the designer.

This paper therefore addresses the following two research questions.

“RQ1: What properties of software services need to be represented and modelled for the design
of software service applications?”

“RQ2: How well can existing software design notations be used to describe the properties iden-
tified in answering RQ1?

To address these questions, we have undertaken a phased set of studies as follows.

1. An analysis of the key properties of a system constructed using an SOA (Service Oriented

Architecture), by conducting a systematic mapping study [6, 7] of definitions used for an

SOA. The outcomes of this are described in [8]. and have enabled us to establish key charac-

teristics that the design process for a service-based application needs to address.

2. A case study to examine how a ‘realistic-sized’ service-based application (i.e. not a ‘toy’

problem) can be designed around the characteristics identified in our mapping study, what

forms of representation are needed to model this, and what decisions are involved.

3. A systematic evaluation of the design and related description forms used in the case study,

by using a series of structured walkthroughs that involved experts from both the application

domain and the software domain.

We have been able to make a good assessment of the key characteristics of SOA that are

likely to need to be modelled as a part of the design process. We have also been able to demon-

strate that these characteristics can be modelled using established ‘box and line’ notations.

However, this modelling did require some element of reinterpretation of the notational forms,

and there are good arguments for seeking to create a more balanced and unified set of model-

ling notations for the purpose of developing SOA applications. As such, our study can be

regarded as falling into the category of evaluation research [9], as it involves investigating a

problem ‘in practice’ (which in this case, is the design of an SOA-based application).

The paper is structured as follows. We first examine a set of background issues related to

software design in general, the characteristics of service architectures, and existing research

into the design of service-based applications. We describe our research methodology and its

organisation and then introduce our case study, which is related to an application in energy

engineering. We describe the way that the final design model was formulated and described,

and report on the way that this was evaluated. Finally we assess the effectiveness of our

approach and suggest some key topics needing further investigation.

Designing service-based systems

The characteristics of software present significant challenges for the designer [10]. Added to

this, as software is usually being employed to address a need in some other domain, the

designer needs to combine ‘knowledge schema’ from both the computing and the application

domain [11]. As with design activities in general, software design is essentially an ‘opportunis-

tic’ process, and one that involves formulating possible design models, testing them against the

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 2 / 31

https://doi.org/10.1371/journal.pone.0176936


known constraints, and trading off between different qualities in order to identify an accept-

able solution.

For software, the ability to explore design options is also complicated by the difficulty of

describing a design, since the invisibility of software means that design process has to use

abstractions (usually ‘box and line’ notations) to model abstractions (the software itself). Lack-

ing readily-visualisable forms and concepts, software engineering has adopted a rather mixed

bag of ‘box and line’ notations to help record designers’ ideas, and to assist with explaining

them to others [12].

Designing service-based systems

One of the attractions of the service model is its relatively simplicity when considered from the

software design perspective. The possible forms of interaction are relatively constrained, as ser-

vices are self contained, and the control hierarchy is essentially similar to the traditional ‘call

and return’. As such it returns the design context back to the slightly more tractable environ-

ment of earlier distributed process-based and component-based forms such as MASCOT,

which was based upon a network of processes [13]. Nonetheless, like MASCOT, it still requires

considerable design skill to formulate models for some of the detailed design issues such as

negotiation.

As with any new implementation paradigm, anyone seeking to design a service-based appli-

cation currently lacks much in the way of guidance. As designers gain experience, they might

reasonably be expected to develop and codify relevant knowledge schemas [11]. Hence it may

well be that in the future, the sort of mechanisms currently used to transfer schematic knowl-

edge in software design, such as plan-driven design procedures and design patterns, will also

prove to be practical for service-based models. However, until there is more extensively docu-

mented experience of developing large-scale service designs, the designer who needs to create

a service-based solution is likely to lack both reusable schematic knowledge about how to

manipulate and deploy the available resources, and also lack any established notational forms

that can readily capture the essential qualities of service models.

Software service properties

An early articulation of the software service model, also known as Software-as-a-Service

(SaaS), consists of a demand-led paradigm, whereby a requirement is fulfilled by the assembly

of various services, as and when needed. The distinguishing characteristic of this concept is

that it separates the possession and ownership of software from its use [10, 14]. The SaaS model

has been described as a “software delivery model” by Laplante et al. [2], where services are

delivered on demand over the internet, and underpins the concept of the ‘cloud’.

To design an SOA based application, designers need the means of describing their ideas

using an architectural model that provides a relatively established set of common concepts,

together with notations that embody a shared understanding of how the semantics will be

interpreted for the eventual implementation. To determine the key set of properties of SOA

that needed to be included in a service design model, we first conducted a mapping study of

SOA definitions to determine how the concept of SOA is defined and used [8]. The outcome

of the mapping study was an SOA model that integrates the key elements of an SOA as shown

in Table 1.

From the mapping study we determined that:

• The definitions in the literature differ in their level of abstraction and also in their assumed

context (perspective). From the perspective of a consumer, the service interface

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 3 / 31

https://doi.org/10.1371/journal.pone.0176936


characteristics are the main aspect of interest, whereas for service providers, service imple-

mentation is an important issue. For service developers, service composition and service dis-

covery form challenging tasks, for which they need a solution that is independent of any

technological dependencies.

• The community has produced a number of different definitions of what constitutes an SOA,

but predominantly, has used those from W3C, OASIS and IBM (at least, in those papers

that actually referenced definitions).

• Our analysis includes only those papers that explicitly stated a source for the SOA definition

used. The great bulk of publications that discussed SOA made no explicit reference to any

definition of SOA,.

• There appeared to be little or no recognition of, or discussion of, the need to clarify the

meaning of SOA, at least in the published literature.

Designing applications

The end-user (or consumer) of service based applications includes both those who use an

application and those who develop applications. From the service developer perspective, we

can identify a number of different design approaches currently used by researchers in the SOA

community. These can be broadly classified as follows.

Table 1. Software service properties.

Identifier and Description of Characteristic

Architecture Describes the overall organization of a system built from services as the elements, interacting

through the use of mechanisms such as SOAP. Related terms: application architecture, architectural

paradigm, architectural style, software architecture

Binding The time at which a particular service (and provider) is chosen. In an SOA, this can be at the time of

use through dynamic binding.Related terms: agility, dynamic binding, flexibility, loose coupling, on demand

Capability The purpose of an SOA as viewed from an end-user perspective. Related terms: business

functions, resource management

Composition The process by which a given set of services are assembled in order to provide a single overall

service that meets an end-user need. Related terms: choreography, integration, orchestration, service

composition

Contracts The mechanisms for agreeing upon the terms and conditions under which a service will be

delivered. Related terms: service contracts, service negotiation

Delivery The process that follows composition, whereby service functionality is supplied by the service

providers to meet end-user needs. Related terms: service interaction, service invocation, service provider,

service consumer

Distributed Sources An SOA is implicitly capable of being created using services that are delivered across a

network and hence that are not necessarily owned or controlled by the end-user or their agents. Related

terms: different ownership, distributed system architecture, network environment, network

Identity The characteristics that describe a particular service and the means by which these may be

accessed. Related terms: broker, service discovery, service publication, service registry, service

requester, service description

Interoperability The mechanisms that make it possible to deploy services without any knowledge of their

location or the means by which they are supplied. Related terms: connection technology, framework,

hardware independent, interfaces, language independent, platform independence, standards,

communication, messaging protocols

Packaging The characteristics of service implementation that enable it to be treated as a unique and distinct

identity. Related terms: component model, encapsulation, granularity, reuse, reusability, self-containment,

web services

Unclassified Related terms: measurable predictions, service bus

https://doi.org/10.1371/journal.pone.0176936.t001

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 4 / 31

https://doi.org/10.1371/journal.pone.0176936.t001
https://doi.org/10.1371/journal.pone.0176936


• Those that are centered upon service life cycles, usually termed service oriented software

engineering (SOSE). These include Offermann & Bub [15], Gu & Lago [16], Papazoglou &

Heuvel [17], Erradii et al. [18], and Karhunen et al. [19]. These have covered Service Ori-

ented software development life cycle at different levels of detail.

• Those that make use of UML profiles. Some of these have used UML profiles combined with

modelling techniques such as model driven architecture (MDA). The studies described in

Ali et al. [20], López-Sanz et al. [21], Zhang et al. [22], Warda et al. [23], Amir & Zeid [24],

and Stojanovic et al. [25] come into this category. In these, the diagrammatical forms used

are limited to class and component diagrams. In addition, there is extensive use of stereo-

types to explain SOA features.

The relative immaturity of SOA ideas also means that it has not yet been supported by any

widely used design support tools.

Research methodology

Here, we explain our rationale for adopting a case study model as our core research method,

and describe the form this took.

Rationale for using a case study model

A positivist framework for case studies has been developed by Yin [26], who describes a case

study as being an “empirical enquiry”that: “investigates a contemporary phenomenon within

its real-life context” (a laboratory experiment removes it from its context); and “does so espe-

cially when the boundaries between the phenomenon and the context are not clearly evident

and so may not be easily distinguished”.

So, a case study can be used to cope with the technically distinctive situation where there

will be many more variables of interest than data points, which is typically the situation for

studies of software design. A case study analysis therefore relies upon multiple sources of evi-

dence, using triangulation between these to give confidence in the validity of the outcomes.

From the experience of conducting the mapping study on SOA we observed that, while the

examples commonly used in the SOA literature may be adequate for illustrating the proposed

methods, they are artificially constructed, lack originality and are narrow in scope, as has been

observed by other researchers too [5, 27].

Espinha et al. conducted a literature survey on the case studies used in SOA research and

reported fourteen case studies published in the CSMR, ICSE and ESEC/FSE conferences and

also from an European S-Cube project on service based applications (SBA) [5]. They identified

case studies that are too small to be representative of real service based systems such as [28]

and [29], and also some that include more services, such as [30], although the details of this are

not available. The same situation applies to industry-based reports. Researchers may mention

that their approach has been applied to real applications, but provide no details.

Design of the case study

We adopted an exploratory role for this case study, with the aim of helping future model build-

ing by identifying what the key decisions were, and how the system was modelled in order to

help with these [26]. This was organised as follows.

Case Study Domain: The case study was taken from the energy engineering domain as we

had ready access to the resources within the school of Engineering & Computing Sci-

ences at Durham University. Within this domain, the concept of smart grids, which is

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 5 / 31

https://doi.org/10.1371/journal.pone.0176936


similar to that of a small scale energy zone (SSEZ), is considered an important idea in

future power systems. The concept involves organisation of distributed power generation

in a form that is local, and also independent of the grid. This helps with supplying power

when there are major and widespread blackouts in case of extreme weather conditions

such as ‘Hurrican Sandy’ in 2012 [31]. Further to this, when prediction models are inte-

grated with power systems, this can help to remove loads from the grid by estimating

future power needs in the area [32].

Case Study Type: While a multiple-case study could provide stronger evidence, the need for a

suitably large example meant that we were limited to using a single-case study, using a ‘typi-

cal’ case.

Unit of Analysis: The ‘case’ (or unit of analysis) was the design for a small scale energy zone

(SSEZ) control system. This is a real time system that is run by an Energy Services Company

(ESCO) to manage the electrical network and fulfil energy needs in an SSEZ.

We constructed an operational model of the SSEZ control system in the form of a use case.

(To reduce scope for confusion of terms, we will refer to this as the “SSEZ use case” in the

rest of this paper.) This contains electrical network information, operational goals, key fac-

tors related to control system and the data involved. This was then instantiated as a set of

scenarios, using specific parametrisation options. The purpose of the model was to provide

planning at 30-minute intervals, allowing the ESCO to change the status of its electricity

generation resources as necessary, or to purchase additional resources from the grid.

Characteristics of the SSEZ Use Case: These were: the need for negotiation with providers

and consumers of electricity involving use of multiple distributed sources of information to

make decisions; and for adaptability of the model. The SSEZ requires information from dif-

ferent sources (network and service providers). The involvement of service providers

requires negotiation to be present in the case study. As this is a real time system, adaptabil-

ity is also an important attribute of this case.

Data Collection: The case study data was collected both through the use of method triangula-

tion [33], as shown in Fig 1 and also by employing triangulation of multiple data sources.

Table 2 provides details about this. These techniques were used to increase the validity and

consistency of the data. In a case study, the confounding factors that may bias the result are

not entirely known or cannot be controlled. This is because in a case study the researcher

does not have the same control as in an experiment. Yin suggests two ways to handle this

problem:

• by conducting multiple case studies or use of multiple cases in a single case study (an

option that was not really available to us);

• by using triangulation to gather evidence in a single study (as adopted here).

Time Period: The time needed to perform the case study was longer than the period specified

in the research protocol. One reason for this was the iterative approach of collecting data

and then analysing it to identify gaps in the information. A second reason was the time

required to obtain relevant domain knowledge. Because of its interdisciplinary nature,

vocabulary played an important role in data collection and representation, and so clear defi-

nitions of terms were needed to ensure that any documents produced could be understood

by both disciplines.

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 6 / 31

https://doi.org/10.1371/journal.pone.0176936


Analysis: The scale and complexity of the problem meant that it was impractical for us to con-

struct an actual system, not least because this form of energy engineering is also an emerg-

ing rather than an established form. We considered two options for evaluating our design:

• using a simulation of the SSEZ;

• using design reviews or walkthroughs with expert participants.

Since we wished to gain insight into the design process overall, as well as the effectiveness

Fig 1. Overview of the case study design.

https://doi.org/10.1371/journal.pone.0176936.g001

Table 2. Data collection.

Method Triangulation & Data Triangulation

SSEZ Use Case: The data about the use case was collected through interviews with domain experts and

the study of supporting documents that include research papers, technical reports, and thesis. The

information collected in one interview session was used in the next with some additional documents to

collect feedback. This was important to identify inconsistency in the collected data and to make sure that

the domain information has been understood correctly. The interview sessions (formal and informal) with

domain experts helped with understanding the domain and the supporting documents provided sources for

its vocabulary. This was mainly a process of requirements elicitation.

Design: The SOA design model constructed as the part of our case study provides details about the service

and functional components created from requirements. The design elements are presented through

abstract diagrammatical forms.

Evaluation: The walkthroughs and interviews were conducted as part of case study for the validity of use

case and the design. The data for evaluation was collected both from walkthrough sessions and also from

interviews with participants. The data about walkthrough sessions contains details about the review. The

data was recorded in audio and video files. The feedback about walkthrough process, and design

presentation was collected through interviews.

https://doi.org/10.1371/journal.pone.0176936.t002

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 7 / 31

https://doi.org/10.1371/journal.pone.0176936.g001
https://doi.org/10.1371/journal.pone.0176936.t002
https://doi.org/10.1371/journal.pone.0176936


of the design notations employed, we adopted the second approach, since a walkthrough

can provide qualitative information and insight.

The energy engineering use case

The SSEZ use case describes the situation where an Energy Services Company (ESCO) is main-

taining its electrical network by generating electricity through renewable energy resources and

trying to avoid the use of conventional power where possible. The main objective for the

ESCO is to provide electricity to its customers in an efficient, reliable and cost effective way.

To achieve this target, the ESCO needs to be able to predict demand and generation for its

electrical network; to take decisions, where required, about the buying and selling of energy, as

well as when to adopt an islanding mode. Islanding refers to the situation where distributed

generator(s)(DG) continue to maintain the network voltage and frequency within regulatory

limits to a location even after disconnection from the power utility [34]. and to take decisions

about demand side management (DSM). For this, the ESCO has to gather and process network

and commercial data from different sources and use this to make real-time decisions.

The SSEZ use case defines an operational model for the SSEZ. An SSEZ is defined as a con-

trollable low voltage distribution network (LVDN) that consists of a number of different small

scale embedded generators (SSEGs), distributed energy storage units (ESUs) and customer

demands [35]. Fig 2 shows the basic configuration that we used for the SSEZ use case (for prac-

tical purposes, we needed to employ a specific configuration in order to be able to resolve

some of the design choices). This includes a number of generating sources (wind farm, photo-

voltaic panels), a storahe device, and some specific loads that would be expected to have differ-

ent profiles of power use (industry, domestic, commercial). Fuller details are available in [36].

Limitations of the case study

Case study research, especially when using single-case forms, does have some implicit limita-

tions. As Yin [26] observes, even having two cases can provide more compelling evidence and

also an element of replication.

Perhaps the biggest challenge for single-case forms is how ‘representative’ the choice of the

case is. So, given that the scale involved would have made it difficult to use other than a single-

case form, we need to consider whether our choice of the SSEZ use case was a suitable one for

an essentially methodological study. From a service perspective, the SSEZ control does involve

a good mix of ‘local’ services and services that can be provided by other suppliers. It is certainly

more ‘real world’ than the examples considered in other studies, but there does remain some

risk that it exhibits some features that may have unduly influenced design choices to a degree

that would not occur for most other systems.

Conducting the case study

The main actions of the case study itself involved:

1. Identifying how the characteristics of the SSEZ use case could be matched to the character-

istics established for an SOA.

2. Developing a software service-based design, assuming a set of likely services as well as those

already existing.

3. Conducting an evaluation of the design using both domain experts and software engineer-

ing experts.

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 8 / 31

https://doi.org/10.1371/journal.pone.0176936


Matching the characteristics

To confirm that the use of an SOA was appropriate for the SSEZ use case, we began by inter-

preting the SSEZ use case in terms of the characteristics described in Table 1, but omitting

delivery and packaging as not being relevant in a design context.

• Architecture: Control of the SSEZ requires information to be collected by a centralised ele-

ment. This means its structure can take the form of a ‘tree’ where lower level services (net-

work information) provide information for higher level services such as a control service.

• Binding: The state of the SSEZ needs to be reviewed at regular intervals, to take account of

current values and forecasts for demand, provision and weather. Each review may involve a

different set of information sources, especially as resources providing generation and stor-

age may be added and removed from the current profile of the SSEZ. The model of late

(runtime) binding provided in an SOA is therefore particularly well-matched to this need.

• Capability: The meaning of this is the same for both an SOA and for the system as a whole,

and is concerned with the overall functionality. For an SSEZ, it is related to the ability of the

software to use available information to perform the necessary resource management, by

modelling demand and provision for the next period of time and then plan any changes

accordingly. That in turn is related to the set of algorithmic models used for prediction, the

state of the system at any time, and the forecasts for the next period.

• Composition: Composition involves bringing together multiple sources of information to

facilitate a decision. An example of this in an SSEZ might be the use of information from a

wind farm about its current output, together with forecasts of likely demand and a weather

Fig 2. The electricity network used for the SSEZ use case.

https://doi.org/10.1371/journal.pone.0176936.g002

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 9 / 31

https://doi.org/10.1371/journal.pone.0176936.g002
https://doi.org/10.1371/journal.pone.0176936


forecast, to decide whether to increase or decrease provision from other sources. Composi-

tion is a core feature of a software service model, which also provides the means to select the

source of a service (e.g. weather forecast) when the request is issued (late binding), and

hence this characteristic makes a service solution well matched to needs of an SSEZ.

• Contract: The contracts are rules of engagement with other services or between service pro-

vider and consumer. In the case of an SSEZ, contracts for different types of forecasting ser-

vices may address factors such as the granularity of data and service availability. If the rules

of engagement change, then any subsequent re-negotiation may result in a change of service

provider.

• Distributed Sources: The SSEZ is well matched with this implicit feature of an SOA. The

data coming from generation, demand and weather is already coming from distributed

sources with different ownership.

• Identity: The characteristics of demand, generation, weather and their forecasts are differ-

ent and are accessed through different means. Collectively, these characteristics help the

generation forecast service to select the most suitable service provider for its processing.

• Interoperability: For an SSEZ this is an important feature as its elements need to be able to

communicate information with each other in a consistent framework. To ensure interopera-

bility, the electrical power industry is working on two standards: Common Information

Model(CIM) and IEC 61850. In an SOA, interoperability is provided by a combination of

XML-based messaging forms and an ontological model that provides the necessary seman-

tics. This is clearly highly consistent with the above.

Having confirmed that an SOA was capable of modelling the key issues for the SSEZ use

case, we then proceeded to develop a design for this.

Creating a design model

A designer’s goal is to transform what is usually an incomplete and ambiguous set of require-

ment specifications into a high level system design, expressed in formal or semi-formal nota-

tions [37]. The process of design is a creative task, and is commonly performed by using an

‘opportunistic’ strategy, in which the design decisions are driven by the ‘unfolding’ under-

standing of the requirements as well as the emerging design model [38].

The design produced at the end of such a process will be the outcome from multiple itera-

tions of of the activities involved in exploring and exercising the design model, as it is usually

not possible to identify all of the features in the first round. Also, the identification of one

aspect may lead to the discovery of the need for a new service or change some features of one

already identified. Therefore, there is no specific order for performing the type of design activi-

ties discussed below and they are usually interleaved to some degree.

The design process. While describing the design for the SSEZ use case, we have also used

the term ‘service-based control system (SBCS)’; which means ‘the software system that is going to
control the activities of the SSEZ’.

Beginning from a set of brainstorming sessions, and from a process of iterative design, we

were able to identify the following design attributes for the SSEZ problem.

1. Identification of Functional Components (functional decomposition of the system)—

We partitioned the system into a set of functions through which the overall system func-

tionality can be realised. This was based on the well established concept of ‘separation of

concerns’ [39].

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 10 / 31

https://doi.org/10.1371/journal.pone.0176936


The goal of this activity was to identify the main functional components and the outcome

was a list of operations through which the overall system functionality can be realised.

Nine main functional components were identified, as shown in Table 3.

2. Identification of Potential Services—Identification of services is associated with determin-

ing how the functional components identified in (a) will be delivered. A service may pro-

vide one or more functions, and may contain a logical grouping of functions within itself.

The inputs and outputs determine the extent to which services depend upon each other.

This helps with planning composition of services and with construction of the workflows.

Therefore the main goals of this activity are:

• Identification of services (the functionality that is reusable and will need to be obtained

from a third party or be provided as service to others)

• Identification of service roles (what functionality the service will provide)

• Identification of inputs and outputs of these services (which will lead to identifying of

dependencies and developing a composition flow)

For the SBCS, the goals achieved through this activity helped to develop the possible inter-

faces for the services (which can be realised through a class diagram). They also helped to

define the parameters needed for service invocation.

The output from this activity was a list of identified potential services, including their

roles with possible inputs and outputs, as shown in Table 4.

Note that the controller that coordinates the process was not considered to be a service

because it does not offer a service outside of its own system. Instead, it makes use of the

services listed in Table 4. Therefore, F2 and F6 are part of the controller and are not repre-

sented as a service. Also, the service (SHD) responsible for providing information about

historical demand is identified as part of the demand prediction service.

3. Functional Traceability—The functional components were allocated to the services by

means of a ‘traceability table’. This specified the mapping between functional components

and the candidate potential services. The purpose of using functional traceability was to

Table 3. Functional components (modules).

Functional

Components

Roles

Get system states (F1) Report SBCS states from three different sources (generation, demand and

storage).

Assess power balance

(F2)

Check balance in current demand and generation.

Get weather forecast

(F3)

Get weather forecast for SBCS.

Predict demand (F4) Predict demand based on current and historical data.

Predict generation (F5) Predict generation based on weather forecast and current generation status.

Assess level of change

(F6)

Check different options to assess the type of change required to maintain an

energy balance.

Get market price (F7) Get energy market price for SBCS.

Update system states

(F8)

Take action by changing system states.

Update system log (F9) Update data in the SBCS system database.

https://doi.org/10.1371/journal.pone.0176936.t003

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 11 / 31

https://doi.org/10.1371/journal.pone.0176936.t003
https://doi.org/10.1371/journal.pone.0176936


document how a function was provided by specific services. This modelling step helps both

to identify service granularity and to determine how cohesive they are. To identify which

service was contributing to the realisation of a particular functional component we also

used a functional ‘realisation’ table. The purpose of these two tables was to:

1. track which service was being used to provide specific functionality and where this func-

tionality would be available locally.

2. identify the services that provide inputs needed to realise the functional component,

where this is not part of their operations.

The result of this activity was a mapping between identified functional components and

candidate services which was again represented through the use of tables.

The traceability table shown in Table 5, represents the role that each service plays in pro-

viding the functionality listed in Table 3 for the SCBS. A cross indicates the involvement

of a service in a function and its absence means that the service plays no role in the reali-

sation of that function. The functional components, F2 and F6 are not provided directly

Table 4. Service role, inputs and outputs.

Services Roles Inputs Outputs

Service to get generation

output (SG)

Provides data from wind turbines. - generation output, wind

speed

Service to get demand (SD) Responsible for providing current demand data. - energy consumption data

Service to get historical

demand (SHD)

Responsible for providing historical demand data. - energy consumption data

Service to get storage status

(SS)

Provides current state of charge (SOC) and storage

status (SS) for storage unit.

- SOC, SS

Service to predict demand

(SPD)

Provides demand prediction. current demand, historical demand,

weather data

demand prediction data

Service to predict generation

(SPG)

Responsible for providing generation predictions. current generation, weather data,

location

generation prediction,

wind speed

Service to get weather forecast

(SW)

Provides weather data (current and forecast). location wind speed, temperature

Service to provide energy

market price (SM)

Responsible for providing the energy market price. - buy and sell price

Service to maintains system log

(SL)

Updates data in the SBCS database. system states, weather data,

market price

-

https://doi.org/10.1371/journal.pone.0176936.t004

Table 5. Functional traceability.

F1 F2 F3 F4 F5 F6 F7 F8 F9

SG ×
SD ×
SS ×
SPD ×
SPG ×
SW ×
SM ×
SL ×

https://doi.org/10.1371/journal.pone.0176936.t005

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 12 / 31

https://doi.org/10.1371/journal.pone.0176936.t004
https://doi.org/10.1371/journal.pone.0176936.t005
https://doi.org/10.1371/journal.pone.0176936


by services and are part of the controller, therefore no crosses are included in these two

columns.

Table 6 shows how the services have been mapped to functional components in order to

represent how the functionality of these functions is realised. These functions are not

part of a service, rather they use information from the services to perform their tasks.

4. Service Interactions—The profile of interactions between services was described by using a

tabular structure where services are ordered on the horizontal and vertical axes, in the same

order. The purpose of interaction could be to get data or to provide a function for other ser-

vices.

The interaction of services can also be synchronous or asynchronous. This is an important

design choice and depends on the requirements of the system, since it affects the way ser-

vices are implemented. The important factor is that services are considered stateless and

scalability is considered an important factor in SOA design. However, the application

domain has its own constraints that also effect the design choices. For the SBCS, the result

of this activity was a table structure representing the service interaction pattern.

In Table 7, services are listed along the x-axis and the y-axis in the same order, and the table

shows where services interact with each other, including the controller (represented by C).

The cross indicates service interactions and absence means no direct communication

between services. We found this representation useful in terms of identifying how services

interact and depend upon each other.

Table 6. Functional realisation.

F1 F2 F3 F4 F5 F6 F7 F8 F9

SG × ×
SD × ×
SS × ×
SPD × ×
SPG × ×
SW × ×
SM ×
SL

https://doi.org/10.1371/journal.pone.0176936.t006

Table 7. Service interactions.

SG SD SS C SHD SPD SPG SW SM SL

SG ×
SD ×
SS ×
C × × × × × × × ×

SHD ×
SPD × × ×
SPG × × × ×
SW × × ×
SM ×
SL ×

https://doi.org/10.1371/journal.pone.0176936.t007

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 13 / 31

https://doi.org/10.1371/journal.pone.0176936.t006
https://doi.org/10.1371/journal.pone.0176936.t007
https://doi.org/10.1371/journal.pone.0176936


Design decisions for the SSEZ. The design was developed to be independent of any

implementation technology, and some key decisions associated with the SBCS design are dis-

cussed below.

Controller: The Controller was not considered to be a service. This is because it initiates the

‘control cycle’ periodically, and for that it needs state information of the SSEZ electrical net-

work, have to consider technical constraints and priorities set by operating policy.

Also, the decision to make the controller a service depends on the ESCO’s long term policy

about its business. In present design, the ESCO is using third party services to facilitate its

energy zone, and the controller is part of its internal system. Also, the ESCO is not selling

services to anyone outside the zone. In future, if the ESCO decides to provide the function-

ality of the Controller as a service to other ESCOs or other SSEZs then it would need to be

designed differently. In that case, the controller can be considered as a service and it will

need network related information and other operating constraints. Therefore, the decision

to consider a particular element of functionality to be a service is appropriate when there is

more than one consumer of the service.

Registry: In our design, the service registry was assumed to be owned by the ESCO itself. This

decision was made because of the nature of the application domain. We regard it a domain

specific decision because in a control system, time is an important factor and using a third

party registry could be a possible constraint in accessing services in time.

Market Service: The Market service was represented as a single service provider by consider-

ing the present situation where the U.K. national grid forms the only distributor.

To make this scenario more complex, it can be assumed that this service is offered by differ-

ent service providers, as in the case when a neighbouring ESCO offers its service. This sce-

nario involves important decisions by the controller and use of the registry.

First, it adds further choice for the Controller: such as whether to buy ‘green energy’ (pro-

duced from reusable resources) from a neighbouring ESCO, or to use ‘brown energy’ from

the national grid. Second, where there is more than one possible service provider for gener-

ation, we need to add the relevant information to the registry, and the registry provides a

mechanism for doing this. So two levels of decisions will be involved for buying energy.

First, using the weather to select green or brown energy, second, selecting the right service

provider. In doing so, the time required to complete this activity needs to be critically ana-

lysed.

In this design, we sought to generalise our use case by employing a scenario where we have

a fixed service provider for some services and then more than one provider for other ser-

vices. Also, we allowed for the possibility of having different contracts with these providers,

where these could be long as six months to one year. Therefore, in the case of long or short

term contracts, the time constraint discussed above could be eliminated. This feature is

related to the application domain and depends on the business strategy of the ESCO.

System States Service: This service is logical and internal, responsible for collecting and pro-

viding network status to the controller.

Weather Service: Weather data includes temperature, wind speed, wind direction, solar irradi-

ance, cloud conditions, along with information about the area. The level of detail (usually

with regard to time intervals) offered by each weather service may be different.

We made the decision to include the weather service early in the process, because on each

cycle, the SBCS needs to model two situations regarding the state of the SSEZ i-e. present

and future. The current weather information is treated as being part of the current system

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 14 / 31

https://doi.org/10.1371/journal.pone.0176936


state and is also used to maintain history about the condition of the zone. The weather fore-

cast is required for predicting the future state of the zone and assessing the effects upon this

state of scheduled calendar events such as sport fixtures and major holidays that could

change demand patterns.

The ESCO takes generation prediction and demand prediction services from a third party.

The level of detail in these services could differ as services could be very simple ones that

address weather information, demand and generation values and provide predictions for

these or they could be realised as more powerful services that require network information,

and location information along with current demand and generation data.

At a later stage, the ESCO might consider providing these services as part of its business

policy. This decision will effect the way prediction services are accessed. A prediction

model consisting of these services will need to be developed and weather services will

become part of this model.

Network Configurations: These are technical constraints that include low level details about

the electricity network (such as assets information) that are not included in the design. This

role is associated with the Controller.

Operating policy: This is required to determine how decision making will be performed at dif-

ferent levels. The policy determines the priorities that the Controller uses when making

decisions. If policy is that the SBCS will try to remain self sufficient then in case of an

increased demand in the zone, the first priority for the SBCS will be to seek to defer this.

However, if the highest priority is to meet customer demand then the SBCS have to import

power from the grid. In that case it also has to evaluate the use of green and brown energy

and consider its policy about the use of brown energy.

Non-functional Features Design time non-functional attributes are considered, such as time

and cost. These provide the main selection criteria for the services though the availability of

the service at run time might also influence the choice made by Controller.

Representing the design model

We used the viewpoint classification described in [12] to categorise the set of properties that

describe the static and dynamic features of the SOA design model. To represent these, a mix of

functional, behavioural, constructional and data modelling notations need to be employed.

We made use of representational forms commonly used with other architectural styles to

represent the viewpoints, as there are no generally accepted notations used in SOA design.

Making use of existing forms of notation has the benefits that there is likely to be some tool

support available (at least, for producing the model, if not necessary for checking it), and that

the interpretations are familiar. What we describe here is our final choice of representation

forms, after some element of trial and error regarding the forms used. In our examples of the

representational forms we have also tried to keep our descriptions of the SSEZ to the same

level of abstraction as nearly as possible.

Table 8 explains the purpose of using a particular representation, and the viewpoint that it

is intended to provide. Some points to note about our choices are as follows.

• Both Data Flow Diagrams (DFDs) and UML activity diagrams have been used to show the

functional aspects of the SBCS. A DFD provides a ‘big picture’ of the SBCS and can aid with

functional decomposition of the system. The activity diagram can be used to provide more

detail about the processes.

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 15 / 31

https://doi.org/10.1371/journal.pone.0176936


• The activity diagram is particularly useful for representing how services interact with each

other in order to perform a specific task or to realise a business process. During service com-

position, a workflow is generated that describes the sequence in which services will be

assembled and executed. An activity diagram can be used to describe this.

• The UML class diagram serves two purposes. It can provide the conceptual decomposition

of the system into services. It can also be used to model service interface information.

• The UML component diagram has been used to show how system components and services

are interacting with each other. (The interfaces that are provided and required by them.)

This also helps to present the physical and logical views of services.

We now examine these in a little more detail, illustrating their role with elements from the

SSEZ use case.

Data flow diagram (DFD). The form of DFD notation introduced by De Marco [40] pro-

vides a useful abstraction of functional nature of the overall system, and has been widely

employed for analysis. For Structured Analysis [41], the DFD provides a well established way of

representing processes, external entities, data flow and data stores using symbols that are visu-

ally distinctive—which also helps in managing the diagrammatical complexity [42].

Fig 3 uses a DFD to represent an abstract view of the SBCS by modelling the interactions

between its processes, the external entities that it communicates with, and the data it stores.

Information about system state is treated as three external entities that provide information

about energy consumption, energy generated and energy stored in the zone. Current and pre-

dicted buy and sell prices are taken from the Market Service. The Weather service provides cur-

rent and future weather data. Demand and the Generation prediction services provide the

prediction values to evaluate the likely future condition of the SSEZ.

Class diagram. The UML class diagram was used to represent the static features of the

SBCS. In Fig 4, a service model for the SBCS is represented using a class diagram. The opera-

tions that services offer and perform are listed in the rectangular boxes. The interactions

among services which show their dependencies on each other are represented through dotted

lines. Stereotypes have been used to give more meanings to the service model characteristics.

The Controller’s operations are performed internally, while other services offer interfaces

designed to be invoked. For example, the GenerationPrediction Service takes data from the

Weather Service and Generation Service and provides predictions to the Controller. The

DemandPrediction Service, invokes the Demand Service and provides demand prediction to the

Controller. The SystemLog Service is a service that is dependent on the Controller, which it

accesses to get the data needed to maintain the system history.

Table 8. Purpose, representational forms and viewpoints.

Purpose Representation Viewpoint

Problem oriented view of system with its inputs, outputs and processing elements Data flow Diagram Functional

Service operations and relationships Class Diagram Constructional

System components and Service interfaces, relationships, and service providers Component

Diagram

Constructional

System flow with functional components internal and external to the system, sequencing and ordering of

activities

Activity Diagram Behavioural/

Functional

Interaction and order of interaction among services over time Sequence Diagram Behavioural

Overall system behaviour, interaction with services and decisions by the control Flow Chart Behavioural

https://doi.org/10.1371/journal.pone.0176936.t008

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 16 / 31

https://doi.org/10.1371/journal.pone.0176936.t008
https://doi.org/10.1371/journal.pone.0176936


Component diagram. The UML component diagram has been used to represent the

interactions of services, their interfaces, and any dependencies between system components.

This also provides information about the interfaces that are offered by services and the ones

required by system components.

We have used a component diagram to represent:

• dependency among services and SBCS components;

• the interfaces provided by services and used by components;

• information about service providers, such as where a choice of more than one service pro-

vider is available. This information is helpful when we have a mix of fixed and multiple ser-

vice providers. It also helps to decide whether there is a need to use the registry in the case of

the availability of fixed service provider or whether it should be treated as a static binding.

We consider this to be an important design decision, as this will add or remove the process-

ing of the searching service from the registry.

In Fig 5 we have divided the SBCS into two main components: the controller and the pre-

diction model. These two components are internal to the SBCS and use other services.

The Energy Market Servicehas a fixed service provider. This service interacts with controller

to provide current market buy and sell price.

Fig 3. Data flow diagram (DFD) with details about entities and data.

https://doi.org/10.1371/journal.pone.0176936.g003

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 17 / 31

https://doi.org/10.1371/journal.pone.0176936.g003
https://doi.org/10.1371/journal.pone.0176936


The Weather Service is shown as having two possible service providers. For this reason it is

necessary to add a registry to the SBCS functional components. The registry component will

maintain information about the available weather service providers and any non-functional

information that includes the time and cost of using these services. Further, the weather service

used here is also providing current weather conditions for the controller. So each time the con-

troller accesses this service there is the possibility that a different service provider might be

selected.

The services interacting with the prediction model also have multiple choices of service pro-

vider. It is possible that the Weather Service that provides current weather to the Controller will

be different to the one that is used by the Generation Prediction Service and the Demand Predic-
tion Service. Again, this means that each time the Controller executes its process, a different set

of services might be selected. The dotted arrow going from the prediction model to the con-

troller represents the decision that this component is executed as part of the controller

component.

Fig 4. Class diagram for service dependencies and operations.

https://doi.org/10.1371/journal.pone.0176936.g004

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 18 / 31

https://doi.org/10.1371/journal.pone.0176936.g004
https://doi.org/10.1371/journal.pone.0176936


Activity diagram. The UML activity diagram provides a workflow-oriented view of a

problem by capturing both functional and behavioural aspects. We have used an activity dia-

gram to represent the overall flow in the SBCS, and for different scenarios that show beha-

vioural aspects.

Fig 6 describes the main flow of the SBCS. The process starts by accessing the SBCS states

(consumption, generation and storage), and the weather forecast data as well as assessing the

current power balance in the SSEZ. If no changes are needed, the system simply updates the

log and process ends. If there is a difference between the current state and the predicted

demand and generation, the process examines the system states and market prices to deter-

mine what options are available, and makes a choice from these.

Sequence diagram. The role of the UML Sequence diagram is to represent the communi-

cations that occur between services over time.

Fig 7 provides an overall view of service interactions. The Controller sends requests to Sys-
temStates Service to collect information about system states from the Demand Service, the

Fig 5. Component diagram for SBCS.

https://doi.org/10.1371/journal.pone.0176936.g005

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 19 / 31

https://doi.org/10.1371/journal.pone.0176936.g005
https://doi.org/10.1371/journal.pone.0176936


Fig 6. Activity diagram to show overall SBCS flow.

https://doi.org/10.1371/journal.pone.0176936.g006

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 20 / 31

https://doi.org/10.1371/journal.pone.0176936.g006
https://doi.org/10.1371/journal.pone.0176936


Generation Service and the Storage Service. A closed loop represents where the Controller uses

the input to assess the power balance. It also sends a request to the Weather Service to get a

weather forecast. The DemandPrediction Service and GenerationPrediction Service are then

accessed to get demand and generation data. On the basis of weather forecast data, together

with the demand and generation prediction data, the Controller is able to predict power bal-

ance. A request is also sent to the Energy Market Service to get the current and predicted buy

and sell prices. The Controller checks the level of change required in case of any variation in

energy balance. Finally it communicates with the SystemLog Service to log system states.

Design evaluation

The validity of a case study is determined by the reliability of the results [43]. Here, ‘reliability’

has been interpreted as meaning the quality of the resulting design. We discuss the way that

the evaluation of our design was performed, and then examine the conclusions that were pro-

duced from this in terms of our original research questions.

Fig 7. Overall system interaction view.

https://doi.org/10.1371/journal.pone.0176936.g007

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 21 / 31

https://doi.org/10.1371/journal.pone.0176936.g007
https://doi.org/10.1371/journal.pone.0176936


Design of the evaluation

In discussing our research design, we noted that a key role for the evaluation process was to

perform data triangulation, gathering different elements of evidence in order to identify how

far these agreed or disagreed. The challenge was therefore to identify as many sources of data

as possible. While cross-checking across the diagrams making up our design model allowed us

to informally assess its completeness, we need to find a way to ‘exercise’ the model, both in

terms of how it would perform (the technology) and how well it would meet the needs of the

domain (the application).

To do so we chose to evaluate the case study results by employing peer review (in the form

of a walkthrough) a form which could be used to evaluate both the technical content and qual-

ity of the work [44]. We considered the walkthrough technique to be appropriate for our pur-

poses for two reasons:

• we could not find any application that could form the baseline for any comparative form of

study; and

• our choice of case study topic meant that the validation process needed to employ knowl-

edge from both the technology and application domains.

Hence, the walkthrough was performed by involving experts from the energy domain as

well as software engineering.

Since the walkthrough was used for an academic purpose, which is not the usual way it is

used, we considered it appropriate to employ an element of method triangulation by combin-

ing this with an action research component, allowing us to tailor the walkthrough model if

necessary. Action research is ‘cyclic’ approach and is based on the process of ‘plan-act-reflect’
[33]. Hence, after each walkthrough session, interviews were conducted with the participants

in order to collect feedback about the walkthrough process and the design presentation.

The main weakness of our choice of evaluation method is that both data and method trian-

gulation elements draw upon the use of a shared mechanism. While this could have been

reduced by using separate walkthroughs for the technology and application aspects, we con-

cluded that the benefit of having a degree of interaction between two outweighed any

disadvantages.

The details about the conduct of the walkthrough are discussed below.

Form of review: A walkthrough is largely qualitative in form and the documents are made

available to the review committee before the evaluation. The reviewers review the document

critically before the session takes place and during the review session, check-lists are used

for evaluation. A set of documents that included the walkthrough protocol, the use case

details, and the design model, were made available to the review team.

We used part of the walkthrough session to present the design, and our approach was

exploratory, discussion oriented and informal. This fits well with the purpose of a walk-

through as described by [45].

Review Team and Roles: As identified in the protocol, the roles for the walkthrough include

the moderator, reviewers and the case study researcher (first author). The session was

chaired by the moderator. The walkthrough protocol was sent to him prior to the session,

together with the review schedule and the questionnaire. However, the use case and design

documents were only sent to the reviewers.

The expert team included two members; one from the energy engineering research group

and other from computer science. To avoid bias, neither expert had previously had any

involvement with any stage of the use case and design preparation. The fourth participant

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 22 / 31

https://doi.org/10.1371/journal.pone.0176936


in the review was the case study researcher, who was responsible for presenting the design,

along with the information about the use case.

Review Schedule: The duration for the review was two hours. This time period is considered

effective for a review session [46] and so was the time period used.

Review Procedure (First Review): The review session was chaired by the moderator who

introduced the team members and provided the detail about the session. The case study

researcher provided an overview of the use case and the requirements. The main elements

of the system and how they link with each other were explained. This was carried out using

a whiteboard. After that, discussion with reviewers was carried out, based on the questions

they raised from the documents provided.

The moderator used the review schedule as defined in the review protocol, dividing the ses-

sion into three categories; requirements, assumptions and design. At the end of each cate-

gory, the questionnaire was used to ensure that all the questions listed in each category had

been covered.

Data and Record Keeping: The review was conducted in an environment where audio and

video facilities were available. A microphone was attached to each member of the team.

Video cameras were allocated to each team member and also to capture the whiteboard

activity. The complete session was recorded, which eliminated the need for taking notes.

The second walkthrough session was largely carried out in the same manner. However,

there were some modifications including the ones that were identified through the interviews

with the participants, and some that were due to unforeseen reasons.

Review Documents: The first walkthrough identified that there was a need for additional doc-

uments that could help with understanding issues related to both domains. For this reason,

further supporting documents were prepared, which were:

• Diagrams representing a system level view.

• A component diagram

• A flow chart to represent current system flow

• A flow chart to represent part of prediction flow

• A list of acronyms

• A document providing a key for each notation used in the diagrams

• An SSEZ network diagram design

Review Team and Roles: The team members remained the same and no changes were made

in the roles. However, due to an incident on the day of the second review, the moderator

was unavailable, and no arrangements could be made for another one at such short notice.

However, as the review team had established its procedures during the first review, it was

decided to continue to follow these without the moderator being present.

Review Procedure (Second Review): The session was carried out largely using the pattern

employed in the previous walkthrough session

Interviews were conducted following each walkthrough session to collect feedback from the

participants about the walkthrough process and about the presentation of the design. This was

because:

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 23 / 31

https://doi.org/10.1371/journal.pone.0176936


• The walkthrough was conducted with a team that had little prior experience of reviews.

• The walkthrough was used as part of an academic exercise, which is unusual. Therefore, we

considered it necessary to collect participants’ views about its effectiveness. (This provides

an action research element to the review process.)

• The walkthrough involved knowledge about two different domains. It was important that

the reviewers and case study researcher had the same understanding of the problem regard-

less of disciplines.

A semi-structured questionnaire was prepared to support the interview process. The first

part was about the walkthrough process, and included the effectiveness, organisation and any

improvement of the process if required. The second part was about the design presentation

itself, and included the understanding of the design, its presentation and any improvements

required. The interviews were also recorded.

Outcomes from the evaluation

Here we address the two research questions that were posed at the start of the paper.

• What properties of software services need to be represented and modelled for the design of soft-
ware service applications?

• How well can existing software design notations be used to describe the properties identified in
answering RQ1?

The preceding sections present a relatively substantial case study of service design develop-

ment. The subsequent expert evaluation, conducted over two phases, identified no major

issues in terms of the viability of the design, as well as demonstrating that the set of notations

used for the SOA design model provided adequate support for making and recording design

decisions.

We cannot claim that our set of notations is optimum. As is common with the development

of software design notations, we have borrowed from existing box and line forms in a relatively

ad hoc manner as the design evolved, interpreting these as seemed most appropriate.

In terms of Table 1, these notations address most of the characteristics summarised there,

apart from delivery and packaging, which are more related to implementation than design.

Also, our model has taken a rather high-level view of negotiation. Arguably all of the remain-

ing ones are part of our model in some way, and Table 9 shows how each has been

represented.

Table 9. Representing the SOA properties.

Characteristics Notations Used

Architecture DFD, Component Diagram

Binding Component Diagram, Flow Chart

Capability Activity Diagram, Flow Chart

Composition Class Diagram, Component Diagram, Activity Diagram, Flow Chart, Sequence

Diagram

Contracts Class Diagram, Sequence Diagram

Identity Table, Class Diagram

Distributed

Sources

Component Diagram

https://doi.org/10.1371/journal.pone.0176936.t009

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 24 / 31

https://doi.org/10.1371/journal.pone.0176936.t009
https://doi.org/10.1371/journal.pone.0176936


Table 9 therefore represents an answer to the first research question regarding the SOA

properties that need to be modelled and partly answers the second question through the set of

notations employed. We do not claim that this set is complete, and equally it is possible that it

could also be rationalised and reduced. However, given the range of characteristics involved, it

seems unlikely that realistic SOA designs could be described without using a fairly wide range

of notational forms. Unfortunately there seems to be no corpus of research into how to develop

a rational set of notations for describing design models for a given software architecture. His-

torically these seem to have evolved from experience, rather as has occurred here.

Discussion

Here we discuss the threats to validity, consider some consequences of our experiences, and

seek to draw some lessons from these.

Threats to validity

These are connected with the way that we performed and evaluated the case study, and are dis-

cussed in terms of the usual categories.

Construct Validity For the case study itself, the main threat is our choice of a single-case

form, necessitated by the size of the task involved. Further case studies are needed to con-

firm that this was a ‘typical’ case.

In terms of our evaluation, walkthroughs have been used since the 1970’s and 1980’s [47].

Overall, there appears to be a lack of empirical studies on the experience of conducting

walkthroughs and little guidance about their use for the purpose of design evaluation.

We therefore made use of the guidelines available at [48] and mentioned in [46], tailoring

these to write the protocol for the walkthrough. We also employed elements of an action

research approach by gathering feedback from the participants about the walkthrough pro-

cess as suggested in [49]. This provided some confidence that the form of the protocol and

the walkthrough process were appropriate, as did the participant feedback obtained

through the questionnaire.

Internal Validity For the case study this was addressed by using both method and data

triangulation.

• Method triangulation involved constructing an operational model in the form of a use

case; producing a design by using existing design techniques and knowledge; and per-

forming a walkthrough to check the validity of the use case and the SOA design model.

• Multiple data sources included formal and informal interviews with application domain

engineers, analysis of technical papers, and other supporting documents.

The evaluation involved human participation, and the participants had backgrounds in

different domains and different levels of knowledge about the problem under discussion.

The following possible sources of bias were identified as below.

• Selection of Experts: Two experts were involved in the study, one from each domain. This

could be considered to create a risk of overlooking any major issue during the review.

However, the questionnaire, which was verified by the second author (DB), was employed

to ensure we did not ignore any important point.

The SSEZ use case was also constructed with the help of energy engineers and feedback

was taken during requirements gathering to verify that what is written was understood by

the author and meaningful to engineers. This does not violate the walkthrough guidelines,

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 25 / 31

https://doi.org/10.1371/journal.pone.0176936


where it is suggested that the number of experts involved can be restricted to two. The

selection of an expert was done by the members of the energy research group who knew

about our work. The expert from computer science was selected on the basis of their expe-

rience with SOA as well as with software design in general.

• Involvement of Experts: Neither of the experts who took part in the review was involved at

any stage during the preparation of the use case and design.

• Data Consistency: There is a threat to data consistency when observers are taking notes,

which can be controlled by assigning more than one observer for the inspection [49]. We

addressed this issue by keeping audio and video records of all sessions, which also helped

with analysing the sessions and viewing the discussion in its context.

• Analysis: The analysis of the walkthrough was done by the first author alone, but checked

with the second author.

External Validity For the case study as a whole, this is largely a consequence of its design. Our

case study is a single-case design, a choice that raises the issue of bias and generalisation

when considering any outcomes. Bratthall & Jørgensen [50] have noted that use of multiple

data sources in an exploratory case study can make it more trustworthy than one that is

based on single source of data. We have used multiple sources of data where possible, but

despite this, it would still be unwise to generalise too far from this one case.

What the outcomes tell us about designing with software services

The value of an exploratory case study such as this comes largely from exploring the bounds of

the problem—in our case, that of designing a system that would be created largely from soft-

ware services. While the evaluation of our design was based upon expert judgement rather

than implementation, it can still be argued that we have been able to explore the issue of what

needs to be addressed in an SOA design (Research Question 1) and demonstrated how this

can be modelled (Research Question 2).

Our discussion so far has addressed methodological choices, such as the use of case study

research, and of performing design evaluation through the use of walkthroughs. Here, we

return to the issue of designing SOA systems., and in particular, how such a design might be

modelled.

Our eventual set of notations, summarised in Table 9, represents a set of choices based

upon a compromise between the need to model particular properties, and also to have the con-

venience of using familiar modelling tools and notations. While we did employ notations from

the UML, these were not interpreted in terms of objects. Indeed, both Sequence Diagrams and

Activity Diagrams are concerned with modelling interactions, regardless of the forms of soft-

ware element involved in the interactions, and therefore can be considered as architecturally

neutral.

However, what we can conclude is that while it is not essential to devise new notations for

modelling the properties of service-based systems, there might well be some benefits from

rationalising and improving upon the ones that were used. Both the Class Diagram and the

Component Diagram forms tend to reflect the object model in terms of their form—suggesting

that modellers might find it helpful to have more distinctively service-oriented forms available.

This might be particularly relevant when making decisions about such characteristics as sys-

tem architecture (where neither the DFD nor the Component Diagram reflect the hierarchical

aspects well), and contracts between services, which do involve some reinterpretation of the

Class Diagram. Indeed, in terms of future research, it might be possible to reuse this case study

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 26 / 31

https://doi.org/10.1371/journal.pone.0176936


in order to explore how well other forms of notation might work, and to compare them with

those from the UML.

Recent research suggests that the UML is rarely used for developing design models,

although it might sometimes be used for recording them [51]. One possible reason leading to

this situation could be the complexity and size of the UML. In this study we have demonstrated

that an SOA design solution can be modelled using a much smaller set of notations (we use

seven in Table 9), and also we only need to use a limited set of notational features from these.

For the purposes of the case study therefore, this set of notations would appear to provide

adequate support for developing and exercising the form of design model needed to describe

an SOA system. However, given the risk of confusion arising from reusing notations developed

around a significantly different architectural style (objects), there would be benefits in devising

new forms of notation.

Some lessons from the case study

While the object paradigm has proved to be a very powerful vehicle for system implementation

and reuse, its inherent complexity does involve complex decision-making and trade-offs in

design.

Our two research questions were essentially formulated to determine whether such a situa-

tion also held for SOA design. So here we summarise some key insights that we obtained from

our case study, subject of course to the caveats identified at the start of this section.

• Lesson 1: Modelling of SOA designs requires less complex forms than those used for the object-
oriented architecture. This is evident from Table 9, which essentially summarises the answers

to both research questions. We have not really addressed the issue of how to integrate the

different viewpoint elements in the model, but we were able to produce a design model

using fewer notations than would be considered as normal for object-oriented designs.

• Lesson 2: There appears to be no recognised procedures for creating a set of ‘design notations’
appropriate for an architectural style. Despite extensive search and consultation, we were

unable to identify any practices that could be used to aid with developing a set of notations

from the characteristic properties of a particular architectural style. Historically, design

notations would seem to have evolved in an ‘ad hoc’ manner, with little or no consideration

of cognitive aspects.

• Lesson 3: The SOA paradigm would benefit from a unified set of modelling notations. Our

study of the literature in seeking to identify SOA characteristics, together with the experi-

ences from the case study, suggests that there is a need for the community to identify and

promote an effective set of modelling notations, both for sharing of ideas, and also to assist

when developing larger-scale designs. Indeed, while the UML is open to technical criticism,

it has nonetheless been useful in providing a common vehicle for for describing and

exchanging ideas about design.

Conclusion

This study was conducted by employing a multi-method approach: first conducting a mapping

study to find out what characteristics are associated with SOA; translating these to the attri-

butes of the case study taken from energy engineering; constructing a design by employing

existing notations; and finally evaluating them through expert review. Hence it provides a

chain of evidence to address the issues arising in service-based application design.

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 27 / 31

https://doi.org/10.1371/journal.pone.0176936


Case studies used in designing service based systems largely make use of toy examples,

whereas here we have presented a moderately large-scale exploratory case study of SOA design

that is based upon a real-world problem. While the problem is drawn from the engineering

domain, it does possess some ‘business’-related characteristics too, and offers useful insight

into SOA design challenges.

We have been able to make a good assessment of the key characteristics that need to be

addressed in the SOA design process. The design solution developed in the case study has also

allowed us to identify and model a set of key characteristics and interactions. In doing so, we

have confined ourselves to using existing modelling notations, although with some reinterpre-

tation where relevant.

We also identified that, while designing service based applications, in addition to knowl-

edge of the application and software domains, the current and future business policies should

be considered. The choice between being a service provider or a service consumer plays an

important role in designing service applications.

Study limitations

The case study research method has the implicit limitation that the results cannot be general-

ised, at least, for single case studies such as this. Our choice of a case study taken from energy

engineering also means that real time constraints need to be considered, which might not be

required in more business centred systems.

Future directions

In terms of future research, we would suggest that the modelling and representation of such

systems is therefore a key area meriting a fuller investigation. We would also suggest that our

case study could itself be employed to provide a benchmark problem that is relatively accessi-

ble to a non-domain expert and also large enough to present a realistic challenge, and that our

design model could also provide a baseline for comparing the use of other modelling forms.

Acknowledgments

The authors would like to thank the many people who have helped us in discussions. In partic-

ular, our thanks go to Prof. Phil Taylor for suggesting the use of an SSEZ as a case study, Dr.

Neal Wade for providing technical details about energy engineering that helped in construct-

ing the SSEZ use case, and to Prof Malcolm Munro and Guy Hutchinson for their help with

the design walkthrough. We would also like to thank Prof. Thomas Green and Luke Church

for taking part in discussion sessions about notations and providing some valuable

suggestions.

Author Contributions

Conceptualization: MA DB.

Data curation: MA.

Formal analysis: MA DB.

Investigation: MA DB.

Methodology: MA DB.

Project administration: MA DB.

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 28 / 31

https://doi.org/10.1371/journal.pone.0176936


Resources: MA DB.

Software: MA.

Supervision: DB.

Validation: MA DB.

Visualization: MA.

Writing – original draft: MA DB.

Writing – review & editing: MA DB.

References
1. Brereton P, Budgen D, Bennett K, Munro M, Layzelland P, Macaulay L, et al. The future of software.

Communications of the ACM. 1999; 42:78–84. https://doi.org/10.1145/322796.322813

2. Laplante PA, Zhang J, Voas J. What’s in a Name? Distinguishing between SaaS and SOA. IT Profes-

sional. 2008; 10(3):46–50. https://doi.org/10.1109/MITP.2008.60

3. Cheng Y, Leon-Garcia A, Foster I. Toward an autonomic service management framework: A holistic

vision of SOA, AON, and autonomic computing. IEEE Communications Magazine. 2008; 46(5):138–

146. https://doi.org/10.1109/MCOM.2008.4511662

4. Laliwala Z, Chaudhary S. Event-driven Service-Oriented architecture. In: Service Systems and Service

Management, 2008 International Conference on. IEEE; 2008. p. 1–6.

5. Espinha E, Chen C, Zaidman A, Gross HG. Maintenance Research in SOA—Towards a Standard

Case Study. In: Software Maintenance and Reengineering (CSMR), 2012 16th European Conference

on. IEEE; 2012. p. 391 –396.

6. Booth A, Papaioannou D, Sutton A. Systematic approaches to a successful literature review. Los Ange-

les: Sage Publications; 2012.

7. Kitchenham BA, Budgen D, Brereton OP. Using mapping studies as the basis for further research—A

participant-observer case study. Information & Software Technology. 2011; 53(4):638–651. https://doi.

org/10.1016/j.infsof.2010.12.011

8. Anjum M, Budgen D. A mapping study of the definitions used for Service Oriented Architecture. In: Eval-

uation Assessment in Software Engineering (EASE 2012), 16th International Conference on. IET;

2012. p. 57 –61.

9. Wieringa R, Maiden N, Mead N, Rolland C. Requirements engineering paper classification and evalua-

tion criteria: A proposal and a discussion. Requirements Engineering. 2006; 11(1):102–107. https://doi.

org/10.1007/s00766-005-0021-6

10. Budgen D, Brereton P, Turner M. Codifying a Service Architectural Style. In: 28th Annual International

Computer Software and Applications Conference (COMPSAC’04). IEEE Computer Society; 2004.

p. 16–22.

11. Détienne F. Software Design—Cognitive Aspects. Springer Practitioner Series; 2002.

12. Budgen D. Software Design. 2nd ed. Pearson Addison Wesley; 2003.

13. Simpson HR, Jackson K. Process synchronisation in MASCOT. The Computer Journal. 1979; 22

(4):332–345. https://doi.org/10.1093/comjnl/22.4.332

14. Turner M, Budgen D, Brereton P. Turning Software into a Service. IEEE Computer. 2003; 36(10):33–

44. https://doi.org/10.1109/MC.2003.1236470

15. Offermann P, Bub U. Empirical Comparison of Methods for Information Systems Development accord-

ing to SOA. In: Proceedings of 17th European Conference on Information Systems (ECIS); 2009.

16. Gu Q, Lago P. A stakeholder-driven service life cycle model for SOA. In: 2nd international workshop on

Service oriented software engineering: in conjunction with the 6th ESEC/FSE joint meeting. New York,

NY, USA: ACM; 2007. p. 1–7.

17. Papazoglou MP, Heuvel WJVD. Service-oriented design and development methodology. International

Journal of Web Engineering and Technology. 2006; 2(4):412–442. https://doi.org/10.1504/IJWET.

2006.010423

18. Erradi A, Sriram Anand NK. SOAF: An Architectural Framework for Service Definition and Realization.

In: Services Computing, 2006. SCC’06. IEEE International Conference on; 2006. p. 151 –158.

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 29 / 31

https://doi.org/10.1145/322796.322813
https://doi.org/10.1109/MITP.2008.60
https://doi.org/10.1109/MCOM.2008.4511662
https://doi.org/10.1016/j.infsof.2010.12.011
https://doi.org/10.1016/j.infsof.2010.12.011
https://doi.org/10.1007/s00766-005-0021-6
https://doi.org/10.1007/s00766-005-0021-6
https://doi.org/10.1093/comjnl/22.4.332
https://doi.org/10.1109/MC.2003.1236470
https://doi.org/10.1504/IJWET.2006.010423
https://doi.org/10.1504/IJWET.2006.010423
https://doi.org/10.1371/journal.pone.0176936


19. Karhunen H, Jantti M, Eerola A. Service-Oriented software engineering (SOSE) framework. In: Ser-

vices Systems and Services Management, 2005. Proceedings of ICSSSM’05. 2005 International Con-

ference on. vol. 2; 2005. p. 1199–1204.

20. Ali N, Nellipaiappan R, Chandran R, Babar MA. Model driven support for the Service Oriented Architec-

ture modeling language. In: Proceedings of the 2nd International Workshop on Principles of Engineering

Service-Oriented Systems. ACM; 2010. p. 8–14.

21. López-Sanz M, Acuña CJ, Cuesta CE, Marcos E. Modelling of Service-Oriented Architectures with

UML. Electronic Notes in Theoretical Computer Science. 2008; 194(4):23–37. https://doi.org/10.1016/j.

entcs.2008.03.097

22. Zhang T, Ying S, Cao S, Jia X. A modeling framework for service-oriented architecture. In: Quality Soft-

ware, 2006. QSIC 2006. Sixth International Conference on. IEEE; 2006. p. 219–226.

23. Wada H, Suzuki J, Oba K. Modeling non-functional aspects in Service Oriented architecture. In: Ser-

vices Computing, 2006. SCC’06. IEEE International Conference on. IEEE; 2006. p. 222–229.

24. Amir R, Zeid A. A UML profile for service oriented architectures. In: Companion to the 19th annual ACM

SIGPLAN conference on Object-oriented programming systems, languages, and applications. ACM;

2004. p. 192–193.

25. Stojanovic Z, Dahanayake A, Sol H. Modeling and design of Service-Oriented architecture. In: Systems,

Man and Cybernetics, 2004 IEEE International Conference on. vol. 5. IEEE; 2004. p. 4147–4152.

26. Yin RK. Case Study Research: Design & Methods. 5th ed. Sage Publications Ltd; 2014.

27. Mahdavi-Hezavehi S, Galster M, Avgeriou P. Variability in quality attributes of service-based software

systems: a systematic literature review. Information and Software Technology. 2012;.

28. Bianculli D, Ghezzi C. Monitoring conversational web services. In: 2nd international workshop on Ser-

vice oriented software engineering: in conjunction with the 6th ESEC/FSE joint meeting. ACM; 2007.

p. 15–21.

29. Ardissono L, Furnari R, Goy A, Petrone G, Segnan M. Fault tolerant web service orchestration by

means of diagnosis. Software Architecture, Lecture Notes in Computer Science. 2006; 4344:2–16.

https://doi.org/10.1007/11966104_2

30. Baresi L, Ghezzi C, Guinea S. Smart monitors for composed services. In: Proceedings of the 2nd inter-

national conference on Service oriented computing. ACM; 2004. p. 193–202.

31. Venables M. Surviving Sandy-Smart Technologies Help The Recovery. Engineering & Technology

(E&T). 2012; 7:20–21.

32. Muller B. Energy from Everywhere. Pictures of the Future, the Magzine for Research and Innovation.

2012; p. 68–69.

33. Oates BJ. Researching information systems and computing. Sage Publications Limited; 2005.

34. Smith GA, Onions PA, Infield DG. Predicting islanding operation of grid connected PV inverters. Electric

Power Applications, IEE Proceedings-. 2000; 147(1):1–6. https://doi.org/10.1049/ip-epa:20000004

35. Cipcigan L, Taylor P, Lyons P. A dynamic virtual power station model comprising small-scale energy

zones. International Journal of Renewable Energy Technology. 2009; 1:173–191. https://doi.org/10.

1504/IJRET.2009.027989

36. Anjum M, Budgen D. Modelling the Design for an SOA System to Control a Small Scale Energy Zone.

In: Computer Software and Applications Conference Workshops (COMPSACW), 2012 IEEE 36th

Annual. IEEE Computer Society; 2012. p. 538 –543.

37. Guindon R. Knowledge exploited by experts during software system design. International Journal of

Man-Machine Studies. 1990; 33(3):279–304. https://doi.org/10.1016/S0020-7373(05)80120-8

38. Visser W, Hoc JM. Expert software design strategies. Psychology of programming. 1990; p. 235–249.

39. Dijkstra EW. A discipline of programming. vol. 1. prentice-hall Englewood Cliffs, NJ; 1976.

40. DeMarco T. Structured analysis and system specification. Yourdon Press; 1979.

41. Wieringa R. A survey of structured and object-oriented software specification methods and techniques.

ACM Computing Surveys. 1998; 30(4):459–527. https://doi.org/10.1145/299917.299919

42. Moody DL. The “Physics” of Notations: Toward a Scientific Basis for Constructing Visual Notations in

Software Engineering. IEEE Transactions on Software Engineering. 2009; 35(6):756–779. https://doi.

org/10.1109/TSE.2009.67

43. Runeson P, Host M, Rainer A, Regnell B. Case Study Research in Software Engineering: Guidelines

and Examples. Wiley; 2012.

44. Garousi V. Applying peer reviews in software engineering education: An experiment and lessons

learned. IEEE Transactions on Education. 2010; 53(2):182–193. https://doi.org/10.1109/TE.2008.

2010994

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 30 / 31

https://doi.org/10.1016/j.entcs.2008.03.097
https://doi.org/10.1016/j.entcs.2008.03.097
https://doi.org/10.1007/11966104_2
https://doi.org/10.1049/ip-epa:20000004
https://doi.org/10.1504/IJRET.2009.027989
https://doi.org/10.1504/IJRET.2009.027989
https://doi.org/10.1016/S0020-7373(05)80120-8
https://doi.org/10.1145/299917.299919
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/TE.2008.2010994
https://doi.org/10.1109/TE.2008.2010994
https://doi.org/10.1371/journal.pone.0176936


45. Weinberg G, Freedman D. Reviews, Walkthroughs, and Inspections. Software Engineering, IEEE

Transactions on. 1984; 10(1):68–72. https://doi.org/10.1109/TSE.1984.5010200

46. IEEESTD. IEEE Standard for Software Reviews and Audits. IEEE STD 1028-2008. 2008; p. 1–52.

47. Yourdon E. Structured walkthroughs: 4th edition. Yourdon Press; 1989.

48. EBSE; 2013. Available from: http://www.dur.ac.uk/ebse/

49. Seaman CB. Qualitative methods in empirical studies of software engineering. IEEE Transactions on

Software Engineering. 1999; 25(4):557–572. https://doi.org/10.1109/32.799955

50. Bratthall L, Jørgensen M. Can you trust a single data source exploratory software engineering case

study? Empirical Software Engineering. 2002; 7(1):9–26. https://doi.org/10.1023/A:1014866909191

51. Petre. UML in Practice. In: In Proceedings of ICSE 2013. IEEE Computer Society Press; 2013.

p. 722–731.

Modelling of service-based applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0176936 May 10, 2017 31 / 31

https://doi.org/10.1109/TSE.1984.5010200
http://www.dur.ac.uk/ebse/
https://doi.org/10.1109/32.799955
https://doi.org/10.1023/A:1014866909191
https://doi.org/10.1371/journal.pone.0176936

