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Abstract

For Gauss-Bonnet gravity and in the context of holography we show how

the thermal DC conductivity can be obtained by solving a generalised

system of Stokes equations for an auxiliary fluid on a curved black hole

horizon. For more general higher derivative theories of gravity coupled to

gauge-fields, we also analyse the linearised thermal and electric currents

that are produced by DC thermal and electric sources. We show how

suitably defined DC transport current fluxes of the dual field theory are

given by current fluxes defined at the black horizon.
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1 Introduction

The thermal and electric conductivities are important observables to study within

the framework of holography. For Einstein-Maxwell theory, possibly coupled to other

matter fields, it has been shown that the thermoelectric DC conductivity of the dual

field theory at finite temperature can be obtained by solving a system of Stokes

equations for an auxiliary fluid on a black hole horizon [1–3]. The purpose of this

paper is to investigate how this striking result can be extended to theories of gravity

whose Lagrangians contain higher derivative terms. Such higher-derivative terms

naturally arise in string and M-theory, leading to finite coupling and 1/N effects in the

context of holography, and our results provide useful tools to investigate their effect

on the conductivity, analogous to similar investigations for the shear viscosity [4].

We begin by summarising some key aspects of the analysis in [1–3]. We first

recall that the natural framework for studying DC conductivities in holography is

provided by holographic lattices [5–10]. These are stationary black hole spacetimes

with Killing horizons that are dual to CFTs in thermal equilibrium which have been

deformed by operators that explicitly break the translation invariance of the CFT.

Although not essential, one often considers spacetimes with a single black hole hori-

zon of planar topology and the deformations are taken to be periodic in the spatial

directions. The explicit breaking of the translation symmetry is imposed by demand-

ing suitable boundary conditions on the bulk fields at the AdS boundary; this is

essential, generically, in order to obtain a finite DC response.

To calculate the thermoelectric DC conductivity one analyses a linear perturbation

of the bulk fields about the background holographic lattice. The boundary conditions

that are imposed on the perturbation at the AdS boundary are associated with the

application of external DC thermal and electric sources to the dual field theory. An

important result of [3], building on [11–13], was to correctly identify the conserved

transport currents of the dual field theory. These are obtained from the usual holo-

graphic currents by suitably subtracting off terms that arise when the equilibrium

dual field theory, described by the background holographic lattice, has non-vanishing

magnetisation currents. Furthermore, it was also shown in [1–3] how the transport

currents can be obtained from the perturbed bulk geometry, including a contribution

from currents defined at the black hole horizon. Importantly, the currents at the

horizon, which are conserved, only involve a subset of the bulk perturbation and they

take the form of constitutive relations for an auxiliary fluid. It was also shown in [1–3]

that the current fluxes at the horizon, which in the case of periodic lattices are just

the zero modes of the currents, are equal to the transport current fluxes of the dual

1



field theory. This last result implies that if one knows the currents at the black hole

horizon as functions of the applied DC sources on the horizon1 then one can obtain

the transport current fluxes of the dual field theory as functions of the DC sources

and hence, by definition, the DC conductivity.

In sections 2-4 we generalise all of these results to general theories of gravity cou-

pled to a gauge field; the extension to include additional matter fields is straightfor-

ward. We will focus on holographic lattices, but some of our results are independent

of the asymptotic boundary conditions and may have applications outside of holog-

raphy. In section 2, by carrying out a Kaluza-Klein reduction of the gravity theory

on the time direction2 we can obtain natural definitions of the electric and thermal

transport currents of the dual field theory with the properties mentioned in the previ-

ous paragraph. In particular, we present a recipe for obtaining the conserved currents

at the horizon as well as showing that the current fluxes at the horizon are the same

as the transport current fluxes of the dual field theory.

To obtain explicit expressions for the currents at the horizon in terms of the

perturbation requires more information about the specific theory of gravity that is

being considered. In section 3, for the case of Einstein-Maxwell theory in D spacetime

dimensions and stationary black holes, we first show that we recover exactly the same

currents on the horizon that were derived in [3]. In section 4 we consider the case of

pure gravity in D spacetime dimensions including curvature squared contributions. A

special case of this class of theories includes Gauss-Bonnet gravity in D ≥ 5, which we

return to below. For the class of static black holes, for which there are no background

magnetisation currents, we derive explicit expressions for the conserved heat current

at the horizon.

Another key aspect of [1–3], for theories of gravity without higher derivative

terms, was the use of a radial decomposition of the bulk equations of motion to

evaluate the momentum, Hamiltonian and Gauss-law constraints on the horizon3 for

the DC perturbed spacetime. It was shown that this leads to a set of linearised,

time-independent, forced Navier-Stokes equations for a charged, incompressible fluid

on the black hole horizon. These equations, which we refer to as Stokes equations,

also include the conservation laws for the electric and heat currents on the horizon,

1For simplicity, here we are assuming that the holographic lattice has a globally defined radial

coordinate outside the black hole horizon and in this case we can take the applied DC sources to be

independent of the radial coordinate. For a more general discussion see [2, 3].
2To do this we need to introduce the DC sources in a slightly different gauge than the “linear in

time” perturbations that were used in [1–3] (building on [14,15]).
3More precisely, the constraints are evaluated on a hypersurface of fixed radial coordinate just

outside the horizon, a “stretched horizon”, and then a limit is taken.
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that we already discussed above. A crucial feature of the system of Stokes equations

is that they form a closed set of equations for a subset of the perturbation on the

horizon. By solving the Stokes equations one can obtain the conserved currents at the

horizon in terms of the DC sources and hence the DC conductivity of the dual field

theory. The way in which the Stokes equations appear on the horizon is related to

the old membrane paradigm of [16]. It is worth noting, though, that for the linearised

perturbations driven by a DC source studied in [1–3] one obtains linearised Stokes

equations for an incompressible fluid on a curved horizon, whereas in [16] there are

equations for a compressible fluid with negative bulk viscosity.

The approach of [1–3] for obtaining the Stokes equations at the horizon can imme-

diately be deployed to study theories of gravity with higher derivative terms that have

a well-defined Cauchy problem for radial evolution. The Lovelock theories of pure

gravity, which have equations of motion only involving second order time derivatives

of the metric, satisfy this condition. We will focus on the particular case of Gauss-

Bonnet theory in D ≥ 5 spacetime dimensions, whose Lagrangian consists of the

usual Einstein-Hilbert term and a negative cosmological constant, supplemented by

the Gauss-Bonnet term with coupling α̃ as given in (5.1). In section 5 we will show

that when the constraints are evaluated on the horizon we obtain a generalised set

of Stokes equations which have non-trivial dependence on α̃. Taking a perturbative

approach4 to the higher derivative Gauss-Bonnet theory, it is of particular interest to

obtain the leading order corrections in α̃. If hij is the horizon metric, with Levi-Civita

connection ∇i, the leading order Stokes equations can be written5

∇i(δ
i
j − 4α̃Gi

j)v
j = 0 ,

−2∇i
(
Sklij∇kvl

)
= (δij − 4α̃Gi

j) (4πTζi −∇ip) , (1.1)

where Gij = Rij −Rhij is the Einstein tensor on the horizon and

Sklij = [1− α̃2(D − 4)(D − 1)] δ
(k
i δ

l)
j − α̃

[
2hijR

kl + 4δ
(k
(i R

l)
j) + 4Ri

(k
j
l)
]
. (1.2)

Note that the horizon metric quantities depend on α̃ and need to be expanded in

these expressions.

It is interesting to highlight that the coefficient appearing in the first term of

(1.2) is precisely the same as the the ratio of the shear viscosity to entropy ratio

that was calculated for a planar black brane in Gauss-Bonnet theory in [4], namely

4The perturbative approach is directly relevant to applications to string theory. It is also worth

noting that attempting to consider the Gauss-Bonnet terms non-perturbatively leads to issues with

causality [17].
5We use a slightly different notation in the main text.
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4π η
s

= 1− α̃2(D − 4)(D − 1). The reason for this will be explained in section 5. As

in [1–3], we emphasise that (1.1),(1.2) again form a closed set of equations for a subset

of the perturbation on the horizon and allow one to obtain the conserved currents

at the horizon in terms of the DC sources and hence, in turn, the DC conductivity

of the dual field theory. Thus the membrane paradigm for DC response of [1–3]

generalises to Gauss-Bonnet gravity6. We will also show in section 5 how the new

Stokes equations can be solved in the special case that there is only dependence on

one of the spatial directions on the horizon.

We briefly conclude in section 6 and we have several appendices containing various

technical material.

2 Bulk physics in the DC limit

2.1 General set-up

We consider a general bulk theory in D spacetime dimensions that is diffeomorphism

invariant and has a local internal U(1) gauge symmetry. More precisely, we will

assume that the Lagrangian, L, is gauge-invariant and transforms as a scalar under

diffeomorphims. We further assume that the theory only depends on a metric and

an abelian gauge field, but we note that it is straightforward to include additional

matter fields and other gauge symmetries. We thus consider

S =

∫
dDy
√
−gL(gµν , Aµ) , (2.1)

and we note that for notational simplicity we have suppressed the dependence of

L on the derivatives of the fields. In such a theory, we are interested in perturbing

stationary charged black hole backgrounds by DC electric fields and thermal gradients

and examining the currents that are produced.

We begin by writing the D-dimensional coordinates as

yµ = (t, ym) , (2.2)

where the coordinates ym parametrise a (D − 1)-dimensional manifold MD−1. We

will assume that ∂t is a Killing vector that leaves the gauge field invariant and hence

consider the general ansatz:

ds2 = −H2 (dt+ α)2 + ds2 (MD−1) ,

A = At (dt+ α) + β . (2.3)

6We note that the membrane paradigm of [16] was adapted to Gauss-Bonnet gravity in [18].
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Here ds2 (MD−1) ≡ γmndy
mdyn, while α = αmdy

m, β = βmdy
m are one-forms and H

is a function, all defined on MD−1. This ansatz is sufficient to accommodate both

the stationary black hole backgrounds that we are interested in as well as the DC

perturbation we wish to consider.

We will keep the discussion general for the moment, making no further assump-

tions on the background. However, at some point we will consider a D-dimensional

background black hole spacetime, with a Killing horizon, and then the coordinates

ym = (r, xi) will parametrise a holographic radial direction, r, as well as the spatial

directions, xi, of the dual field theory. Thus MD−1 will have a holographic boundary.

In addition, in order to consider MD−1 as a manifold, with non-trivial boundary, we

can envisage the radial direction to be terminated at a “stretched horizon”, located

at a very small distance from the event horizon. When we discuss global issues con-

cerning regularity of the spacetime at the horizon, we will, of course, discuss them in

the context of the full D-dimensional spacetime.

We now dimensionally reduce our theory in D spacetime dimensions on the time

direction. The equations of motion for the fields on MD−1 can be obtained from a

D − 1 dimensional action of the form

S =

∫
MD−1

dD−1y
√
γD−1H L (H,At, α, β, γmn) , (2.4)

where L is a local function of the fields appearing in the ansatz (2.3), as well as the

spatial derivatives of the fields. For notational simplicity we have again suppressed

the dependence of L on the spatial derivatives of the fields.

There are several restrictions on L which follow from diffeomorphism and gauge

invariance of the D-dimensional theory. Firstly, local coordinate transformations of

the form t→ t+ ΛE(ym) imply that L is invariant under

α→ α + dΛE(ym) . (2.5)

Second, the gauge transformations A(t, ym)→ A(t, ym)+dΛM(t, ym) with Λ(t, ym) =

c t+ λM(ym), for constant c, imply that L is invariant under

At → At + c , β → β + dλM − cα . (2.6)

Third, invariance under time scalings, t→ λ t imply that L is invariant under

H → λH, α→ α/λ, At → λAt . (2.7)

These conditions imply that L will have the following functional dependence:

L (H,At, α, β, γmn) = L (h, u, v, w, γmn) , (2.8)
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where h, u are one-forms and v, w are two-forms, all defined on MD−1, defined by

h = d lnH, u = H−1dAt, v = dβ + At dα, w = H dα . (2.9)

Another restriction is that L must be invariant under (u,w)→ −(u,w). This follows

from the fact that the dimensional reduction ansatz is invariant under H → −H.

The equations of motion for α and β will play an important role in the sequel.

For simplicity, for now we will assume that L does not depend on derivatives of the

one- and two-forms. This is the situation that arises for theories of gravity with two

derivatives, such as Einstein-Maxwell theory. The simple generalisation that arises

for higher derivative theories of gravity will be presented later in section 4. With this

assumption we find that the equations of motion for α and β are given by

∇mV
mn = 0, ∇mW

mn = 0 , (2.10)

where

V mn = H
δL
δvmn

, Wmn = H2 δL
δwmn

+HAt
δL
δvmn

. (2.11)

In other words the two-forms W = 1
2
Wmndx

m ∧ dxn and V = 1
2
Vmndx

m ∧ dxn, with

indices lowered with γmn, are both co-closed. This is a key result. As we will see, V

and W are associated with the electric and heat currents of the dual field theory in

the context of holography.

2.2 DC perturbation

We now want to consider the equations that govern a specific linear perturbation

about a given stationary background solution to the equations of motion. We write

the stationary background solution as

H = H(B), α = α(B), γmn = γ(B)
mn , At = A

(B)
t , β = β(B) , (2.12)

with all background quantities independent of the time coordinate t.

The perturbation we want to consider is seeded by two closed one-forms ζ, E that

are globally defined on MD−1. To achieve this we will introduce two locally defined

functions, φT and φE, on MD−1 via7

ζ = dφT , E = dφE . (2.13)

7Note that φT , φE can depend, in general, on all spatial coordinates. Later, in section 2.3, to

simplify the presentation, we will take φT and φE to be independent of the radial coordinate.
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The perturbation that we consider is then given by

H = H(B) (1− φT ) + δH, α = α(B) (1 + φT ) + δα , γmn = γ(B)
mn + δγmn ,

At = A
(B)
t (1− φT ) + φE + δAt, β = β(B) − φE α(B) + δβ , (2.14)

with δH, δα, δAt, δβ and δγmn all globally defined perturbations on MD−1. Thus, at

linearised order, the perturbed metric and gauge-field takes the form

ds2 + δ(ds2) = −H(B)2(1 + 2H(B)−1δH)[(1− φT )dt+ α(B) + δα]2 + (γ(B)
mn + δγmn)dxmdxn ,

A+ δA = (A
(B)
t + δAt)[(1− φT )dt+ α(B) + δα] + β(B) + δβ + φEdt . (2.15)

For the holographic applications we consider later, on the holographic bound-

ary the one-form E parametrises an applied DC electric field source term, while ζ

parametrises a DC thermal gradient via8: ζ ↔ −T−1dT , where T is the locally

defined temperature. After a simple coordinate transformation and gauge transfor-

mation (see (2.48) below) we can easily show that this gives rise to the perturbation

containing terms linear in the time coordinate t that have been used in derivations

of the DC conductivity, starting with [14,15]. As we will now see, it is convenient to

work with the above locally defined, time independent perturbation so that we can

directly utilise the Kaluza-Klein dimensional reduction formulae. Importantly, the

key equations we are ultimately interested in will only involve the globally defined

one-forms (ζ, E) and not the locally defined functions (φT , φE). We will make some

additional comments on this in the next sub-section.

To proceed we now write out the perturbation in terms of the one- and two-forms

defined in (2.9). We find:

δh = d(H(BG)−1δH)− ζ ,
δu = H(B)−1dδAt −H(B)−2 δH dA

(B)
t −H(B)−1A

(B)
t ζ +H(B)−1E ,

δv = dδβ + δAt dα
(B) + A

(B)
t dδα + A

(B)
t ζ ∧ α(B) − E ∧ α(B) ,

δw = δH dα(B) +H(B) dδα +H(B) ζ ∧ α(B) , (2.16)

and, in particular, we observe that they involve the globally defined one-forms (ζ, E),

as just mentioned.

We next examine how the two-forms V and W defined in (2.11) depend on the

linearised perturbation. Starting with V we find

δV mn =− V (B)mn φT + δLmn , (2.17)

8The sign can be established as follows. Consider the metric ds2 = −(1− 2φT )dt2 + dxidxi. For

ẋi << 1 and perturbative in φT , the geodesic equation gives ẍi = ζi. Since heat moves from hot to

cold we identify ζ with −T−1dT .
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where we have defined

δLmn ≡
(

δL
δvmn

)(B)

δH +H(B) δ

(
δL
δvmn

)
. (2.18)

The two-form δLmn is globally defined on MD−1. This is because L is a functional of

the one- and two-forms in (2.9) which we have shown, in equation (2.16), remain well

defined after perturbing under (2.14). While φT does appear in δV mn, it drops out

of the equations of motion (2.10). Specifically, after using the background equation

of motion, ∂m[(γ
(B)
D−1)

1/2 V (B)mn] = 0, we find that (2.10) implies

∂m

(
(γ

(B)
D−1)

1/2 δLmn + δ[(γD−1)
1/2]V (B)mn

)
= (γ

(B)
D−1)

1/2ζmV
(B)mn . (2.19)

Following a similar logic for the two-form W we find

δWmn =− 2W (B)mn φT + V (B)mn φE + δKmn , (2.20)

where we have defined

δKmn ≡ 2H(B)

(
δL
δwmn

)(B)

δH +H(B)2 δ

(
δL
δwmn

)
+H(B)

(
δL
δvmn

)(B)

δAt + A
(B)
t δLmn . (2.21)

The two-form δKmn is again globally defined on MD−1. While (φT , φE) do appear in

δWmn they again also drop out of the equations of motion (2.11). Specifically, after

using the background equation of motion, ∂m[(γ
(B)
D−1)

1/2W (B)mn] = 0, we find that

(2.11) implies

∂m

(
(γ

(B)
D−1)

1/2 δKmn + δ[(γD−1)
1/2]W (B)mn

)
= (γ

(B)
D−1)

1/2
[
2 ζmW

(B)mn − EmV
(B)mn

]
.

(2.22)

The two equations (2.19) and (2.22) are key results. As we will see below, they

generalise the equations given in eq. (5.6) of [3] from a specific theory of gravity to

a more general one and, in addition, it is clear how to extend the theory to include

additional matter fields.

2.3 Black hole geometry in holography

We now consider the results in the previous subsection in a holographic context of DC

perturbations about a background black hole geometry. While it is straightforward to

be significantly more general, as in section 5 of [3], to simplify the presentation we now
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assume that the stationary background solution has a single black hole Killing horizon

and we will also assume that the solution has a globally defined radial coordinate, r,

outside the black hole. Introducing the coordinates

ym = (r, xi) , (2.23)

we assume that the black hole is located at r = 0 and that there is also a boundary

at r =∞, which we take to approach a suitably deformed AdSD. More precisely, as

r →∞ we have

ds2 → r−2dr2 + r2
[
g
(∞)
tt dt2 + g

(∞)
ij dxidxj + 2g

(∞)
ti dtdxi

]
,

A→ A
(∞)
t dt+ A

(∞)
i dxi , (2.24)

where g
(∞)
tt etc. are functions of the spatial coordinates, xi, only, and parametrise

the spatially dependent sources for the stress tensor and abelian current operators

that have been used to deform the CFT. Such black hole solutions are known as holo-

graphic lattices. Often we are interested in CFTs on spacetimes with planar topology

with deformations that are periodic in the spatial directions, so-called “periodic holo-

graphic lattices”. In the set-up of this paper, by considering a fundamental domain,

this corresponds, effectively, to considering CFTs living on a (D − 2)-dimensional

torus with a non-trivial metric, associated with a source for the stress tensor, as

well as additional periodic sources for the abelian current, the simplest of which is a

periodic chemical potential A
(∞)
t .

The manifold MD−1 is defined for 0 < r < ∞ and the associated metric can be

written

ds2(MD−1) = γ(B)
mn (yp)dymdyn . (2.25)

This metric becomes singular at the location of the black hole at r = 0. In order that

the D-dimensional black hole solution is regular at the horizon, which is Killing with

respect to ∂t, we demand that as r → 0:

H(B)2 = 4πT r +O(r2) , γ(B)
rr =

1

4πT r
+O(1) , A

(B)
t = a

(0)
t (x) r +O(r2) ,

(2.26)

with the remaining quantities given by

α(B)
r = α(0)

r +O(r) , α
(B)
i = α

(0)
i +O(r) ,

γ
(B)
ij = h

(0)
ij +O(r) , γ

(B)
ir = O(r) ,

β(B)
r = β(0)

r +O(r) , β
(B)
i = β

(0)
i +O(r) . (2.27)
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It is worth noting that this is a small simplification9 of the coordinates used in [3].

We emphasise that when we later consider theories of gravity with higher derivatives,

we will also need to keep sub-leading terms in these expansions. Observe that we

have

γ(B)rr = 4πTr +O(r2), γ(B)ri = O(r2), γ(B)ij = h(0)ij +O(r),

(γ
(B)
D−1)

1/2 =

√
h(0)

(4πTr)1/2
+O(r1/2) . (2.28)

To proceed, we now assume that the background two-forms V and W are well

defined in the limit as r → 0. Since the vector ∂r becomes singular as r → 0 this

implies that

V (B)ri|H = W (B)ri|H = 0 . (2.29)

We will explicitly check that this condition is satisfied for the examples that we

consider later.

We now define the bulk current densities via

J i ≡ 2(γD−1)
1/2V ri , Qi ≡ −2(γD−1)

1/2W ri , (2.30)

By evaluating these quantities at the AdS boundary, located at r → ∞, we obtain

J i∞ and Qi
∞, which are the bulk contributions to the electric and heat currents of the

dual boundary CFT. Indeed, as we explain in more detail in appendix A, one can

show that J i∞ and Qi
∞ are the on-shell variations of the dimensionally reduced action

(2.4) with respect to δβ∞i = limr→∞ δβi and δα∞i = limr→∞ δαi, respectively. One

then just needs to recall the parametrisation of the metric and gauge field (2.3) in

order to make the identification.

For the unperturbed background we write the bulk current densities as

J (B)i ≡ 2(γ
(B)
D−1)

1/2V (B)ri , Q(B)i ≡ −2(γ
(B)
D−1)

1/2W (B)ri , (2.31)

which we notice, from (2.29), vanish at the horizon. By integrating the equations of

motion (2.10) in the radial direction, it is straightforward to show that we can write

the background current densities at the r =∞ boundary as:

J (B)i
∞ = ∂jM

(B)ij , Q(B)i
∞ = ∂jM

(B)ij
T , (2.32)

9If we consider the expansion (2.4), (2.5) in [3], we first make the change r → r/G(0) + . . . , which

effectively sets G(0) = 1. Next we can shift xi → xi + rf i(1) + . . . and choose the f i to eliminate the

leading r-independent terms in gri.
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where we have defined the magnetisation densities M (B)ji, M
(B)ji
T as the background

values of

M ij ≡
∫ ∞
0

dr(γD−1)
1/22V ij , M ij

T ≡ −
∫ ∞
0

dr(γD−1)
1/22W ij . (2.33)

Notice that both J (B)i
∞ and Q(B)i

∞ in (2.32) take the form of magnetisation current

densities and hence are trivially spatially conserved:

∂iJ
(B)i
∞ = 0 , ∂iQ

(B)i
∞ = 0 . (2.34)

For the DC perturbation we will also now assume that the sources only depend

on the spatial directions of the dual field theory. We therefore now take φE, φT to be

independent of the radial coordinate and we have

E = dφE(x) = Ei(x)dxi , ζ = dφT (x) = ζi(x)dxi . (2.35)

It is illuminating to highlight some additional points concerning these sources and

to do this it is helpful to focus on the particular class of planar periodic holographic

lattices. As mentioned above, by focussing on a fundamental domain, we can view

the CFT as living on a torus. In this case we can write, for example, φT = ζ̄ix
i+z(x)

and ζ = ζ̄idx
i + dz(x), where ζ̄i are constants and z(x) is a periodic function. Note

that the term ζ̄idx
i is associated with a constant DC thermal gradient source ζ̄i in

the xi direction. This can be more invariantly characterised by integrating the closed

one-form ζ over a basis of one-cycles on the torus: for example, one can integrate

over a period in the xi direction and then average over the length of the period. It is

worth noting that on the plane ζ̄ix
i is a well-defined but unbounded function, while

on the torus it is a bounded but not a well-defined function since it is not periodic.

Deformations with z(x) 6= 0 correspond to deforming the background but keeping

the system in thermal equilibrium. The physics of most interest is the response of

the system, within a fundamental domain, to the application of a DC source with

non-zero ζ̄i.

For the perturbed current densities, in the presence of the sources (φT , φE), from

(2.17), (2.20) we have

δJ i = δ̄J i − φTJ (B)i ,

δQi = δ̄Qi − 2φTQ
(B)i − φEJ (B)i , (2.36)

where δ̄J i, δ̄Qi are given by

δ̄J i ≡ (γ
(B)
D−1)

1/2 2δLri + δ[(γD−1)
1/2] 2V (B)ri ,

δ̄Qi ≡ −
(

(γ
(B)
D−1)

1/2 2δKri + δ[(γD−1)
1/2] 2W (B)ri

)
. (2.37)
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Notice from (2.19),(2.22) that δJ i, δQi are spatially conserved

∂iδJ
i = ∂iδQ

i = 0 . (2.38)

An important feature of (2.36) is the explicit appearance of φT and φE when the

background has non-vanishing magnetisation currents, J (B)i, Q(B)i 6= 0. These terms

are certainly physical. For example, for periodic holographic lattices, building on the

discussion above, if φT or φE are periodic functions, then (2.36) gives the perturbative

change in the currents as we apply a periodic deformation to the CFT while keeping

it in thermal equilibrium. However, we are most interested in the case in which φT or

φE are not periodic functions (i.e. are not globally defined functions on the torus) and

then extracting the transport currents discussed in [3,11–13]. The transport currents

of the dual field theory are conserved and are well-defined in a fundamental domain,

so they should not explicitly depend on φT , φE. They can be identified as follows.

We first notice that at r → ∞, the contributions to the currents δ̄J i∞, δ̄Qi
∞ are

globally defined in a fundamental domain but are not spatially conserved. Using

(2.36) in (2.38) we calculate, for example,

0 = ∂iδ̄J
i
∞ − J (B)i

∞ ζi ,

= ∂iδ̄J
i
∞ − ∂jM (B)ijζi ,

= ∂i

(
δ̄J i∞ +M (B)ijζj

)
, (2.39)

where in the last step we used ∂[iζj] = 0. There is a similar calculation for the thermal

currents. We thus identify the transport currents of the dual field theory as

δJ i
∞ ≡ δ̄J i∞ +M (B)ijζj ,

δQi∞ ≡ δ̄Qi
∞ + 2M

(B)ij
T ζj +M (B)ijEj . (2.40)

These differ from the one-point functions δJ i∞, δQi
∞ only when there is non-vanishing

magnetisation in the background. Furthermore, δJ i
∞ and δQi∞ are both globally

defined on a fundamental domain and conserved:

∂iδJ i
∞ = 0 , ∂iδQi∞ = 0 . (2.41)

An additional perspective on these definitions is obtained as follows. We first

note that analogous to (2.36), in the presence of the sources (φT , φE), the perturbed

magnetisations can be written

δM ij = δ̄M ij − φTM (B)ij ,

δM ij
T = δ̄M ij

T − 2φTM
(B)ij
T − φEM (B)ij , (2.42)
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where δ̄M ij and δ̄M ij
T are both globally defined on a fundamental domain and given

by

δ̄M ij ≡
∫ ∞
0

dr(γ
(B)
D−1)

1/2 2δLij + δ[(γD−1)
1/2] 2V (B)ij ,

δ̄M ij
T ≡ −

∫ ∞
0

dr
(

(γ
(B)
D−1)

1/2 2δKij + δ[(γD−1)
1/2] 2W (B)ij

)
. (2.43)

We thus see that these give rise to magnetisation currents in the presence of the

perturbation of the form

∂jδM
ij = ∂j δ̄M

ij − φTJ (B)i − ζjM (B)ij ,

∂jδM
ij
T = ∂j δ̄M

ij
T − 2φTQ

(B)i − φEJ (B)i − 2M
(B)ij
T ζj −M (B)ijEj , (2.44)

The transport current densities at r =∞ can thus also be written10

δJ i
∞ = δJ i∞ − (∂jδM

ij − ∂j δ̄M ij) ,

δQi∞ = δQi
∞ − (∂jδM

ij
T − ∂j δ̄M

ij
T ) , (2.45)

With these definitions for the transport currents, after integrating (2.19),(2.22)

in the radial direction, we deduce that the local transport current densities at r =∞
are related to the local current densities at the horizon via

δJ i
∞ − ∂j δ̄M ij = δJ iH , δQi∞ − ∂j δ̄M ij

T = δQi
H , (2.46)

where we used δJ iH = δ̄J iH , δQi
H = δ̄Qi

H . We next define current flux densities

δJ i
∞, δQi∞ through a basis of (D − 3)-dimensional cycles on the spatial manifold on

which the dual CFT lives, exactly as in [1–3]. Rather than repeat the details of the

definitions here in general, let us just note that for the special case of the periodic

holographic lattices in which the spatial manifold has planar topology, these current

flux densities can be equivalently and simply defined as the zero modes of δJ i
∞, δQi∞,

which can be obtained by taking the average integral over a fundamental domain.

From (2.46) we then have the key result:

δJ i
∞ = δJ iH , δQi∞ = δQi

H . (2.47)

10One might consider alternative transport currents by instead subtracting ∂jδM
ij and ∂jδM

ij
T

from δJ i
∞ and δQi

∞, respectively (and in fact this was done in [3]). Such transport currents differ

from the above definitions by the trivially conserved and globally defined magnetisation currents

∂j δ̄M
ij , ∂j δ̄M

ij
T . The definitions we use here have the property that they agree with δJ i

∞ and δQi
∞

in the case that there are no background magnetisation currents. It is worth emphasising that when

M (B)ij = M
(B)ij
T = 0, in general we still have ∂j δ̄M

ij 6= 0 and ∂j δ̄M
ij
T 6= 0.
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Having established (2.47), we would like to determine how the local current den-

sities at the horizon δJ iH , δQi
H depend on the perturbation. We make some general

comments in the next subsection, based on the conditions imposed by demanding

that the perturbation is regular at the horizon. In subsequent sections, using specific

theories of gravity we show how the currents at the horizon take the form of constitu-

tive relations for an auxiliary fluid. For the special case of Gauss-Bonnet gravity we

will show the horizon currents can be obtained by solving a generalised set of Stokes

equations on the horizon.

2.4 Regularity of the perturbation at the horizon

We now examine the conditions that we need to impose in order that the perturbation

(2.16) is regular at the black hole horizon. To do this, near the horizon we first perform

the combined coordinate and gauge transformation given by

t→ t (1 + φT ) ,

A→ A+ dΛ, Λ = −φE t . (2.48)

After these transformations the metric and gauge field perturbations in D dimensions

takes the form

δds2 = −2H(B) δH (dt+ α(B))2 − 2H(B)2 (dt+ α(B))(δα + t ζ) + δγmn dx
mdxn ,

δA = δAt (dt+ α(B)) + A
(B)
t (δα + t ζ) + δβ − t E . (2.49)

Notice that the transformed perturbations still satisfy the covariant equations (2.19)

and (2.22).

In order to impose regular, infalling boundary conditions we define the Eddington-

Finkelstein coordinate v = t+ ln r
4πT

close to the horizon. To ensure that all our fields

are regular functions of v and r in the r → 0 limit we demand that the perturbation

has the following expansion

δαi =
1

4πT r
vi +

ln r

4πT
ζi +O(1), δαr = − 1

4πT r
δg

(0)
tr +O(1) ,

δH = −(4πTr)1/2

2
δg

(0)
tt +O(r3/2), δγrr =

1

4πTr
δg(0)rr +O(1) ,

δγri = − 1

4πTr
vi +O(1), δγij = δg

(0)
ij + 2α

(0)
(i vj) +O(r) ,

δAt = w +O(r), δβr =
1

4πTr
w +O(1) ,

δβi =
ln r

4πT
(−Ei + A

(B)
t ζi) + δβ

(0)
i +O(r) , (2.50)
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along with δg
(0)
tt + δg(0)rr −2δg

(0)
tr = 0. This is the same11 expansion given in (4.1)-(4.3)

of [3]. In particular, vi, w and δg
(0)
tr are the same quantities that entered in the Stokes

equations in [3]. Recalling that we are using a slightly different radial coordinate

for the background black holes near the horizon (see footnote 9) we can identify the

pressure, p, of [3] via p = −(4πT )δg
(0)
tr . For further calculations, it is helpful to note

that we have

δγrr = O(r), δγir = vi +O(r), δγij = O(1),

δ[(γD−1)
1/2] = O(r−1/2) . (2.51)

with vi ≡ h(0)ijvj.

It is now straightforward to establish

δvri = − 1

4πTr

[
Ei +∇iw + a

(0)
t vi

]
+ a

(0)
t

ln r

4πT
ζi +O(1) , δvij = O(1) , (2.52)

and hence

δvri = −
[
Ei +∇iw + a

(0)
t vi + (dβ(0))ijv

j
]

+O(r ln r) . (2.53)

Similarly,

δwri = −(4πT )1/2
1

r1/2
vi +O(r1/2) , δwij = O(r1/2) . (2.54)

Interestingly, the sub-leading terms in these expansions are important for higher

derivative theories, as we will see later.

To obtain explicit expressions for the currents δJ iH , δQi
H , we need to evaluate

the expressions (2.37) at the horizon. To do this we need more information on the

theory of gravity that we are considering. We will illustrate with two examples, first

recovering the Einstein-Maxwell results of [1–3] in section 3, before moving on to

higher derivative pure gravity in section 4.

3 DC currents in Einstein-Maxwell theory

For the case of Einstein-Maxwell theory we can now easily recover the results for the

currents at the horizon that were obtained in [1–3]. The D dimensional bulk action

is given by

S =

∫
dDx
√
−g

(
R− V0 −

1

4
F 2

)
. (3.1)

11Note that the sign of the tgtt term in (4.1) of [3], should actually be a plus rather than minus.

We should also make the identification δg
(0)
ij of [3] via δg

(0)
ij = δγ

(0)
ij − 2α

(0)
(i vj).

15



with V0 constant. If we choose V0 = −(D−1) (D−2) then a unit radius AdSD solves

the equation of motion. The equations of motion for the general ansatz (2.3) can be

obtained from the D − 1 dimensional action given by (2.4), (2.8) with

L (h, u, v, w, γmn) = RD−1 +
1

4
w2 − 1

4
v2 +

1

2
u2 − V0 , (3.2)

where RD−1 is the Ricci scalar for the D − 1 dimensional metric on MD−1. Notice

that for this theory L happens to be independent of h.

We now immediately obtain

δL
δvmn

= −1

2
vmn,

δL
δwmn

=
1

2
wmn . (3.3)

We thus see that the two-forms V , W defined in (2.11) are given by

2Vmn = −Hvmn , 2Wmn = H2wmn −HAtvmn , (3.4)

where v, w are defined in (2.9). Recalling the near horizon expansions (2.26), (2.27)

we immediately deduce that for the background black holes the two-form V,W are

both well defined at the black hole horizon. In particular we find

V (B)ri|H = O(r3/2), W (B)ri|H = O(r5/2) . (3.5)

with both vanishing at the horizon, as assumed in (2.29).

Turning to the perturbation, the quantities defined in (2.18) and (2.21) are given

by

2δLmn = −H(B) δvmn − v(B)mnδH ,

2δKmn = 2H(B)w(B)mnδH +H(B)2 δwmn −H(B)v(B)mnδAt + A
(B)
t δLmn . (3.6)

We can now evaluate the currents (2.37) at the horizon. For δJ iH we calculate as

follows

δJ iH =
[
(γ

(B)
D−1)

1/2 2δLri + δ[(γD−1)
1/2] 2V (B)ri

]
H
,

=

√
h(0)

(4πTr)1/2
[
2δLri

]
H
,

= −
√
h(0)[δvri]H . (3.7)

To get to the second line we use (3.5), (2.51) and (2.28). To get to the third line we

use (2.27), (2.28) to show that v(B)ri is of order O(r) and then use (2.50) to show

that the second term in (3.6) does not contribute. Finally, using (2.53) we obtain

δJ iH =
√
h(0)

[
Ei +∇iw + a

(0)
t vi + (dβ(0))ikv

k
]
, (3.8)
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where all indices are now raised with the horizon metric h(0)ij.

We next consider the perturbed heat current at the horizon δQi
H to similarly find

δQi
H = −

[
(γ

(B)
D−1)

1/2 2δKri + δ[(γD−1)
1/2] 2W (B)ri

]
H
,

= −

√
h(0)

(4πTr)1/2
[
2δKri

]
H
,

= −
√
h(0)(4πTr)1/2

[
δwri

]
H
, (3.9)

leading to

δQi
H = (4πT )

√
h(0)vi . (3.10)

We have now obtained expressions for the currents at the horizon that take the

form of constitutive relations for an auxiliary fluid at the black hole. The expressions

given in (3.8),(3.10) are precisely the same as those that were derived in [1–3], taking

into account that we are using a slightly different radial coordinate and hence, as

noted in footnote 9 above, the function G(0) in [1–3] is set to unity.

4 DC currents in higher derivative theories

For theories of gravity that involve higher derivatives we obtain a simple modification

of the two-forms Vmn and Wmn that were given in (2.11). This is due to the fact that

after dimensionally reducing on the time direction the (D − 1)-dimensional action

(2.4) will also depend on derivatives of v and w defined in (2.9) via (2.8).

For notational reasons it is convenient to introduce the operator D(n) acting on a

(p, q) tensor Φ according to

D(n)
m1...mn

Φ
α1...αp

β1...βq
≡ ∇m1

· · · ∇mn
Φ
α1...αp

β1...βq
. (4.1)

Since the dimensionally reduced Lagrangian L given in (2.4), (2.8) will be a function

not only of v and w but also of D(s)v and D(s)w, this will slightly modify the equations

of motion for α and β. The important point, though, is that they will have the same

form given in (2.10) but now with

V mn =
∑
s

(−1)sD(s)
m1...ms

(
H

δL
δD(s)

m1...ms
vmn

)
,

Wmn = H
∑
s

(−1)sD(s)
m1...ms

(
H

δL
δD(s)

m1...ms
wmn

)
+ At

∑
s

(−1)sD(s)
m1...ms

(
H

δL
δD(s)

m1...ms
vmn

)
.

(4.2)
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As a consequence the results in section 2 that we derived for theories with two

derivatives all generalise to theories with higher derivative after performing the fol-

lowing replacements:

δL
δvmn

→ (δvL)mn ≡ H−1
∑
s

(−1)sD(s)
m1...ms

(
H

δL
δD(s)

m1...ms
vmn

)
,

δL
δwmn

→ (δwL)mn ≡ H−1
∑
s

(−1)sD(s)
m1...ms

(
H

δL
δD(s)

m1...ms
wmn

)
. (4.3)

4.1 Higher derivative gravity

For the remainder of the paper we are going to focus on the general class of theories

of pure gravity in D spacetime dimensions with Lagrangian of the form

L = R− V0 + c1L1 + c2 L2 + c3L3 , (4.4)

where V0 and ci are constants with

L1 = Rµ1µ2µ3µ4
Rµ1µ2µ3µ4 , L2 = Rµ1µ2

Rµ1µ2 , L3 = R2 . (4.5)

Within the context of string theory, one is interested in solutions to the leading order

equations with corrections that are perturbative in the ca which will be of order α′.

The case of Gauss-Bonnet gravity in D ≥ 5 spacetime dimensions corresponds to

c1 = c3 = −1
4
c2 ≡ α̃. We now aim to calculate the perturbed heat current at the

horizon after switching on a DC source, parametrised by a closed one-form ζ.

We first carry out the dimensional reduction on the time coordinate12 to obtain

the (D−1)-dimensional theory. We introduce the obvious orthonormal frame (e0, em̂)

associated with the D-dimensional spacetime metric given in (2.3), with e0 = H(dt+

α) and em̂em̂ = ds2 (MD−1). We calculate the various components of the Riemann

tensor of the D-dimensional metric to get

Rm̂n̂p̂q̂ = R̄m̂n̂p̂q̂ +
1

2
wm̂n̂wp̂q̂ −

1

2
wm̂[p̂wq̂]n̂ ≡ Σ

(4)
m̂n̂p̂q̂ ,

Rm̂0n̂p̂ =
1

2
∇m̂wn̂p̂ +

1

2
hm̂wn̂p̂ − h[n̂wp̂]m̂ ≡ Σ

(3)
m̂n̂p̂ ,

Rm̂0n̂0 = ∇m̂hn̂ + hm̂hn̂ −
1

4
wm̂p̂w

p̂
n̂ ≡ Σ

(2)
m̂n̂ , (4.6)

where R̄m̂n̂p̂q̂ are the components of the Riemann tensor for the (D− 1)-dimensional

metric γD−1 in the orthonormal frame. It is worth noting the Bianchi identity that

12A Kaluza-Klein reduction on a spatial coordinate is analysed in [19].
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arises from the definition of w takes the form ∇[m̂wn̂p̂] = h[m̂wn̂p̂]. For the components

of the Ricci tensor in the orthonormal frame we have

Rm̂n̂ = R̄m̂n̂ +
1

2
w2
m̂n̂ −∇m̂hn̂ − hm̂hn̂ ≡ Λ

(2)
m̂n̂ ,

Rm̂0 = hn̂wn̂m̂ +
1

2
∇n̂wn̂m̂ ≡ Λ

(1)
m̂ ,

R00 = ∇m̂h
m̂ + h2 +

1

4
w2 ≡ Λ(0) , (4.7)

where w2 = wmnw
mn and h2 = hmh

m. Finally, the Ricci scalar is given by

R = R̄ +
1

4
w2 − 2∇mh

m − 2h2 . (4.8)

We thus have

L(1) = Σ(4)
mnpqΣ

(4)mnpq − 4 Σ(3)
mnpΣ

(3)mnp + 4 Σ(2)
mnΣ(2)mn ,

L(2) = Λ(2)
mnΛ(2)mn − 2 Λ(1)

m Λ(1)m + Λ(0)2 ,

L(3) = R2 . (4.9)

Using the definitions (4.3) we compute

(δwL(1))mn = 2
(

Σ(4)mn
pq + Σ(4)[m

p
n]
q

)
wpq

− 4hp

(
Σ(3)pmn − 2 Σ(3)[mn] p

)
+ 4H−1∇p

(
H Σ(3)pmn

)
− 4 Σ(2)p[mwn]

p ,

(δwL(2))mn = −2 Λ(2)p [mwn]
p + 4 Λ(1)[mhn] + 2H−1∇[mH Λ(1) n] + Λ(0)wmn ,

(δwL(3))mn = Rwmn . (4.10)

We also record here that for this theory instead of (2.11) and (2.21) we have

Wmn = H2(δwL)mn ,

δKmn ≡ 2W (B)mnH(B)−1 δH +H(B)2 δ [δwL]mn . (4.11)

4.2 Heat current in a static background

For simplicity we now focus on static background solutions and set α(B) = 0. For

this higher derivative theory, it turns out that we need to keep sub-leading terms in

the expansion of the background fields about the black hole horizon. We thus take,

for the background as r → 0,

γ(B)
rr =

1

4πT r

(
1 + γ(1)rr r

)
+O(r) , γ

(B)
ij = h

(0)
ij + h

(1)
ij r +O(r2) , γ

(B)
ir = O(r) ,

H(B)2 = 4πT r
(

1 + 2H(1) r
)

+O(r3) . (4.12)
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There is still some residual freedom in our choice of the radial coordinate. If we make

the shift r → r+r2f(x) then this leads to the same fall-offs but withH(1) → H(1)+f/2

and γ(1)rr → γ(1)rr + 3f . As a consequence, H(1) and γ(1)rr can only appear in our final

expressions in the combination 3H(1) − γ(1)rr /2, as we shall see. An important point

is that while it is is necessary to keep sub-leading terms in the expansion of the

background, we find that it is not necessary to include the sub-leading terms in the

expansion of the perturbation (2.50) at the horizon.

We are now ready to calculate δQi at the horizon. From the definition (2.37) we

have

δQi
H = −

[
(γ

(B)
D−1)

1/2 2δKri + δ[(γD−1)
1/2] 2W (B)ri

]
H
. (4.13)

We are considering static backgrounds with α = w = 0. From (4.6),(4.7) we deduce

that in the background we have Σ(3) = Λ(1) = 0 and hence from (4.10),(4.11) we

deduce that W (B)mn = 0. We thus have

δQi
H = −

[
2
√
γH(B)2δ[δwL]ri

]
H
. (4.14)

The contribution to this expression from the two-derivative part of the action in (4.4)

is the same as before and so we have

δQi
H = (4πT )

√
h(0)vi + c1δQ

(1)
H

i + c2δQ
(2)
H

i + c3δQ
(3)
H

i , (4.15)

where

1

4πT
√
h(0)

δQ
(a)
H

i ≡− 2r1/2

(4πT )1/2

[
δ(δwL(a))ri

]
H
. (4.16)

After some extensive calculations, which we describe in appendix B, we can obtain

the contributions from the higher-derivative terms in the action. For the Riemann

squared part of the action we get

1

4πT
√
h(0)

δQ
(1)
H

i =4∇j∇[jvi] + 4Rij
(0)vj + 4∇i∇jv

j

+ 2(4πT )

[
2
(
ζ i +∇iδg

(0)
tr

)
−
(

3H(1) − 1

2
γ(0)rr

)
vi
]
. (4.17)

For the Ricci squared part of the action we get

1

4πT
√
h(0)

δQ
(2)
H

i = 2∇j∇[jvi] + 2Rij
(0)vj +∇i∇jv

j

+ (4πT )

[(
ζ i +∇iδg

(0)
tr

)
−
(

3H(1) − 1

2
γ(1)rr +

1

2
h(1)jj

)
vi
]
. (4.18)
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Finally for the Ricci scalar squared part of the action we get

1

4πT
√
h(0)

δQ
(3)
H

i =2R(0)vi − 2 (4πT )

(
3H(1) − 1

2
γ(1)rr + h(1)jj

)
vi . (4.19)

A number of comments are now in order. Firstly, the expressions for the heat

current above depend on the horizon metric as well as the sub-leading corrections to

the background black hole solution that are parametrised by 3H(1)− 1
2
γ(1)rr and h

(1)
ij . In

principle these sub-leading corrections can be expressed in terms of the geometry of

the horizon after using the equations of motion. We will not carry out this calculation

here, but instead below we will analyse the results that one obtains by considering

the higher-derivative corrections to the action to be perturbatively small.

Second, from our general analysis in section 2 we know that we have ∂iδQ
(a)i = 0

when we use the equations of motion. In this regard, we note that ∇i∇j∇[jvi] = 0.

Third, we see that the expressions for the heat current are expressed in terms of

the perturbation via vi, as we saw for two-derivative theories of gravity, as well as ζ i

and ∇iδg
(0)
tr . For two-derivative theories of gravity, ∇iδg

(0)
tr appeared13 in the Stokes

equations, via the gradient of a pressure term ∇ip = −(4πT )∇iδg
(0)
tr . Thus we can

continue to interpret the expressions for the heat current as constitutive relations for

an auxiliary fluid on the horizon.

Finally, for the special case of Gauss-Bonnet gravity in D ≥ 5 spacetime dimen-

sions, notice that when we combine the currents with c1 = c3 = −1
4
c2 ≡ α̃ there is a

cancellation of many terms and we find the simple expression

δQi
H = 4πT

√
h(0)

[
vi − 4α̃

(
∇j∇[jvi] +G i

(0)kv
k
)]

, (4.20)

where we have defined the Einstein tensor for the background Gij
(0) = Rij

(0)−
1
2
R(0) h

ij
(0).

The conservation of this current is equivalent to

∇iv
i = 4α̃G ij

(0)∇ivj , (4.21)

where in the above ∇ is the covariant derivative associated with hij(0). Our general

analysis implies that (4.21) must follow from the Gauss-Bonnet equations of motion

and we will show that this is true in the next section.

Returning to theories of gravity with general ci, we now derive expressions for the

currents when the higher-derivative corrections are perturbatively small. At zeroth

order in the corrections we can use the leading Einstein equations in D spacetime di-

mensions, Rµν = DV0/(D−2)gµν , in order to obtain expressions for the leading order

13In comparing with e.g. equation (4.7) in [3] on should take into account that we are using a

different radial variable.
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corrections to the background expansions near the horizon. Using the decompositions

(4.7),(4.8) combined with (B.5),(B.6) and (4.12) we easily obtain

3H(1) − 1

2
γ(1)r =

1

4πT

(
−R(0) +

D − 4

D − 2
V0

)
,

h
(1)
ij =

2

4πT

(
R(0)ij −

1

D − 2
V0h(0)ij

)
. (4.22)

After substituting these leading order expressions into δQ
(a)
H

i we obtain

1

4πT
√
h(0)

δQ
(1)
H

i ≈ 4∇j∇(jvi) +

(
2R(0) − 2

D − 4

D − 2
V0

)
vi + 4 (4πT )

(
ζ i +∇iδg

(0)
tr

)
,

1

4πT
√
h(0)

δQ
(2)
H

i ≈ ∇2vi +Rij
(0)vj +

2V0
D − 2

vi + (4πT )
(
ζ i +∇iδg

(0)
tr

)
,

1

4πT
√
h(0)

δQ
(3)
H

i ≈ 2D

D − 2
V0v

i , (4.23)

where we used the identity

∇j∇[jvi] = ∇j∇(jvi) −∇i∇jv
j −Rij

(0)vj . (4.24)

The expressions for δQ
(a)
H

i now only depend on the intrinsic geometry of the black

hole horizon, as well as the perturbation.

In the context of holography, following the discussion in section A, the current flux

densities at the horizon, δQ̄i
H , are identified with the renormalised transport14 current

flux densities of the dual field theory. Note that by treating the higher derivative terms

perturbatively allows one to consider the total on-shell action, including Gibbons-

Hawking and counter terms, to be still a functional of the boundary metric (for a

related discussion see [20]).

In the next section, for the special case of Gauss-Bonnet gravity, we show how

the local current densities at the horizon, δQi
H , can be obtained by solving a higher

derivative generalisation of the Stokes equations.

5 Gauss-Bonnet and generalised Stokes equations

In this section we will consider Gauss-Bonnet gravity in D ≥ 5 spacetime dimensions.

Once again, for simplicity, we will focus on static background black hole spacetimes.

We will use a radial Hamiltonian formalism and evaluate the momentum and Hamil-

tonian constraints on the horizon. This will enable us to derive an expression for the

14Note that since we have assumed that the background geometry is static with α(B) = 0, there

are no magnetisation currents and the transport currents are the same as the currents.
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local heat current density on the horizon. In fact we will obtain an expression that

differs by a magnetisation term from that given in (4.20), for reasons we will explain

later. In addition we will also obtain a higher derivative version of the Stokes equa-

tions for the auxiliary fluid living on the horizon, generalising the Stokes equations

found in [1]. In particular, we will obtain a closed set of equations for a subset of

the perturbation at the horizon which can be solved to obtain the local heat current

density on the horizon. In turn, via (2.47), by then evaluating the current flux density

on the horizon we can obtain the transport current flux density on the boundary.

5.1 Radial Hamiltonian formulation

To obtain the radial Hamiltonian formulation of Gauss-Bonnet gravity, we essentially

follow [21], who adapted the results of [22]. We start by writing the bulk action as

S =

∫
dDx
√
−g
[
R− V0 + α̃

(
RµνρσR

µνρσ − 4RµνR
µν +R2

)]
, (5.1)

where we have again set 16πG = 1 for convenience. If we set V0 = −(D − 1) (D − 2)

then a unit radius AdSD solves the equation of motion when α̃ = 0. We write the

spacetime coordinates as yµ = (r, xa) where

xa = (t, xi) , (5.2)

are the coordinates for the dual field theory. We perform a radial decomposition of

the bulk metric in a standard way, writing

ds2 = gµνdy
µdyν = N2dr2 + σab(dx

a +Nadr)(dxb +N bdr) . (5.3)

The normal vector to surfaces of constant r has components nµ = N−1(1,−Na),

while nµ = N(1, 0). The induced metric on the surfaces of constant r is given by

σµν = gµν − nµnν and has non-vanishing components σab. The extrinsic curvature is

defined as Kµν = 1
2
Lnσµν = σρµ∇ρnν and has non-vanishing components given by

Kab =
1

2N
(∂rσab −DaNb −DbNa) , (5.4)

where Na = σabN
b.

The bulk action is supplemented by Gibbons-Hawking type terms given by [22,23]

SGH = −2

∫
∂M

dD−1x
√
−σ
[
K − α̃

(
4GabK

ab − 2
3

(
K3 − 3KKabK

ab + 2Kb
aK

c
bKcK

a
))]

,

(5.5)
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where Gab is the Einstein tensor for σab, and ensures that the on-shell action is

a functional of the boundary metric. It is also supplemented by boundary counter

terms, which we shall not need here, but are discussed in [20,21,24,25] (the regularised

holographic stress tensor is discussed in [25]).

After dropping a total derivative, the bulk action can be rewritten as

SGB =

∫
dDx
√
−σN

(
R− V0 +K2 −KabK

ab
)

+α̃

∫
dDx
√
−σN

([
R+K2 −KabK

ab
]2
− 4 [Rab +KKab −KacK

c
b ]

2

+ [Rabcd +KacKbd −KadKbc]
2 − 4

3
K4 + 8K2KabK

ab

− 32

3
KKb

aK
c
bK

a
c − 4

[
KabK

ab
]2

+ 8Kb
aK

c
bK

d
cK

a
d

)
, (5.6)

where Rabcd, Rab and R, are the Riemann tensor, Ricci tensor and Ricci scalar

associated with σab.

The conjugate momenta, which are densities, are defined by

πab =
δSGB
δσ̇ab

=
1

2N

δSGB
δKab

. (5.7)

Explicitly we have

1√
−σ

πba = Kδba −Kb
a + α̃

1√
−σ

πGB
b
a , (5.8)

where:

1√
−σ

πGB
b
a =2Kb

a(K
2 −Kc

dK
d
c −R)

− 4KRb
a + 4Kc

aRb
c + 4Kb

cRc
a + 4KcdRb

cad − 4KKb
cK

c
a + 4Kb

cK
c
dK

d
a

+ δba(2KR−
2

3
K3 + 2KKd

cK
c
d − 4Kd

cRc
d −

4

3
Kd
cK

c
eK

e
d) . (5.9)

The Hamiltonian density is defined as H = πabσ̇ab −
√
−gL. After dropping a

total derivative 2Da(Nbπ
ab), we find that H is a sum of constraints:

H = NH +NaH
a , (5.10)

where

1√
−σ

H = V0−R+K2 −Ka
bK

b
a − α̃

[
(R−K2 +Ka

bK
b
a)

2

− 4(Rab −KKab +Kc
aKbc)

2 + (Rabcd −KacKbd +KadKbc)
2
]
,

(5.11)
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and

1√
−σ

Ha = −2Db

(
1√
−σ

πba
)
. (5.12)

Note that we will not need to express H in terms of the canonical momentum (this

is done perturbatively in α̃ in [21]).

5.2 Evaluating the momenta and constraints at the horizon

We want to evaluate the conjugate momenta as well as the momentum and Hamilto-

nian constraints on a surface of constant r near the horizon, and then take the limit

r → 0. Several details are presented in appendix C. We first note that for the back-

ground (i.e. unperturbed metric), at the horizon we have π
(B)
H

t
t = π

(B)
H

i
t = π

(B)
H

t
i = 0

and

2π
(B)
H

i
j = (4πT )

√
h(0)(δ

i
j − 4α̃Gi

(0)j) , (5.13)

where G(0)ij is the Einstein tensor associated with the horizon metric h(0)ij.

We next note that for the perturbed metric we have

δQ̃i
H ≡ −2πH

i
t = 2π

(B)
H

i
jv
j . (5.14)

We see that δQ̃i
H differs from the expression for δQi

H that we derived in (4.20), by

a magnetisation current piece, for reasons we explain later. Expressions for other

background components can be found in appendix C.

We next consider the momentum constraints Ha = 0 with Ha given (5.12) Eval-

uating the time component Ht = 0 on the horizon we find the conservation condition

∂iδQ̃
i
H = 0 which is equivalent to

∇i(π
(B)
H

i
jv
j) = π

(B)
H

i
j∇iv

j = 0 , (5.15)

where here ∇ is the covariant derivative associated with the horizon metric h(0)ij. In

fact this is the same condition as ∂iδQ
i
H = 0 that we mentioned earlier in (4.21). It

can also be shown that imposing the Hamiltonian constraint H = 0 at the horizon,

where H is given in (5.11), gives rise to exactly the same condition as (5.15).

We next evaluate the space component of the momentum constraint Hj = 0 on
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the horizon to obtain the Stokes equations

0 = −∇k∇(jvk) − (4πTζi −∇ip)(
1

2
δij − 2α̃G(0)

i
j)

+ α̃∇i

[
− 4∇kv

kR(0)
i
j + 4∇(jvk)G

ik
(0) + 4∇(kvi)R

(0)
jk + 4∇(kvl)Ri

(0)kjl

+ 4πT
(
hik(0)∇(jvk)h

l
l

(1)
+ hij

(1)∇kv
k −∇(ivk)hjk

(1) − hik(1)∇(jvk) + δij(−hkk
(1)∇lv

l + hkl
(1)∇kvl)

)]
.

(5.16)

Notice that these equations depend on the intrinsic geometry of the metric, associated

with the metric h(0)ij, as well as the sub-leading piece h(1)ij in the expansion of the

background at the horizon given in (4.12). In principle, the terms involving h(1)ij

could be related to h(0)ij using the full equations of motion. We will not investigate

this here as we are most interested in working perturbatively in α̃. Using (4.22), that

(5.15) implies ∇iv
i is order α̃, as well as V0 = −(D − 1)(D − 2) we find that the

Stokes equations (5.16) can be written compactly as

−2∇i
(
Sklij∇kvl

)
=

2π
(B)
H

i
j√

h(0)

(
ζi −

∇ip

4πT

)
, (5.17)

where π
(B)
H

i
j is given in (5.13) and Sklij = S

(kl)
(ij) is given by

Sklij = [1− α̃2(D − 4)(D − 1)] δ
(k
i δ

l)
j − α̃

[
2h

(0)
ij R

kl
(0) + 4δ

(k
(i R(0)

l)
j) + 4R(0)i

(k
j
l)
]
.

(5.18)

Equations (5.15) and (5.17) are the main results of this section. A number of

comments are in order. Firstly, (5.15) and (5.17) depend only upon vi, p, ζi and

background quantities. As such, for a fixed source ζ, they give a closed set of equations

which can be solved for vi, p. In turn this gives the local conserved heat current

density on the horizon via (5.14). By then evaluating the current flux density on the

horizon we can obtain the transport current flux density on the boundary, via (2.47),

and hence the thermal DC conductivity. We have thus successfully generalised the

main results of [1–3] to Gauss-Bonnet gravity.

Second, it is interesting to point out that for the special case of the homogeneous

black brane solution of [26], with flat horizon, the shear viscosity for Gauss-Bonnet

theory was calculated in [4] and the result was given by

4π
η

s
= 1− α̃2(D − 4)(D − 1) . (5.19)
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Note that that this is precisely the same coefficient appearing in the first term in

(5.18). This can be understood as follows, generalising the discussion of [27] in the

context of ordinary two-derivative Einstein gravity. Imagine we calculate the DC

conductivity in the hydrodynamic limit with ε = k/T << 1, where k is the largest

wavelength of the background holographic lattice, but we keep α̃/T 2 corrections. For

simplicity, we also assume that the holographic lattice has g∞tt = −1. In the limit

ε << 1 the holographic lattice black hole solution will be the Gauss-Bonnet black

brane solution of [26], but with spatial sections given by g∞ij . The DC conductivity

is still obtained using the Stokes equations (5.17), but now with the horizon metric

proportional to g∞ij . On the other hand, one should also be able to obtain this result

using a fluid gravity approach for studying CFTs on a curved manifold with metric

g∞ab . Although this has not been worked out in detail as far as we know, the analysis

for Gauss-Bonnet theory should closely follow the fluid-gravity formalism of two-

derivative gravity [28]. In particular, the shear viscosity as in (5.19) will appear as a

first order transport coefficient in the fluid equations (see [29] for a recent discussion).

Finally, as in the analysis of [27], the DC perturbation can be studied within the fluid-

gravity formalism using a suitable fluid flow and this will lead to a system of Stokes

equations with shear viscosity (5.19).

Third, we now explain the origin of the difference between the −2πH
i
t and the

expression for δQi
H that we derived in (4.20). In moving from the action (5.1) to the

action (5.6) we dropped a total derivative. This will not modify the bulk equations

of motion. However, it can give a contribution to the current at the horizon and,

since the bulk equations of motion are not modified, the extra contribution should

be a magnetisation current in order that it is trivially conserved. It is possible to

explicitly check this in detail, but we shall not do so here.

Fourth, we notice that we can obtain the system of equations (5.15), (5.17) by

varying the following Lagrangian

L =

∫
dD−2x

[
−
√
h(0)∇ivjSklij∇kvl + 2π

(B)
H

i
j

(
vjζi +

p

4πT
∇iv

j
) ]

, (5.20)

with respect to vi and p. It is also interesting to note that we can obtain the local

heat current density at the horizon, πH
i
t, given in (5.14), if we vary with respect to

ζ i:

δQ̃i
H =

δL

δζ i
. (5.21)

By taking an additional derivative with respect to ζj, we can easily deduce that the

thermal DC conductivity matrix of the dual CFT is a symmetric matrix.
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Fifth, returning to the Stokes equations, if we multiply by vj and integrate we get∫
dD−2x

√
h(0)2∇ivjSklij∇kvl =

∫
dD−2xδQ̃i

Hζi . (5.22)

When α̃ = 0 the left hand side is positive definite and this is associated with the fact

that the DC thermal conductivity is a positive definite matrix. It would be interesting

to examine the behaviour when α̃ 6= 0.

Sixth, observe that if the horizon admits a Killing vector, then we can solve the

source free (i.e. ζ = 0) generalised Stokes equations by taking vi to be the Killing

vector, and hence satisfying ∇(ivj) = 0, with p = 0. This means that whenever the

horizon admits a Killing vector then there will not be a unique solution to the Stokes

equations. This is related to the fact that finite DC conductivities require translation

invariance to be explicitly broken.

A final observation is that if we define v̄i = (δij−4α̃Gi
(0)j)v

j, then we have∇iv̄
i = 0

and the fluid is incompressible. The Stokes equation can be written in terms v̄i, but

as the resulting expression is not particularly illuminating, we omit it.

5.3 One dimensional lattices

We now consider the class of background black hole solutions of Gauss-Bonnet gravity

in D spacetime dimensions that break translations in just one of the spatial directions

of the dual field theory. We assume that the (D − 2)-dimensional horizon geometry

depends on the spatial coordinate x and is independent of the remaining D−3 spatial

coordinates xI . The horizon metric is given by

ds2H = γ(x) dx2 + kIJ(x)dxIdxJ , (5.23)

and both kIJ(x), γ(x) depend periodically on x, with period L. We define k ≡ det kIJ .

Note that it is possible to do a coordinate transformation at the horizon to set γ = 1.

However, if we want to use the same spatial coordinate x on the holographic boundary

and at the horizon, which is natural in numerically constructing holographic lattice

black holes, generically we have γ 6= 1.

It is helpful to now define the matrix M I
J ≡ γ−1/2kIK∂xkKJ . We will also raise

and lower indices via: MIJ ≡ kIKM
K
J and M IJ ≡ kIKMJ

K . The non-vanishing

Christoffel symbols for the horizon metric are given by

Γxxx =
1

2
∂x ln γ , ΓxIJ = −1

2
γ−1/2MIJ , ΓIxJ =

1

2
γ1/2M I

J . (5.24)
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The associated components of the Riemann tensor are given by

RIJKL = −1

4
(MIKMJL −MILMJK) ,

RxIxJ = −1

2
γ1/2kIK∂xM

K
J −

1

4
γMIKM

K
J , (5.25)

and RxIJK = 0.

To proceed we write the perturbed heat current at the horizon as

δQ̃i
H = (4πT )

√
h(0)A

i
jv
j, Aij ≡ δij − 4α̃G(0)

i
j . (5.26)

We find that AxI = AIx = 0 as well as

A ≡ Axx = 1 +
α̃

2

[
Tr(M2)− (TrM)2

]
, (5.27)

where we have defined TrM ≡MK
K , Tr(M2) ≡M I

KM
K
I and so on. The condition

∂iδQ̃
i
H = 0 can then be solved with vI = 0 and

vx = (γk)−1/2A−1v0, δQ̃x
H = 4πTv0 , (5.28)

where v0 is constant.

Next we write the Stokes equations (5.17) as

−2∇i(B
i
j) = Aij[(4πT )ζi −∇ip] , Bij ≡ Sklij∇kvl . (5.29)

We now take the x component of this equation, multiply by A−1 and then integrate

over a period of x. After an integration by parts we then get

4πTζx =

∫ [
2k1/2Bx

x∂x

(
A−1k−1/2

)
+ A−1BIJ∂xkIJ

]
. (5.30)

where
∫
≡ (L)−1

∫ L
0
dx. We next notice that we can express the components of B in

terms of the constant v0 using the expressions:

∇xvx = (∂x − Γxxx)γ
1/2(gd−1)

−1/2A−1v0 ,

∇xvI = ∇Ivx = 0 ,

∇IvJ = −ΓxIJγ
1/2(gd−1)

−1/2A−1v0 . (5.31)

Thus, (5.30) can be used to obtain an expression relating ζx in terms of v0, and hence

in terms of δQ̃x
H . Since the δQ̃x

H is a constant for these one-dimensional lattices,

and moreover the bulk currents are independent of the radius, we can obtain δQ̃x
∞ in

terms of ζx and hence the thermal conductivity.
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After some lengthy but straightforward calculation we find that at leading order

in α̃ the conductivity can be written as

κ =
(4π)2T

X
, (5.32)

where

X =

∫
1

2
γ1/2k−1/2

[
Tr(M2) + (TrM)2 + α̃C

]
, (5.33)

with

C =− 2(D − 4)(D − 1)[Tr(M2) + (TrM)2)]− 2

3
[TrM ][Tr(M3)]

− Tr(M4) +
2

3
(TrM)4 + (TrM)2Tr(M2) . (5.34)

A few comments are in order. Firstly, the final expression is invariant under reparametri-

sations of the coordinate x, as expected. Second, when α̃ = 0 the result is consistent

with that derived in section 4.2 of [2]. Third, when D = 4, the matrix M I
J is just a

number and it is simple to show that κ is independent of α̃ which is consistent with

the fact that the Gauss-Bonnet term is topological for D = 4 and hence does not

contribute to the equations of motion.

In the special case that kIJ = φδIJ , for a periodic function φ(x), we can simplify

the expressions a little. We find

X =

∫
γ1/2

(D − 3)

2
φ−

D−3
2

(
γ−1/2∂x lnφ

)2
(D − 2 + α̃C) , (5.35)

with

C = (D − 4)

(
−2(D − 1)(D − 2) +

(D − 2)(2D − 3)

3

(
γ−1/2∂x lnφ

)2)
. (5.36)

In order to determine the effect of the Gauss-Bonnet term on the conductivity one

needs to take into account that the horizon metric functions γ, φ will also receive

corrections of order α̃. It would certainly be interesting to explore this further.

6 Final Comments

In this paper we have successfully generalised many of the results of [1–3] concerning

DC conductivities to theories of gravity with higher derivative terms. The first main

result is the identification of suitable bulk quantities that allow one to relate current

fluxes at the black hole horizon to suitably defined transport current fluxes of the dual
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field theory. In section 2 and 4 we achieved this using a Kaluza-Klein reduction on the

time direction. The original approach that was used in [1–3], which came from [15],

worked in a gauge in which the DC sources arise as time dependent perturbations

and used a two-form that arises in the derivation of Smarr formula. It would be

interesting to see how that approach generalises to higher derivative gravity; for the

case of Lovelock gravity the work of [30–32] should be helpful. We also anticipate

connections with the work of [33,34].

The second main result was to obtain a generalised set of Stokes equations on

the black hole horizon for the case of static black hole backgrounds in the context of

Gauss-Bonnet gravity. These equations form a closed set of equations for a subset

of the perturbation at the horizon and by solving them one can obtain the thermal

currents at the horizon. It should be possible to generalise these results from the case

of static black holes to stationary black holes and it would be interesting to identify

the additional terms that will enter the Stokes equations, including Coriolis terms.

We obtained the Stokes equations for Gauss-Bonnet theory using a radial Hamil-

tonian formalism and it should be straightforward to generalise this to arbitrary

Lovelock theories. For general higher dimensional theories of gravity one will not

have such a formalism to hand. Nevertheless, if we write the Einstein equations as

Eµν = 0 then by considering the projections nµnνEµν = 0 and nµσρνEµρ = 0, where

nµ is the normal and σρν are the normal and projector for the radial slicing, and then

evaluating at the horizon should give a generalised closed set of Stokes equations for

more general theories.

With the results of this paper it would also be interesting to construct and study

specific examples of holographic lattices, to investigate the impact of the higher

derivative couplings on the DC conductivity. We note that a specific holographic

model involving Gauss-Bonnet gravity coupled to a gauge-field and massless scalars

was investigated in [35]. In this work the momentum dissipation just arises from

the massless scalar fields, as in the construction [10], and it was shown that the DC

thermoelectric conductivity is independent of the Gauss-Bonnet coupling. However,

this behaviour is an exception, arising from the simple mechanism for momentum

dissipation. In a parallel direction, it would also be interesting if our results could be

used to place bounds on thermal conductivities along the lines of [36–38].
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A Currents in the dual CFT

In this appendix we discuss how the currents defined in section 2.3 are related to the

dual CFT, including a discussion of the counter-term contributions.

We start with the bulk contributions to the currents. To simplify the presentation,

we just discuss theories of bulk gravity without higher derivative terms; the general-

isation to theories with higher derivatives is straightforward, using the analysis and

discussion at the beginning of section 4. We recall the derivation of the two co-closed

two forms as given in (2.10). In varying the dimensionally reduced action (2.4) we

obtain a boundary term and on shell we find

δS = 2

∫
MD−1

dD−1y
√
γD−1∇m(V mnδβn +Wmnδαn) . (A.1)

If we define variations at the AdS boundary at r → ∞ via: δβ∞i = limr→∞ δβi and

δα∞i = limr→∞ δαi we have

δS

δβ∞i
= J i∞ ,

δS

δα∞i
= −Qi

∞ , (A.2)

where J i∞ and Qi
∞ as the boundary limits of the bulk currents defined in (2.30).

Now the full bulk action that we should be considering in holography needs to

be supplemented by a boundary contribution: STot ≡ S + SBdy, where SBdy has two

key features. The first is that it has counterterms to ensure that all divergences are

cancelled. The second is that it includes a Gibbons-Hawking term to ensure that

on-shell, STot is a functional of the boundary metric, g∞ab , and gauge-field A∞a , where

we have introduced the field theory coordinates, xa, with

xa = (t, xi) . (A.3)

As usual, the holographic stress tensor density of the dual CFT is defined as [TTot]
ab =

2δSTot/δg
∞
ab and the holographic boundary current density as JaTot = δSTot/δA

∞
a .

Using the chain rule, and recalling the definition of αi and βi in (2.3) we have

δSTot
δβ∞i

= J iTot ,
δSTot
δα∞i

= −Qi
Tot ≡ ([TTot]

i
t + AtJ

i
Tot) . (A.4)
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We thus see that J i∞, Qi
∞ are the contributions from the bulk action to the finite

renormalised currents of the dual CFT given by J iTot, Q
i
Tot. In general J i∞, Qi

∞

are divergent quantities. For the background geometry currents given in (2.32), the

contributions from SBdy will ensure that the total magnetisation densities are finite.

SBdy will also give regulating contributions to the currents that depend on the DC

perturbation as given in (2.37). For the specific case of Einstein-Maxwell theory in

D = 4, 5 spacetime dimensions, it was explicitly shown in [3] that the contributions

from SBdy regulate the magnetisation terms given in (2.45) as well as regulating the

magnetisation currents given on the right hand side of (2.46). The net effect of the

contribution of SBdy is thus to ensure that in the expressions for the perturbed current

densities and the perturbed transport current densities given in (2.45)-(2.47) we can

replace all boundary quantities with the finite renormalised quantities. In particular,

associated with (2.47) we have that the renormalised transport current flux densities

of the dual CFT are the same as the horizon current flux densities (which are, of

course, finite quantities). Why this should be true in general is expanded upon

below.

Before doing that we calculate the holographic charge densities using the dimen-

sional reduced formalism of section 2. Starting with the dimensionally reduced action

(2.4) with (2.8), by considering the on-shell variation of the action with respect to

A∞t we find the charge density

J t∞ =

[
(γ

(B)
D−1)

1/2 δL
δur

]
∞
. (A.5)

Similarly, to get T tt∞ we can vary with respect to g∞tt . Using the fact that gtt = −H2

we find that on-shell

[T tt]∞ =

[
(γ

(B)
D−1)

1/2H
δL
δhr

]
∞
. (A.6)

With these formulae in hand, we can now work out how they depend on the DC

perturbation. Using (2.14) and (2.16) we immediately deduce that δJ t∞ is independent

of φT and φE and hence is globally defined on a fundamental domain. On the other

hand, with Qt
∞ ≡ −

[
T tt + AtJ

t
]
∞, we find δQt

∞ is not globally defined but rather

that δQt
∞ + φTQ

t
(B) + φEJ

t
(B) is globally defined.

A.1 Counterterm corrections to magnetisation

We now show that the counterterm contribution to the boundary action only gives

corrections to the magnetisation terms that were introduced in section 2. The argu-

ment follows from the existence of a time-like Killing vector at the boundary, defined
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as the r → ∞ limit of the bulk Killing vector. If xa = {t, xi} are the boundary

coordinates we can carry out a Kaluza-Klein reduction on the boundary with respect

to ∂t. Using a similar argument as in section 2, we take the boundary counterterm

action to have the following form

Sct =

∫
dD−2x

√
γ̃H̃Lct(h̃, ũ, ṽ, w̃, γ̃ij) , (A.7)

where D is the number of bulk dimensions, the metric and gauge field on the boundary

are

ds̃2 = −H̃2(dt+ α̃)2 + γ̃ijdx
idxj ,

Ã = Ãt (dt+ α̃) + β̃ , (A.8)

and we have defined

h̃ = d log H̃ , ũ = H̃−1dÃt, ṽ = dβ̃ + Ãt dα̃, w̃ = H̃dα̃ , (A.9)

where h̃, ũ are one-forms and ṽ, w̃ are two-forms, all living in MD−2, obtained by

taking the r → ∞ limit of the bulk quantities. We have used a tilde to distinguish

fields defined at the boundary with the bulk fields as used in the draft.

Now Sct will contribute to the electric and heat current densities via

J ict =
δSct

δβ̃i
= ∂jM

ij
ct ,

Qi
ct = −δSct

δα̃i
= ∂jM

ij
T ct , (A.10)

where

M ij
ct = 2

√
γ̃H̃

δLct
δṽij

,

M ij
T ct = −2

√
γ̃H̃2 δLct

δw̃ij
− 2
√
γ̃H̃Ãt

δLct
δṽij

. (A.11)

Note that α̃i, β̃i were denoted α∞i , β∞i , respectively, in (A.2).

We now consider the bulk DC perturbation of (2.14), where for simplicity we

again assume that the locally defined functions φE and φT are independent of the

radial coordinate. On the boundary the DC perturbation takes the form

H̃ = H̃(B) (1− φT ) + δH̃, α̃ = α̃(B) (1 + φT ) + δα̃ , γ̃ij = γ̃
(B)
ij + δγ̃ij ,

Ãt = Ã
(B)
t (1− φT ) + φE + δÃt, β̃ = β̃(B) − φE α̃(B) + δβ̃ , (A.12)
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with δH̃, δα̃, δÃt, δβ̃ and δγ̃ij all globally defined perturbations on MD−2. Note that

h̃, ũ, ṽ and w̃ are all globally defined. Therefore, for this perturbation we have:

δM ij
ct = δ̄M ij

ct −M
ij
ct

(B)
φT ,

δM ij
T ct = δ̄M ij

T ct − 2M ij
T ct

(B)
φT −M ij

ct

(B)
φE , (A.13)

where δ̄M ij
ct and δ̄M ij

T ct are the pieces independent of φE, φT and hence are globally-

defined densities defined and M ij
ct

(B)
and M ij

T ct

(B)
are the corresponding values in the

background. We thus see that the counter terms will give corrections that renormalise

the magnetisations given in (2.42). In turn this means, in effect, that in (2.45)-(2.47)

we can replace all boundary quantities with the finite renormalised quantities.

The above analysis is valid for two derivative theories in the bulk with countert-

erms that also have two-derivative terms. If we relax these conditions, either for a

higher derivative bulk theory, or for a two derivative theory of gravity with higher

derivative boundary counterterms, then we should carry out suitable generalisations

analogous to the discussion at the beginning of section 4.

To conclude this appendix, we briefly illustrate the above for a counterterm action

that appears for theories of gravity with two derivatives in D = 4, 5:

Sct = − 1

D − 3

∫
dtdD−2x

√
−σ̃
(
R̃D−1 + 2(D − 3)(D − 2)

)
, (A.14)

where σ̃ is the (D − 1)-dimensional boundary metric. Using the KK decomposition,

this leads to

Lct = − 1

D − 3

(
RD−2 +

1

4
w̃2 + 2(D − 3)(D − 2)

)
. (A.15)

From here we obtain

Mij
T ct =

√
γ̃H̃2

(D − 3)
wij , (A.16)

giving a contribution to the current of the form

Qi
ct = ∂j

( √
γ̃H̃2

(D − 3)
wij
)
. (A.17)

This agrees with the result in appendix B of [3] (to make the comparison one can use

the result (4.7) to write Rm̂
0 = 1

2
H−2∇n̂(H2wn̂m̂)).
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B Currents at the horizon for higher derivative

theories

In this appendix we outline a few more details on how we calculated the currents for

the the higher derivative theory of gravity discussed in section 4. For simplicity, as

in the text, we consider static backgrounds and set α(B) = 0 in (2.3).

For the background black hole geometries we have the expansions:

γ(B)
rr =

1

4πT r

(
1 + γ(1)rr r

)
+O(r) , γ

(B)
ij = h

(0)
ij + h

(1)
ij r +O(r2) , γ

(B)
ir = O(r) ,

H(B)2 = 4πT r
(

1 + 2H(1) r
)

+O(r3) . (B.1)

We thus have

γ(B)rr = 4πTr
(

1− γ(1)rr r
)

+O(r3), γ(B)ri = O(r2), γ(B)ij = h(0)ij − h(1)ij r +O(r2),

(γ
(B)
D−1)

1/2 =

√
h(0)

(4πTr)1/2

(
1 + r

(
1

2
γ(1)rr +

1

2
h(1)ii

))
+O(r3/2) ,

hr =
1

2r
+H(1) +O(r) , (B.2)

where indices on h(1) are raised with h(0) e.g h(1)ii = h(0)ijh
(1)
ij . We next expand the

Christoffel connection for the (D− 1)-dimensional metric γD−1 at the horizon to find

Γ̄rrr = − 1

2r
+

1

2
γ(1)rr +O(r) ,

Γ̄rri = O(r) ,

Γ̄rjk = −(4πT )
r

2
h
(1)
jk +O(r2) ,

Γ̄irr = O(1) ,

Γ̄irj =
1

2
h(1)ij +O(r) ,

Γ̄ijk = γijk +O(r) , (B.3)

where γijk is associated with h
(0)
ij . Similarly, the components of the Riemann tensor
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for the (D − 1)-dimensional metric γD−1 at the horizon are given by

R̄r
rri = O(1) ,

R̄r
rij = O(r) ,

R̄r
irj = −1

4
(4πT )h

(1)
ij +O(r) ,

R̄r
kij = O(r) ,

R̄k
rri =

1

4r
h(1)ki +O(1) ,

R̄k
rij = O(1) ,

R̄k
lri = O(1) ,

R̄k
lij = R(0)k

lij +O(r) . (B.4)

Hence for the Ricci tensor we have

R̄rr = − 1

4r
h(1)ii +O(1) ,

R̄ri = O(1) ,

R̄ij = R
(0)
ij −

1

4
(4πT )h

(1)
ij +O(r) , (B.5)

and for the Ricci scalar

R̄ = R(0) − 1

2
(4πT )h(1)ii +O(r) . (B.6)

Since we are in the static case with α(B) = 0 we have from (2.16) that

δw = H(B) dδα , (B.7)

and hence using (2.50),(B.1),(B.2) we deduce that as r → 0

δwri = − 1

(4πT )1/2r3/2
vi +

1

(4πT )1/2r1/2

(
ζi + ∂iδg

(0)
tr −H

(1)vi

)
+O(r1/2) ,

δwij =
1

(4πT )1/2r1/2
dvij +O(r1/2) , (B.8)

as well as

δwri = −(4πT )1/2
1

r1/2

(
vi − r

(
ζ i +∇iδg

(0)
tr −H

(1)vi + γ(1)rr v
i + h(1)ijvj

))
+O(r3/2) ,

δwij =
1

(4πT )1/2
1

r1/2
2∇[ivj] +O(r)1/2 . (B.9)

As explained in the text, the currents at the horizon are given by

δQi
H = (4πT )

√
h(0)vi + c1δQ

(1)
H

i + c2δQ
(2)
H

i + c3δQ
(3)
H

i , (B.10)
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where

1

4πT
√
h(0)

δQ
(a)
H

i ≡− 2r1/2

(4πT )1/2

[
δ(δwL(a))ri

]
H
. (B.11)

We next calculate each of the three variations appearing on the right hand side of

(B.10). We start by analysing δ[δwL(3))]ri as r → 0. From (4.10), since w(B) = 0 in

the static background, we find

δ[δwL(3)]ri = Rδwri ,

= (R̄− 2∇mh
m − 2h2)δwri , (B.12)

where we used (4.8). If we now evaluate at the horizon, we find a cancellation of the

1/r singular terms in ∇mh
m and h2. Using (B.6) as well as (B.9) we obtain

1

4πT
√
h(0)

δQ
(3)
H

i = R(0)vi − (4πT )

(
3H(1) − 1

2
γ(1)rr + h(1)jj

)
vi , (B.13)

which is the result given in (4.19).

Next we want to consider the limit of δ[δwL(2))]ri as r → 0. From the definition

in (4.10) and for a static background with w(B) = Λ(1)(B) = 0, we have

δ[δwL(2)]ri = −2 Λ(2)
p
[rδwi]p +H d

(
H−1 δΛ(1)

)ri
+ Λ(0) δwri . (B.14)

Next consider each of the three terms in (B.14) as r → 0. We have

−2 Λ(2)
p
[rδwi]p = Λ(2)

r
rδwri + Λ(2)

j
iδwrj + Λ(2)

j
rδwij ,

→ −(4πT )
1

2

(
1

2
h(1)i

i + 3H(1) − 1

2
γ(1)rr

)
δwri + (R

(0)
j

i − (4πT )

2
h
(1)
j

i)δwrj ,

(B.15)

as r → 0, and we note in particular that the last term in the first line does not

contribute. We next calculate

δΛ(1)i =
1

2 r1/2
1

(4πT )1/2

(
2∇j∇[jvi] + 4πT

(
ζ i +∇iδg

(0)
tr

)
−M ijvj

)
+O(r1/2) ,

δΛ(1)r =
(4πT )1/2

2 r1/2
∇iv

i +O(r1/2) , (B.16)

where, as in appendix D of [2],

M ij = (4πT )

(
h(0)ij

(
3H(1) − 1

2
γ(1)rr

)
+

1

2
h(0)ijh(1)kk − h(1)ij

)
. (B.17)
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We then find that we can write, as r → 0,

H d
(
H−1δΛ(1)

)ri
→ −(4πT )δΛ(1)i −∇iδΛ(1)r . (B.18)

As r → 0, we also have

Λ(0) δwri → (4πT )

2

[
3H(1) − 1

2
γ(1)rr +

1

2
h(1)kk

]
δwri , (B.19)

which will cancel a term in (B.14). Combining all of these three terms we conclude

that as r → 0 we have

δ[δwL(2)]ri = −(4πT )1/2

r1/2
Rij

(0)vj +
(4πT )3/2

r1/2
1

2
h(1)ijvj −

(4πT )1/2

r1/2
1

2
∇i∇jv

j

− (4πT )1/2

r1/2
1

2

(
2∇j∇[jvi] + 4πT

(
ζ i +∇iδg

(0)
tr

)
−M ijvj

)
+O(r1/2) . (B.20)

This leads to the expression for δQ
(2)
H

i given in (4.18).

Finally, we want to calculate the limit of δ[δwL(1))]ri as r → 0. From the definition

in (4.10) and for a static background with w(B) = Σ(3)(B) = 0, we have

δ[δwL(1)]ri = 2
(

Σ(4)ri
pq + Σ(4)[r

p
i]
q

)
δwpq

− 4hp

(
δΣ(3)pri − 2 δΣ(3)[ri] p

)
+ 4H−1∇p

(
H δΣ(3)pri

)
− 4 Σ(2)p[rw i]

p . (B.21)

For the first line of (B.21), as r → 0 we find

2
(

Σ(4)ri
pq + Σ(4)[r

p
i]
q

)
δwpq → 6R̄ri

rjδw
rj ,

= (4πT )3/2
3

2

1

r1/2
h(1)ijvj +O(r1/2) . (B.22)

Next, the third line in (B.21) is given by

−4Σ(2)
p
[rδwi]p = −2Σ(2)

j
rδwij + 2Σ(2)

r
rδwri + 2Σ(2)

j
iδwrj . (B.23)

In the background we calculate that as r → 0 we have

Σ(2)
rr →

1

2r

(
3H(1) − 1

2
γ(1)rr

)
, Σ

(2)
ij → (4πT )

1

4
h
(1)
ij , Σ

(2)
ri = O(1) , (B.24)

and hence as r → 0

−4Σ(2)
p
[rδwi]p = −(4πT )3/2

r1/2

[
(3H(1) − 1

2
γ(1)rr )vi +

1

2
h(1)ijvj

]
+O(r1/2) . (B.25)
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We next consider the second line in (B.21) which can be written

−4hp

(
δΣ(3)pri − 2 δΣ(3)[ri] p

)
+ 4H−1∇p

(
H δΣ(3)pri

)
=

− 8hrδΣ
(3)rri + 4H−1∇r

(
H δΣ(3)rri

)
+ 4H−1∇j

(
H δΣ(3)jri

)
. (B.26)

To proceed we evaluate the limits

δΣ(3)rij = O(r1/2) , δΣ(3)ijk = O(r−1/2) , (B.27)

as well as

δΣ(3)rri = r1/2(4πT )3/2
1

2

(
−(3H(1) − 1

2
γ(1)rr )vi +

1

2
h(1)ijvj + (ζ i +∇iδg0tr)

)
+O(r3/2) ,

δΣ(3)jri = −(4πT )1/2
1

2

1

r1/2
∇(jvi) +O(r1/2) . (B.28)

A calculation then reveals as r → 0

−8hrδΣ
(3)rri + 4H−1∇r

(
H δΣ(3)rri

)
→ −4

r
δΣ(3)rri , (B.29)

and

4H−1∇j(HδΣ
(3)jri) = 4

(
− (4πT )1/2

1

2

1

r1/2
∇j∇(jvi)

)
+O(r1/2) . (B.30)

After substituting into (B.26) we obtain the second line of (B.21). Finally combining

the resulting expression with (B.22) and (B.25), we deduce that as r → 0 (B.21) can

be written as

δ(δwL(1))ri = −2
(4πT )1/2

r1/2
∇j∇(jvi)

− (4πT )3/2

r1/2

[
2
(
ζ i +∇iδg

(0)
tr

)
−
(

3H(1) − 1

2
γ(0)rr

)
vi
]
. (B.31)

This leads to the expression for δQ
(3)
H

i given in (4.17).

C Constraints at the horizon for Gauss-Bonnet

We write the spacetime coordinates as yµ = (r, xa), where

xa = (t, xi) , (C.1)

are the coordinates for the dual field theory. We perform a radial decomposition of

the bulk metric in a standard way, writing

ds2 = gµνdy
µdyν = N2dr2 + σab(dx

a +Nadr)(dxb +N bdr) . (C.2)
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The normal vector to surfaces of constant r has components nµ = N−1(1,−Na),

while nµ = N(1, 0). The induced metric on the surfaces of constant r is given by

σµν = gµν − nµnν and has non-vanishing components σab. The extrinsic curvature is

defined as Kµν = 1
2
Lnσµν and has non-vanishing components given by

Kab =
1

2N
(∂rσab −DaNb −DbNa) , (C.3)

where Na = σabN
b.

We are interested in examining the behaviour of the perturbed geometry near

the horizon. We will need to consider the expansions for the background and the

perturbation separately. From (B.1) the background metric σab has the following

expansion near the horizon:

σtt = −U(1 + 2H(1)r) +O(r2) , σij = h
(0)
ij + h

(1)
ij r +O(r2) , (C.4)

with σti = 0. In this appendix we are using

U = 4πTr , (C.5)

for convenience. From (2.50) the perturbed metric δσab near the horizon behaves as:

δσtt = Uδg
(0)
tt + o(r2) ,

δσij = δg
(0)
ij + o(r) ,

δσti = −vi − r ln rζi − Utζi + o(r) +O(r2) . (C.6)

Here we use o(rn) to denote time-independent terms of order rn or higher, whileO(rn)

also possibly includes time-dependent terms. Near the horizon, for the background

from (B.1) we also have

N2 =
1

U
(1 + γ(1)rr r) +O(r) ,

Ni =O(r) ,

Nt =0 , (C.7)

while for the perturbation, from (2.50) we have

δN =
1

2
√
U
δg(0)rr +O(r1/2) ,

δNi =− vi
U

+O(1) ,

δNt =δg
(0)
tr +O(r) , (C.8)
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where δg
(0)
tt + δg(0)rr = 2δg

(0)
tr .

Near the horizon, the components of the Christoffel symbols for the perturbed

metric σab + δσab on the radial slices are given by

Γitt =− U(ζ i +
1

2
∇̂iδg

(0)
tt ) +O(r2) ,

Γtti =− 1

2
∇̂iδg

(0)
tt +O(r) ,

Γkij =Γ̃kij +O(r) ,

Γttt =− rvi∂iH(1) +O(r2) ,

Γjti =
1

2
(∇̂jvi − ∇̂iv

j) + o(r) +O(r2) ,

Γtij =
1

2U
(∇̂ivj + ∇̂jvi) +

t

2
(∇̂iζj + ∇̂jζi) + o(1) +O(r) . (C.9)

In the above and in what follows, all tilde quantities are defined with respect to the

full horizon metric h̃
(0)
ij ≡ h

(0)
ij + δg

(0)
ij . All indices on the tilde quantities are raised

and lowered using the full horizon metric h̃
(0)
ij ≡ h

(0)
ij + δg

(0)
ij as well. On the other

hand hatted quantities refer to the horizon metric h
(0)
ij and we have also raised all

indices without a tilde using this metric too. In the main text we have dropped the

hats to simplify the presentation.

The components of the Riemann tensor for the perturbed metric σab + δσab are

given by15:

Ri
tjt =− U∇̂j(ζ

i +
1

2
∇̂iδg

(0)
tt ) +O(r2) ,

Ri
jkl = R̃i

jkl +O(r) ,

Rt
itj =∇̂j(ζi +

1

2
∇̂iδg

(0)
tt ) +O(r) ,

Rt
tti =rvj∇̂i∇̂jH

(1) +O(r2) ,

Rt
tij =O(r) ,

Rt
ijk =

1

2U
∇̂i(∇̂jvk − ∇̂kvj)−

1

U
R̂l

ijkvl +O(1) ,

Ri
tjk =

1

2
∇̂i(∇̂jvk − ∇̂kvj) +O(r) ,

Ri
jtk =− 1

2
∇̂k(∇̂ivj − ∇̂jv

i) +O(r) . (C.10)

15Recall that ∇̂jζi = ∇̂iζj . We have also used the Bianchi identity R̂l
ijk + R̂l

jki + R̂l
kij = 0.
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The components of the Ricci tensor are:

Rt
t =∇̂i(ζ

i +
1

2
∇̂iδg

(0)
tt ) +O(r) ,

Ri
j =R̃i

j + ∇̂j(ζ
i +

1

2
∇̂iδg

(0)
tt ) +O(r) ,

Rt
i =− 1

U
vjR̂ij −

1

2U
∇̂j(∇̂jvi − ∇̂iv

j) +O(1) ,

Ri
t =

1

2
∇̂j(∇̂jvi − ∇̂ivj) +O(r) , (C.11)

and the Ricci scalar is

R = R̃ + 2∇̂i(ζ
i +

1

2
∇̂iδg

(0)
tt ) +O(r) . (C.12)

We next calculate the extrinsic curvature components Ka
b and find16

Kt
t =

√
U

2r
(1− 1

2
δg(0)rr ) +O(r1/2) ,

Ki
j =

1√
U
hik(0)∇̂(jvk) +O(r1/2) ,

Ki
t =

√
U

2r
vi +O(r1/2) ,

Kt
i =

√
U

2r
tζi + o(r−1/2) +O(r1/2) ,

K =

√
U

2r
(1− 1

2
δg(0)rr ) +

1√
U
∇̂iv

i +O(r1/2) . (C.13)

C.1 Calculation of conjugate momentum

We now calculate the conjugate momenta on the horizon, which are given by

πba =
√
−σ(Kδba −Kb

a) + α̃πGB
b
a , (C.14)

where

1√
−σ

πGB
b
a =2Kb

a(K
2 −Kc

dK
d
c −R)

− 4KRb
a + 4Kc

aRb
c + 4Kb

cRc
a + 4KcdRb

cad − 4KKb
cK

c
a + 4Kb

cK
c
dK

d
a

+ δba(2KR−
2

3
K3 + 2KKd

cK
c
d − 4Kd

cRc
d −

4

3
Kd
cK

c
eK

e
d) . (C.15)

We calculate each component of πba in a straightforward manner. As the calculations

are rather long we have recorded a few intermediate steps.

16Note that these correct a typo in the last line of (B.4) in [2] as well making (B.5) more precise.
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C.1.1 Calculation of πi
t

By writing out each of the components and using the previous results we find

2Ki
t(K

2 −KabK
ab −R) =2Ki

t(2K
t
tK

j
j −R

k
k) +O(r1/2) , (C.16)

as well as

−4KRi
t + 4Ka

tRi
a+4Ki

aRa
t + 4KabRi

atb − 4KKi
aK

a
t + 4Ki

aK
a
bK

b
t

= −4Kj
j (K

i
tK

t
t) + 4Kj

tR
i
j +O(r1/2) , (C.17)

We then find the final result

πit = −
√
h(0)

U

r
vj(

1

2
δij − 2α̃Ĝi

j) +O(r) , (C.18)

where Ĝij = R̂ij − 1
2
h
(0)
ij R̂ is the Einstein tensor for the horizon metric h

(0)
ij .

C.1.2 Calculation of πt
i

We now have

2Kt
i (K

2 −KabK
ab −R) =2Kt

i (2K
t
tK

j
j −R

j
j) +O(r1/2) , (C.19)

and

−4KRt
i + 4Kt

aRa
i+4Ka

iRt
a + 4KabRt

aib − 4KKa
iK

t
a + 4Ka

iK
b
aK

t
b

= −4Kk
kK

t
iK

t
t + 4Kt

jRj
i + o(r−1/2) +O(r1/2) . (C.20)

Combining these we get

πGB
t
i =
√
h(0)(2

U

r
tζjĜ

j
i ) + o(1) +O(r) , (C.21)

and hence find the following result for the time derivative

∂tπ
t
i =−

√
h(0)

U

r
ζj(

1

2
δji − 2α̃Ĝj

i ) +O(r) . (C.22)

C.1.3 Calculation of πt
t

Now we have

2Kt
t(K

2 −KabK
ab −R) =2Kt

i (2K
t
tK

j
j −R

j
j) +O(r1/2) , (C.23)
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as well as

−4KRt
t + 4Kt

aRa
t + 4Ka

tRt
a+4KabRt

atb − 4KKa
tK

t
a + 4Ka

tK
b
aK

t
b

= 4Kt
tRt

t − 4Ki
iK

t
tK

t
t +O(r1/2) , (C.24)

and

2KR− 2

3
K3 + 2KKb

aK
a
b − 4Kb

aRa
b −

4

3
Kb
aK

a
cK

c
b

= 2(−Kt
tRt

t +Kt
tRi

i +Kj
jR

i
i − 2Kj

iR
i
j)− 2Kt

tK
i
iK

j
j + 2Kt

tK
j
iK

i
j +O(r1/2) .

(C.25)

Combining these we are led to

πtt =
√
h(0)∇̂iv

j(δij − 4α̃Ĝi
j) +O(r) . (C.26)

C.1.4 Calculation of πi
j

We have

2Ki
j(K

2 −KabK
ab −R) =2Ki

j(2K
k
kK

t
t +Kk

kK
l
l −K l

kK
k
l −Rt

t −Rk
k)

=
1√
U
hik(0)∇̂(jvk)(h

l
l

(1)U

r
− 2R̂) + hij

(1) 1√
U
∇̂kv

kU

r
+O(r1/2)

(C.27)

as well as

− 4KRi
j + 4Ka

jRi
a + 4Ki

aRa
j + 4KabRi

ajb − 4KKi
aK

a
j + 4Ki

aK
a
bK

b
j

= −4Kt
tRi

j − 4Kk
kRi

j + 4Kk
jRi

k + 4Ki
kRk

j + 4KttRi
tjt + 4KklRi

kjl − 4Kt
tK

i
kK

k
j +O(r1/2)

= −2

√
U

r
R̃i
j +

√
U

r
δg(0)rr R̂

i
j − 4

1√
U
∇̂kv

kR̂i
j + 4

1√
U
∇̂(jvk)R̂

ik

+ 4
1√
U
∇̂(kvi)R̂jk + 4

1√
U
∇̂(kvl) R̂i

kjl −
√
U

r
∇̂(ivk)hjk

(1) −
√
U

r
hik

(1)∇̂(jvk) +O(r1/2)

(C.28)

and

δij(2KR−
2

3
K3 + 2KKb

aK
a
b − 4Kb

aRa
b −

4

3
Kb
aK

a
cK

c
b )

= 2δij(−Kt
tRt

t +Kt
tRk

k +K l
lRk

k − 2K l
kRk

l −Kt
tK

k
kK

l
l +Kt

tK
l
kK

k
l ) +O(r1/2)

= 2δij(

√
U

2r
R̃ +

√
U

2r
(−1

2
δg(0)rr )R̂ +

1√
U
∇̂lv

lR̂

− 2
1√
U
∇̂kvlR̂

kl −
√
U

2r
hkk

(1)∇̂lv
l +

√
U

2r
hkl

(1)∇̂kvl) +O(r1/2) . (C.29)
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Putting these together we find

1√
−σ

πij =(

√
U

2r
(1− 1

2
δg(0)rr ) +

1√
U
∇̂kv

k)δij −
1√
U
hik(0)∇̂(jvk) + α̃

1√
−σ

πGB
i
j +O(r1/2)

(C.30)

where

1√
−σ

πGB
i
j =

1√
U
hik(0)∇̂(jvk)h

l
l

(1)U

r
+ hij

(1) 1√
U
∇̂kv

kU

r

− 2

√
U

r
G̃i
j +

√
U

r
δg(0)rr Ĝ

i
j − 4

1√
U
∇̂kv

kR̂i
j

+ 4
1√
U
∇̂(jvk)Ĝ

ik + 4
1√
U
∇̂(kvi)R̂jk + 4

1√
U
∇̂(kvl) R̂i

kjl −
√
U

r
∇̂(ivk)hjk

(1) −
√
U

r
hik

(1)∇̂(jvk)

+ 2δij(−2
1√
U
∇̂kvlĜ

kl −
√
U

2r
hkk

(1)∇̂lv
l +

√
U

2r
hkl

(1)∇̂kvl) +O(r1/2) . (C.31)

C.2 Constraints on the horizon

The bulk momentum constraint equations Ha = 0, where Ha is given in (5.12), can

be written as

√
−σ∂a

(
πab√
−σ

)
+ Γaacπ

c
b − Γcabπ

a
c =0 . (C.32)

We now evaluate these constraints on a surface of constant r near the horizon and

then take the limit r → 0.

C.2.1 Time component of the momentum constraint

For the time component, Ht = 0, we find

∇̂iπ
i
t +O(r) =0 , (C.33)

where we recall that hat refers to the metric on the horizon h
(0)
ij . Using (C.18) we

deduce that

(δij − 4α̃Ĝi
j)∇̂iv

j =0 . (C.34)

We see that when α̃ 6= 0, the simple incompressibility condition for the fluid is

modified. Alternatively, we can define v̄i = (δij − 4α̃Ĝi
j)v

j, then we have ∇iv̄
i = 0

and the fluid is incompressible.
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C.2.2 Spatial component of the momentum constraint

We next consider the spatial component of the momentum constraint, Hj = 0, and

find that near the horizon we have

√
−σ∇̃i

(
πij√
−σ

)
+ ∂tπ

t
j + Γttiπ

i
j +O(r) = 0 . (C.35)

After some calculation we find

0 =∇̂i(∇̂kv
kδij − hik(0)∇̂(jvk))

+ α̃∇̂i

[
hik(0)∇̂(jvk)h

l
l

(1)U

r
+ hij

(1)∇̂kv
kU

r
− 4∇̂kv

kR̂i
j

+ 4∇̂(jvk)Ĝ
ik + 4∇̂(kvi)R̂jk + 4∇̂(kvl) R̂i

kjl −
U

r
∇̂(ivk)hjk

(1) − U

r
hik

(1)∇̂(jvk)

+ 2δij(−2∇̂kv
lĜk

l −
U

2r
hkk

(1)∇̂lv
l +

U

2r
hkl

(1)∇̂kvl)
]

− U

r
ζk(

1

2
δkj − 2α̃Ĝk

j )−
1

2

U

r
(
1

2
δij − 2α̃Ĝi

j)∇̂i(δg
(0)
tt + δg(0)rr ) , (C.36)

where we have used ∇̂iĜ
i
j = 0 and ∇̃iG̃

i
j = 0, which follow from the Bianchi identity

for h
(0)
ij and h̃

(0)
ij ≡ h

(0)
ij + δgij respectively.

Defining p ≡ −U
r
δg

(0)
rt = − U

2r
(δg(0)rr + δg

(0)
tt ) (and also using (C.34)) we obtain the

final Stokes equation:

0 = −∇̂k∇̂(jvk) − (
U

r
ζi − ∇̂ip)(

1

2
δij − 2α̃Ĝi

j)

+ α̃∇̂i

[U
r

(
hik(0)∇̂(jvk)h

l
l

(1)
+ hij

(1)∇̂kv
k − ∇̂(ivk)hjk

(1) − hik(1)∇̂(jvk) + δij(−hkk
(1)∇̂lv

l + hkl
(1)∇̂kvl)

)
− 4∇̂kv

kR̂i
j + 4∇̂(jvk)Ĝ

ik + 4∇̂(kvi)R̂jk + 4∇̂(kvl) R̂i
kjl

]
. (C.37)

Note that this depends only upon vi, p, ζi and background quantities.

We can also write this as an expansion in α̃. As we derived in (4.22), to leading

order in α̃ we have:

h
(1)
ij =

2r

U

(
R̂ij −

1

D − 2
V0h

(0)
ij

)
, (C.38)

where V0 = −(D − 1)(D − 2). So this becomes

0 =− ∇̂k∇̂(jvk) − (4πTζi − ∇̂ip)(
1

2
δij − 2α̃Ĝi

j)

+ α̃∇̂i

[
2(D − 4)(D − 1)hik(0)∇̂(jvk) + 2δijR̂

kl∇̂kvl + 2∇̂(jvk)R̂
ik

+ 2∇̂(kvi)R̂jk + 4∇̂(kvl) R̂i
kjl

]
+O(α̃2) . (C.39)
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C.2.3 Hamiltonian Constraint

The Hamiltonian constraint, H = 0, where H is given in (5.11), can be evaluated at

the horizon and we find

H =
√
h(0)

U1/2

r
(δji − 4α̃Ĝj

i )∇̂jv
i +O(r1/2) . (C.40)

Thus, the Hamiltonian constraint leads to the same condition given in (C.34).
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