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We compute next-to-leading order QCD corrections to the top-bottom interference contribution to H þ j
production at the LHC. To achieve this, we combine the recent computation of the two-loop amplitudes for
gg → Hg and qg → Hq, performed in the approximation of a small b-quark mass, and the numerical
calculation of the squared one-loop amplitudes for gg → Hgg and qg → Hqg, performedwithinOPENLOOPS.
We find that QCD corrections to the interference are large and similar to the QCD corrections to the top-
mediatedHiggs production cross section.We also observe a significant reduction in themass-renormalization
scheme uncertainty once the next-to-leading order QCD prediction for the interference is employed.
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Detailed exploration of the Higgs boson properties is a
major part of the physics program at the Large Hadron
Collider (LHC). It is hoped that studies of the Higgs
couplings will reveal possible physics beyond the standard
model (BSM), especially if it mostlymanifests itself through
interactions with the Higgs bosons. The goal, therefore, is
to precisely measure Higgs boson couplings to various
particles in the standard model and to search for small
deviations. For example, assuming that the energy scale of
new physics is close to 1 TeV, generic modifications of the
Higgs couplings are expected at the level of v2=ð1 TeVÞ2∼
5 × 10−2, where we used v ¼ 246 GeV for the Higgs field
vacuum expectation value. A variety of explicit BSM
scenarios conforms with these expectations [1], suggesting
that achieving a few percent precision in studies of theHiggs
couplingsmay indeed provide interesting information about
physics beyond the standard model.
Compared to these theoretical goals, existing measure-

ments leave much to be desired [2]. Currently, Higgs
couplings to electroweak gauge bosons are known to a
precision of between ten and twenty percent and those to
third generation fermions to about hundred percent. The
couplings to first and second generation fermions are
practically unconstrained. It is expected that the situation
will dramatically improve with the continued operation of
the LHC. For example, it is estimated [3] that by the end of
the high-luminosity phase, the Higgs couplings will be
determined within a few percent precision. There are
several unknowns that may affect the validity of these
projections, including progress in reducing the uncertain-
ties in theoretical predictions and the ability of experimen-
talists to come up with new ideas but, barring revolutionary
breakthroughs, these estimates give us a ballpark of what
can be expected.
Determination of Higgs couplings at the LHC requires

precise theoretical predictions for relevant observables. A
case in point is the Higgs boson transverse momentum

distribution, whose theoretical understanding is important
to properly describe the kinematics of the Higgs decay
products but may also give us access to physics beyond the
standard model [4].
Higgs bosons at the LHC are mostly produced in

gluon collisions. If additional gluons are radiated, a
Higgs boson recoils against them; this mechanism leads
to a nontrivial Higgs p⊥ spectrum, whose theoretical
description requires good understanding of QCD dynamics.
For a pointlike Higgs-gluon coupling, perturbative QCD
(pQCD) provides an established framework to describe the
Higgs p⊥ spectrum, including fixed-order QCD computa-
tions recently extended to next-to-next-to-leading order
(NNLO) [5] and the resummation computations known in
the next-to-next-to-leading logarithmic (NNLL) approxi-
mation [6,7]. However, the Higgs coupling to gluons in the
standard model (SM) arises only at the quantum level
through the fluctuation of gluons into quark-antiquark pairs.
Because of the differences in fermionYukawa couplings, the
largest contribution to the ggH coupling in the standard
model comes from top quark loops, followed by bottom and
charm loops. For values of the Higgs transverse momentum
p⊥ ≪ mt, the top loop contribution can be considered
pointlike to a very good approximation, and we can apply
the full power of pQCD to describe it with high precision.
However, the bottom and charm loops are not pointlike for
moderate values of the transverse momentum, and their
treatment in perturbative QCD is much less understood.
Moreover, it is known that the bottom and charm quark

contributions to gg → Hg amplitudes develop a peculiar
Sudakov-like dependence on the Higgs boson transverse
momentum [9,10]. Taking the bottom quark contribution as
an example, we find Ab

gg→Hg ∼m2
b=m

2
H log2ðp2⊥=m2

bÞ [11].
These double logarithms are not accounted for in the
standard resummation framework [12,14] and they signifi-
cantly enhance the contribution of bottom loops to theHiggs
production cross section in gluon fusion, compared to naive
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expectations. In fact, the bottom loop contribution to Higgs
production in the standard model is estimated to be close to
minus five percent [15] and therefore, significant on the
scale of the Oð1%Þ precision goal discussed above.
It is interesting to remark that the “substructure” of the

ggH coupling is precisely what makes the Higgs transverse
momentum distribution an interesting observable from the
point of view of physics beyond the standard model. For
example, current constraints on the charm Yukawa cou-
pling are weak but, if the charm Yukawa coupling deviates
significantly from its standard model value, the charm
contribution to gg → H increases, and the relevance of the
cc̄ → H annihilation channel for Higgs production grows.
These modifications may result in observable effects in the
Higgs transverse momentum distribution. It was pointed
out in Ref. [16] that studies of the Higgs boson transverse
momentum distribution lead to very competitive constraints
on the charm Yukawa coupling; for example, it is expected
[16] that at high-luminosity LHC, the charm Yukawa
coupling can be constrained to lie in the interval yc=ySMc ∈
½−2.9; 4.2� at the 95% confidence level.
This discussion suggests that the shape of the Higgs

boson transverse momentum distribution, from moderate to
high p⊥ values, is important for a proper description of the
kinematic features of Higgs bosons produced at the LHC
and also may provide important information about physics
beyond the standard model. Accurate standard model
predictions for this observable are key for achieving these
goals. As we already mentioned, the pQCD description of
the Higgs boson transverse momentum distribution, in the
approximation of the pointlike ggH coupling, is rather
advanced, see Refs. [5,17], but there is very little under-
standing of how its not-pointlike component is affected by
QCD radiative corrections. To clarify this issue, we report
on the computation of QCD radiative corrections to top-
bottom interference contribution to Higgs boson production
at the LHC in this Letter.
The calculation of the NLO QCD corrections to the top-

bottom interference is nontrivial. The leading-order pro-
duction of the Higgs boson with nonvanishing transverse
momentum occurs in different partonic channels, namely
gg → Hg, qg → Hq, q̄g → Hq̄, and qq̄ → Hg. At leading
order, these processes are mediated by top or bottom loops
(the charm contribution in the SM is negligible). The one-
loop amplitudes are known exactly as functions of external
kinematic variables and the quark masses [9].
At NLO, the production cross section receives contri-

butions from real and virtual corrections. Since the
leading-order process only occurs at one loop, the virtual
corrections require two-loop computations that include
planar and nonplanar box diagrams with internal masses.
The computation of such Feynman diagrams is a matter of
active current research that includes attempts to develop
efficient numerical methods that can be used in physical
kinematics [18] and to extend existing analytic methods to

make them applicable to two-loop Feynman diagrams
with internal masses [19].
However, if we focus on the top-bottom interference and

its impact on Higgs production at the LHC, we can simplify
the calculation by using the fact that the mass of the b
quark mb ∼ 4.7 GeV is numerically small. Indeed, since
mb ≪ mH; p

typ
⊥ , where ptyp

⊥ ∼ 30 GeV is a typical Higgs
boson transverse momentum, Feynman diagrams that
describe Higgs production can be expanded in series in
mb for the purposes of LHC phenomenology. We have
checked at leading order that the use of scattering ampli-
tudes either exact or expanded inmb leads to, at most, a few
percent difference in the interference contribution to the
Higgs p⊥ distribution, down to p⊥ ∼ 10 GeV. Since the
interference contribution changes the Higgs boson trans-
verse momentum spectrum by Oð5%Þ at leading order, the
percent difference between expanded and not expanded
results is irrelevant for phenomenology.
Unfortunately, the expansion inmb is nontrivial since the

Higgs boson production cross section depends logarithmi-
cally on the b-quark mass. Therefore, we need to devise a
procedure to expand scattering amplitudes in mb and
extract the nonanalytic terms. This can be done by deriving
differential equations for master integrals that are needed to
describe the two-loop corrections to pp → H þ j and then
solving them in the limitmb → 0 [20]. Indeed, since we can
derive differential equations to describe the dependence of
the master integrals on the mass parameter mb and on the
Mandelstam kinematic variables, and since all the infor-
mation about singular points of a particular Feynman
integral is contained in the differential equations that this
Feynman integral satisfies, we can systematically solve the
differential equation in a series of mb and extract the
nonanalytic behavior. We note that a similar method was
used to compute the top-bottom interference contribution to
the inclusive Higgs production cross section in Ref. [21].
We have used this method to calculate all the relevant

two-loop scattering amplitudes to describe the production
of a Higgs boson in association with a jet [20,22]. In our
computation, all quarks in the initial and final states are
massless, so that b-initiated processes are not included. The
two-loop amplitudes mediated by top quark loops, required
to describe the interference, are computed in the approxi-
mation of an infinitely heavy top quark [23].
To produce physical results for H þ j production, we

need to combine the virtual corrections discussed above
with the real corrections that describe inelastic processes,
e.g., gg → H þ gg, qg → Hqþ g etc. Computation of one-
loop scattering amplitudes for these inelastic processes is
nontrivial; it requires the evaluation of five-point Feynman
integrals with massive internal particles. Nevertheless, such
amplitudes are known analytically since long ago [24] and
were recently reevaluated in Ref. [25].
In this Letter, we follow a different approach, based on the

automated numerical computation of one-loop scattering
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amplitudes developed in recent years. One such approach,
known as OPENLOOPS [26], employs a hybrid tree-loop
recursion. Its implementation is publicly available [27] and
has been applied to compute one-loopQCDand electroweak
corrections to multileg scattering amplitudes for a variety of
complicated processes (see, e.g., Refs. [28,29]) and as an
input for the real-virtual contributions in NNLO computa-
tions (see, e.g., Ref. [30]).
For applications in NNLO calculations, and similarly

for the loop-induced process discussed in this Letter, the
corresponding one-loop real contributions need to be
computed in kinematic regions where one of the external
partons becomes soft or collinear to other partons.
A reliable computation in such kinematic regions is non-
trivial, but OPENLOOPS appears to be perfectly capable of
coping with this challenge thanks to the numerical stability
of the employed algorithms. An important element of this
stability is the employed tensor integral reduction library
COLLIER [31].
We have implemented all virtual and real amplitudes in

the POWHEG-BOX [32], where infrared singularities are
regularized via Frixione-Kunszt-Signer (FKS) subtraction
[33]. All OPENLOOPS amplitudes are accessible via a
process-independent interface developed in Ref. [29].
The implementation within the POWHEG-BOX will allow
for an easy matching of the fixed-order results presented
here with parton showers at NLO. At leading order, this has
been done in Ref. [34].
Using the methods described above, we calculated the

NLO QCD corrections to the top-bottom interference
contribution to H þ j production in hadron collisions.
We identify the interference contribution through its
dependence on top-bottom Yukawa couplings. For the
Higgs production cross section, we write

dσ ¼ dσtt þ dσtb þ dσbb; ð1Þ
where individual contributions to the differential cross
section scale as dσtt ∼Oðy2t Þ, dσtb ∼OðytybÞ, dσbb∼
Oðy2bÞ. Given the hierarchy of the Yukawa couplings
yt ∼ 1 ≫ yb ∼ 10−2, the last term in Eq. (3) can be safely
neglected. Note, however, that if one focuses on Higgs-
related observables that are inclusive with respect to the
QCD radiation, dσbb receives contributions from Higgs
boson production in association with b quarks, e.g.,
gg → Hbb. These processes change inclusive Higgs boson
observables at below a permille level, which makes them
irrelevant unless b jets in the final state are tagged.
Our main focus is the top-bottom interference contribu-

tion dσtb. Considering the virtual corrections, we write

dσvirttb ∼Re

�
ALO
t ALO�

b þ αs
2π

ðANLO
t ALO�

b þALO
t ANLO�

b Þ
�
: ð2Þ

The leading-order (one-loop) term in this formula is known,
including full mass dependence. The NLO (two-loop)

amplitudes with the top quark ANLO
t are only known in

the limit mt → ∞. Since as an input for the NLO calcu-
lation we only require the finite reminder of the virtual
amplitude ANLO

t , we can safely use the corresponding finite
reminder of ANLO

t ðmt → ∞Þ as its approximation. In
principle, one can improve on this by computing 1=mt

corrections to ANLO
t ðmt → ∞Þ, see Ref. [35], but it is not

expected that they will have significant impact on the
interference at moderate values of the Higgs transverse
momentum p⊥ < mt. The real emission contributions are
computed with exact top- and bottom-mass dependence
throughout the Letter.
In what follows, we present the QCD corrections to the

top-bottom interference contribution to the Higgs boson
transverse momentum distribution and to the Higgs rapidity
distribution in H þ j production. We consider proton
collisions at the 13 TeV LHC and take the mass of the
Higgs boson to be mH ¼ 125 GeV.
We work within a fixed flavor-number scheme and do

not consider bottom quarks as partons in the proton. We use
the NNPDF3.0 set of parton distribution functions (PDFs)
[36]. We also use the strong coupling constant αsðmZÞ that
is provided with this PDF set. We renormalize the b-quark
mass in the on-shell scheme and use mb ¼ 4.75 GeV as its
numerical value. We choose renormalization and factori-
zation scales to be equal and take, as the central value
μ ¼ HT=2, HT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þ p2⊥
p

þP
j p⊥;j, where the sum

runs over all partons in the final state.
To quantify the impact of the top-bottom interference on

an observable O, it is convenient to define the following
quantity

Rint½O� ¼
R
dσtbδ(O −Oðx⃗Þ)R
dσttδ(O −Oðx⃗Þ) ; ð3Þ

where x⃗ is a set of phase-space variables. Note that we do
not expand the σtt cross section in the denominator in
Eq. (3) in powers of αs. Therefore, any change in Rint in
consecutive orders in perturbation theory would reflect
differences in QCD corrections to the tb interference and
the pointlike contribution to H þ j production. In what
follows, we present Rint as a function of the Higgs boson
transverse momentum p⊥ and the (pseudo)rapidity ηH.
The impact of the top-bottom interference on the Higgs

boson transverse momentum distribution is shown in
Fig. 1. We observe that the leading-order interference
changes the Higgs boson transverse momentum distribu-
tion by −8% at p⊥ ∼ 20 GeV and þ2% at p⊥ ∼ 100 GeV.
Since the QCD corrections to color-singlet production in
gluon annihilation are large, and since it is not clear a priori
if the QCD corrections to the interference are similar to the
QCD corrections to the pointlike cross section, large
modifications of these LO results cannot be excluded.
The NLO computation, illustrated in Fig. 1, clarifies this
point. There, filled bands in blue for the leading and red for
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the next-to-leading order predictions show the result for
Rintðp⊥Þ, computed in the pole mass renormalization
scheme. The widths of the bands indicate changes in the
predictions caused by variations of renormalization and
factorization scales by a factor of two around the central
value μ ¼ HT=2. In fact, we observe that differences
between leading and next-to-leading order are very small.
For example, RNLO

int ðp⊥Þ appears to be smaller than
RLO

int ðp⊥Þ by less than a percent at p⊥ < 60 GeV and
practically coincides with it at higher values of p⊥. We
emphasize that these small changes in Rint imply sizable
Oð40–50%Þ corrections to the tb interference proper that,
however, appear to be very similar to NLO QCD correc-
tions to the pointlike cross section σtt. The scale variation
bands are very narrow (at leading order, hardly visible) due
to a cancellation of large scale variation changes between
the numerator and denominator in Eq. (3). Similar results
for the Higgs boson rapidity distribution for events, with
p⊥ > 30 GeV, are shown in Fig. 2.
The above result for the scale variation suggests that the

uncertainties in predicting the size of top-bottom interfer-
ence effects in H þ j production are small since both the
size of corrections and the scale variation bands are similar
to the corrections to the pointlike pp → H þ j cross
section. Such a conclusion, nevertheless, misses an impor-
tant source of uncertainties related to a possible choice of a
different mass-renormalization scheme. Indeed, since the
leading-order interference contribution is proportional to
the square of the bottom mass Rint ∼m2

b, and since at
leading order a change in the mass renormalization scheme
simply amounts to the use of different numerical values for
mb in calculatingRint, it is easy to see that this ambiguity is

very significant. Indeed, suppose that we choose to renorm-
alize the bottom mass in the M̄S scheme and we take mb ¼
mM̄S

b ð100 GeVÞ ¼ 3.07 GeV as an input parameter [37].
Since ½mM̄S

b ð100 GeVÞ=mpole
b �2 ≈ 0.4, this implies that

RLO
int is reduced by more than a factor of two, practically

independent of the p⊥ value. This large leading-
order variation is shown as a hashed blue band in
Figs. 1 and 2, where we have taken mb ¼ mpole

b and mb ¼
mM̄S

b ð100 GeVÞ as the two boundary values.
This large ambiguity in the leading-order value ofRint is

somewhat reduced at next-to-leading order, where
the effect of the mass renormalization scheme change is
less dramatic but, nevertheless, significant. The scheme
dependence at NLO for the setup explained in the pre-
vious paragraph is shown as a hashed red band. For
p⊥ < 60 GeV, the mass renormalization scheme uncer-
tainty is reduced by almost a factor of two, whereas the
reduction of uncertainty is only marginal at higher p⊥. This
happens because at high transverse momenta, there is a
significant cancellation between ANLO

t ALO�
b and ALO

t ANLO�
b ,

cf. Eq. (2). Since the first term involves leading order
b-quark contributions, it experiences large variations
when the b-quark mass renormalization scheme is changed,
and this causes large variations in Rint at high p⊥. The
interference contribution to the Higgs rapidity distribution
in Fig. 2 shows similar features. The mass variation band at
NLO is smaller than the LO variation band at large absolute
values of the pseudorapidity (small p⊥) and practically
indistinguishable from it at the central rapidity values
(large p⊥).
In summary, we computed the NLO QCD corrections to

the top-bottom interference contribution to Higgs boson
production in association with a jet at the LHC. This is
the first computation of QCD radiative corrections to
Higgs production at this order in perturbation theory
that goes beyond the pointlike approximation for the ggH
coupling. Our results show that corrections to the

FIG. 1. Relative top-bottom interference contribution to the
transverse momentum distribution of the Higgs boson at leading
(blue) and next-to-leading (red) order in perturbative QCD. At
next-to-leading order, the interference contribution is shown with
respect to the pointlike Higgs effective field theory prediction,
rescaled with exact leading-order top mass dependence. Filled
bands, hardly visible at leading order, show the change in Rint,
caused by a variation of the renormalization and factorization
scales, correlated between the numerator and denominator. The
hashed bands indicate the uncertainty due to mass-renormaliza-
tion scheme variation. See text for details.

FIG. 2. Relative top-bottom interference contribution to the
pseudorapidity distribution of the Higgs boson at leading and
next-to-leading order in perturbative QCD. Bands and colors as in
Fig. 1.
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interference are large, yet they appear to track very well
corrections to the pointlike component of the cross section.
The strong dependence of the LO interference on the mass-
renormalization scheme is reduced at NLO, but at high
values of the Higgs transverse momentum or at central
rapidity, the remaining ambiguities are significant. It is not
clear how the situation at high p⊥ and/or small absolute
ηH can be further improved. However, we want to
emphasize that in these kinematic regions, the interference
is numerically small compared to the Oðy2t Þ contribution.
Nevertheless, with this result at hand, one can try to provide
the best possible theoretical predictions for the Higgs
transverse momentum distribution that combine the known
results for the p⊥ resummation NNLO corrections toH þ j
in the pointlike approximation with the top-bottom inter-
ference. All the ingredients are now available. We plan to
return to this problem before long.
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