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Abstract. 20 

The amount of palaeoecological information available continues to grow rapidly, providing 21 

improved descriptions of the dynamics of past ecosystems and enabling them to be seen from 22 

new perspectives.  At the same time, there has been concern over whether palaeoecological 23 

enquiry needs to move beyond descriptive inference to a more hypothesis-focussed or 24 

experimental approach; however, the extent to which conventional hypothesis-driven 25 

scientific frameworks can be applied to historical contexts (i.e., the past) is the subject of 26 

ongoing debate.   In other disciplines concerned with human-environment interactions, 27 

including physical geography and archaeology, there has been growing use of generative 28 

simulation models, typified by agent-based approaches.  Generative modelling encourages 29 

counter-factual questioning (“what if…?”), a mode of argument that is particularly important 30 

in systems and time-periods, such as the Holocene and now the Anthropocene, where the 31 

effects of humans and other biophysical processes are deeply intertwined.  However, 32 

palaeoecologically focused simulation of the dynamics of the ecosystems of the past either 33 

seems to be conducted to assess the applicability of some model to the future or treats 34 

humans simplistically as external forcing factors.  In this review we consider how generative 35 

simulation-modelling approaches could contribute to our understanding of past human-36 

environment interactions. We consider two key issues: the need for null models for 37 

understanding past dynamics and the need to be able learn more from pattern-based analysis. 38 

In this light, we argue that there is considerable scope for palaeocology to benefit from 39 

developments in generative models and their evaluation.  We discuss the view that simulation 40 

is a form of experiment and, by using case studies, consider how the many patterns available 41 

to palaeoecologists can support model evaluation in a way that moves beyond simplistic 42 

pattern-matching and how such models might also inform us about the data themselves and 43 

the processes generating them.  Our emphasis is on how generative simulation might 44 
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complement traditional palaeoecological methods and proxies rather than on a detailed 45 

overview of the modelling methods themselves. 46 

 47 

Keywords: agent-based models, pattern-oriented modelling, generative simulation models, 48 

equifinality, inference  49 
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Introduction 50 

Palaeoecologists are enjoying a data-rich era, with reconstructions using multiple proxies 51 

across large networks of sites now common, supported by advances in computational power 52 

and informatics (Brewer et al., 2012).  Large amounts of palaeoecological information, such 53 

as that stored in the NEOTOMA and the Global Charcoal databases, are available online and 54 

can be interrogated using open-source software such as R (Blarquez et al., 2014; Goring et 55 

al., 2015).  Likewise, the variety of proxies available to palaeoecologists has increased 56 

(Meadows, 2014), with, for example, ancient genomics providing new data and insights about 57 

the ecological dynamics of the ecosystems of the past (Hofman et al., 2015; Orlando and 58 

Cooper, 2014).  The signatures of past changes and the processes generating them are usually 59 

assumed to be present in the spatial and temporal patterns embedded in these data and given 60 

the wealth of data available describing past ecosystems, palaeoecology is now awash, if not 61 

drowning, in ‘patterns’ of all sorts.  This wealth of data and patterns is allowing new avenues 62 

for palaeoecological research.  For example, there is growing interest in the use of the 63 

information and knowledge gleaned from natural archives to inform understanding of 64 

contemporary ecosystem-service provisioning and the resilience and threshold behaviour of 65 

environmental systems, and to improve policy and practice (Jeffers et al., 2015; Pearson et 66 

al., 2015).   67 

 68 

Understanding the dynamics of feedback-driven ecological systems requires a pluralistic 69 

approach; in this pursuit the description of long-term ecosystem dynamics that underpins 70 

palaeoecology is a fundamental component, but is not sufficient of itself (Bowman et al., 71 

2015).  Models, and the intellectual practice of process-based modelling, also have an 72 

important role to play in such efforts.  Computational and data advances have allowed the 73 

development of detailed environmental models over increasingly finer and larger scales in 74 
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space and time.  Computer power is not, however, a panacea for the scaling and inferential 75 

challenges faced by (palaeo)ecologists, nor does it negate the fundamental issues about 76 

representation that are central to all simulation.  From the outset we acknowledge that models 77 

will always remain open to the criticism that they are incomplete, although as both Bryson et 78 

al. (2007) and Millington & Wainwright (2016) comment this incompleteness is true of all 79 

explanations and theories.  Furthermore, purpose will remain the key determinant of how 80 

useful simulation might be in a given context and what form any such simulation should take; 81 

in short, not all questions require an explicit formal model, even if scientists are implicitly 82 

modelling all of the time.  Alongside changes in computational power supporting more 83 

detailed representation, modellers have moved beyond seeing simulation models solely as 84 

predictive devices and have begun to emphasise their heuristic and exploratory value 85 

(Oreskes et al., 1994). Importantly, there has been growing recognition that a simple 86 

confrontation of model predictions with observed data (so-called ‘pattern-matching’) is 87 

inadequate for model evaluation (O’Sullivan and Perry, 2013).  In response, environmental 88 

modellers have developed frameworks for making process-related inferences from 89 

complicated simulation models that go beyond simple pattern matching (single model vs. 90 

single data) and emphasise multiple hypothesis testing and the simultaneous evaluation of 91 

multiple model structures (Grimm and Railsback, 2012; McIntire and Fajardo, 2009).  These 92 

frameworks can support the heuristic use of simulation models to explore palaeoecological 93 

questions, but to date there have been limited efforts to link these important developments in 94 

palaeoecological and human-environment models.   95 

 96 

In this paper, we focus on how generative models can be used to strengthen the inferences 97 

made from palaeoecological data and the patterns embedded in them. We are concerned with 98 

the use of models to understand past human-environment interactions rather than the 99 
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technical questions of how to develop a simulation model.  Two recent reviews of modelling 100 

human-environment interactions in the Anthropocene help to fill this gap: Verburgh et al. 101 

(2016) discuss, in general terms, the challenges of adequately representing human-102 

environment interaction in coupled socio-ecological systems and Barton et al. (2016) describe 103 

in some detail the design and implementation of the MedLand Modeling Laboratory.  Thus, 104 

we do not provide an exhaustive overview of the application of simulation models to 105 

palaeoecological questions (in fact the field is large enough that this is probably impossible in 106 

a single review); rather, we seek to highlight how recent advances in the computational tools 107 

available to ecological modellers can support better inference making from (simulation) 108 

models.  In particular, we consider the view that models represent an alternative mode of 109 

experiment (Dowling, 1999; Peck, 2004); this is a particularly relevant argument for 110 

historical sciences such as palaeoecology where direct manipulation of the system is 111 

impossible.  We focus on how new frameworks for model selection and evaluation offer 112 

powerful frameworks within which in silico experimentation might be grounded and suggest 113 

that palaeoecological records provide an ideal test-bed for the application of these tools.   114 

Generative simulations models, including agent-based approaches, can be used to explore 115 

prehistoric human-environment interactions in ways that are currently under-explored; such 116 

approaches have been surprisingly little used to explore palaeoecological questions. 117 

 118 

Generative Modelling 119 

Many different typologies have been proposed for ecological models, including some based 120 

on the underlying techniques used (e.g. mathematical vs. empirical vs. simulation) and others 121 

on the motivation behind the modelling exercise (e.g. prediction vs. heurism) (Perry and 122 

Millington, 2008).  Gerbault et al. (2014) distinguish between ‘discriminative’ and ‘generative’ 123 

simulation models; the former focus on finding patterns in data without explicit consideration 124 
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of causality, and the latter with developing representations of system that do address the 125 

underlying processes generating the patterns and structures we observe (“story testing”, sensu 126 

Gerbault et al., 2014).  Epstein (1999, 2006, 2008) has advocated for a generative approach in 127 

modelling social systems, using agent-based models (ABMs) to evaluate how complex social 128 

systems may be built up of and evolve within a set of relatively simple rules.  This generative 129 

approach is important because interpretations of Holocene palaeoecological data must 130 

necessarily consider whether the signal has been perturbed, or is even dominated, by human 131 

action.  In such contexts, models are tools designed to represent and simplify more 132 

complicated or complex ecological systems and thus support surrogative reasoning 133 

(O’Sullivan and Perry, 2013).  Surrogative reasoning implies a feedback between model and 134 

understanding, with failure to close the reasoning loop resulting in “merely replicating field 135 

data in silico” (Premo, 2007, p. 30).  Thus, models are not, at least in this context, of interest 136 

simply of themselves, but have value to the extent that they inform us about the system or 137 

phenomenon of interest.  Lake (2015) argues that to be successful, experimental generative 138 

modelling will need to be grounded in theory (so moving primacy away from the data 139 

required for parameterization) and, by design, adopt an exploratory approach to model 140 

evaluation. 141 

 142 

Generative modelling relies on disaggregated disaggregated, process-based models whereby 143 

the overall structure emerges from the activities of and interactions between individual 144 

elements of interest. Agent-based models (ABMs) typify this approach and have begun to be 145 

used across a broad range of the natural and social sciences (Heppenstall et al., 2012; 146 

Railsback and Grimm, 2012; Wurzer et al., 2015).  In the ABM framework, the dynamics of 147 

systems are represented by considering the basic entities (the ‘agent’) and evaluating how 148 

interactions between these agents and their environment result in the formation of system-149 
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level (macroscopic) structure; in other words, it is ‘bottom-up’.  In such models ‘agents’ are 150 

entities that seek to fulfil some goal (e.g. capture resources, breed) and have some level of 151 

autonomy (that is their behaviour is not hard-coded and may vary between individual agents).  152 

While agents may be individual organisms, they might equally represent households, wider 153 

family groups, settlements or even entire tribes.  Simulation models developed by ecologists 154 

to explore past human-environment interactions tend to have taken a rather different approach 155 

in which human agency is not directly represented but is instead mimicked by changes in 156 

parameterization (e.g. increased fire frequency or browsing) with the biophysical 157 

environment represented in detail (as per the case-studies described below).  The flexible 158 

representation and emergent behaviour possible with ABMs is especially important given that 159 

feedbacks between humans and ecosystems are reciprocal rather than uni-directional 160 

(Bowman et al., 2015; Wainwright and Millington, 2010). This point highlights the main 161 

weakness of a static representation of human-environment interactions, which that it fails to 162 

capture their reciprocal nature: as human action changes the landscapes they inhabit so to 163 

human behaviours change in order to adapt to the new conditions (Wainwright, 2008). 164 

 165 

Except for a few specific cases (Griffith et al., 2010), however, ABMs seem to have received 166 

little attention in ecologically focussed reconstructions of human-environment interactions. 167 

Conversely, the use of ABMs by archaeologists is growing (Cegielski and Rogers, 2016), and 168 

the most iconic prehistoric human-environment ABM – the Artifical Anasazi model – was 169 

developed by archaeological researchers (Axtell et al., 2002)1; in such models human 170 

decision-making is represented in detail but the biophysical environment often less so.  This 171 

difference in approach probably reflects the underlying differences in the foci and intellectual 172 

1 Available at: https://www.openabm.org/model/2222/version/2/view 
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traditions of different disciplines2. Ultimately, understanding how humans and environments 173 

interact in the past is likely to require an explicit representation of human agency.   174 

 175 

Modelling as experiment  176 

Dowling (1999, p. 261) makes it clear that the use of simulation models is, both epistemically 177 

and practically, a form of experiment: 178 

A scientist running a computer simulation performs an experiment upon a theory. 179 

An abstract, mathematical model of a physical system is implemented on a 180 

concrete machine. Through that machine, the model can be manipulated as if it 181 

were a physical experimental target. The mathematical model can then be 182 

approached and analyzed using skills traditionally associated with experimental 183 

work: visual observation, "tinkering" with the machine, and intuition about the 184 

behavior of the concrete system. 185 

 186 

This view of ‘simulation as experiment’ is appealing for the historical sciences (sensu 187 

Cleland, 2001) because in such cases adopting the classical hypothetico-deductive scientific 188 

framework is infeasible (Biondi, 2014).  Direct manipulation of the past is impossible, and 189 

the data describing the ecosystems of the past are usually spatio-temporally patchy and 190 

provide only indirect representations of the processes of interest.  As a result, palaeoecology 191 

has relied heavily on pattern identification and diagnosis, but there is a bound to the 192 

inferences that can be made from pattern description alone (Birks, 1993; McIntire and 193 

Fajardo, 2009). A first concern with inference grounded in patterns is in nature of the patterns 194 

2 It is worth noting that ecologists have used individual-based models (IBMs) since the 1960s, especially in the 
area of forest dynamics.  The differences between IBM and ABM are largely semantic and reflect disciplinary 
traditions; both approaches have the same underlying bottom-up approach. 
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themselves.  For example, Blaauw (2012) highlights the risk of circularity in the diagnosis of 195 

pattern, especially in cases where multiple proxies are matched or tuned against each other 196 

based on the assumption that events seen in them are synchronous. The problem posed by 197 

equifinality – that is, the same pattern can arise from many different processes – places a 198 

limit on the strength with which inferences about generating process can be made from 199 

spatial or temporal patterns alone (Beven, 2006). A classic example of this problem in the 200 

palaeoecological literature is the long-standing debate over the mid-Holocene decline of 201 

Ulmus in northern Europe (Parker et al., 2002).  Because this decline occurred around the 202 

time of the Mesolithic-Neolithic transition and associated agricultural expansion it is 203 

plausible that human activity played a role; on the other hand it is also plausible that a 204 

pathogen or regional drought or some combination of all three were responsible.  Analysis of 205 

patterns alone cannot, of itself, distinguish between these causal explanations. 206 

 207 

Generative simulation models provide tools for experimentation on the past and for testing 208 

hypotheses and counter-factual arguments (“how might the system have responded if...?”, 209 

Millington and Wainwright, 2016).  As McIntire & Fajardo (2009) argue, making robust 210 

statements about the dynamics of systems to which we have only restricted access (in space 211 

and time) requires ecologists focussed on pattern analysis to adopt a more deductive 212 

framework. This argument is echoed in Lake’s (2015) observation that successful generative 213 

modelling needs to be grounded in an experimental approach.  Despite the appeal of a 214 

generative modelling approach to make more of palaeoecological data describing human-215 

environment interaction the approach seems under-used; instead, one of the main uses of 216 

palaeoecological information (such as pollen and charcoal records) by ecological modellers 217 

has been to ‘validate’ their models (Anderson et al., 2006; Birks, 1993; Iglesias et al., 2015). 218 

Ultimately, these validations are used to justify, via induction, a model’s extension to 219 
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assessing the future. However, how much process-pattern links in the past will apply in a 220 

potentially ‘no-analogue’ future is unclear, and hence the use of phenomenological 221 

representations of the past to predict the future is fraught with problems (Gustafson, 2013; 222 

Haywood et al., 2011; Williams and Jackson, 2007).  This type of validation is also fraught 223 

where the types of circularity discussed by Blaauw et al. (2012) may be present; if a model is 224 

built ‘knowing’ what the interpretation of the palaeoecological data should be (albeit perhaps 225 

only implicitly), it is not surprising that validation via model-data confrontation is successful 226 

(echoing the concern of Premo, 2007 that modelling can reduce to the simple reproduction of 227 

field data).  Finally, as Anderson et al. (2006) note, this validation-focussed approach is uni-228 

directional in that the data inform the model but not the other way around; such a narrow 229 

application restricts what might be learned both from the data and the model.   230 

 231 

Use of data and models in palaeoecology 232 

 233 

Experimenting with simulation models using (palaeo)ecological data: controls and patterns 234 

 235 

1. A need for nulls 236 

At the heart of classical experimentation is the idea that the effect of process x in some 237 

system can be identified by manipulating it and holding all others constant.  Thus, 238 

quantifying the effect of x requires a control that serves as a point of reference.  This type of 239 

approach is problematic for natural systems (Diamond, 1983) and is effectively impossible 240 

for past ones (Cleland, 2001).  However, developing simulations in which processes of 241 

interest are deliberately excluded provides a valuable null model that can act, in some ways, 242 

as a ‘control’ (Lake, 2015).  In their horizon-scan of 50 pressing questions for 243 
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palaeoecologists, Seddon et al. (2014) identify both the need for a more experimental 244 

approach (their Q 49) and a closer consideration of the use of null models (their Q 25) as 245 

important.  Although Seddon et al. (2014) emphasise statistical models in supporting those 246 

advances, the experimental use of simulation models can play an important role in both. 247 

 248 

As an example of how simulation models can support the development of null models, 249 

consider the question ‘how much can fluctuations in proxy records be attributed to exogenous 250 

drivers as opposed to statistical variability?’ or, to turn this around, ‘what would proxy 251 

records look like if they were just stochastic time-series?’. Blauuw et al. (2010) show that 252 

patterns visually similar to those in ‘real’ proxy records can arise from random walk 253 

processes (Fig. 1). That a process-free algorithm can generate patterns difficult to distinguish 254 

from proxy records again evokes the perils of equifinality.  Likewise, both Rhode et al. 255 

(2014) and Davies et al. (2016) show how changes in the temporal distribution of dated (e.g. 256 

14C) records, which are often assumed to represent patterns in human occupation of the 257 

landscape (similar to those observed in the field), can emerge in the absence of any 258 

underlying change in human demography or behaviour.  A second context where neutral 259 

models are useful is in understanding the generation of landscape-level vegetation patterns.  260 

Succession-disturbance dynamics are affected by the spatial structure (composition and 261 

configuration of elements) of the landscapes in which they occur (Turner, 2010).  Therefore, 262 

when developing representations of palaeoecological processes, it is not necessarily sufficient 263 

to consider just the composition of a landscape as established from pollen records; often the 264 

spatial pattern must also be examined.  Understanding the implications of changes in 265 

landscape configuration is particularly important when trying to identify human activity, as 266 

prehistoric humans dynamically changed the processes shaping the landscape mosaic, and 267 

this change in landscape pattern alone may result in changes to ecological processes 268 
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(Delcourt, 1987).  The dynamic nature of landscape change is crucial and is a potential source 269 

of equifinality as, for example, the same outcome may not occur for the same change because 270 

of internal and external dynamic interactions.  As we argued above, such multifaceted links 271 

between pattern-process are unlikely to be adequately captured in static representations of 272 

human-environment interactions. Detailed methods do exist to reconstruct landscape 273 

composition and structure from pollen records (e.g. the LRA, Sugita, 2007a, 2007b; Sugita et 274 

al., 2010), but these are data-demanding, require extensive calibration against modern data 275 

and are taxa- and site-specific.  A neutral landscape model (NLM) approach, in which a wide 276 

variety of landscape patterns are simulated but with the same statistical characteristics, can be 277 

used to test the potential influence of landscape pattern on past ecological processes 278 

(Etherington et al., 2015). Importantly for palaeoecological applications, NLMs can be 279 

constructed such that the known proportional composition of a landscape in a pollen 280 

catchment can be embedded within a broader unknown landscape pattern to examine the 281 

possible influence of patterns in the wider landscape (Fig. 2).  The Multiple Scenario 282 

Assessment (MSA) approach described by Bunting and Middleton (2009) is somewhat 283 

similar in that it starts with observed pollen records and then generates multiple candidate 284 

simulations of the landscape structure that might have produced them.  Running repeated 285 

simulations on landscapes of the same composition, but with different spatial configurations, 286 

allows an experimental assessment of the importance of both initial conditions (enabling 287 

contingency and sensitivity issues to be evaluated) and space in ecosystem dynamics. Thus, 288 

the use of neutral models can provide a frame of reference for detailed palaeoecological 289 

records (a point emphasised by Barton et al., 2016), and with careful in silico 290 

experimentation partition the contribution of different drivers to observed dynamics. 291 

 292 

2. Making better use of ‘patterns’ 293 
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The inferences made using any model will depend on its adequacy, which is a context-294 

dependent quality.  Most methods designed to assess model adequacy rely on the 295 

‘confrontation’ of a given model with some (independent) data (Beck, 1987; Hilborn and 296 

Mangel, 1997; Mayer and Butler, 1993; Mulligan and Wainwright, 2004).  Putting to one side the 297 

fact that models are false by definition, Oreskes et al. (1994) argued that models cannot be 298 

verified (i.e. found ‘true’)3 simply by pattern matching; even if a model manages to perfectly 299 

(or even adequately) mimic some target data-set, other parameterizations or models may 300 

perform equally well (i.e., there is a problem of under-determination).  A second, but related, 301 

problem with model-data confrontation is that it tends to emphasize parameter uncertainty in 302 

a fixed model structure, whereas in reality structural (epistemic) uncertainty (i.e. the way in 303 

which specific processes are represented in a model) is likely to be as acute, if not more so. 304 

 305 

Partly in reaction to their concern over the ad hoc nature of the development of complex 306 

simulation models, Grimm and Railsback (2005; 2012) advocate pattern-oriented modelling 307 

(POM).  At its heart, POM is based on the view that the patterns observed in complex 308 

systems (strictly, in the data describing them) are the fingerprints of the processes that 309 

generated them.  In terms of model evaluation, these patterns act as filters that can be used to 310 

assess if a model is adequate in its parameterisation and/or its structure (Fig. 3).  A key facet 311 

of POM is the use of multiple patterns; it is more difficult for a model to agree with multiple 312 

weak patterns than with a single strong one.  Thus, for a model to be deemed adequate it will 313 

need to be able to reproduce a number of observed patterns.  The POM approach is not 314 

concerned with isolating a single ‘true’ model; rather it seeks to identify the set of models 315 

that have sufficient structural realism and adequate parameterization to meet specific targets.  316 

3 It is worth noting that Oreskes et al. use a natural language definition of verified that is distinct from what the 
term is usually taken to mean in a computer-science framework. 
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There are two compelling arguments for the use of POM approach for palaeoecological data 317 

and models. First, as described above, a wealth of patterns describing (socio-)ecological 318 

systems of the past are now available, and, second, the use of multiple patterns to evaluate 319 

models is crucial in settings where the likelihood of either equifinality or trajectory 320 

divergence (i.e. the same parameter set generating a broad range of outcomes) is high, as it is 321 

in historical settings reconstructed via proxy data (Bunting and Middleton, 2009; Gerbault et 322 

al., 2014; Janssen, 2009; Stiner, 2008).  Thrippleton et al. (2014) provide an example of the 323 

use of a POM framework to inform the parameterization of a dynamic vegetation model 324 

(LANDCLIM) that was used to explore successional change following the Taupō eruption of 325 

c. 232 CE (North Island of New Zealand).  Horrocks and Ogden (1998) described two 326 

important patterns in the post-eruption succession: (1) conifer dominance in the period 327 

immediately after the eruption (in particular by Libocedrus bidwillii) and (2) a subsequent 328 

spread of Weinmannia racemosa in montane areas.  These patterns were framed as 329 

quantitative criteria and a full parameter-space sweep conducted for two highly uncertain but 330 

critical life-history parameters – maximum growth rate and shade-tolerance – with only those 331 

parameterizations that met these criteria retained. When the model was assessed against the 332 

pollen record it could reproduce a series of patterns seen in the pollen records and in the 333 

modern vegetation (e.g. vegetation composition and elevational zonation).  If a model that 334 

has passed a POM assessment then generates previously unobserved patterns then those can 335 

stimulate further empirical investigation and hypothesis testing (Grimm et al., 2005; Wiegand 336 

et al., 2003).  An important challenge in the application of POM for palaeoecological models 337 

is that the state variables of models are not expressed in units similar to those of the proxies 338 

being used.  For example, vegetation models may predict biomass or species abundance, but 339 

pollen records are expressed in concentrations that may or may not be easily mapped to 340 

biomass or abundance.  Developing palaeoecological models that produce virtual natural 341 
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archives (see Barton et al., 2016) will be important if tools such as POM are to be more 342 

effectively used.  Alongside the development of virtual records ongoing advances in our 343 

ability to link proxy information to the underlying mechanisms generating it (e.g., Dawson et 344 

al., 2016; Higuera et al., 2007 provide examples with fossil pollen and charcoal, respectively) 345 

will also help to strength the inferences derived from a POM approach.  346 

 347 

A key challenge in POM is in deciding what for any given model ‘adequate’ actually means.  348 

Tools developed by statisticians to assess model adequacy, for example arising from multi-349 

model inference (Burnham and Anderson, 2002), are now being applied to ecological simulation 350 

models (Hartig et al., 2011).  Such tools facilitate a rigorous, robust and repeatable “tinkering 351 

with the machine” to use Dowling’s (1999) phrase. For example, Approximate Bayesian 352 

Computation (ABC: Beaumont, 2010; ABC, Csilléry et al., 2010; Stumpf, 2014), which has 353 

been used to parameterize and select between population genomic models (e.g. Fagundes et 354 

al., 2007 use ABC to select between different models of human origin and migration from 355 

Africa), is beginning to be applied to complex ecological simulations (Morales et al., 2015; 356 

van der Vaart et al., 2015). In essence, ABC involves having some form of target data (a 357 

pattern, or more usually a suite of summary statistics describing multiple patterns) and then 358 

running many simulations with parameters sampled from broad uninformative (‘prior’) 359 

distributions and model structure varied.  Those simulations that are sufficiently close to the 360 

targets are retained and provide an updated (‘posterior’) estimate of the parameters included 361 

in the model and also an indication as to the weight of support for alternative model 362 

structures (e.g. via Baye’s factors, Beaumont, 2010).  The simplest ABC estimation method is 363 

a reject-accept algorithm in which some threshold distance between model and observation is 364 

set and only those simulations within that tolerance retained or, alternatively, the model is run 365 

until some pre-determined number of simulations fall within that threshold (see Fig. 4).  366 
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However, other more sophisticated approaches, such as sequential Monte Carlo filters in 367 

which the parameter space is searched in a biased way to focus on more informative parts of 368 

it, are likely more efficient for complicated simulation models (Stumpf, 2014).  Again, the 369 

wealth of patterns available to palaeoecologists – coupled with the increasing accessibility 370 

and availability of high-performance computational infrastructure – makes ABC-type 371 

approaches relevant to model-based exploration of human-environment interactions in the 372 

past.  The ability to filter different model structures is crucial given the critique that ABMs 373 

are prone to being overly complex, making it difficult to identify the processes and 374 

parameters that drive them and hence communicate their outcomes effectively (Lee et al., 375 

2015).     376 

 377 

Modelling human-environment interactions in the past: nulls, patterns and experiments 378 

Much of the discussion above could be related to nearly all ecological and environmental 379 

contexts.  So, how do these arguments and approaches apply to the simulation of the 380 

dynamics of human-environment interactions in past environmental systems? Reconstructing 381 

environments from proxy information such as fossil pollen and charcoal requires a robust 382 

understanding of how those records are formed: where does the pollen preserved at a given 383 

site come from? from which taxa? what is the relative contribution of the local vs. the 384 

regional species pool? what is the relative importance of extrinsic (top-down) and intrinsic 385 

(bottom-up) forcing factors?  And in the context of understanding how humans affected the 386 

processes described by these proxies questions of agency and social structure become central.  387 

In this section, we consider, how generative simulation modelling can inform our 388 

understanding of such questions, especially as they relate to human agency and decision-389 

making.  We do not review the methods themselves in depth – they have been thoroughly 390 

described elsewhere (Epstein, 2006; Heppenstall et al., 2012; O’Sullivan and Perry, 2013; 391 
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Wurzer et al., 2015) – rather our focus is on the types of inferences made from models in 392 

each of these examples. 393 

 394 

‘Behaviourally neutral’ nulls 395 

In the context of understanding human-environment interactions, an obvious question is 396 

whether human activity was necessary to generate some observed pattern of interest.  397 

Because the presence of humans and their activities are often reconstructed indirectly (e.g. 398 

from abrupt changes in ecological conditions or from changes in the distribution of specific 399 

materials/dates) a more specific question is ‘how likely are such patterns in the absence of 400 

humans?’  Evaluating this question is not possible without explicit recourse to a model of 401 

some form, and as Barton et al. (2016 p. 38) comment “…the ability to conduct such 402 

contrafactual ecological dynamics (i.e., a Holocene world without humans) is a little 403 

discussed but uniquely important contribution of this kind of modelling that is impossible 404 

with the analysis of prehistoric empirical data alone.”   Null simulation models provide a 405 

powerful way to evaluate such questions; a good example of this type of approach is provided 406 

by the random walk models of pollen records and associated forcing factors of Blauuw et al. 407 

(2010) described earlier (Fig. 1).  Likewise, Brantingham (2003) showed how an agent-based 408 

model with minimal (zero) representation of human agency and environmental structure can 409 

generate plausible patterns of lithic assemblages.  In the specific context of human-410 

environment interactions the “behaviourally neutral” model of Davies et al. (2016) of the 411 

formation and preservation of surface archaeological deposits (e.g. fire-pits and hearths) in 412 

arid Australia is informative.  In these landscapes the temporal density of surface deposits 413 

varies and this could be interpreted as evidence for changes in human presence/activity; in 414 

particular, the records exhibit occasional long gaps and an increase in density towards the 415 

present.  Davies et al. (2016) used an agent-based model to evaluate how such records might 416 
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be produced in the absence of human agency (the agents leave surface deposits at a constant 417 

rate and with no spatial structure).  This simulation experiment, therefore, provides a null 418 

expectation against which to evaluate empirical data.  The outcome of the experiment was to 419 

demonstrate that time-varying geomorphic processes act to reveal and preserve deposits and 420 

so, of themselves, generate such patterns.  This model-derived outcome suggests that even 421 

though human activity was important in the landscapes considered, and its intensity varied 422 

through time and space, directly linking this to the available patterns is not straightforward. 423 

This result does not mean that humans had no role in generating the observed pattern, but it 424 

does suggest that the a priori assumption that they are solely responsible for this pattern is 425 

questionable(as, for example, demonstrated by Wainwright, 1994 in the case of post-426 

depositional movement of artefacts at archaeological sites). 427 

 428 

If human activity is established as an important driver of ecosystem change, then 429 

understanding the implications of their behaviour for systems dynamics becomes central.  As 430 

an aside, an interesting issue in this context is whether the appropriate null for human 431 

decision-making is the ‘zero intelligence agent’ or the entirely rational and informed “Homo 432 

œconomicus” of classical economics (Bentley and Ormerod, 2012); most neutral models of 433 

human-environment interaction developed by non-economists have favoured the former. For 434 

example, soon after human arrival in NZ in the late 13th century CE (Wilmshurst et al., 2008) 435 

widespread deforestation took place as a result of anthropic fire.  However, the motivation 436 

behind this event remains unclear, and cannot be elicited from palaeoecological information 437 

alone.  Using a spatial simulation model, which incorporated successional change, fire and 438 

feedbacks between fire and vegetation age, Perry et al. (2012) showed that in the absence of 439 

human fire, the transformation was extremely unlikely (a null model of no humans) and 440 

would not have occurred if human ignitions were spatio-temporally random (a null model of 441 
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uninformed ignition).  However, their model experiments also suggest that fire-vegetation 442 

feedbacks made the transformation almost inevitable once started, suggesting that such 443 

dramatic changes might not have been intended even if anthropic fire was deliberate.  Of 444 

course, the ability of these models to reproduce a suite of patterns does not ‘prove’ that this is 445 

how these transformations unfolded, but it does generate a range of hypotheses amenable to 446 

experimental testing (e.g. testing whether the postulated fire-vegetation feedback mechanisms 447 

inherent in this explanation do exist).  Furthermore, the model Perry et al. (2012) used is 448 

phenomenological rather than mechanistic, and so it is important to develop a process-based 449 

understanding of the underlying feedbacks if these dynamics are to be confirmed; neither 450 

proxies nor phenomenological models can generate such causal understanding.  Developing 451 

simple representations of human behaviour and agency is a powerful way of “generating 452 

inferences about how the world could have been, rather than about how the world is” (Premo, 453 

2006, p. 108).  The key point here is that neutral models can guide our understanding of what 454 

to expect if specific behaviours potentially responsible for generating observed patterns and 455 

trajectories are omitted from a model.   456 

 457 

Making better use of patterns 458 

Crema et al. (2014) used a rejection-tolerance ABC approach to parameterize and select 459 

between three different models of cultural transmission as preserved in the archaeological 460 

record.  In the apparent absence of the use of ABC to evaluate simulation models of past 461 

human-environment interactions this study provides a useful, and somewhat related example 462 

of the strengths of the approach.  The specific context considered by Crema et al. (2014) is 463 

the temporal change in arrowhead form during the Neolithic (data from western Europe).  464 

Crema et al. consider three candidate models and their parameterization: 1) a model of 465 

unbiased transmission; 2) a model of conformist bias; and 3) a model of anti-conformist bias.  466 
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The first of these three is a null model in that it assumes the probability of a variant being 467 

adopted is proportional to its current abundance; the other two models are biased either in 468 

favour of more (2) or less (3) widely used variants.  The empirical data provide a target 469 

pattern, which is the dissimilarity in assemblage form between two successive periods.  470 

While the archaeological details are not relevant here, what is important is the ABC approach 471 

that Crema et al. (2014) adopt was able to parameterize the models adequately, but could not 472 

isolate a single ‘best’ model, with both the unbiased and conformist model equally plausible.  473 

While this may seem inferentially unsatisfactory, it does quantify the risk of equifinality in 474 

the data in a way that an a priori assumption of the ‘best’ model structure cannot4.  The 475 

approach of Crema et al. (2014) is clearly applicable to a wide variety of palaeoecological 476 

settings where proxy records provide a range of summary statistics to inform the approach. 477 

The availability of multiple proxies is particularly useful for ABC because it provides 478 

potentially somewhat independent filters for the algorithm.  479 

 480 

Experiments and scenarios 481 

A common use of simulation models is to explore counterfactual (‘what if…?’) scenarios, 482 

and there has been some use of this approach in understanding past human-environment 483 

interactions (Wainwright and Millington, 2010).  Here we consider two contrasting examples: (i) 484 

the use of a dynamic vegetation model (LANDCLIM) supported by palaeoecological proxy 485 

data to explore the effects of land-use change and fire on vegetation in ecosystems in western 486 

Europe (Colombaroli et al., 2010; Henne et al., 2013) and (ii) the use of an agent-based 487 

model of landscape change (CybErosion) that directly represent human decision-making, as 488 

4  Although this outcome may also arise from Crema et al. using just a single summary statistic (i.e. 
pattern), rather than the multiple targets inherent in POM (Grimm and Railsback, 2012) and advocated in the 
technical ABC literature (Rasmussen and Hamilton, 2012). 
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well as geomorphic and ecological processes (Wainwright, 2015).  Our emphasis is not on a 489 

detailed description of the outcomes of these experiments per se, but rather on the way in 490 

which they were used and the types of inference developed from them. 491 

 492 

Colombaroli et al. (2010) and Henne et al. (2013) used the LANDCLIM model to explore 493 

how changes in vegetation at Gouillé Rion (Swiss Alps) and Lago di Massacciucoli 494 

(Tuscany), respectively, over the Holocene might relate to shifts in climate and changes in 495 

human activity.  The LANDCLIM model is a detailed representation of vegetation dynamics 496 

(succession and multiple disturbance types) at high spatial resolution (25 × 25 m); the model 497 

is described in detail in Schumacher et al. (2004). Interactions between disturbance and 498 

climate are dynamic and emerge from the model,  but it does not directly include human 499 

behaviour; rather Colombaroli et al. (2010) and Henne et al. (2013) mimic human actions by 500 

changes in parameterization (e.g. increased in fire frequency at given times). Colombaroli et 501 

al. (2010) and Henne et al. (2013) used model scenarios, supported by temperature 502 

reconstructions, to evaluate how the patterns seen in detailed multi-proxy palaeoecological 503 

records (pollen, plant remains, charcoal) might have arisen.  For example, Henne et al. (2013) 504 

systematically explored the effects of browsing and fire by simulating three levels of each 505 

(nine experimental treatments in total).  Both studies strongly suggest that the temporal shifts 506 

in vegetation seen in the proxy records are only likely to have occurred under increased 507 

human land activity.  Wainwright (2015) used an agent-based model (CybErosion) that 508 

represents interactions between Mesolithic hunter-gatherers and Neolithic agriculturalists and 509 

their environment, including processes such as livestock husbandry and browse, fire and 510 

erosion and the feedbacks between them in a semi-mechanistic way.  Using this model, 511 

Wainwright (2015) explored three different scenarios in which human pressure on the 512 

landscape varied from low environmental pressure/low invasion rate/extensive agricultural 513 
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production to high pressure/high invasion rate/intensive agricultural production.  An 514 

important outcome of these experiments was that changes in landscape connectivity can 515 

result in periods of stability and instability (the stability-instability-connectivity [SIC] model) 516 

without such transitions being directly represented (i.e., it is ‘emergent’), but the trajectories 517 

seen in the different scenarios suggest that these SIC dynamics can take a variety of forms. 518 

 519 

While bearing in mind that they come from different disciplinary perspectives (palaeoecology 520 

vs. geoarchaeology), it is informative to compare how these two case studies use in silico 521 

experiment to make inferences about past human-environment interactions. Colombaroli et 522 

al. (2010) and Henne et al. (2013)  start with detailed palaeoecological reconstructions of two 523 

specific sites and their associated taxa, and seek to use the model to identify the mechanisms 524 

that may have generated the patterns observed in those records.  Although they invoke human 525 

activity in the form of changes in fire regime and browsing, they do not directly represent 526 

them – rather humans are treated as ‘boundary conditions’ with parameterization changed 527 

accordingly (e.g. fire frequency increased tenfold to represent increasing human intensity in 528 

the landscape).  This approach yields a detailed, and partially mechanistic, understanding of 529 

biophysical change in a specific landscape.  On the other hand, Wainwright (2015) starts with 530 

the general observation that there are periods of both landscape stability and instability during 531 

the Neolithic in western Mediterranean Europe, and asks how they arise.  He explores this 532 

question with an agent-based model (ABM) that explicitly represents human decision-making 533 

and biophysical change and evaluates the implications of a suite of assumptions, framed as 534 

scenarios describing different rates of human movement and agricultural intensity (Figure 5).  535 

While Wainwright (2015) does not do so, the types of virtual archive produced by process-536 

oriented ABMs could be evaluated against proxy records such as fossil pollen (the caveats 537 

described earlier notwithstanding).  This style of modelling demonstrates how feedbacks 538 
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between humans and the environment can generate a rich range of dynamics (in this case by 539 

altering the nature of connectivity in the landscape), but it does not focus on a specific site or 540 

suite of taxa.  It is important to emphasise that neither approach to modelling is inherently 541 

‘better’ – the usefulness of an approach depends on the purpose of the modelling activity – 542 

but, on the other hand, modellers cannot have it both ways; there will always be trade-offs 543 

between precision, realism and generality (Levins, 1966). 544 

 545 

Where next? 546 

Increasing computational power and data availability are rapidly changing the way that 547 

simulation is practiced in the natural and social sciences (Gattiglia, 2015; Lazer et al., 2009; 548 

Sellars et al., 2013).  However, as noted in our examples above, technological increases will 549 

not solve all of the challenges associated with representation and scale with which ecologists 550 

struggle.  In the specific area of modelling prehistoric human-environment interactions, we 551 

briefly consider two areas ripe for development from an ecological perspective: (i) the use of 552 

ABMs and (ii) improvements in the ways that model outcomes are communicated and 553 

interpreted. 554 

 555 

Agent-based approaches 556 

 557 

We are not arguing that an ABM approach is the best option for all questions, and whether 558 

they will “make revolutionary advances within the overall archaeological research paradigm” 559 

as some have argued (Cegielski and Rogers, 2016, p. 284) remains to be seen.  O’Sullivan et al. 560 

(2012, p. 120) argue that there are three conditions where ABMs are likely to be useful: (i) 561 

the environment is heterogeneous in space and time, (ii) the agents interact in the decision-562 
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making process and (iii) the system is middle-numbered (that is too many elements to be 563 

open to purely deterministic analysis but too few for the laws of statistical physics to apply, 564 

Weaver, 1948).  While these conditions may well be true of many settings where human-565 

environment interactions are being represented, they are not universal.  ‘Fast and frugal’ 566 

models (Carpenter, 2003) still have an important role to play in (initial) explorations of 567 

system behaviour (e.g. see Holdaway and Jacomb, 2000; Perry et al., 2014 in the context of 568 

hunting pressure required to drive moa to extinction).  ABMs can also, but do not have to, be 569 

data-hungry and require extensive parameterisation and testing (especially if arguments about 570 

system properties such as ‘emergence’ are to be made); for example the simplified version of 571 

the CybErosion ABM used by Wainwright (2015) still requires 35 parameters to be estimated 572 

(see his Table 5.2).  In such cases, the POM approach supported by computational methods 573 

such as ABC have important roles to play.  As with all areas of ecology the appropriate 574 

complexity (i.e. number of parameters and processes included) of a model is very much a 575 

function of the purpose of the modelling exercise (Evans et al., 2013; Levins, 1966). A final, 576 

important, question is whether the growing use of ABMs among those concerned with the 577 

ecological and social systems of the past will generate robust and testable theory or will 578 

simply generate a proliferation of empirically-detailed but idiosyncratic models (a concern 579 

expressed by Grimm, 1999; O’Sullivan et al., 2016). 580 

 581 

Visualisation and communication 582 

As noted earlier a recurrent critique of palaeoecology has been its reliance on ‘story-telling’ 583 

rather than the ‘stronger’ types of inference (Biondi, 2014) made in other areas of the natural 584 

sciences.  There has been a long debate over the virtues, or otherwise, of how the historical 585 

sciences construct knowledge and this is beyond the scope of our review (but see, Cleland, 586 

2001, 2011).  However, it is becoming apparent that generative simulation models offer much 587 
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more than shallow systems descriptions derived from quantitative syntheses of the data they 588 

produce (Winsberg, 2010); for example, there is growing interest in the view that simulation 589 

models are themselves narrative devices and their outcomes can be communicated in that 590 

way (McGlade, 2014; Millington et al., 2012).  The use of simulation models in the context 591 

of understanding past human-environment interactions has the potential to mediate between 592 

the desire for strong and robust inferences and the historical nature of the data 593 

palaeoecologists use to make such inferences.  Using models to develop ‘thick’ descriptions 594 

(Millington and Wainwright, 2016) could take the form of narrative, or it could take the form of 595 

sophisticated visualization of the landscapes of the past (Caseldine et al., 2008; Edwards et 596 

al., 2015). Narrative explanations will require generative models that adequately capture 597 

feedbacks between social and ecological components of systems across multiple spatio-598 

temporal scales (Verburg et al., 2016).  599 

 600 

Conclusions 601 

The ‘grand challenges’ that palaeoecology and archaeology are engaged with (Kintigh et al., 602 

2014; Seddon et al., 2014) do not simply require more and bigger data, but also new ways to 603 

use and synthesize it.  However, while simulation modelling has an important role to play in 604 

their resolution, this needs to be as more than simply a consumer of data for validation.  As 605 

we have argued, generative models offer the ability for theory to inform empirical data but 606 

also a way to ‘experiment with theory’, and as with any informative experiment, the use of 607 

simulations as such should provide new insights and provoke new questions.   608 

 609 
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Illustrative Material 910 

 911 

 912 

Figure 1 Sample fossil pollen and exogenous forcing factor records generated with Gaussian and 913 

Poisson random walks. Although these null records show some of the visual hallmarks of ‘real’ proxy 914 

records (e.g. long-term shifts [proxy record O] and short-term spikes [proxy record D] in dominance) 915 

they are entirely random. Figure generated using R code provided in Blaauw et al. (2010).  916 
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 918 

Figure 2. Examples of neutral landscape models of prehistoric landscapes for a hypothetical pollen 919 

record indicating four landscape categories.  (a, b) Different realisations of naturalistic landscapes in 920 

which landscape categories are an ordered sequence resulting from a natural environmental gradient.  921 

(c, d) Different realisations of human-influenced landscapes in which the original naturalistic gradient 922 

patterns have been modified by discrete patches representing localised human disturbance.  In all 923 

cases the landscape category proportions within the hypothetical pollen catchment area (dotted line) 924 

are equally divided amongst the four categories, while the landscape proportions beyond the pollen 925 

catchment area vary individually as part of a broader but consistent spatial pattern to represent 926 

uncertainty about landscape patterns beyond the pollen catchment area. 927 

  928 



Generative models for palaeoecology 
Perry et al. 

 

 929 

 930 

Figure 3 The pattern-oriented modelling (POM) framework (Grimm et al., 2005; Grimm and 931 

Railsback, 2012) is designed to help modellers implement models that contain sufficient structural 932 

detail and are adequately parameterised.  This evaluation is achieved by comparing a suite of model 933 

structures (different shapes in figure) and parameterisations (different colours in figure) and assessing 934 

them against a set of target patterns (the filters).  POM does not seek to find the single ‘best’ model; 935 

rather it inherently recognises that there may be a suite of adequate models (lower group of coloured 936 

shapes) with different structures and parameterisations. 937 
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 940 

Figure 4 A simple example of the ABC reject-accept approach.  In this example, the ‘target’ pattern is 941 

a population trajectory (a) arising from a discrete-time logistic population model with stochasticity in 942 

the growth term r.  There are four parameters we wish to estimate ( [r], [r], K, n0); to do so we 943 

simulate the population model 1 × 106 times, each time drawing values for the four unknown 944 

parameters from a broad uniform distribution (the ‘prior’; grey).  For each simulation, we assess how 945 

close the trajectory is to the target (using the summed squared difference across the entire series [red] 946 

and the Euclidean distance [blue] between 10 irregularly spaced observation points).  We retain the 947 

100 simulations closest to the observed pattern and the posterior estimates of those parameters is 948 

provided by these retained simulations (b-e).   Vertical green lines are the true parameter values. 949 

950 
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 952 

Figure 5 Output from the CybErosion model showing how vegetation and erosion emerge under three 953 

scenarios (a, b, c) about the nature of human-environment interactions, increasing in intensity and 954 

rapidity from left to right. Each grid cell is 100 m × 100 m in size. Colours in the vegetation maps are 955 

as follows:  light, medium and dark green are grass, shrub and forest, respectively; blue areas are in 956 

active cultivation and brown areas were formerly cultivated and are now bare.  In the erosion maps 957 

(middle row), rates are scaled from high (white) through medium (brown) to low (black).  Column (d) 958 

shows the temporal dynamics of the forest cover and erosion in the landscape (top and middle) and 959 

the relationship between landscape-level biomass and average net erosion (bottom).  Figure from 960 

Wainwright. (2015).  Reproduced with permission of John Wiley & Sons. 961 
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