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ABSTRACT 

In this study we check the asymptotic efficiency of empirical likelihood in the presence of nuisance 
parameters combined with augmented moment conditions. We show that in the presence of nuisance 
parameters, the asymptotic efficiency of the empirical likelihood estimator of the parameter of interest will 
increase by adding more moment conditions, in the sense of the positive semidefiniteness of the difference 
of information matrices. As a by product, we point out a necessary condition for the asymptotic efficiency 
to be increased when more moment condition are added. 
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1. INTRODUCTION 

Likelihood inference may have some drawbacks when 
estimating a parameter of interest in the presence of 
nuisance parameters. For example, (Neyman and Scott, 
1948) considered this problem and found that the 
maximum likelihood estimation could be either 
inconsistent or inefficient with many nuisance parameters. 
This study deal with Empirical Likelihood (EL), which is 
a nonparametric analogue of maximum likelihood, in the 
presence of nuisance parameters combined with selection 
of moment conditions. We show that with the existence of 
nuisance parameters, the asymptotic efficiency of the 
empirical likelihood estimator of the parameter of interest 
can be increase by adding more moment conditions, in the 
sense of the positive semidefiniteness of the difference of 
information matrices. Particularly, we focus on a special 
case, where nuisance parameters only appear in some of 
the moment conditions. This case leads to an important 
result that the asymptotic efficiency can increase with 
added moment condition only if it is not orthogonal with 
the original moment conditions. 

2. MOMENT CONDITION WITH 
NUISANCE PARAMETERS 

Consider a sequence of i.i.d. realizations { }n

i i 1
x

=
of a 

random variable x from an unknown distribution F, with 

n being the sample size. Let θ be a p-dimensional vector 
of parameters in a compact parameter space pΘ ⊂ ℝ  
associated with F. Suppose that for a true value of θ 

which is denoted as { }0 i

n

i 1
, x

=
θ  satisfies the following 

moment condition Equation (1): 
 

iE g(x ; ) 0 θ =   (1) 
 
where, g is a m×1 vector of real functions and the 
expectation is taken with respect to F. We consider the 
over-identified case where m≥p. Unlike (Qin and Lawless, 
1994), we don’t assume that the m functions of g are 
independent, since correlation between these functions 
plays an important role in the aspect of asymptotic 
efficiency, which we will discuss in the following section. 

Now suppose the parameter θ can be decomposed as 
( ', ') 'θ = β φ  with corresponding 0 0 0( ' , ' ) 'θ = β φ  where 

q p q, −β∈ Β ⊂ φ∈ Φ ⊂ℝ ℝ  andΘ = Β × Φ . If we are only 

interest in β but not in φ, then φ is a nuisance parameter 
in the model and we write the corresponding moment 
condition as Equation (2): 
 

iE g(x ; , ) 0 β φ =   (2) 

 
 For the true value β0 of β. The empirical likelihood 

ratio statistic for this model is Equation (3): 
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( )
n

i
i 1

( , ) 2 log 1 'g(x ; , )
=

ℜ β φ = + λ β φ∑  (3) 

 
where, λ is an m×1 vector of Lagrangian multipliers, which 
is a continuous differentiable function of ( )', ' 'β φ  (see, e.g., 

(Qin and Lawless, 1994) and is determined by Equation (4): 
 

( )
( )

n
i

i 1 i

g x ; ,1
0

n 1 'g x ; ,=

β φ
=

+ λ β φ∑  (4) 

 
To simplify notations, let: 

 

( ) ( ) ɵ ( ) ( )
( ) ( ) ( )

n1
i i ii 1

i 0

1 11 0 0

g x ; g ,g n g

g x ;
G E , E g x; g x; '

−
=

θ = θ θ = θ

 ∂ θ
  = Ω = θ θ ∂θ  

∑
 

 
Like ordinary parametric likelihood, empirical 

likelihood deals with nuisance parameter by profiling out 
ø (see, e.g., section 3.5 of (Owen, 2001)). Let ɶ ɶ ( )φ = φ β be 

the minimizer of R(β,φ)with respect to φ. The profile 
log-empirical likelihood ratio for β is Equation (5): 
 

( ) ( )min ,
φ∈Φ

ℜ β = ℜ β φ  (5) 

 
 And EL estimator for β is Equation (6): 

 
( )arg min

β∈Β
β = ℜ β  (6) 

 
Assumption 1 

θ0 = (β0, φ0) solves E[g(x; θ)] = 0 uniquely, or 
equivalently, both β0 and φ0 are strongly identified. 

Remark 1 

This condition combined with m≥p makes the 
parameter well identified. In the study of (Stock and 
Wright, 2000), they considered the problem of weak 
identification of the parameter, by assuming that the 
subvector β of θ is completely identified, but φ is not, 
in the sense that the population moment function is 
steep in β around β0 but is nearly flat in α. This idea 
provides us a framework to analysis problems mixed 
with nuisance parameters, weak identification and 
partial identification (Phillips, 1989).  

Assumption 2 

(a) θ0 ∈int (Θ). (b) Ω11 is positive definite and 
nonsingular (c). g(x, θ) is twice continuously 

differentiable in a neighborhood of θ0 and G1 is of full 
rank p (d). ||∂g(x,θ)||3, ||∂g(x,θ)/∂θ|| and 
||∂2g(x,θ)/∂θ∂θ’|| are all bounded from above. 

We derive the properties of the EL estimator of β0 in 
the next theorem. 

Theorem 1 

Under assumption 1-2: 
 

ɶ( ) ( )d 1
0n N 0,Vββ − β →  

 
Where: 
 

ɶ

ɶ
�

ɶ

ɶ

� ɶ( ) ɶ( )

1

11
11

11

g g g g
V E E ,

E g , g ,

−

−

β

 ′   ∂ ∂ ∂φ ∂ ∂ ∂φ = + Ω +    ∂β ∂β ∂β ∂β∂φ ∂φ     

 ′Ω = φ β φ β 
 

 

 
Proof 

The proof is similar to (Qin and Lawless, 1994). 
Differentiate R(β) with respect to β and λ respectively gives 
Equation (7 and 8): 
 

( )
ɶ( )

ɶ( ) ɶ( )
ɶ

ɶn
i i

i 1 i

g , g ,1 1

n 1 g ,=

 ∂ β φ ∂ β φ∂ℜ β ∂φ = + λ
 ∂β ∂β ∂β∂φ′+ λ β φ
 

∑  (7) 

 

( ) ɶ( )
ɶ( )

n
i

i 1 i

g ,1

n 1 g ,=

β φ∂ℜ β
=

∂λ ′+ λ β φ
∑  (8) 

 
Denote the right hand side of (7) and (8) as Q1n(β,λ) 

and Q2n(β, λ) respectively. Since ̂β  and λ̂ maximize 

( ) ( )2n
ˆ ˆ,Q , 0ℜ β β λ =  and first order Taylor expansion 

around (β0, 0) gives: 
 

( )
( ) ( ) ( ) ( ) ( )

1n

1n 0 1n 0

1n 0 0 p

ˆ ˆ0 Q ,

Q ,0 Q ,0
ˆQ ,0 o

= β λ

∂ β ∂ β
= β + β − β + λ + δ

∂β ∂λ
ɶ

 

 

( )
( ) ( ) ( ) ( ) ( )

2n

2n 0 2n 0

2n 0 0 p

ˆ ˆ0 Q ,

Q ,0 Q ,0
Q ,0 o

= β λ

∂ β ∂ β
= β + β − β + λ + δ

∂β ∂λ
ɶ

 

 

where, 0
ˆδ = β − β + λɶ So βɶ and λ̂  can be solved as: 
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( ) ( )
( )

( ) ( )

( ) ( )

1n 0 p1
n

0

1 1
11 22.1

1
11 1n 0 p

1
11 1n 0 p

ˆ Q ,0 o
S

op

g g g g
I S E S E

S Q ,0 o 1

g g
E S Q ,0 o 1

−

− −

−

−

 − β + δ λ =   
β − β δ     

  ′   ∂ ∂ ∂φ ∂ ∂ ∂φ  − + +     ∂β ∂β ∂β ∂β∂φ ∂φ      
 

β + 
 

′  ∂ ∂ ∂φ+ β +  ∂β ∂β∂φ  
 

ɶ

ɶ ɶ

ɶ ɶ

ɶ

ɶ

 

 
Where: 
 

( )

( )

0

1n 1n

11 12
n

212n

,0

Q Q
S Su

S
S 0Q

0
u

g g
E gg E

g g
E 0

β

 ∂ ∂
   ′∂ ∂β = →  
 ∂   
 

′∂ 

  ∂ ∂ ∂φ′− +  ∂β ≤ β∂φ  =  
 ∂ ∂ ∂φ +  ∂β ≤ β∂φ  

ɶ

ɶ

ɶ

ɶ

 

 
From lemma 1 of (Qin and Lawless, 1994) under 

Assumption 2 we 

( ) ( ) ( ) ( )n 1/2
1n 0 i pi 1

Q ,0 1 / n g x , O n−
=

∂ β = θ =∑  and 

( )1/2
pO n−δ = . So we obtain: 

 

( )
( ) ( ) ( )

1
0 22.1

1 d 1
11 1n 0 p

g g
n S E

S Q ,0 o 1 N 0,V

−

−
β

′ ∂ ∂ ∂φβ − β = + ∂β ∂β∂φ 

β + →

ɶ
ɶ

ɶ  

 
Remark 2 

The structure of the asymptotic variance-covariance 
matrix 1Vβ  is different from those in (Stock and Wright, 

2000), in which they decompose ( )ˆE g θ    as ( )ˆE g θ   = 

1-1/2 m1 (θ)+m2 (β) where m1 (θ) involves both of the two 
parameters and m2(β) involves β and the true value of φ. 

Lazar and Mykland (1999) consider higher order 
properties of ̂β  through Edgeworth expansion of  R(β, φ) 

They find that ̂β   may not achieve higher order accuracy 
which can be obtained by ordinary likelihood in the 
presence of nuisance parameters, also they show that the 

empirical likelihood ratio statistic does not admit Bartlett 
correction, unlike the case without nuisance parameters. 

3. MORE MOMENT CONDITIONS 

Now we focus on the asymptotic efficiency of β̂  
when there are more moment condition being added. 
Suppose based on model (1), we have the following 
new model by adding one more moment indicator f (.) 
Equation (9): 
 

( ) ( )
( )

i 0 0

i 0 0

i 0 0

g x ; , 0
E h x ; , E

0f x ; ,

 β φ    β φ = =     β φ   

 (9) 

 
For more notations we define: 

 

( ) ( )

( ) ( )

0 0

2

11 12
0 0 0 0

21 22

h x; f x;
G E ,G E

E h , h ,

   ∂ θ ∂ θ
   ≡ ≡

∂θ ∂θ      

 Ω Ω ′Ω ≡ β φ β φ =    Ω Ω    

 

 
In this model, following the setup in the previous 

section, the parameter vector ( ), ′′ ′θ = β φ  can be identified 

by (1) alone and now we are interested in whether the 
covariance matrix 1Vβ  can be improved with extra 

information given by f. Let the estimator of β based on both 
g and f denoted as βɶ  and the corresponding covariance 

matrix as 2Vβ : In general, well established results have 

shown that at least using f will not be harmful, i.e., it will 
not increase the asymptotic variance of θɶ . And, nor will 
dropping f will decrease the asymptotic variance of the 
estimator, relative to that of the estimator based on both 
g and f. See, corollary 1 of (Qin and Lawless, 1994). 

Remark 3 

 A similar and relevant situation may be worth mention, 
which is described in (Newey and Windmeijer, 2005; 
Han and Philips, 2006), for instance. They assume that the 
number of moment conditions is increased with the sample 
size. Thus in this case extra information are provided by 
both extra data and extra moment conditions, while in our 
case only by the latter one with fixed sample size n. They 
also allow the moment conditions are weak, while we 
assume both g and f are strong as indicated in assumption 1. 
Estimation under many weak moment conditions is also 
discussed by (Andrews and Stock, 2005). 
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Proposition 1 

 The asymptotic efficiency of EL estimator of β can 
be increased by adding more moment conditions.  

Proof 

Since we can always block the component of the 
vector of the moment function, for simplicity and 
without loss of generality, we assume that both g and f 
are of dimensional one. 

For convenience let: 
 

1 2

g g f f
E E ,E E
   ∂ ∂ ∂φ ∂ ∂ ∂φ+ ≡ + ≡   ∂β ∂β ∂β ∂β∂φ ∂φ   

ɶ ɶ

ɶ ɶ
 

 
The inverse of 2Vβ , or the information matrix of β 

with both g and f is Equation (10): 
 

[ ]( ) 12

1

11 12 1
1 2

21 22 2

h h
I E E hh E

E
E E

E

−

β

−

′   ∂ ∂′=    ∂β ∂β   

   Ω Ω
 =      Ω Ω      

 (10) 

 
Since without f, the information on β is: 

 

( ) 11 1
1 1 1 11 1I E E gg E E S E

− −
β ′ ′=   =   

 
We have: 

 

[ ]( ) [ ]( )

( ) ( )

1 12 1
1 1

' 1 1 1
1 11 12 22 21 11 1 2 22 21 11 1

1
1 11 12 22 2 2 22 2

1 1
1 11 12 1 22 1 11 12 2

h h
I I E E hh E E E gg E

E S S S S E E S S E

E S S E E E

E S S E E S S E

− −

β β

− − −

−

− −

′   ∂ ∂′ ′ ′− = −   ∂β ∂β   

   = Ω + −Ω   

 + − Ω + Ω 

′′ ′= − Ω −

 

 
 Which is positive semidefinite, providing E(gg’) is 

p.d as Assumption 2 indicates. 

Example 1 

Suppose we have a sequence of i.i.d observations of 
univariate random variable x1,…,xn. Let E(x) = µ and var 
(x) = σ2

 Thus we have the following two moment 
conditions Equation (11 and 12): 
 

( ) ( )E g x; E x u 0 β  = − =   (11) 

( ) ( )( )2 2E f x; , E x u 0 β φ  = − − σ =   (12) 

 
And now we are only interested in the estimation of µ. 

The empirical likelihood estimator of µ is Equation (13): 
 

( )
n i

2 2
i 1 i

x
ˆ arg min log 1 t

ˆxµ =

  − µ
  ′µ = +
  − µ − σ  

∑  

 
And: 
 

( ) ( ) ( )
( ) ( )

( )( )
( )( )

1

1

1
11

23

2 2
22 2

g
E gg E gfg f

ˆnVar
fE fg E ff

E x

E x

−

−

−

 ∂ 
    ∂β ∂ ∂  µ = = Ω   ∂ ∂β ∂β      ∂β  

− µ
= σ − ≤ σ

− µ − σ

 (13) 

 
Notice that without g2, ˆnVar(u)equals σ2. 

In the above example, we notice that 
f

E 0
 ∂ = ∂β 

and 

this feature simplifies the calculation dramatically. So we 
consider the following more special model, where g does 
not have nuisance parameter, but f has a nuisance 
parameter only, although it brings some information 
from the data Equation (14): 
 

( ) ( )
( )

0

0 0

0

g x; 0
E h x; , E

0f x,

 β    β φ = =     φ   

 (14) 

 
The gradient vector of h in (14) is: 

 
g

0
h

f
0

∂ 
 ∂β∂  =
 ∂∂θ
 ∂φ 

 

 
The information on β is: 

 

( )

( )1

12

1

11 12

21 22

1
1 1

11 12 22 12 11 21 21 11

h h
I E E hh E

f
Eg

E 0

0

g f
E I E

−

−
β

−

−
− −

′   ∂ ∂′=      ∂β ∂β   

  ∂
 Ω Ω  ∂   = ∂β      ∂β Ω Ω        

′   ∂ ∂  = Ω + Ω Ω − Ω Ω Ω Ω Ω     ∂β ∂β     
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where, I is the corresponding identity matrix. Now we 
have Equation (15 and 16): 
 

2 1 f f
I I E VEβ β

′   ∂ ∂− =    ∂β ∂β   
 (15) 

 
Where: 
 

( ) 11 1 1
11 12 22 12 11 21 21 11V

−− − − = Ω Ω Ω − Ω Ω Ω Ω Ω  
 (16) 

 
By assumption E(gg’) is positive semidefinite, so 

( ) 11
22 12 11 21

−−Ω − Ω Ω Ω is also p.s.d and so is V. Thus we see 

that f provide extra information for β. However, if in 
(10), ( ) 2 1

12E gf 0,V 0,so I Iβ β= Ω = = = . So we have the 

following proposition. 

Proposition 2 

Additional moment conditions which contains only 
nuisance parameters will provide extra information on 
the parameter of interest only if they are correlated to the 
original moment conditions. 

Remark 4 

 Whether g and f are correlated is a testable condition. 
Since E[g(x,β0)] = E[f(x,φ0)] = 0, to test the correlation 
of g and f it is equivalent to test the following additional 
moment condition Equation (17): 
 

( ) ( ) ( )0 0 0 0E x; , E g x, f x, 0   ρ β φ = β φ =     (17) 

 
And this can be done by standard EL test procedure. 

4. CONCLUSION 

In this study we have discussed the efficiency of 
the EL estimator in the presence of nuisance 
parameters, via standard asymptotic method. We are 
particularly interested in whether the asymptotic 
efficiency of the parameter of interest can be 
improved by adding more moment conditions. We 
found that a necessary condition for augmented 
moment condition to be useful to improve the 
asymptotic efficiency is that it is correlated to the 
original moment condition. It is worth mentioning that 
here we incorporate more moment conditions with 
sample size being fixed, while researchers like 
(Newey and Windmeijer, 2005; Han and Philips, 

2006) consider increasing the number of moment 
conditions brought by increasing sample size.  

For future research, it would be worth checking the 
efficiency of the EL test with nuisance parameters, 
because it will be an extension to the results found in 
(Wang, 2013),  where the large deviation efficiency of 
the EL test with weakly dependent data is established.  
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