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ABSTRACT

In this study we check the asymptotic efficiency esfipirical likelihood in the presence of nuisance
parameters combined with augmented moment condititvie show that in the presence of nuisance
parameters, the asymptotic efficiency of the eropliriikelihood estimator of the parameter of ingneill
increase by adding more moment conditions, in &érmesa of the positive semidefiniteness of the diffee

of information matrices. As a by product, we paint a necessary condition for the asymptotic edfficly

to be increased when more moment condition arecadde
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1. INTRODUCTION n being the sample size. L&tbe a p-dimensional vector
of parameters in a compact parameter spaceRr’

Likelihood inference may have some drawbacks when,coqciated with F. Suppose that for a true valu® of

estimating a parameter of interest in the presesice R n o _
nuisance parameters. For example, (Neyman and, Scotvhich is denoted aQO'{Xi}iﬂ satisfies the following
1948) considered this problem and found that themoment condition Equation (1):

maximum likelihood estimation could be either

inconsistent or inefficient with many nuisance pagters. E[g()q ;9)] =0 (1)
This study deal with Empirical Likelihood (EL), wdti is

a nonparametric analogue of maximum likelihoodthi&
presence of nuisance parameters combined withtiselec
of moment conditions. We show that with the existeaf
nuisance parameters, the asymptotic efficiency haf t
empirical likelihood estimator of the parameteiirdgérest
can be increase by adding more moment conditiartbei

sense of the positive semidefiniteness of the rdiffee of - ) L . : d
information matrices. Particularly, we focus onpedal efficiency, which we will discuss in the followirsgction.

case, where nuisance parameters only appear in gbme _ 'NOW suppose the parametécan be decomposed as
the moment conditions. This case leads to an irapbrt ©=(B"9)" Wwith corresponding 6, =(B",¢’,)' where
result that the asymptotic efficiency can increasth BOBORYeO® OR” and@=Bx® . If we are only
added moment condition only if it is not orthogomath
the original moment conditions.

where, g is a mx1 vector of real functions and the
expectation is taken with respect to F. We consibler
over-identified case where>p. Unlike (Qin and Lawless,
1994), we don’t assume that the m functions of g ar
independent, since correlation between these fumgti
plays an important role in the aspect of asymptotic

interest inB but not ing, theng is a nuisance parameter
in the model and we write the corresponding moment

2. MOMENT CONDITION WITH condition as Equation (2):
NUISANCE PARAMETERS T @)

Consider a sequence of i.i.d. realizati¢ng’_ of a For the true valu@, of B. The empirical likelihood

random variable x from an unknown distribution Rthw  ratio statistic for this model is Equation (3):
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06,6 = 23 log(1+A 'g(x B ) @3)

where A is an nx1 vector of Lagrangian multipliers, which
is a continuous differentiable function (&9’ (see, e.q.,

(Qin and Lawless, 1994) and is determined by Equd#):

1 9(xB.9)
it N W A= 4
N1+ M'g(x B.0) ° @

To simplify notations, let:
o(x:8)=g (6).9(6) = '3, 9(6)

{"g(aee)] .= € o x0) x99

Like ordinary parametric likelihood, empirical
likelihood deals with nuisance parameter by pnoflout

g (see, e.g., section 3.5 of (Owen, 2001)). getp(B) be

the minimizer of RB,@)with respect tog. The profile
log-empirical likelihood ratio fof is Equation (5):

0(B) =minC1(B.0) ()
And EL estimator fof is Equation (6):
B =argmind (B) (6)

OB

Assumption 1

8 = (Bo, @) solves E[g(x;0)] = 0 uniquely, or
equivalently, botif8, andg, are strongly identified.

Remark 1

This condition combined with Ap makes the
parameter well identified. In the study of (Stoakda

Wright, 2000), they considered the problem of weak

identification of the parameter, by assuming theg t
subvecto3 of 8 is completely identified, bup is not,

in the sense that the population moment function is

steep inf3 aroundf, but is nearly flat inn. This idea

provides us a framework to analysis problems mixed
with nuisance parameters, weak identification and

partial identification (Phillips, 1989).
Assumption 2

(a) 6, Oint (©). (b) Qi is positive definite and
nonsingular (c). g(x, 0) is twice continuously
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differentiable in a neighborhood 6§ and G is of full
rank p (d). Bgx9)IP, |Pg(x.8)/08|] and
19%g(x,8)/0600’|| are all bounded from above.

We derive the properties of the EL estimatofgfn
the next theorem.

Theorem 1

Under assumption 1-2:
Jn(B-p)cx- N(o.v)

Where:

v;{E{awgﬂ 5;;5{69&966}} |
B 0paB B 0pop
Qu= E{g(fp,s) o@ 13)'}

Pr oof

The proof is similar to (Qin and Lawless, 1994).
Differentiate R) with respect t§ andA respectively gives
Equation (7 and 8):

0@)_1¢ 1 (% (B9 oa(Be)op], @
B NiZ1+AN'g ([3,(?0) B a(NP B

o0(p) _1¢ 9 (B0)
A nF1+ng ([3,{0)

(8)

Denote the right hand side of (7) and (8) ag([fh)
and QqB, A) respectively. Since3 and A maximize

D(B),QZH(B,X)=O and first order Taylor expansion

around B, 0) gives:

0=Q,(BA)

9Q.,(B0,0) ;=\ . 9Qu(Bo.0
% (B-Bo)+

=Q (B0 0) + TR0, (8)

0=Q,,(BA)

0Q,,(B0.0) /-~ 0Qy(Bo»
:an(Bor0)+()([:B)(B_Bo)"'(-’()\q)\*'op(é)

where, =8~ +H5\H SofandA can be solved as:
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o :|=S;1 _an(BO'O)+OP(6)
_B_Bo Op(é)

09 , 0909 |1 09, 099¢
EEEESE LR )

o(}

09 , 0909 |
N

S1Qu(Bo.0+

o

Where:
9Qy, 9Q,,
- ou' op . S.l %2
| 2
ou' (£o.9)
_ g , 09 09
) E(gd) E(aB 6¢<B}
E[ag agaco] 0
B op<p

From lemma 1 of (Qin and Lawless, 1994) under
Assumption 2 we
00, (8,0 =(119 57, o x 8)= Q( ) and

6:Op(n‘“2) . So we obtain:

= dg  dgad
h(p-g.) st 29+ 202

S1Qu(Bo.9+ o301 N 0.Y)

Remark 2

The structure of the asymptotic variance-covariance

matrix V; is different from those in (Stock and Wright,
2000), in which they decompos# §(8) | as E[(6)]=

12 my (6)+m, (B) where m (6) involves both of the two
parameters andA8) involvesf3 and the true value gf
Lazar and Mykland (1999) consider higher order

properties off through Edgeworth expansion of fR()
They find that} may not achieve higher order accuracy

empirical likelihood ratio statistic does not adartlett
correction, unlike the case without nuisance patarse

3. MORE MOMENT CONDITIONS
Now we focus on the asymptotic efficiency pf
when there are more moment condition being added.

Suppose based on model (1), we have the following
new model by adding one more moment indicator f (.)

Equation (9):
(xi ;Bo'(po) 10
.4

E[h()g Bo %)J - E{?(xi ;Bov(po)

For more notations we define:

)

o<l o) {2 2]

In this model, following the setup in the previous

(9)

ah(x;eo)
00

of (x;eo)

G
00

section, the parameter vect®r (B,¢) can be identified

by (1) alone and now we are interested in whether t
covariance matrixV; can be improved with extra

information given by f. Let the estimator @based on both
g and f denoted a@ and the corresponding covariance
matrix asV; : In general, well established results have

shown that at least using f will not be harmfig, ,iit will

not increase the asymptotic varianceBofAnd, nor will
dropping f will decrease the asymptotic variancethef
estimator, relative to that of the estimator basedoth
g and f. See, corollary 1 of (Qin and Lawless, 1994

Remark 3

A similar and relevant situation may be worth nwmt
which is described in (Newey and Windmeijer, 2005;
Han and Philips, 2006), for instance. They assuraethe
number of moment conditions is increased with trape
size. Thus in this case extra information are plediby
both extra data and extra moment conditions, whileur
case only by the latter one with fixed sample siz&hey
also allow the moment conditions are weak, while we
assume both g and f are strong as indicated imguun 1.

which can be obtained by ordinary likelihood in the Estimation under many weak moment conditions is als
presence of nuisance parameters, also they shawhtha discussed by (Andrews and Stock, 2005).
127 JMSS
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Proposition 1 E[f(xB,9)]=E((x- v -0?)=0 (12)

The asymptotic efficiency of EL estimator @fcan

be increased by adding more moment conditions. And now we are only interested in the estimatiop.of
The empirical likelihood estimator gfis Equation (13):

Pr oof
Since we can always block the component of the (i=arg mlnz od 1 X; —H
vector of the moment function, for simplicity and = (x. —p)z—f)‘z
without loss of generality, we assume that botmd &
are of dimensional one. And:
For convenience let:
E(gg) E( o) | 21
a9, 9g acp] E(af of acp} v _|[ag af of) | | op )
E| =+=_" — = V. =Q!
[68 opop) o " agop)” nvar(p)= {asas} E(fg)E(ff) | [of [| —®
op (13)
The inverse ofv}, or the information matrix of 312
with both g and f is Equation (10): =g’ _LLO)Z <g?
E((x - u)2 —02)
oh oh
Iy ELB} (E[hH]) E{ag} Notice that without g nvar(U)equalso®
] (10)
“[EE ][Qu%} 1[51} In the above example, we notice t!‘E(tgé}Oand
- 1 =2
Q,,Q E
e z this feature simplifies the calculation dramatigao we
Sj ithout f. the inf . . consider the following more special model, wheigogs
ince without , the information dhis: not have nuisance parameter, but f has a nuisance
o parameter only, although it brings some information
I;=E.[E(9d)] E=E SIE from the data Equation (14):
We have: a(xBs)| o
E| h( x;B, .9, ) | = :{ } 14
[ ( ’ 0)} {f (x,%) 0 (14)
oh
'o=ls _E{a } (E[hh]) { } & (H gg]) The gradient vector of h in (14) is:
_E[Slquzzsn 1:| E+ % Q 22%13] E ag 0
+ 1[_313.20 2z:| E+ EQ ,E @: B
' 00 of
:(E'1 SR E1)sz( E S.S- E) 0 Ep
Which is positive semidefinite, providing E(gg$ i The information orB is:
p.d as Assumption 2 indicates.
Example 1 12 = EBH [E(hH)]™ E{gg}
Suppose we have a sequence of i.i.d observations of L[ (o
univariate random variable x..,x,. Let E(x) =p and var _ E(ag] 0 Q, Q E(aﬁj
(x) = ¢® Thus we have the following two moment aB Q, Q,, 0

conditions Equation (11 and 12):
_| 99 ) " of
E[g(x8)]= E(x- Y= ¢ (11) _E{ag} {Qu('”’ (0.-2.000.) 2 0 )Haﬁ}
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where, | is the corresponding identity matrix. Now 2006) consider increasing the number of moment
have Equation (15 and 16): conditions brought by increasing sample size.
For future research, it would be worth checking the
of | of efficiency of the EL test with nuisance parameters,
2 1 . . . .
Ig—1g :ELB} VELB} (15) because it will be an extension to the results fbim
(Wang, 2013), where the large deviation efficienty
Where: the EL test with weakly dependent data is estadtish
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