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Abstract

In this paper we check the asymptotic effi ciency of empirical likelihood

in the presence of nuisance parameters combined with augmented moment

conditions. We show that in the presence of nuisance parameters, the as-

ymptotic effi ciency of the empirical likelihood estimator of the parameter of

interest will increase by adding more moment conditions, in the sense of the

positive semidefiniteness of the difference of information matrices. As a by-

product, we point out a necessary condition for the asymptotic effi ciency to

be increased when more moment condition are added.
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1 Introduction

Likelihood inference may have some drawbacks when estimating a parameter of

interest in the presence of nuisance parameters. For example, Neyman and Scott

(1948) considered this problem and found that the maximum likelihood estimation

could be either inconsistent or ineffi cient with many nuisance parameters. This

paper deal with empirical likelihood (EL), which is a nonparametric analogue of

maximum likelihood, in the presence of nuisance parameters combined with selec-

tion of moment conditions. We show that with the existence of nuisance parameters,

the asymptotic effi ciency of the empirical likelihood estimator of the parameter of

interest can be increase by adding more moment conditions, in the sense of the

positive semidefiniteness of the difference of information matrices. Particularly, we
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focus on a special case, where nuisance parameters only appear in some of the

moment conditions. This case leads to an important result that the asymptotic

effi ciency can increase with added moment condition only if it is not orthogonal

with the original moment conditions.

2 Moment Condition with Nuisance Parameters

Consider a sequence of i.i.d. realizations {xi}ni=1 of a random variable x from an

unknown distribution F , with n being the sample size. Let θ be a p-dimensional

vector of parameters in a compact parameter space Θ ⊂ Rp associated with F .
Suppose that for a true value of θ which is denoted as θ0, {xi}ni=1 satisfies the

following moment condition

E [g (xi; θ)] = 0 (1)

where g is am×1 vector of real functions, and the expectation is taken with respect

to F . We consider the over-identified case where m > p. Unlike Qin and Lawless

(1994), we don’t assume that the m functions of g are independent, since correla-

tion between these functions plays an important role in the aspect of asymptotic

effi ciency, which we will discuss in the following section.

Now suppose the parameter θ can be decomposed as θ = (β
′
, φ

′
)
′
with corre-

sponding θ0 = (β
′

0, φ
′

0)
′
, where β ∈ B ⊂ Rq, φ ∈ Φ ⊂ Rp−q and Θ = B×Φ. If we are

only interest in β but not in φ, then φ is a nuisance parameter in the model, and

we write the corresponding moment condition as

E [g (xi; β, φ)] = 0 (2)

for the true value β0 of β. The empirical likelihood ratio statistic for this model is

R (β, φ) = 2
n∑
i=1

log
(

1 + λ
′
g (xi; β, φ)

)
, (3)

where λ is an m× 1 vector of Lagrangian multipliers, which is a continuous differ-

entiable function of (β
′
, φ

′
)
′
(see, e.g., Qin and Lawless (1994)), and is determined

by
1

n

n∑
i=1

g (xi; β, φ)

1 + λ
′
g (xi; β, φ)

= 0. (4)

To simplify notations, let

g (xi; θ) = gi (θ) , ĝ (θ) = n−1Σn
i=1gi (θ)
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G1 = E

[
∂g (x; θ0)

∂θ

]
, Ω11 = E

[
g (x; θ0) g (x; θ0)

′
]
.

Like ordinary parametric likelihood, empirical likelihood deals with nuisance para-

meter by profiling out φ (see, e.g., section 3.5 of Owen (2000)). Let φ̃ = φ̃ (β) be

the minimizer of R (β, φ) with respect to φ. The profile log-empirical likelihood

ratio for β is

R (β) = min
φ∈Φ
R (β, φ) (5)

and EL estimator for β is

β̂ = arg
β∈B

minR (β) . (6)

Assumption 1 θ0 = (β0, φ0) solves E [g (x; θ)] = 0 uniquely, or equivalently, both

β0 and φ0 are strongly identified.

Remark 1 This condition combined with m > p makes the parameter well iden-

tified. In the paper of Stock and Wright (2000), they considered the problem of

weak identification of the parameter, by assuming that the subvector β of θ is com-

pletely identified, but φ is not, in the sense that the population moment function is

steep in β around β0 but is nearly flat in α. This idea provides us a framework to

analysis problems mixed with nuisance parameters, weak identification and partial

identification (Phillips (1989)). See also Guggenberger and Smith (2003).

Assumption 2 a). θ0 ∈ int(Θ); b). Ω11 is positive definite and nonsingular;

c). g (x, θ) is twice continuously differentiable in a neighborhood of θ0 and G1 is of

full rank p. d). ‖g (x, θ)‖3 , ‖∂g (x, θ) /∂θ‖ , and ‖∂2g (x, θ) /∂θ∂θ′‖ are all bounded
from above.

We derive the properties of the EL estimator of β0 in the next theorem.

Theorem 1 Under assumption 1-2,

√
n
(
β̃ − β0

)
d→ N

(
0, V 1

β

)
where

V 1
β =

{
E

[
∂g

∂β
+
∂g

∂φ̃

∂φ̃

∂β

]′
Ω̃−1

11 E

[
∂g

∂β
+
∂g

∂φ̃

∂φ̃

∂β

]}−1

,

Ω̃11 = E

[
g
(
φ̃, β

)
g
(
φ̃, β

)′]
.
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Proof. The proof is similar to Qin and Lawless (1994). Differentiate R (β) with

respect to β and λ respectively gives:

∂R (β)

∂β
=

1

n

n∑
i=1

1

1 + λ
′
gi

(
β, φ̃

)
∂gi

(
β, φ̃

)
∂β

+
∂gi

(
β, φ̃

)
∂φ̃

∂φ̃

∂β


′

λ, (7)

∂R (β)

∂λ
=

1

n

n∑
i=1

gi

(
β, φ̃

)
1 + λ

′
gi

(
β, φ̃

) . (8)

Denote the right hand side of (7) and (8) as Q1n(β, λ) and Q2n(β, λ) respectively.

Since β̂ and λ̂ maximize R (β), Q1n(β̂, λ̂) = Q2n(β̂, λ̂) = 0, and first order Taylor

expansion around (β0, 0) gives:

0 = Q1n(β̂, λ̂)

= Q1n(β0, 0) +
∂Q1n(β0, 0)

∂β
(β̃ − β0) +

∂Q1n(β0, 0)

∂λ
λ̂+ op(δ)

0 = Q2n(β̂, λ̂)

= Q2n(β0, 0) +
∂Q2n(β0, 0)

∂β
(β̃ − β0) +

∂Q2n(β0, 0)

∂λ
λ̂+ op(δ)

where δ =
∥∥∥β̃ − β0

∥∥∥+
∥∥∥λ̂∥∥∥ . So β̃ and λ̂ can be solved as:

[
λ̂

β̃ − β0

]
= S−1

n

[
−Q1n(β0, 0) + op(δ)

op(δ)

]

=


(
I − S−1

11 E
(
∂g
∂β

+ ∂g

∂φ̃

∂φ̃
∂β

)
S−1

22.1E
(
∂g
∂β

+ ∂g

∂φ̃

∂φ̃
∂β

)′)
S−1

11 Q1n(β0, 0) + op(1)

E
(
∂g
∂β

+ ∂g

∂φ̃

∂φ̃
∂β

)′
S−1

11 Q1n(β0, 0) + op(1)

 ,
where

Sn =

[
∂Q1n
∂µ′

∂Q1n
∂β

∂Q2n
∂µ′

0

]
(β0,0)

→
[
S11 S12

S21 0

]

=

 −E(gg
′
) E

(
∂g
∂β

+ ∂g

∂φ̃

∂φ̃
∂β

)
E
(
∂g
∂β

+ ∂g

∂φ̃

∂φ̃
∂β

)′
0

 .
From lemma 1 of Qin and Lawless (1994) under Assumption 2 we have ∂Q1n(β0, 0) =
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(1/n)
∑n

i=1 g(xi, θ) = Op(n
−1/2) and δ = Op(n

−1/2). So we obtain

√
n
(
β̃ − β0

)
= S−1

22.1E

(
∂g

∂β
+
∂g

∂φ̃

∂φ̃

∂β

)′
S−1

11 Q1n(β0, 0) + op(1)

d→ N
(
0, V 1

β

)
.

Remark 2 a). The structure of the asymptotic variance-covariance matrix V 1
β

is different from those in Stock and Wright (2000) and Guggenberger and Smith

(2003), in which they decompose E [ĝ (θ)] as E [ĝ (θ)] = n−1/2m1 (θ)+m2 (β), where

m1 (θ) involves both of the two parameters and m2 (β) involves β and the true value

of φ.

b). Lazar and Mykland (1999) consider higher order properties of β̂ through
Edgeworth expansion of R (β, φ) . They find that β̂ may not achieve higher order

accuracy which can be obtained by ordinary likelihood in the presence of nuisance

parameters, also they show that the empirical likelihood ratio statistic does not admit

Bartlett correction, unlike the case without nuisance parameters.

3 More Moment Conditions

Now we focus on the asymptotic effi ciency of β̂ when there are more moment con-

dition being added. Suppose based on model (1), we have the following new model

by adding one more moment indicator f (·):

E [h (xi; β0, φ0)] = E

[
g (xi; β0, φ0)

f(xi, β0, φ0)

]
=

[
0

0

]
. (9)

For more notations we define

G ≡ E

[
∂h (x; θ0)

∂θ

]
, G2 ≡ E

[
∂f (x; θ0)

∂θ

]
Ω ≡ E

[
h (β0, φ0)h (β0, φ0)

′
]

=

[
Ω11 Ω12

Ω21 Ω22

]
.

In this model, following the setup in the previous section, the parameter vector

θ = (β
′
, φ

′
)
′
can be identified by (1) alone, and now we are interested in whether

the covariance matrix V 1
β can be improved with extra information given by f. Let

the estimator of β based on both g and f denoted as β̃, and the corresponding
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covariance matrix as V 2
β . In general, well established results have shown that at

least using f will not be harmful, i.e., it will not increase the asymptotic variance of

θ̂. And, nor will dropping f will decrease the asymptotic variance of the estimator,

relative to that of the estimator based on both g and f . See, corollary 1 of Qin and

Lawless (1994).

Remark 3 A similar and relevant situation may be worth mention, which is de-

scribed in Newey and Windmeijer (2005) and Han and Philips (2006), for instance.

They assume that the number of moment conditions is increased with the sample

size. Thus in this case extra information are provided by both extra data and extra

moment conditions, while in our case only by the latter one with fixed sample size

n. They also allow the moment conditions are weak, while we assume both g and

f are strong as indicated in assumption 1. Estimation under many weak moment

conditions is also discussed by Andrews and Stock (2005).

Proposition 1 The asymptotic effi ciency of EL estimator of β can be increased by
adding more moment conditions.

Proof. Since we can always block the component of the vector of the moment
function, for simplicity and without loss of generality, we assume that both g and

f are of dimensional one.

For convenience let E
(
∂g
∂β

+ ∂g

∂φ̃

∂φ̃
∂β

)
≡ E1, E

(
∂f
∂β

+ ∂f

∂φ̃

∂φ̃
∂β

)
≡ E2.

The inverse of V 2
β , or the information matrix of β with both g and f is:

I2
β = E

[
∂h

∂β

]′
(E [hh′])

−1
E

[
∂h

∂β

]
=

[
E1 E2

] [Ω11 Ω12

Ω21 Ω22

]−1 [
E1

E2

]
. (10)

Since without f , the information on β is

I1
β = E1 [E (gg′)]

−1
E1

= E
′

1S
−1
11 E1,
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we have:

I2
β − I1

β = E

[
∂h

∂β

]′
(E [hh′])

−1
E

[
∂h

∂β

]
− E ′

1 (E [gg′])
−1
E1

= E
′

1

[
S−1

11 S12Ω22S21S
−1
11

]
E1 + E2

[
−Ω22S21S

−1
11

]
E1

+E1

[
−S−1

11 S12Ω22

]
E2 + E2Ω22E2

=
(
E

′

1S
−1
11 S12 − E1

)
Ω22

(
E

′

1S
−1
11 S12 − E2

)′
,

which is positive semidefinite, providing E
(
gg

′)
is p.d as Assumption 2 indicates.

Example 1 Suppose we have a sequence of i.i.d observations of univariate random
variable x1, ...xn. Let E(x) = µ and var(x) = σ2. Thus we have the following two

moment conditions:

E [g(x; β)] = E(x− µ) = 0, (11)

E [f(x; β, φ)] = E((x− µ)2 − σ2) = 0. (12)

And now we are only interested in the estimation of µ. The empirical likelihood

estimator of µ is:

µ̂ = arg min
µ

n∑
i=1

log

(
1 + t

′

(
xi − µ

(xi − µ)2 − σ̂2

))
,

and

nV ar(µ̂) =

[ ∂g
∂β

∂f
∂β

] [E(gg) E(gf)

E(fg) E(ff)

]−1 [ ∂g
∂β
∂f
∂β

]−1

= Ω−1
11

= σ2 −
(
E (x− µ)3)2

E
(
(x− µ)2 − σ2

)2 ≤ σ2. (13)

Notice that without g2, nV ar(µ̂) equals σ2 .

In the above example, we notice that E
(
∂f
∂β

)
= 0, and this feature simplifies the

calculation dramatically. So we consider the following more special model, where g

does not have nuisance parameter, but f has a nuisance parameter only, although

it brings some information from the data.
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E [h (x; β0, φ0)] = E

[
g (x; β0)

f(x, φ0)

]
=

[
0

0

]
. (14)

The gradient vector of h in (14) is:

∂h

∂θ
=

[
∂g
∂β

0

0 ∂f
∂φ

]
,

the information on β is:

I2
β = E

[
∂h

∂β

]′
[E (hh′)]

−1
E

[
∂h

∂β

]
=

[
E
(
∂g
∂β

)
0
] [Ω11 Ω12

Ω21 Ω22

]−1 [
E
(
∂f
∂β

)
0

]

= E

[
∂g

∂β

]′ [
Ω−1

11 (I + Ω12(Ω22 − Ω12Ω−1
11 Ω21)−1Ω21Ω−1

11

]
E

[
∂f

∂β

]
,

where I is the corresponding identity matrix. Now we have

I2
β − I1

β = E

[
∂f

∂β

]′
V E

[
∂f

∂β

]
(15)

where

V =
[
Ω−1

11 Ω12(Ω22 − Ω12Ω−1
11 Ω21)−1Ω21Ω−1

11

]
. (16)

By assumption E(gg
′
) is positive semidefinite, so (Ω22−Ω12Ω−1

11 Ω21)−1 is also p.s.d,

and so is V. Thus we see that f provide extra information for β. However, if in (10),

E(gf) = Ω12 = 0, V = 0, so I2
β = I1

β. So we have the following proposition.

Proposition 2 Additional moment conditions which contains only nuisance para-
meters will provide extra information on the parameter of interest only if they are

correlated to the original moment conditions.

Remark 4 Whether g and f are correlated is a testable condition. Since E [g (x, β0)] =

E [f (x, φ0)] = 0, to test the correlation of g and f it is equivalent to test the fol-

lowing additional moment condition

E [ρ (x; β0, φ0)] = E [g (x, β0) f (x, φ0)] = 0 (17)

and this can be done by standard EL test procedure.
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4 Conclusion

In this paper we have discussed the effi ciency of the EL estimator in the presence

of nuisance parameters, via standard asymptotic method. We are particularly in-

terested in whether the asymptotic effi ciency of the parameter of interest can be

improved by adding more moment conditions. We found that a necessary condition

for augmented moment condition to be useful to improve the asymptotic effi ciency,

is that it is correlated to the original moment condition. It is worth mentioning that

here we incorporate more moment conditions with sample size being fixed, while

researchers like Newey and Windmeijer (2005) and Han and Philips (2006) consider

increasing the number of moment conditions brought by increasing sample size.
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