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Abstract 

The technique of distributed dislocations proved to be in the past an effective approach in 

studying crack problems within classical elasticity. The present work is intended to extend this 

technique in studying crack problems within couple-stress elasticity, i.e. within a theory accounting 

for effects of microstructure. This extension is not an obvious one since rotations and couple-stresses 

are involved in the theory employed to analyze the crack problems. Here, the technique is introduced 

to study the case of a mode I crack. Due to the nature of the boundary conditions that arise in couple-

stress elasticity, the crack is modeled by a continuous distribution of climb dislocations and 

constrained wedge disclinations (the concept of ‘constrained wedge disclination’ is first introduced 

in the present work). These distributions create both standard stresses and couple stresses in the 

body. In particular, it is shown that the mode-I case is governed by a system of coupled singular 

integral equations with both Cauchy-type and logarithmic kernels. The numerical solution of this 

system shows that a cracked solid governed by couple-stress elasticity behaves in a more rigid way 

(having increased stiffness) as compared to a solid governed by classical elasticity. Also, the stress 

level at the crack-tip region is appreciably higher than the one predicted by classical elasticity. 
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1.  Introduction 

 

The present work introduces an approach based on distributed dislocations and disclinations 

(and associated singular integral equations) to deal with the mode I crack problem of couple-stress 

elasticity. This theory assumes that, within an elastic body, the surfaces of each material element are 

subjected not only to normal and tangential forces but also to moments per unit area. The latter are 

called couple-stresses. Such an assumption is appropriate for materials with granular or crystalline 

structure, where the interaction between adjacent elements may introduce internal moments. In this 

way, characteristic material lengths appear representing microstructure. As is well-known, the 

fundamental concepts of the couple-stress theory were first introduced by Voigt (1887) and the 

Cosserat brothers (1909), but the subject was generalized and reached maturity only in the 1960s 

through the works of Toupin (1962), Mindlin and Tiersten (1962), and Koiter (1964). 

The theory of couple-stress elasticity assumes that: (i) each material particle has three 

degrees of freedom, (ii) an augmented form of the Euler-Cauchy principle with a non-vanishing 

couple traction prevails, and (iii) the strain-energy density depends upon both strain and the gradient 

of rotation. The theory is different from the Cosserat (or micropolar) theory that takes material 

particles with six independent degrees of freedom (three displacement components and three rotation 

components, the latter involving rotation of a micro-medium w.r.t. its surrounding medium). 

Sometimes, the name ‘restricted Cosserat theory’ appears in the literature for the couple-stress 

theory. 

It is noted that couple-stress elasticity had already in the 1960s some successful application 

on stress-concentration problems concerning holes and inclusions (see e.g. Mindlin, 1963; 

Weitsman, 1965; Bogy and Sternberg, 1967a, b; Hsu et al., 1972; Takeuti et al., 1973). In recent 

years, there is a renewed interest in couple-stress theory (and related generalized continuum theories) 

dealing with problems of microstructured materials. For instance, problems of dislocations, 

plasticity, fracture and wave propagation have been analyzed within the framework of couple-stress 

theory. This is due to the inability of the classical theory to predict the experimentally observed size 

effect and also due to the increasing demands for manufacturing devices at very small scales. Recent 

applications include work by, among others, Fleck et al. (1994), Vardoulakis and Sulem (1995), 

Huang et al. (1997; 1999), Fleck and Hutchinson (1998), Zhang et al. (1998), Anthoine (2000), 

Lubarda and Markenscoff (2000), Bardet and Vardoulakis (2001), Georgiadis and Velgaki (2003), 

Lubarda (2003), Ravi Shankar et al. (2004), Grentzelou and Georgiadis (2005), and Radi (2007).  
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Generally, the couple-stress theory is intended to model situations where the material is 

deformed in very small volumes, such as in the immediate vicinity of crack tips, notches, small holes 

and inclusions, and micrometer indentations. Examples of successful modelling of microstructure 

and size effects by this theory are provided by Kakunai et al. (1985) and Lakes (1995), among 

others. Also, a recent work by Bigoni and Drugan (2007) provides additional references and an 

interesting account of the determination of moduli via homogenization of heterogeneous materials.  

Regarding now crack problems, there is a limited number of studies concerning such 

problems in couple-stress theory. Sternberg and Muki (1967) were the first to study the mode I 

finite-length crack elasticity problem by employing the method of dual integral equations. In their 

work, only asymptotic results were obtained showing that both the stress and couple-stress fields 

exhibit a square-root singularity, while the rotation field is bounded at the crack-tip. Adopting the 

same method, Ejike (1969) studied the problem of a circular (penny-shaped) crack in couple-stress 

elasticity. Later, Atkinson and Leppington (1977) studied the problem of a semi-infinite crack by 

using the Wiener-Hopf technique. More recently, Huang et al. (1997) using the method of 

eigenfunction expansions, provided near-tip asymptotic fields for mode I and mode II crack 

problems in couple-stress elasticity. Also, Huang et al. (1999) using the Wiener-Hopf technique 

obtained full-field solutions for semi-infinite cracks under in-plane loading in elastic-plastic 

materials with strain-gradient effects of the couple-stress type.  

The aim of the present investigation is to extend the distributed dislocation technique (and 

the related singular integral equation technique) in dealing with crack problems of couple-stress 

elasticity and to obtain, for the first time, a full-field solution to the mode I problem of a finite-length 

crack. The couple-stress case is our first attempt to introduce singular integral equations in crack 

problems of generalized continua. Efforts dealing with gradient elasticity are also under way. Here, 

we introduce an approach based on distributed dislocations and disclinations. In particular, the 

concept of a special type of disclination (we call it ‘constrained wedge disclination’) is employed in 

order to deal with the features of the couple-stress theory. No such concept was needed in dealing 

with crack problems within the classical elasticity theory. For the latter problems, the standard 

distributed dislocation technique (DDT) was introduced by Bilby et al. (1963, 1968). This is an 

analytical/numerical technique. The strength of the DDT lies in the fact that it gives detailed full-

field solutions for crack problems at the expense of relatively little analytical and computational 

demands as compared to the elaborate analytical method of dual integral equations or the standard 

numerical methods of Finite and Boundary Elements. A thorough exposition of the technique and 

the treatment of various crack problems can be found in the treatise by Hills et al. (1996).  
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Despite the numerous applications of the DDT in classical elasticity, it appears that there is a 

limited work in solving crack problems with this technique in materials with microstructure. 

Recently, the present authors (Gourgiotis and Georgiadis, 2007) applied the standard DDT to solve 

finite-length crack problems, under mode II and mode III conditions, within the framework of 

couple-stress elasticity. Within this framework, and having solved now the mode I (opening mode) 

case, a comparison between the two plane-strain crack modes (mode I and mode II) shows that mode 

I is mathematically more involved than mode II. Certainly, this is in contrast with situations of 

classical elasticity where solving problems of mode I and mode II involves the same mathematical 

effort. The additional effort in dealing with the mode I case here is due to the nature of the boundary 

conditions that arise in couple-stress elasticity (involving rotations and couple-stresses). However, 

such a situation does not appear in the mode II case of couple-stress elasticity (Gourgiotis and 

Georgiadis, 2007). 

  As in analogous situations of classical elasticity, a superposition scheme will be followed. 

Thus, the solution to the basic problem (body with a traction-free crack under a remote constant 

tension) will be obtained by the superposition of the stress and couple-stress fields arising in an un-

cracked body (of the same geometry) to the ‘corrective’ stresses and couple-stresses induced by a 

distribution of defects chosen so that the crack-faces become traction-free. Due to the nature of the 

boundary conditions, it will be shown that in order to obtain the corrective solution, we need to 

distribute not only climb dislocations but also constant discontinuities of the rotation along the crack 

faces. We name the latter discontinuities constrained wedge disclinations. The term ‘constrained’ 

refers to the requirement of zero normal displacement along the disclination plane. Notice that 

according to the standard notion of a wedge disclination (see e.g. Anthony, 1970; de Wit, 1973), the 

normal displacement is also discontinuous along the disclination plane and increases linearly with 

distance from the core becoming unbounded at infinity. Clearly, a standard wedge disclination would 

not serve our purpose here. The concept of a constrained wedge disclination is first introduced in the 

present work (see Sections 4 and 5 below for the details).  

  The Green’s functions of our problem (i.e. the stress fields due to a discrete climb dislocation 

and a discrete constrained wedge disclination) are obtained by the use of Fourier transforms. Finally, 

it is shown that the continuous distribution of the discontinuities along the crack faces results in a 

system of coupled singular integral equations with both Cauchy-type and logarithmic kernels. The 

numerical solution of this system shows that a cracked solid governed by couple-stress elasticity 

behaves in a more rigid way (having increased stiffness) as compared to a solid governed by classical 
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elasticity. Also, the stress level at the crack-tip region is appreciably higher than the one predicted by 

classical elasticity.  

 

 

2. Fundamentals of couple-stress elasticity 

 

In this Section, the basic equations of couple-stress elasticity are briefly presented. As 

mentioned before, couple-stress elasticity assumes that: (i) each material particle has three degrees of 

freedom, (ii) an augmented form of the Euler-Cauchy principle with a non-vanishing couple traction 

prevails, and (iii) the strain-energy density depends upon both strain and the gradient of rotation. 

In addition to the fundamental papers by Mindlin and Tiersten (1962) and Koiter (1964), 

interesting presentations of the theory can be found in the works by Aero and Kuvshinskii (1960), 

Palmov (1964), and Muki and Sternberg (1965). The basic equations of dynamical couple-stress 

theory (including the effects of micro-inertia) were given by Georgiadis and Velgaki (2003).  

In the absence of inertia effects, for a control volume CV with bounding surface , the 

balance laws for the linear and angular momentum read 

S

 
( )∫ ( )∫ 0=+ CV iS
n

i CVdFdST   ,                                                     (1) 

( ) ( )( )∫ ( )∫ ( ) 0=+++ CVdCeFxdSMeTx CV iijkkjS
n

iijk
n

kj   ,                                                        (2) 

 

where a Cartesian rectangular coordinate system  is used along with indicial notation and 

summation convention,  is the Levi-Civita alternating symbol, n  is the outward unit vector 

normal to the surface with direction cosines , 

321 xxOx

j

ijke

n ( )n
iT  is the surface force per unit area (force 

traction),  is the body force per unit volume, iF ( )n
iM  is the surface moment per unit area (couple 

traction), and  is the body moment per unit volume.  iC

Next, pertinent force-stress and couple-stress tensors are introduced by considering the 

equilibrium of the elementary material tetrahedron and enforcing (1) and (2), respectively. The force 

stress or total stress tensor ijσ  (which is asymmetric) is defined by 

 
( )

jji
n

i nσT =   ,                                 (3) 
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and the couple-stress tensor ijμ  (which is also asymmetric) by 

 
( )

jji
n

i nM μ=   .                                           (4) 

 

In addition, just like the third Newton’s law ( ) ( )-nn TT −=  is proved to hold by considering the 

equilibrium of a material ‘slice’, it can also be proved that ( ) ( )-nn MM −=  (see e.g. Jaunzemis, 1967). 

The couple-stresses  are expressed in dimensions of [force][length]-1. Further,  can be 

decomposed into a symmetric and anti-symmetric part 

ijμ ijσ

 

ijijij ατσ +=   ,                                                      (5) 

 

with  and , whereas it is advantageous to decompose  into its deviatoric jiij ττ = jiij αα −= ijμ
( )D
ijμ  

and spherical  part in the following manner ( )S
ijμ

 

kkijijij μδmμ
3
1

+=   ,                                                                 (6) 

 

where , ( )D
ijij μm = ( ) ( ) kkij

S
ij μδμ 31= , and  is the Kronecker delta. Now, with the above definitions 

and the help of the Green-Gauss theorem, one may obtain the stress equations of motion. Equation 

(2) leads to the following moment equation 

ijδ

 

0=++∂ jijkkiiji Ceσμ   ,                               (7) 

 

which can also be written as  

 

0
2
1

2
1

=++∂ jklljkjklili eCαeμ   ,                              (8) 

 

since by its definition the anti-symmetric part of stress is written as ( ) ( IσIα ×× )−≡ 21 , where  is 

the idemfactor. Also, Eq. (1) leads to the following force equation 

I
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0=+∂ kjkj Fσ   ,                                           (9) 

 

or, by virtue of  (5), to the equation  

 

0=+∂+∂ kjkjjkj Fατ   .                                        (10) 

 

Further, combining (8) and (10) yields the single equation  

 

0
2
1

2
1

=∂−+∂∂−∂ jklljkjklilijjkj eCFeμτ   .                           (11) 

 

Finally, in view of Eq.(6) and by taking into account that ( )( )( ) 0=kkij μδ31divcurl , we write (11) as  

 

0
2
1

2
1

=∂−+∂∂−∂ jklljkjklilijjkj eCFemτ   ,                           (12) 

 

which is the final equation of equilibrium.  

Now, as for the kinematical description of the continuum, the following quantities are 

defined in the framework of the geometrically linear theory 

 

( )jiijij uuε ∂+∂=
2
1   ,                                         (13) 

( )jiijij uu ∂−∂=
2
1ω   ,                                                   (14) 

kjijki ueω ∂=
2
1   ,                              (15) 

jiij ωκ ∂=   ,                               (16) 

 

where  is the strain tensor,  is the rotation tensor,  is the rotation vector, and  is the 

curvature tensor (i.e. the gradient of rotation or the curl of the strain) expressed in dimensions of 

[length]-1. Notice also that Eq. (16) can alternatively be written as 

ijε ijω iω ijκ
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ilkjkllkijklij εeueκ ∂=∂∂=
2
1   .                             (17) 

 

Equation (17) expresses compatibility for curvature and strain fields. In addition, there is an identity 

, which defines the compatibility equations for the curvature components. The 

compatibility equations for the strain components are the usual Saint Venant’s compatibility 

equations (see e.g. Jaunzemis, 1967). We notice also that  because 

kjijkiijk κωκ ∂=∂∂=∂

0=iiκ

( ) 021 , ==∂= jikijkiiii ueωκ

ijκ

 and, therefore,  has only eight independent components. The tensor 

 is obviously an asymmetric tensor. 

ijκ

Regarding traction boundary conditions, at any point on a smooth boundary or section, the 

following three reduced force-tractions and two tangential couple-tractions should be specified 

(Mindlin and Tiersten, 1962; Koiter, 1964) 

 

( )
( )nnkjijkjji

n
i mnenσP ∂−=

2
1  ,                 (18) 

( )
( ) innjji

n
i nmnmR −=  ,                                        (19) 

 

where  is the normal component of the deviatoric couple-stress tensor . The 

modifications for the case in which corners appear along the boundary can be found in the article by 

Koiter (1964). 

( ) ijjinn mnnm = ijm

 It is worth noticing that at first sight, it might seem plausible that the surface tractions (i.e. the 

force-traction and the couple-traction) can be prescribed arbitrarily on the external surface of the 

body through relations (3) and (4), which stem from the equilibrium of the material tetrahedron. 

However, as Koiter (1964) pointed out, the resulting number of six traction boundary conditions 

(three force-tractions and three couple-tractions) would be in contrast with the five geometric 

boundary conditions that can be imposed. Indeed, since the rotation vector  in couple-stress 

elasticity is not independent of the displacement vector  (as (15) suggests), the normal component 

of the rotation is fully specified by the distribution of tangential displacements over the boundary. 

Therefore, only the three displacement and the two tangential rotation components can be prescribed 

independently. As a consequence, only five surface tractions (i.e. the work conjugates of the above 

five independent kinematical quantities) can be specified at a point of the bounding surface of the 

body, i.e. Eqs. (18) and (19). On the contrary, in the Cosserat (micropolar) theory, the traction 

iω

iu
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boundary conditions are six since the rotation is fully independent of the displacement vector (see 

e.g. Nowacki, 1972). In the latter case, the tractions can directly be derived from the equilibrium of 

the material tetrahedron, so (3) and (4) are the pertinent traction boundary conditions. 

Introducing the constitutive equations of the theory is now in order. We assume a linear and 

isotropic material response, in which case the strain-energy density takes the form 

 

( ) jiijijijijijjjiiijij κκηκηκεμεελεκεWW ′+++=≡ 22
2
1,  ,                         (20) 

 

where  are material constants. Then, Eq. (20) leads, through the standard variational 

manner, to the following constitutive equations  

( ηημλ ′,,, )

 

( ) ijkkij
ij

ijij μεελδ
ε
Wστ 2+=
∂
∂

=≡  ,                                       (21) 

jiij
ij

ij κηηκ
κ
Wm ′+=
∂
∂

= 44  .                             (22) 

 

In view of (21) and (22), the moduli (  have the same meaning as the Lamé constants of classical 

elasticity theory and are expressed in dimensions of [force][length]-2, whereas the moduli 

)μλ,
( )ηη ′,  

account for couple-stress effects and are expressed in dimensions of [force]. 

Next, incorporating the constitutive relations (21) and (22) into the equation of equilibrium 

(12) and using the geometric relations (13)-(16), one may obtain the equations of equilibrium in 

terms of displacement components (Muki and Sternberg, 1965), i.e.  

 

( ) ( ) 0
ν21

1 22422 =⎟
⎠
⎞

⎜
⎝
⎛ ⋅∇+⋅
−

∂+∇−∇ uu ∇∇ ll iii uu   ,                                                        (23) 

 

where  is Poisson’s ratio, v ( ) 21μη≡l  is a characteristic material length, and the absence of body 

forces and couples is assumed. In the limit , the Navier-Cauchy equations of classical linear 

isotropic elasticity are recovered from (23). Indeed, the fact that Eqs. (23) have an increased order 

w.r.t. their limit case (recall that the Navier-Cauchy equations are PDEs of the second order) and the 

coefficient  multiplies the higher-order term reveals the singular-perturbation character of the 

couple-stress theory and the emergence of associated boundary-layer effects. 

0→l

l
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Finally, the following points are of notice: (i) Since 0=iiκ ,  is also valid and 

therefore the tensor  has only eight independent components. (ii) The scalar 

0=iim

ijm ( ) kkμ31  of the 

couple-stress tensor does not appear in the final equation of equilibrium, nor in the reduced boundary 

conditions and the constitutive equations. Consequently, ( ) kkμ31  is left indeterminate within the 

couple-stress theory. (iii) The following restrictions for the material constants should prevail on the 

basis of a positive definite strain-energy density (Mindlin and Tiersten, 1962) 

 

023 >+ μλ  ,     ,     ,    0>μ 0>η 11 <
′

<−
η
η  .                                                            (24a-d) 

 

 

3. Basic equations in plane-strain 

 

For a body that occupies a domain in the ( )yx, -plane under conditions of plane strain, the 

displacement field takes the general form 

 

( ) 0, ≠≡ yxuu xx  ,        ( ) 0, ≠≡ yxuu yy  ,        0≡zu  .                                (25a-c) 

 

First, the components of the force-stress and couple-stress tensors will be obtained. The 

independence upon the coordinate  of all components of the force-stress and couple-stress tensors, 

under the assumption (25c), was proved by Muki and Sternberg (1965). Indeed, it is noteworthy that, 

contrary to the respective plane-strain case in the conventional theory, this independence is not 

obvious within the couple-stress theory. Notice further that except for 

z

ωω ≡z  and ( )yzxz κκ ,  all 

others components of the rotation vector and the curvature tensor vanish identically in the particular 

case of plane-strain considered here. The non-vanishing components ( )yyτ xyxx ττ ,,  and ( )yz,  xz mm

follow from (21) and (22), respectively. Then, ( )yyyxxyxx αααα ,,,  are found from (8) and, finally, 

( )yyyxxyxx σσσσ ,,,  are provided by (5). Vanishing body forces and body couples are assumed in what 

follows. In view of the above, the following expressions are written 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
∂

−
∂

∂
=

yx
u

x
u

m xy
xz

2

2

2
22 lμ   ,                                                                         (26) 
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−
∂∂

∂
= 2

22
22

y
u

yx
u

m xy
yz lμ   ,                                                                                                (27) 

0== yyxx αα   ,                                                 (28) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

=
y

m
x

m yzxz
yx 2

1α   ,                                                    (29) 

yxxy αα −=   ,                                           (30) 

( )
y

u
x

u yx
xx ∂

∂
+

∂
∂

+= λμλσ 2   ,                                        (31) 

( )
x

u
y

u xy
yy ∂

∂
+

∂

∂
+= λμλσ 2   ,                             (32) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−
∂∂

∂
+

∂∂
∂

−
∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

= 3

3

2

3

2

3

3

3
2

y
u

yx
u

yx
u

x
u

x
u

y
u xyxyyx

yx lμμσ   ,                                            (33) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−
∂∂

∂
+

∂∂
∂

−
∂

∂
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

= 3

3

2

3

2

3

3

3
2

y
u

yx
u

yx
u

x
u

x
u

y
u xyxyyx

xy lμμσ   .                                            (34) 

 

Incorporating (25a-c) into the equations of equilibrium in (23), we obtain the following 

system of coupled PDEs of the fourth order for the displacement components ( )yx uu ,  

 

( ) 012
21

1
4

4

3

4

22

4

3

4
2

2

2

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−
∂∂

∂
+

∂∂
∂

−
∂∂

∂
+

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

−
∂
∂

− y
u

yx
u

yx
u

yx
u

y
u

y
u

x
u

x
xyxyxyx lν

ν
  ,         (35) 

( ) 012
21

1
4

4

3

4

22

4

3

4
2

2

2

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−

∂∂
∂

+
∂∂

∂
−

∂∂
∂

+
∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂

∂
−

∂
∂

− x
u

yx
u

yx
u

yx
u

x
u

x
u

y
u

y
yxyxyxy

lν
ν

  .         (36) 

 

 

4.  Formulation of the crack problem 

 

Consider a straight crack of finite length  embedded in a body of infinite extent in the 2a xy -

plane (Fig. 1). The body is governed by the equations of couple-stress elasticity and it is in a field of 

uniform uni-axial tension, under plane-strain conditions. The crack faces are traction free and are 

defined by . Then, according to (18) and (19), the boundary conditions along the crack 

faces are written as 

( 1,0 ±=n )
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( ) 00, =xσ yx  ,     ,   ( ) 00, =xyyσ ( ) 00, =xmyz         for ax <  .                                      (37a-c) 

 

The regularity conditions at infinity are 

 

0,, →∞∞∞
xxxyyx σσσ  ,    ,    ,     as  0σσ yy →

∞ 0, →∞∞
yzxz mm ∞→r  ,                                   (38a-c) 

 

where (

y

x

0σ

0σ

a− a

) 2122 yxr +=  is the distance from the origin, and the constant  denotes the remotely 

applied normal loading.  

0σ

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Cracked body under remote tension field in plane strain. 

 

 

Now, the crack problem is decomposed into the following two auxiliary problems. 

 

The un-cracked body 

 

The displacement and the rotation field for the un-cracked body problem are given as 

(Sternberg and Muki, 1967) 
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xux μ
νσ
2

0−=  ,     ( ) yuy μ
σν

2
1 0−

=  ,     0=ω  .                                       (39) 

 

The stress field can readily be obtained from (26)-(34) as 

 

( ) 0, σσ =yxyy  ,     ,     .                                               (40a-c) 0=== xyyxxx σσσ 0== yzxz mm

 

Notice that there are no couple-stresses induced in the un-cracked body, the body being in a state of 

pure tension. 

 

The corrective solution 

 

Consider next a body geometrically identical to the initial cracked body (Fig. 1) but with no 

remote loading now. The only loading applied is along the crack faces. This consists of equal and 

opposite tractions to those generated in the un-cracked body. The boundary conditions along the 

faces of the crack are written as 

 

( ) 00, σxσ yy −=  ,     ,    ( ) 00, =xmyz ( ) 00, =xσ yx       for   ax <  .                                  (41a-c) 

 

Notice that in classical elasticity it would suffice a continuous distribution of climb 

dislocations with Burger’s vector  to produce the desired normal stresses (41a). However, 

this is not the case in couple-stress elasticity because a discrete climb dislocation produces both 

normal stresses  and couple-stresses  along the dislocation line . Therefore, it is not 

possible to satisfy both (41a) and (41b) only by a continuous distribution of climb dislocations. On 

the other hand, within the framework of couple-stress elasticity, we know that the work conjugates of 

the reduced force traction  and the tangential couple traction  are the normal 

displacement u  and the rotation ω , respectively. In light of the above, we are led to the conclusion 

that in order to satisfy all the boundary conditions in (41) we should distribute discontinuities of both 

displacement  (i.e. climb dislocations) and rotation  (the so-called constrained wedge 

disclinations) along the crack faces.  

( 0,,0 b=b

yzm

yyy n

)

It is noteworthy that in the mode II crack problem of couple-stress elasticity studied by the 

present authors (Gourgiotis and Georgiadis, 2007), only a distribution of glide dislocations was 

yyσ

y

y

0=y

z mR =yP σ= yyz n

u ω
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indeed 

de

cts are located at the origin of the 

) p

 

.  Green’s functions (climb dislocation and constrained wedge disclination) 

 

sufficient to generate the requisite shear stress yxσ  along the crack-faces. This is because a 

discrete glide dislocation produces neither normal stresses σ  nor couple-stresses m  along the 

crack-line 0=y . In that problem, employing the standard DDT was sufficient and led to a single 

singular integral equation. On the contrary, in the present mo  I crack problem, the distribution of 

both climb dislocations and constrained wedge disclinations leads to a system of coupled singular 

integral equations for the dislocation and the disclination densities. 

Our next aim is to determine the stress and couple-stress fields induced by a discrete climb 

dislocation and a discrete constrained wedge disclination. Both defe

yy yz

( yx, - lane. These stress fields will serve as the Green’s functions for our crack problem.  

 

5

Due to the symmetry of both problems w.r.t. the plane 0=y , only the upper half-plane 

domain ( ) will be considered. In this doma nsform is utilized to 

suppres

0, ≥∞<<∞− yx in, the Fourier tra

s the x -dependence in the field equations and the boundary conditions. The direct Fourier 

transform  defined as follows 

 

( )

 and its inverse are

( )
( )∫

∞∗ = dxeyxfyf ixξξ ,1,  ,         
∞−π2 21                                                                            (42a) 

( )
( )

( )∫
∞

∞−

−∗= ξ  ,                                                                                  (42b) ξ
π

ξdeyfyxf ix,
2

1, 21

 

where ( ) 211−≡i

equations for 

. Transforming now (35) and (36) with (42a) gives a system of ordinary differential 

( )∗∗
yx uu ,  written in the following compact form 

 

  ,                                                                                                                   (43) 

 

where the differential operator  is given as 

 

[ ] ⎥
⎦

⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

∗

∗

0
0

y

x

u
K

⎤⎡u

 [ ]K
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( ) ( )

[ ]
( )

( ) ( ) ( ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣
+−++−−

−−

=
22222222

2222

11 lll

l

ξξξξξξ

ξξξ

dddd

dddd

2

2

kkii

kii

K

⎡ +−++− 2242 11 ll ξξd k

)
  ,               (44) 

 

with ( )νk 211 −= , dyd )()( ≡d , 222 )()( dyd≡d , etc. 

he system of homogeneous differential equations in (43) has a solution different than the 

 one if and only if the determ

T

trivial inant of [ ]K  is zero. Hence,  

                                                        (45) 

The latter equation has two double r

 

( ) ( )[ ] 0122222 =−−− ξξ dd l2  .                                      

 

oots ξ±=d  and two single roots ( ) ll
21221 ξ+±=d . The first 

pair is t e same as in classical elasticity, whereas the second pair reflects the presence of couple-

) is obt r extensive algebra

h

stress effects. The general solution of (43 ained after some rathe  and it has 

the following form that is bounded as +∞→y  

 

( ) ( ) ( ) ( ) l

α
ξ

y
y

x eA
−− + 321  ,                                                                 (46) ξ ξξξξ y eyAeAyu −∗ +=,

( ) ( ) ( ) ( )[ ] ( ) ( ) l

α
ξξ ξ

αξ
eAieA 32  ,                (47) ξξ

ξ
ξνξξξξ

y
yy

y iyeAAiyu
−−−−∗ −−−+−= 21

1 43,

 

where ( ) ( ) 21221 ξξαα l+=≡ , and the functions ( ) ( ) ( )( )ξξξ 321 ,, AAA  are yet unknown functions that 

will be determined through the enforcement of boundary conditions in each specific problem. 

Having in hand the  solution (46) andtransformed general  (47), the transformed rotation, 

stresses and couple-stresses may follow by the use of the following expressions 

 

( ) ⎟⎟
⎞

⎜
⎛

+−=
du

uiy x
*

** 1, ξξω  ,                                    
⎠

⎜
⎝ dyy2

                         (48)                   

( ) ( )
⎥
⎥
⎤

−y                                                             (49) 
⎦⎢

⎢
⎣

⎡
−

−
= *

*
* 1

21
2, xyy ui

dy
du

y νξν
ν
μξσ  ,                   
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( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−−

−
=

dy
du

vuiy y
xxx

*
** 1

21
2, ξν
ν
μξσ  ,                                      (50) 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−= 3

*3

2

*2*
2*32

*
** ,

dy
ud

dy
ud

ξi
dy

du
ξuξiμ

dy
du

uξiμyξσ xyx
y

x
yyx l  ,                             (51) 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−= 3

*3

2

*2*
2*32

*
** ,

dy
ud

dy
ud

ξi
dy

du
ξuξiμ

dy
du

uξiμyξσ xyx
y

x
yxy l  ,                             (52) 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−= 2

*2*
2* 2,

dy
ud

dy
du

ξiμyξm xy
yz l  ,                                                                                    (53) 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

dy
du

ξiuξμyξm x
yxz

*
*22* 2, l  .                                                             (54) 

 

Now, we impose at the origin of the ( )yx, -plane a discrete climb dislocation with Burger’s 

vector  and a discrete constrained wedge disclination with Frank’s vector ( 0,,0 b=b ) ( )Ω,0,0=Ω

0, ≥

. 

In the framework of couple-stress theory and considering the upper half-plane ( ∞< yx<∞− ), 

a climb dislocation and a constrained wedge disclination give rise, respectively, to the following 

boundary value problems 

 

( ) ( )xHbxu y 2
0, −=+  ,    ( ) 00, =+xω  ,    ( ) 00, =+xyxσ  ,                                               (55a-c) 

( ) 00, =+xu y  ,    ( ) ( )xHx
2

0, Ω
=+ω  ,    ( ) 00, =+xyxσ  .                                                 (56a-c) 

 

where  is the Heaviside step-function. We emphasize once again that the term ‘constrained 

wedge disclination’ is justified from the fact that the discontinuity in rotation (cf. (56b)) does not 

affect the normal displacement in (56a) (see also Appendix A). Clearly, this concept departs from the 

one of the standard wedge disclination appearing in the settings of both classical elasticity (de Wit, 

1973) and couple-stress elasticity (Anthony, 1970). This standard wedge disclination generates a 

field where the jump in rotation implies a discontinuity in the normal displacement too. Finally, we 

notice that the use of a half-plane domain (resulting from simple symmetry considerations), instead 

of the full-plane domain, permits the formulation of boundary value problems. Such a formulation 

provides indeed an advantage for the use of Fourier transforms. 

( )xH
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Applying the Fourier transform to the boundary conditions (55a-c) and (56a-c), we obtain 

 

( ) ( ) ( )ξδ ( ) 00,* =+ξσ yx( ) 00,* =+ξωπ 2bξ +
+ −= 21* 0,u y  ,    ,     .                                    (57a-c)              

( ) 00,* =+ξyu  ,    ( ) ( ) ( )ξδπξω +
+ = 21* 20, Ω ,    ( ) 0=+0,* ξσ yx  ,                                      (58a-c)      

                                                                                           

where ( ) ( )[ ] ( )[ ]πξξδξδ 22 i+=+  is the Heisenberg delta function (see e.g. Roos, 1969) and ( )ξδ  is 

the Dirac delta distribution. However, the contribution of the Dirac delta distribution in the physical 

domain is only a rigid-body displacement for the problem (55) and a rigid-body rotation for the 

problem

xt, combining (57) a

d displacements due to the climb 

dislocation and the constrained wedge disclination are found to be 

 

 (56). 

Ne nd (58) with (46)-(54) provides a system of algebraic equations for the 

functions ( ) ( ) ( )( )ξξξ 321 ,, AAA . After some algebra involving manipulations and also use of the 

symbolic program MATHEMATICA (version 6.0), the transforme

( )
( )

( )
( ) ( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
+

−
−

−=
−− lll
α

ξ αξ
νξν

ν
π

ξ
y

y
x eeybyu 2

21
*

1414
21

2
,  

( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
−+ −− ξ

α

ξ
ξ
α

π
y

y

eei sgn
2

2
21 l
l

l
Ω  ,                                       (59a)                                          

( )
( )

( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
−−=

−− lll
α

ξ ξξ
ν
ξ

ξπ
ξ

y
y

y eeybiyu 22
21

*

14
sgn

2
1

2
,  

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−+ −− ξ

α

π2
y

y

ee 22
21 ll l

Ω  ,                                                    (59b) 

where 

lly o

are given in Appendix A) which will serve as the Green’s functions of the mode I crack problem, i.e. 

 

( )gn  is the signum function.  

With the aid of the inversion formula (42b) and enforcing (48)–(54), we fina btain the 

expressions for the normal stress yyσ  and the couple-stress yzm  along the crack line 0=y   (details 

s

 ( ) ( ) ⎟⎟
⎠

⎜
⎝⎟

⎠
⎜
⎝

⎟
⎠

⎜
⎝⎟

⎠
⎜
⎝

⎟
⎠

⎜
⎝− lll xxxxyy 0222212 πππνπ

⎞
⎜
⎛

−⎟
⎞

⎜
⎛

⎟
⎞

⎜
⎛

−−⎟
⎞

⎜
⎛

⎟
⎞

⎜
⎛

−+==
ll x

K
x

K
x

Kbbyx
22 2220, μμμμσ ΩΩ  ,  

                                                                                                                                              (60) 
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( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

Ω
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−==

− 0,21,21
1

2

2
1,2
3,1022

2

4
sgn

2
20,

l

l

ll

l xGx
x

Kbx
K

x
byxmyz π

μ
π
μ

π
μ  , 

                                                                                                                                              (61) 

where ( lxKi ) is the ith order modified Bessel function of the second kind and ( )ba
dcG ,

,  is the 

MeijerG function, which is a tabulated function. 

Concerning now the nature of the above stress field, the following points are of notice:  

(i) As , the following asymptotic relations are deduced  0→x

 

( )12
22

2

O
x

K
x

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

l

l  ,  ( )( )1
22

2

221 −=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− xO

x
K

xx l

l  ,  ( )xO
x

K ln0 −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

l
 ,   

( ) ( 1
2

2
1,2
3,1 4

4
sgn

0,21,21
1 −−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

−
xOxGx l

l
)  .                                                                        (62) 

 

In light of the above, we conclude that as , the normal stress  exhibits a Cauchy-type 

singularity due to the climb dislocation and a logarithmic singularity due to the constrained wedge 

disclination. Also, as ,  exhibits a Cauchy singularity due to the constrained wedge 

disclination and a logarithmic singularity due to the climb dislocation.  

0→x yyσ

0→x yzm

(ii) As ±∞→x , it can readily be shown that  and . Thus, we observe 

that a constrained wedge disclination does not induce normal stresses at infinity. On the contrary, the 

standard wedge disclination induces normal stresses that are logarithmically unbounded at infinity, in 

the framework of both classical elasticity (de Wit, 1973) and couple-stress elasticity (Anthony, 

1970). 

0→yyσ Ωlmμ→yzm

(iii) As , it can be shown that the couple-stress 0→l ( )0, =yxmyz  vanishes, while the 

normal stress ( , yxyy )0=σ  degenerates into the field ( )xb νπμ −12  (first term in the RHS of 

equation (60)) given by a classical elasticity analysis for a discrete climb dislocation. Thus, we see 

that a constrained wedge disclination induces stresses and couple-stresses only when the material 

length is , i.e. when couple-stress effects are taken into account. This is a convenient feature of 

the Green’s functions in (60) and (61) since, in the limit , the respective Green’s function of 

classical elasticity (i.e. the field induced by a discrete climb dislocation) is recovered. 

0≠l

0→l
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6.  Reduction of the crack problem to a system of singular integral equations: Results 

 

The corrective stresses (41a-c) are generated by a continuous distribution of climb 

dislocations and constrained wedge disclinations along the faces of the crack. The normal stress  

and the couple-stress  induced by a continuous distribution of dislocations and disclinations can 

be derived by integrating the field (along the crack-faces) of a discrete climb dislocation (Eq. (60)) 

and a discrete constrained wedge disclination (Eq. (61)). We note that (41c) is automatically satisfied 

since neither the discrete dislocation nor the discrete disclination produce shear stresses  along 

the crack-line . Then, satisfaction of the boundary conditions (41a) and (41b) results in a 

system of coupled integral equations, which govern the problem. Separating the singular from the 

regular parts of the kernels, we finally obtain the following system of singular integral equations  

yyσ

yzm

yxσ

0=y

  

( )
( )

( ) ( ) ( ) ( ) ξξξ
π
μξ

ξ
ξ

π
μξ

ξ
ξ

νπ
νμσ dxkB

a
d

x
W

a
d

x
B a

a

a

a

a

a

,2ln
12

23
10 ⋅+

−
⋅+⎮⌡

⌠
−−

−
=− ∫∫ −−

− l
 

                  ( ) ( ) ξξξ
π
μ dxkW
a

a

a
,2⋅− ∫−  ,                  ax <  ,                                                  (63a) 

( ) ( ) ( ) ( )∫∫ −−
−

⋅−
−

⋅+⎮⌡
⌠

−
−=

a

a

a

a

a

a

dxkBd
x

Bd
x
W

a
ξξξ

π
μξ

ξ
ξ

π
μξ

ξ
ξ

π
μ ,ln20 2

2

l

l  

                  ( ) ( ) ξξξ
π
μ dxkW

a
a

a
,

2 3⋅+ ∫−
l  ,                 ax <  ,                                                (63b) 

 

where  and  are, respectively, the dislocation and disclination densities defined as ( )ξB ( )ξW

 

( ) ( ) ( )
ξd
ξud

ξd
ξdbξB yΔ

−==  ,           ,                                                 (64a) ( ) ( )∫−−=
x

ay ξdξBxuΔ

( ) ( ) ( )
ξd
ξωda

ξd
ξdaξW ΔΩ

==  ,       ( ) ( )∫−=
x

a
ξdξW

a
xωΔ 1  ,                                                (64b) 

 

and the kernels ( )ξβ ,xk , with 3,2,1=β , are defined as 

 

( )
( )

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−−−

−−
=

2
12, 22

2

1 l
l ξ
ξξ

ξ xK
xx

axk  ,                                                                   (65a) 
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( )
( )

( ) ( ) ([ lll
l ξξξ
ξ

ξ −+−+⎥
⎦

⎤
⎢
⎣

⎡
−−

−
= xxKxK

x
xk ln2, 022

2

2 )] ,                                   (65b) 

( ) ( ) ( )
ξ

ξξξ
−

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⋅−=

− x
xGxxk l

l

4
4

sgn,
0,21,21

1
2

2
1,2
3,13 .                                                   (65c)                   

 

In the above relations,  represents the relative opening displacement and ( )xu yΔ ( )xωΔ  the 

relative rotation between the upper and lower crack faces. Furthermore, it is noted that both densities 

are dimensionless according to (64).   

Also, using the asymptotic expansions of the modified Bessel functions (see e.g. Erdelyi 

1953), it can readily be shown that the first two kernels (Eqs. (65a,b) are regular as  and 

. To understand now the nature of the third kernel (Eq. (65c)), we expand the MeijerG function, 

with the aid of the symbolic program MATHEMATICA (version 6.0), in series as , and have 

ξx →

0>l

ξx →

 

( ) ( ) ( ) ( ) ( )( )ξξξξ
ξ

ξξ −−+−⋅−++
−

−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⋅−

−
xxOxxaa

x
xGx lnln4
4

sgn 3
212

2
1,2
3,1 0,21,21

1 l

l
 , 

                                                                                                                                              (66) 

where  are constants depending on the characteristic material length l . Since ( 21 , aa

( )

)

0lnlim =−⋅−
→

ξξ
ξ

xx n

x
 for , it is apparent that the kernel 0>n ( )ξ,3 xk  is a regular kernel ( ) in 

the closed interval 

0>l

( ) a≤ξxa ≤− , .  

As is standard in the DDT (see e.g. Hills et al., 1996), the unknown densities  and ( )ξB ( )ξW  

can be written as a product of a regular bounded function and a singular function characterizing the 

asymptotic behavior near the crack tips. Within the framework of couple-stress elasticity, asymptotic 

analysis near a mode I crack tip (Huang et al., 1997) showed that both the crack-face displacement 

 and the rotation ω  behave as yu 21r  in the crack tip region, where r  is the polar distance from the 

crack tip. Such a behavior was also corroborated by the uniqueness theorem for crack problems of 

couple-stress elasticity which imposes the requirement of boundedness for both crack-tip 

displacement and rotation (Grentzelou and Georgiadis, 2005). Accordingly, the dislocation and the 

disclination densities are expressed in the following form 

 

( ) ( ) ( ) 2122 ξξξ −= afB  ,     ( ) ( ) ( ) 2122 ξξξ −= agW  ,                                                       (67) 
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where  and  are regular bounded functions in the interval ( )ξf ( )ξg a≤ξ . Further, in order to 

ensure uniqueness of the values of the normal displacement and the rotation for a closed loop around 

the crack, the following closure conditions must be satisfied (the first of them is standard in the DDT 

applied to classical elasticity) 

 

( ) 0=∫−
a

a
dxxB  ,         .                                             (68a,b) ( ) 0=∫−

a

a
dxxW

                                                                                                             

Before proceeding to the numerical solution of the system (63), it is interesting to consider 

two limit cases concerning the behavior of this system w.r.t. limit values of the characteristic length 

.  l

First, by letting , it can readily be shown that the integral equation in (63b) vanishes 

identically, whereas the one in (63a) degenerates into the counterpart equation governing the mode I 

crack problem of classical elasticity. The latter equation is as follows 

0→l

 

( )
( )

⎮⌡
⌠

−−
=−

−

a

a

ξd
ξx
ξB

νπ
μσ
120  ,        ax <  .                                      (69) 

 

Secondly, we let . Then, by multiplying (63b) with ∞→l ( )21 l  and noting that  

 

0ln1lim 2 =
−

∞→ lll

ξx
 ,   ( ) 0,1lim 22 =

∞→
ξxk

ll
 ,   ( ) 0,1lim 3 =

∞→
ξxk

ll
 ,                                   (70) 

 

we find that the integral equation in (63b) takes the following form  

 

( ) 0=⎮⌡
⌠

−−

ξ
ξ
ξ d

x
Wa

a

 ,          ax <  ,                                                             (71) 

 

which along with (67b) and the closure condition (68b) has the unique solution . Now, in 

light of the above and noting also that 

( ) 0≡ξW

( ) 0,lim 1 =
∞→

ξxk
l

, the system (63) degenerates as ∞→l  to the 

following single singular integral equation  
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( )
( )

( )
⎮⌡
⌠

−−
−

=−
−

a

a

d
x
B ξ
ξ
ξ

νπ
νμσ

12
23

0  ,           ax <  ,                                                                     (72) 

 

Further, it can be readily be shown, that the ratio of the crack-face displacements obtained by the 

solutions of, respectively, (72) (  case) and (69) (  case) is ∞→l 0→l ( )ν231 − . The same ratio was 

also obtained by Sternberg and Muki (1967) for the mode I problem and by Gourgiotis and 

Georgiadis (2007) for the mode II problem in couple-stress elasticity. Of course, from the physical 

point of view, the case  is of no interest since the characteristic length is a small quantity. 

Nonetheless, the latter result for the ratio of displacements shows mathematically that there is a 

lower bound for the crack-face displacement when 

∞→l

∞→l .  

For the numerical solution of the system of singular integral equations in (63), the Gauss-

Chebyshev quadrature proposed by Erdogan and Gupta (1972) is employed, with a modification that 

takes into account the logarithmic kernel (details are given in Appendix B). In particular, after the 

appropriate normalization over the interval [ ]1,1− , this system takes the following discretized form 
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n

i
i

ik

i asatksf
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stpsf
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== ′−
⋅+⋅+

n

i inik

i
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i
iki sTst

sftTtGasatksg
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3 ,
2 π

μμ  ,                           (73b) 

 

where lap = , axt = , aξs = . The integration and collocation points are given, respectively, as 

 

( ) 0=in sT ,        ( )[ ]nπisi 212cos −= ,      ni ,...,1=  ,                                                       (74a)      

( ) 01 =− kn tU ,    [ nπktk cos ]= ,                1,...,1 −= nk  ,                                                  (74b)  

 

where  and  are the Chebyshev polynomials of the first and second kind, respectively. 

The function G  in the last term of (73a) and (73b) is the quadrature error due to the existence of 

the logarithmic kernel and is defined in Appendix B. In fact, introducing this function greatly 

( )xTn ( )xU n

( )xn
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improves the speed of convergence of the solution of the above system. Now, (73a) and (73b) 

together with the auxiliary conditions (68) provide an algebraic system of  equations in the  

unknown functions  and . A computer program was written that solved this system. 

n2 n2

( )isf ( )isg

Now, some numerical results will be presented. Figure 2 depicts the influence of the ratio 

la  on the normal crack-face displacement. It is noteworthy that as the crack length becomes 

comparable to the characteristic length , the material exhibits a more stiff behavior, i.e. the crack-

face displacement becomes smaller in magnitude. We note further that the displacements obtained 

from the classical elasticity solution are an upper bound for those obtained from the present couple-

stress elasticity solution.  
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Fig. 2  Normalized upper-half normal crack displacement profile. The Poisson’s ratio is . 3.0=ν
 
            
 
 
 
Figure 3 depicts the influence of the ratio la  on the crack-face rotation. We note that as 

 the rotation in the crack-tip vicinity tends to the unbounded limit of classical elasticity. This 

indicates a typical boundary layer behavior in the couple-stress solution. 
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Fig. 3  Normalized upper-half crack rotation. The Poisson’s ratio is . 3.0=ν

 
 

 

Next, the behavior of the normal stress as given by (63a) will be determined. We have 
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Due to the symmetry of the problem (in geometry and loading) with respect to y -axis, we confine 

attention only to the right crack tip. As , the following asymptotic relations hold  +→ ax
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where the dislocation and the disclination densities are defined in (67). In view of the above, we 

conclude that  exhibits a square root singularity at the crack tips just as in classical elasticity. 

Figure 4 now depicts the distribution of the normal stress ahead of the RHS crack tip. Normalized 

quantities are used and  denotes the stress intensity factor provided by the classical elasticity 

solution. For convenience, a new variable 

yyσ

.clas
IK

axx −=  is introduced measuring distance from the RHS 

crack tip. We observe that the couple-stress effects are dominant within a zone of length 2 , whereas 

outside this zone  gradually approaches the distribution given by the classical solution. It is also 

noted that the normal stress  in (75) depends not only upon the ratio 

l

yyσ

yyσ la  but also upon the 

Poisson’s ratio . This was also observed by Sternberg and Muki (1967).  ν
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                   Fig. 4  Distribution of the normal stress ahead of the crack tip for 10=la  and . 3.0=ν
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Figure 5 depicts the variation of the ratio .clas
II KK with al  for three different values of the 

Poisson’s ratio. The stress intensity factor in couple-stress elasticity is defined as 

( )[ ] ( )0,2lim 21 xaxK yy
ax

I σπ −=
+→

 with ( )0,xyyσ  being given by (75). It is observed that for a material 

with 20=la  and Poisson’s ratio 5.0=ν , there is a  increase in the stress intensity factor when 

couple-stress effects are taken into account, while for 

%18

25.0=ν  and 0=ν  the increase becomes 

 and , respectively. It should be noted that when %3,24 %5,29 0=al  (no couple-stress effects) the 

above ratio should evidently become 1. =clas
IKIK . Therefore, the stress-ratio plotted in Fig. 5 

exhibits a finite jump discontinuity at the limit 0=al ; the ratio at the tip of the crack rises abruptly 

as al  departs from zero. The same discontinuity was observed by Sternberg and Muki (1967), who 

attributed this behavior to the severe boundary layer effects of couple-stress elasticity in singular 

stress-concentration problems. Finally, it is noted that the ratio decreases monotonically with 

increasing values of al  and tends to unity as ∞→al . 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 5  Variation of the ratio of stress intensity factors in couple-stress elasticity and 

classical elasticity with al . 
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         Fig. 6  Distribution of couple-stress ahead of the crack tip for 10=la  and . 3.0=ν

 

 

The behavior of the couple-stress  will be examined next. From the previous analysis, we 

have 
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Focusing attention again to the RHS crack tip, the following asymptotic relations for  were 

found to hold (

+→ ax

ax > ) 
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which leads us to the conclusion that the couple-stress  behaves like yzm 21~ −x  in the vicinity of the 

crack-tip (the variable axx −=  measures distance from the RHS crack tip). This is in agreement 

with the asymptotic results of Huang et al. (1997).  

Figure 6 depicts (with the use of normalized quantities) the distribution of the couple-stress 

ahead of the RHS crack tip. It should further be noted that the stresses and couple-stresses at any 

point of the cracked body can be evaluated through integration along the crack-faces of Eqs. (A7)-

(A12) (see Appendix A), once the dislocation and disclination densities are known. The latter 

equations are the full-field Green’s functions for the mode I crack problem in couple-stress elasticity. 

 

 

7.  Evaluation of the J- integral 

 

In this Section, we evaluate the -integral (energy release rate) of Fracture Mechanics and 

examine its dependence upon the ratio of lengths 

J

al  and the Poisson’s ratio ν . The path-

independent -integral within couple-stress elasticity was first established by Atkinson and 

Leppington (1974) (see also Atkinson and Leppington, 1977; Lubarda and Markenskoff, 2000) and 

is written as 

J
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where Γ  is a piece-wise smooth simple two-dimensional contour surrounding the crack-tip,  is the 

strain-energy density,  is the displacement vector,  is the rotation vector,  are the 

tractions defined in (3) and (4), and  are the reduced force-traction and the tangential couple-

traction defined in (18) and (19).  

W

)qu qω ,( qq MT

),( qq RP

For the evaluation of the J -integral, we consider the rectangular-shaped contour  

(surrounding the RHS crack-tip) with vanishing ‘height’ along the 

Γ

y - direction and with 0+→ε  

(see Fig. 7). Such a contour was first introduced by Freund (1972) in examining the energy flux into 

the tip of a rapidly extending crack and it was proved particularly convenient in computing energy 
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quantities in the vicinity of crack tips (see e.g. Burridge, 1976; Georgiadis, 2003). In fact, this type of 

contour permits using solely the asymptotic near-tip stress and displacement fields. It is noted that 

upon this choice of contour, the integral ∫  in (79) becomes zero if we allow the ‘height’ of the 

rectangle to vanish. In this way, the expression for the 

Γ
dyW

J -integral becomes  
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Fig. 7  Rectangular-shaped contour surrounding the RHS crack-tip. 

 

 

Further, we take into account that in the mode I case the shear stress yxσ  is zero along the 

crack line  and the crack-faces are defined by ( 0=y ) ( )1,0 ±=n . Then, the J -integral gets the 

following form 
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Now, the dominant singular behavior (in the vicinity of the crack-tip) of the normal stress 

yyσ  and the couple-stress  is due to the Cauchy integrals in (75) and (77), respectively. These 

stresses are written as 

yzm
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The regular functions ( )sf  and ( )sg  were defined in (67) and their values at the crack-tips ( 1±=t ) 

can be evaluated by the use of Krenk’s interpolation technique (Krenk, 1975). Also, the limits of the 

integrals in (82) and (83) are obtained by the use of the following asymptotic relation (see e.g. 

Muskheleshvili, 1958)  
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where  ( )sh  is a regular bounded function in the interval 1≤s . 

Also, in view of the definitions in (64), the following asymptotic relations are established   
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Then, the above results allow us to write the -integral as J
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where 1−= tt  and, for any real λ  with the exception of ...,3,2,1 −−−=λ , the following definitions 

of the distributions (of the bisection type)  and  are employed (see e.g. Gelfand and Shilov, 

1964) 
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It is further noted that the product of distributions inside the integrals in (87) is obtained here by the 

use of Fisher’s theorem (Fisher, 1971), i.e. the operational relation ( ) ( ) ( ) ( )[ ] 11 sin2 −
−

−−
+ −= πλδπλλ ttt  

with  and ...,3,2,1 −−−≠λ ( )tδ  being the Dirac delta distribution. Use is also made of the 

fundamental property of the Dirac delta distribution that . ( ) 1=∫−
ε

ε
δ dtt

 From the above analysis, we were able to evaluate the -integral. Our results are shown 

graphically in Figure 8. The graph depicts the dependence of the ratio 

J
.clasJJ  upon the ratio of 

lengths al  for three different values of the Poisson’s ratio of the material. EaJ clas 2
0

2. )1( σνπ −≡  

is the respective integral in classical elasticity (see e.g. Rice, 1968). The calculations show that as 

0→al , the -integral in couple-stress elasticity tends continuously to its counterpart in classical 

elasticity. This behavior was previously observed by Atkinson and Leppington (1977), who followed 

a different analysis than the present one. Also,  for 

J

.clasJJ < 0≠l . The latter result seems to be a 

consequence of the fact that the crack-face displacements and rotations (see Figs. 2 and 3) are 

significantly smaller than the respective ones in classical theory. This not only compensates the 

increase of the normal stress ahead of the crack-tip (this stress aggravation in couple-stress elasticity 

is shown in Fig. 4), but it results evidently in an overall decrease of the energy release rate when 

couple-stress effects are taken into account. We also found that .clasJJ  decreases monotonically 

with increasing values of al  and tends to the limit ( )ν231 −  as ∞→al . 
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Fig. 8  Variation of the ratio of the -integral in couple-stress elasticity and J

in classical elasticity with al . 

 

 

 

8.  Concluding remarks 

 

In this paper, the technique of distributed dislocations was extended in couple-stress 

elasticity for the solution of the mode I crack problem. Contrary to classical elasticity where a 

distribution of climb dislocations suffices to model the mode I crack problem, here (due to the nature 

of the boundary conditions that arise in couple-stress elasticity) introducing an additional 

discontinuity (the so-called constrained wedge disclination) was necessary to solve the problem. 

Considering a continuous distribution of climb dislocations and constrained wedge disclinations 

along the crack faces results in a coupled system of singular integral equations with both Cauchy-

type and logarithmic kernels. This system of equations was solved numerically and a full-field 

solution was obtained. 

The proposed technique provides for crack problems an efficient alternative to the elaborate 

analytical method of dual integral equations and the numerical methods of Finite and Boundary 

Elements. Especially with the latter two methods, one may encounter difficulties when dealing with 
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crack problems in generalized continua. Also, the proposed technique is appropriate for problems 

with finite-length cracks where the standard Wiener-Hopf technique meets with serious difficulties 

(the Wiener-Hopf technique suits better problems with semi-infinite cracks). The present approach 

has the advantage that it provides results not only restricted to the near-tip region – it may give full-

field results. 

The present results indicate that the material microstructure of the couple-stress type has 

generally rigidity (smaller crack-face displacements and rotations) and strengthening (stress 

aggravation ahead of the crack-tip) effects. In particular, the crack-face displacement becomes 

significantly smaller than that in classical elasticity, when the crack length  is comparable to the 

characteristic length l  of the material (it decreases about  for 

a2

%30 5=la ). Also, it is observed that 

the stress intensity factor  is higher than the one predicted by classical elasticity. In particular, for 

a material with 

IK

20=la  and Poisson’s ratio 25.0=ν  there is a 24.3% increase when couple-stress 

effects are taken into account, whereas for 0=ν  and 5.0=ν  the increase is 29.5% and 18%, 

respectively. Finally, the -integral in couple-stress elasticity tends continuously to its counterpart 

in classical elasticity a

J

s 0 . For 0→l a  ≠l , a decrease of its value is noticed in comparison with the 

classical theory and this indicates that the rigidity effect dominates over the strengthening effect in 

the energy release rate. The -integral decreases monotonically with increasing values of J al  and 

tends to a certain limit as ∞→al . 
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Appendix A: Displacements and stresses for a climb dislocation and a constrained wedge  

                       disclination 

 

In this Appendix, we derive the displacement, rotation, stress and couple-stress fields due to 

a discrete climb dislocation and a discrete constrained wedge disclination situated at the origin of a 

full space in a material governed by plane-strain couple-stress elasticity. The fields apply for any 

point (not only along the line ) of the full space. 0=y

Using the Fourier inversion formula in (42b), we obtain from (59) the following integral 

representation of the displacement field for a climb dislocation and a constrained wedge disclination  
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The above integrals are computed by invoking results from the theory of distributions (see e.g. 

Zemanian, 1965; Roos, 1969). In particular, we have 
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where  is Euler’s constant, γ ( ) 2122 yxr += , and ( )lxKi  is the ith order modified Bessel function of 

the second kind. Integrals  ( 9 ) were obtained in closed form but integrals  and  

have to be evaluated numerically. In view of the above, the displacement field reads finally 

mI ,...,2,1=m 10I 11I
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Further, the rotation is given as 
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It is noted that the rotation in (A5) is discontinuous at 0=y  due to the integral . To show this, we 

expand the integrand of  in series as 

10I

10I ∞→ξ , i.e. 
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Then, the inverse Fourier sine transform of the first term in the above series is given by  and it is 

clearly discontinuous at  while all the other terms do not contribute at . On the other 

hand, it can readily be seen that the part of the normal displacement in (A4) due to the constrained 

wedge disclination is everywhere continuous. Thus, it is apparent that the discontinuity in the 

rotation does not affect the normal displacement in the case of a constrained wedge disclination. 

Finally, we note that a rigid body translation 

1I

0=y 0=y

4b  and a rigid body rotation 4Ω−  have been added 

in (A4) and (A5), respectively, in order to have zero normal displacement and rotation at , 

. 

+= 0y

0>x

The stress and couple-stress field can now be obtained using (A3)-(A5). In particular, we 

have   
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( ) ( ) ωμσσ 224,, ∇−= lyxyx yxxy .                                                                                        (A12) 

 

The above expressions are the full-field Green’s functions for the mode I problem. Further, it is 

worth noting that when 0=y  (imagined crack-line), the integral  can be evaluated analytically in 

the finite-part sense (see e.g. Zemanian, 1965; Roos, 1969) as 

11I
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where  is the MeijerG function. Thus, the Green’s functions for the mode I crack problem 

can be obtained in closed form (Eqs. (60) and (61) of the main body of the paper). 
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Appendix B: Derivation of the quadrature for the integral with the logarithmic kernel 

 

Consider the weakly singular integral  
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where  is a continuous bounded function in ( )sf 1≤s  and p  is a positive constant. Now, (B1) can 

be written as follows (Theocaris et al., 1980) 
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where ( ) ( ) ( )[ ] ( stptfsftsR −⋅−= ln, ) is a bounded function in the interval ( ) 1,1 ≤≤− ts . The 

Gauss-Chebyshev quadrature rule is employed for the evaluation of the first integral in (B2), whereas 

the second integral can be evaluated in closed form. In light of the above, we obtain  
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where ( ) ( ) ( 2lnln
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i
in ππ
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)  and the integration points are given as the zeros of the 

Chebyshev polynomial ( )sTn , i.e. ( )[ ]nisi 212cos π−= , ni ,...,2,1= .  

One further step is needed which would lead to the evaluation of the RHS of (B3) only at  

points . This can be done with the aid of the Lagrange interpolation formula, which is 

exact within the class of polynomials chosen to represent 

n
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( )tf , i.e. 
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Integral  takes now the discretized form ( )tI
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Finally, we note that, in the system of singular integral equations (73), prescribed collocation 

points in (B5) have been chosen, i.e. the zeros of the Chebyshev polynomial ( )tU n 1− :  

( )nktk πcos= , , in order for us to be consistent with the numerical quadrature that 

was employed for the Cauchy-type singular integrals. We note that another type of quadrature using 

arbitrary collocation points for the solution of integral equations with logarithmic singularities was 

proposed by Chrysakis and Tsamasphyros (1992). 

1,...,2,1 −= nk
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