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Abstract: In this paper, we deal with the plane-strain problem of a semi-infinite crack under 

concentrated loading in an elastic body exhibiting couple-stress effects. The faces of the crack are 

subjected to a concentrated shear loading at a distance L  from the crack tip. This type of loading is 

chosen since, in principle, shear effects are more pronounced in couple-stress elasticity. The problem 

involves two characteristic lengths, i.e. the microstructural length   and the distance L  between the 

point of application of the concentrated shear forces and the crack-tip. The presence of this second 

characteristic length introduces certain difficulties in the mathematical analysis of the problem: a 

non-standard Wiener-Hopf equation arises, one that contains a forcing term with unbounded 

behavior at infinity in the transformed plane. Nevertheless, an analytic function method is employed 

which circumvents the aforementioned difficulty. For comparison purposes, the case of a semi-

infinite crack subjected to a distributed shear load is also treated in the present study. Numerical 

results for the dependence of the stress intensity factor and the energy release rate upon the ratio of 

the characteristic lengths are presented. 
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1. INTRODUCTION 

 

The present work is concerned with the plane-strain problem of a semi-infinite crack in a 

body with microstructure. The body is acted upon by a pair of concentrated shear forces. The 

material microstructure is modeled here through the couple-stress theory of elasticity. The standard 

couple-stress theory (or Cosserat theory with constrained rotations) is the simplest theory in which 

couple-stresses appear. In particular, couple-stress elasticity assumes that: (i) each material particle 

has three degrees of freedom, (ii) an augmented form of the Euler-Cauchy principle with a non-

vanishing couple traction prevails, and (iii) the strain-energy density depends upon both the strain 

and the gradient of rotation. Such assumptions are appropriate for materials with granular structure, 

where the interaction between adjacent elements may introduce internal moments. In this way, 

characteristic material lengths may appear representing the material microstructure. The presence of 

these material lengths implies that the couple-stress theory encompasses the analytical possibility of 

size effects, which are absent in the classical theory.  

The fundamental concepts of the couple-stress theory were first introduced by Cauchy [1], 

Voigt [2] and the Cosserat brothers [3], but the subject was generalized and reached maturity only in 

the 1960s through the studies by Toupin [4], Mindlin and Tiersten [5], and Koiter [6]. Early 

applications of couple-stress elasticity dealt mainly with stress-concentration problems concerning 

holes and inclusions (see e.g. [7-9]). 

Interesting review articles on couple-stresses and related generalized continuum theories 

were written, e.g., by Lakes [10] and Maugin [11]. In recent years, these theories attracted a renewed 

and growing interest in dealing with problems of microstructured materials. This is due to the 

inability of the classical theory to predict the experimentally observed scale effects, and also due to 

the increasing demands for manufacturing devices at very small scales. Recent examples of 

successful modeling of microstructure and size effects by the couple-stress theory and related 

gradient theories include work by, among others, Batra [12], Batra et al. [13], Fleck et al. [14], 

Vardoulakis and Sulem [15], Huang et al. [16,17], Zhang et al. [18], Lubarda and Markenscoff [19], 

Georgiadis and Velgaki [20], Georgiadis [21], Radi and Gei [22], Polyzos et al. [23], Lazar and 

Maugin [24], Grentzelou and Georgiadis [25,26], Georgiadis and Grentzelou [27], Tsamasphyros et 

al. [28], Giannakopoulos and Stamoulis [29], Gourgiotis and Georgiadis [30], Aravas and 

Giannakopoulos [31], Gourgiotis et al. [32], and dell’Isola et al. [33]. 
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For materials with microstructure, the characteristic material length mentioned before may be 

on the same order as the length of the microstructure. For instance, Chen et al. [34] developed a 

continuum model for cellular materials and found that the continuum description of these materials 

obey a gradient elasticity theory of the couple-stress type. In the latter study, the intrinsic material 

length was naturally identified with the cell size. Also, Chang et al. [35] associated the 

microstructural material constants of the couple-stress theory with the particle size and the inter-

particle stiffness in a granular material. In addition, couple-stress theory was successfully utilized in 

the past to model some materials with microstructure like foams [36] and porous solids [37]. 

Generally, the couple-stress theory is intended to model situations where a material with 

microstructure is deformed in very small volumes, such as in the immediate vicinity of crack tips, 

notches, small holes and inclusions, and in micrometer indentations. A recent study by Bigoni and 

Drugan [38] provides additional references and an interesting account of the determination of couple-

stress moduli via homogenization of heterogeneous materials. 

Regarding now the subject of the present work, i.e. plane-strain crack problems treated by the 

couple-stress theory, the first study is due to Sternberg and Muki [39]. They considered the case of a 

mode I finite-length crack by employing the method of dual integral equations. In their work, only 

asymptotic results were obtained showing that both stress and couple-stress fields exhibit a square-

root singularity, while the rotation field is bounded at the crack-tip. Later on, Atkinson and 

Leppington [40] studied the problem of a semi-infinite crack by using the Wiener-Hopf technique. 

More recently, Huang et al. [16] using the method of eigenfunction expansions, provided near-tip 

asymptotic fields for mode I and mode II crack problems in couple-stress elasticity. Also, Huang et 

al. [17] using the Wiener-Hopf technique obtained full-field solutions for semi-infinite cracks under 

in-plane remote loading in elastic-plastic materials with strain-gradient effects of the couple-stress 

type. Recently, Gourgiotis and Georgiadis [41,42] extended the distributed dislocation technique in 

studying finite-length crack problems within the context of couple-stress elasticity. The crack 

problems were modeled by a continuous distribution of dislocations and disclinations that created 

both standard stresses and couple stresses in the body. In particular, it was shown that the mode I 

crack problem was governed by a coupled system of singular integral equations with both Cauchy-

type and logarithmic kernels, whereas the mode II case was governed by a singular integral equation 

with a more complicated kernel than that in classical elasticity. The results showed that the stress 

intensity factor is appreciably higher than the one predicted by classical elasticity (stress aggravation 

effect). It was also shown that the J -integral (energy release rate) in couple-stress elasticity tends 

continuously to its counterpart in classical elasticity as 0a  , where a  is the half of the crack 
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length and   is the characteristic material length. For 0 , a decrease in the values of the energy 

release rate is noticed as compared to the ones given by the classical theory. Finally, we mention that 

related analytical studies, within the context of the more general theory of dipolar gradient elasticity 

(i.e. a theory that includes both rotation and stretch gradients), were carried out by Shi et al. [43] and 

Gourgiotis and Georgiadis [30]. In particular, Shi et al. [43] using the Wiener-Hopf technique 

investigated the elastic problem of a semi-infinite crack in a incompressible material by considering a 

gradient theory, which is the limit of a gradient plasticity theory [44] with the plastic work hardening 

exponent 1n . Also, Gourgiotis and Georgiadis [30] employing the method of hypersingular 

integral equations studied the problem of a finite-length crack in a microstructured solid under 

remotely applied plane-strain loadings, and examined the effect of Poisson’s ratio in the solution and 

the ratio of the crack length over the pertinent material length. In both cases the results showed 

significant departure from the predictions of classical elasticity and couple-stress elasticity. Indeed, it 

was shown that the stresses are compressive ahead of the crack-tip exhibiting a cohesive character. 

Moreover, in the vicinity of the crack tip, the crack-face displacement closes more smoothly as 

compared to the standard result and the strain field is bounded. Similar results were obtained using 

finite elements by Chen et al. [45] and Wei [46] in the theory of phenomenological strain gradient 

plasticity, and more recently by Aravas and Giannakopoulos [31] in dipolar gradient elasticity. 

In the present study, which is closely allied in scope to [41,42], we examine the plane-strain 

response of a body with couple-stress effects containing a semi-infinite crack subjected to a pair of 

equal, but opposite, concentrated shear forces. This type of loading is chosen since, in general, shear 

effects are more pronounced when couple-stresses are taken into account. In fact, this behavior can 

be justified from the fact that couple-stress elasticity is based only on the gradient of the rotation, and 

does not include stretch gradients; hence the couple-stress effects are more intense in the 

antisymmetric modes of deformation for crack and notch problems. Indeed, as it has been observed 

in [17,41,42], the increase of the stress intensity factor in the mode II case, with respect to the 

classical K  field, is always higher than the respective increase in the mode I case. Moreover, in a 

recent work, Gourgiotis and Georgiadis [47] showed that in the general notch problem the strength of 

the singularity associated with the antisymmetric loading is always stronger than that for the 

symmetric loading. These findings also corroborate this behavior. The present boundary value 

problem involves both load-induced and geometrically-induced concentrations of stress. The former 

stress concentration is due to the presence of the concentrated load, while the latter is due to the 

presence of the crack.  In addition, the problem involves two characteristic lengths, i.e. the 

microstructural length   and the distance L  between the point of application of the concentrated 
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loading and the crack-tip. It is well-known that the second characteristic length introduces a certain 

mathematical difficulty in the course of obtaining an analytical solution through the Wiener-Hopf 

technique. In particular, it gives rise to a non-standard functional equation in the Laplace transform 

domain that contains a term with an exponentially unbounded behavior at infinity. This situation is 

treated here by following a technique proposed by Georgiadis and Brock [48] that is based on the 

exact solution of a functional equation through contour integration and analytic-continuation 

arguments. Finally, in addition to the concentrated load case, we also treat the problem of a semi-

infinite crack subjected to distributed shear tractions. This was done for the purpose of comparing 

results for the variation of J -integral with the previous case of a crack under concentrated loading 

and also for the purpose of completeness. In order to avoid an unbounded behavior of the solution 

(recall that a semi-infinite crack is involved), the distributed shear tractions are taken to be 

exponentially decaying from the crack tip (and not to be uniform along the crack faces). 

We notice that the results obtained in the concentrated load case differ in some respects from 

previous results concerning finite-length [41,42] or semi-infinite [17,40] cracks under remote or 

distributed (along the crack-faces) loadings. In particular, the ratio .clasJ J  (where .clasJ  is the 

energy release rate for the same problem treated by classical elasticity) initially increases (from unity 

corresponding to the limit 0L  ) with increasing values of L  and after reaching a bounded 

maximum only then it decreases to values less than unity. Recall that in the other cases treated 

before, the ratio .clasJ J  decreases monotonically to values less than unity with increasing values of 

a , where a  is the half of the crack length. On the other hand, the stress intensity factor IIK  is 

significantly higher than the one predicted by classical elasticity. However, unlike the cases treated in 

[40-42], the ratio .clas
II IIK K  does not decrease monotonically with increasing values of L . On the 

contrary, it exhibits a bounded maximum when the material microstructure becomes comparable 

with the geometric length L . 

 

  

2. FUNDAMENTALS OF COUPLE-STRESS ELASTICITY 

 

In this Section, we will give a brief account of the theory of standard couple-stress elasticity. 

More detailed presentations can be found in [5-6]. Interesting presentations of the theory can also be 

found in the works by Aero and Kuvshinskii [49], Palmov [50], and Muki and Sternberg [51]. The 

basic equations of dynamical couple-stress theory (including the effects of micro-inertia) were given 
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by Georgiadis and Velgaki [20], who also provided estimates for the couple-stress modulus (in plane 

problems) in terms of the size of the unit cube in granular materials. 

As mentioned before, couple-stress elasticity assumes that: (i) each material particle has three 

degrees of freedom, (ii) an augmented form of the Euler-Cauchy principle with a non-vanishing 

couple traction prevails, and (iii) the strain-energy density depends upon both strain and the gradient 

of rotation. 

In the absence of inertia effects, for a control volume CV with bounding surface S , the 

balance laws for the linear and angular momentum read 

 

 ( ) 0n
q qS CV

T dS F d CV        ,                                                                                 (1)                   

     ( ) ( ) 0n n
qpk p k q qpk p k qS CV

e x T M dS e x F C d CV          ,                                     (2) 

 

where a Cartesian rectangular coordinate system 321 xxOx  is used along with indicial notation and 

summation convention, qpke  is the Levi-Civita alternating symbol, ( )n
qT  is the surface force per unit 

area, qF  is the body force per unit volume, ( )n
qM  is the surface moment per unit area, qC  is the body 

moment per unit volume, and px  designate the components of the position vector of each material 

particle with elementary volume  CVd .  

Next, pertinent force-stress and couple-stress tensors are introduced by considering the 

equilibrium of the elementary material tetrahedron and enforcing (1) and (2), respectively. The force 

stress tensor pq  (which is asymmetric) is then defined by 

 

( )n
q pq pT n   ,                                  (3) 

 

and the couple-stress tensor pq  (which is also asymmetric) by 

 

( )n
q pq pM n   ,                                            (4) 

 

where pn  are the direction cosines of the outward unit vector n , which is normal to the surface. In 

addition, just like the third Newton’s law ( ) ( n n)T T  is proved to hold by considering the 
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equilibrium of a material ‘slice’, it can also be proved that ( ) ( ) n nM M  (see e.g. [52]). The couple-

stresses pq  are expressed in dimensions of [force][length]-1. Further, pq  can be decomposed into 

its symmetric and anti-symmetric components as follows 

 

pqpqpq     ,                                                       (5) 

 

with qppq    and qppq   , whereas it is advantageous to decompose pq  into its deviatoric  D
pq  

and spherical  S
pq  parts in the following manner 

 

kkpqpqpq m 
3

1
   ,                                                      (6) 

 

where  D
pq pqm  ,     kkpq

S
pq  31 , and pq  is the Kronecker delta. Now, with the above 

definitions and the help of the Green-Gauss theorem, one may obtain the stress equations of motion. 

Equation (2) leads to the following moment equation 

          

0p pq pqk kp qe C      ,                                                                                                       (7) 

 

which can also be written as 

 

1 1
0

2 2pqk l lk pq pqk ke e C       .                                                     (8) 

 

where    p px    . Note from Eqs. (7) and (8) that the stress tensor pq  is symmetric in the 

absence of couple-stresses and body couples.  

Also, Eq. (1) leads to the following force equation 

 

0p pq qF     ,                                            (9) 

 

or, by virtue of  (5), to the following equation  
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0p pq p pq qF        .                                         (10) 

 

Further, combining (8) and (10) yields the single equation  

 

1 1
0

2 2p pq pqk p l lk q pqk p ke F e C           .                                                  (11) 

 

Finally, in view of (6) and by taking into account that    curl div 1 3 0pq kk   , we write (11) as  

 

1 1
0

2 2p pq pqk p l lk q pqk p ke m F e C          ,                            (12) 

 

which is the final equation of equilibrium.  

For the kinematical description of the continuum, the following quantities are defined in the 

framework of the geometrically linear theory 

 

 pqqppq uu 
2

1   ,                              (13) 

 pqqppq uu 
2

1   ,                                                    (14) 

1

2q qpk p ke u     ,                               (15) 

qppq     ,                                (16) 

 

where pq  is the strain tensor, pq  is the rotation tensor, q  is the rotation vector, and pq  is the 

curvature tensor (i.e. the gradient of rotation or the curl of the strain) expressed in dimensions of 

[length]-1. Notice also that Eq. (16) can alternatively be written as 

 

1

2pq qlk p l k qlk l pke u e        .                                        (17) 

 

Equation (17) expresses compatibility for curvature and strain fields. The compatibility equations for 

the strain components are the usual Saint Venant’s compatibility equations. Further, the identity 



 9

k pq k p q p kq         defines the compatibility equations for the curvature components. We notice 

also that 0pp  because   ,1 2 0pp p p pqk k qpe u      and, therefore, pq  has only eight 

independent components. The tensor pq  is obviously an asymmetric tensor. 

The traction boundary conditions, at any point on a smooth boundary or section, consist of 

the following three reduced force-tractions and two tangential couple-tractions [5,6] 

 

 
( ) 1

2
n

q pq p qpk p k nnP n e n m    ,                       (18) 

 
( )n
q pq p qnnR m n m n   ,                                         (19) 

 

where   pqqpnn mnnm   is the normal component of the deviatoric couple-stress tensor pqm . It should 

be noted that in the case in which edges appear along the boundary an additional boundary condition 

should be imposed. Indeed, as Koiter [6] pointed out, a force (per unit length) tangential to the edge 

should be specified according to the relation:   ( )1 2 nnQ m     , where    denotes the jump of the 

enclosed quantity through the edge. This tangential line load along the edge is the counterpart of the 

concentrated normal force which may be specified at the corner of the edge of a plate or shell. 

It is worth noticing that at first sight, it might seem plausible that the surface tractions (i.e. the 

force-traction and the couple-traction) can be prescribed arbitrarily on the external surface of the 

body through relations (3) and (4), which stem from the equilibrium of the material tetrahedron. 

However, as was pointed out by in [6], the resulting number of six traction boundary conditions 

(three force-tractions and three couple-tractions) would be in contrast with the five geometric 

boundary conditions that can be imposed. Indeed, since the rotation vector q  in couple-stress 

elasticity is not independent of the displacement vector qu  (as (15) suggests), the normal component 

of the rotation is fully specified by the distribution of tangential displacements over the boundary. 

Therefore, only the three displacement and the two tangential rotation components can be prescribed 

independently. As a consequence, only five surface tractions (i.e. the work conjugates of the above 

five independent kinematical quantities) can be specified at a point of the bounding surface of the 

body, i.e. Eqs. (18) and (19). On the contrary, in the Cosserat (micropolar) theory, the traction 

boundary conditions are six since the rotation is fully independent of the displacement vector (see 

e.g. [53]). In the latter case, the tractions can directly be derived from the equilibrium of the material 

tetrahedron, so (3) and (4) are the pertinent traction boundary conditions. 



 10

For a linear and isotropic material behavior, the strain-energy density has the following form 

 

  qppqpqpqpqpqqqpppqpqWW   22
2

1
,  ,                         (20) 

 

where  , , ,     are material constants. Then, Eq. (20) leads, through the standard variational 

manner, to the following constitutive equations  

 

  pqkkpq
pq

pqpq

W 


 2



  ,                            (21) 

4 4pq pq qp
pq

W
m   


   


 .                                        (22) 

 

In view of (21) and (22), the moduli  ,   have the same meaning as the Lamé constants of 

classical elasticity theory and are expressed in dimensions of [force][length]-2, whereas the moduli 

 ,   account for couple-stress effects and are expressed in dimensions of [force]. Further, 

following Mindlin and Tiersten [5], we assume W  to be a positive definite function of its arguments, 

so that 

 

3 2 0    ,    0   ,    0   ,    1 1




    .                                                            (23a-d) 

 

Incorporating now the constitutive relations (21) and (22) into the equation of equilibrium 

(12) and using the geometric relations (13)-(16), one may obtain the displacement equations of 

equilibrium [6]  

 

     12 2 4 2 21 2ν 0
           u u u u      ,                                                       (24) 

 

where v  is the Poisson’s ratio,  1 2   is a characteristic material length, and the absence of 

body forces and couples is assumed. In the limit 0 , the Navier-Cauchy equations of classical 

linear isotropic elasticity are recovered from (24). Indeed, the fact that Eqs. (24) have an increased 

order w.r.t. their limit case (recall that the Navier-Cauchy equations are PDEs of the second order) 
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and the coefficient   multiplies the higher-order term reveals the singular-perturbation character of 

the couple-stress theory and the emergence of associated boundary-layer effects. Moreover, applying 

the gradient and the curl operator to Eq. (24), we obtain the following relations for the dilatation and 

the rotation, respectively 

 

2 0e   ,   2 2 21 0      ,                                                                                       (25a,b) 

 

where e  u  is the dilatation (volumetric strain). Thus, we observe that the dilatation is governed 

by the same equation as in classical elasticity. We also note that (25a) is of the second order, whereas 

each equation in (24) is of the fourth order. As Koiter [6] pointed out, this fact reconciles the order of 

the elliptic system (24) with the number of five boundary conditions. 

Finally, the following points are of notice: (i) Since 0pp  , 0ppm   is also valid and 

therefore the tensor pqm  has only eight independent components. (ii) The spherical part of the 

couple-stress tensor  1 3 kk pq   does not appear in the final equation of equilibrium, nor in the 

reduced boundary conditions and the constitutive equations. Consequently, kk  and the 

antisymmetric part of the stress tensor pq  are left indeterminate within the couple-stress theory. It is 

noted that the latter quantities are related by the following equation 

 

  , ,1 6pq lqp lmn n mkk kk le e u     ,                                                                                       (26) 

 

which is a consequence of (8) in the absence of body couples. However, the aforementioned inherent 

indeterminacy of the couple-stress theory is removed if we adopt the normalization 0kk  . 

Accordingly, this condition assures the continuous transition form couple-stress theory to the 

classical theory [51]. 

 

 

3. BASIC EQUATIONS IN PLANE-STRAIN 

 

For a body that occupies a domain in the  yx, -plane under conditions of plane strain, the 

displacement field takes the general form 
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  0,  yxuu xx  ,          0,  yxuu yy  ,        0zu  .                                 (27a-c) 

 

Further, Muki and Sternberg [51] showed that, if the general 3D equations of Section 2 are combined 

with the restrictions in (27) and the normalization 0kk   of the couple-stress field is adopted, all 

field quantities are independent upon the coordinate z . Accordingly, except for  z  and 

( , )xz yz  , all other components of the rotation vector and the curvature tensor vanish identically in 

the particular case of plane-strain considered here. The non-vanishing components of the stress and 

couple-stress tensors are derived from (21) and (22). Vanishing body forces and body couples are 

assumed in what follows. In view of the above, the following kinematic relations are obtained 

 

xx x xu    ,   yy y yu    ,     1 2xy yx x y y xu u       ,                                            (28a-c)        

  1 2 x y y xu u     ,   xz x    ,   yz y    ,                                                       (29a-c) 

 

whereas the constitutive equations furnish 

 

   1
2xx xx xx yy            ,    1

2yy yy xx yy            ,    

  1
2xy xy     ,                                                                                                             (30a-c)  

  124xz xzm 


   ,      124yz yzm 


   .                                                                      (31a,b) 

 

Accordingly, the equations of equilibrium (7) and (9) in the present circumstances reduce to 

 

0







yx
yxxx


 ,     0








yx
yyxy 

 ,                                                                           (32a,b) 

0









y

m

x

m yzxz
yxxy   .                                                                                                (33) 

 

Moreover, the compatibility equations for curvature and strain fields in conjunction with 

(30)-(33) lead to the following stress and couple-stress equations of compatibility [7] 
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   
22 2

2
2 2

yyxx
xy yx xx yyy x y x

     
 

     
   

 ,                                                           (34) 

yzxz
mm

y x




 
 ,                                                                                                             (35) 

   2 22xz xx xx yy xy yxm
y x
              

   ,                                                (36) 

   2 22yz yy xx yy xy yxm
x y
             

   .                                                (37) 

 

Note that only three of the four equations of compatibility are independent. Indeed, Eqs. (35)-(37) 

imply (34), while Eqs. (34), (36) and (37) yield (35) [7,51].  

Next, regarding the traction boundary conditions in the plane strain case, we note that these 

are defined through Eqs. (18) and (19) by taking also into account that the normal component of the 

couple-stress  nnm  is zero. Indeed, since the components ( , , ,xx xy yx yym m m m ) of the couple-stress 

tensor vanish identically in the plane strain case (recall that in this case, all field quantities are 

independent upon the coordinate z ), we conclude that   0p q pqnnm n n m  . This, in turn, implies that 

no edge forces:   ( )1 2 nnQ m      appear at the corners of a boundary or section in plane strain. 

However, we remark that these edge forces should be considered in antiplane strain problems where, 

in general,   0nnm  . Also, pertinent edge conditions should be taken into account in both plane and 

antiplane strain cases, in the more general theory of dipolar gradient elasticity (Gourgiotis et al. [32], 

Sciarra and Vidoli [54]). 

Finally, Mindlin [7] introduced pertinent stress functions (generalizing the Airy stress 

function of classical elasticity) by showing that the complete solution of Eqs. (32), (33) and (35) 

admits the following representation 

 

yxyxx 








2

2

2

 ,    
yxxyy 









2

2

2

 ,     

2

22

yyxxy 








  , 2

22

xyxyx 








  ,                                                                   (38a-d) 

x
mxz 





 ,    

y
myz 





 ,              (39a,b) 
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where  ,Φ Φ x y  and  ,Ψ Ψ x y  are two arbitrary but sufficiently smooth functions. Further, 

substitution of (38) and (39) into (36) and (37) results in the following pair of differential equations, 

for the stress functions  

 

    














yx

 2222 12   ,                            (40) 

    













xy

 2222 12   ,                                                                        (41) 

 

which then lead to the uncoupled PDEs 

 

4 0  ,                     (42) 

2 2 4 0      .                                                                                                            (43) 

 

As the quantities  , x , and y  tend to zero, the above representation passes over into Airy’s 

representation.  

In addition, from (28)-(33) and (38)-(39), one can obtain the following relations connecting 

the displacement field and Mindlin’s stress functions  

 






















 


2

2

2

2

2

1

yxyx

ux  ,      























2
2

2

2

2

1

yxxy

uy  ,        





























2

2

2

22

2
2

1

yxyxx

u

y

u yx 


 .                                                           (44a-c) 

 

 

4. FORMULATION OF THE CRACK PROBLEM 

 

Consider now a semi-infinite crack in a body of infinite extent under plane strain conditions. 

The body is governed by the equations of couple-stress elasticity. A Cartesian coordinate system 

Oxyz  is attached to the cracked body with the origin at the crack tip (see Fig. 1). The crack lies in the 

plane  0,0  yx  and is sheared by a pair of concentrated line loads S  at x L  . These 
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loads have dimensions of [force][length]-1. The crack faces are considered traction free, except for 

the point of application of the concentrated forces.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Semi-infinite crack under the action of a pair of concentrated shear forces. 

 

 

Because of anti-symmetry with respect to the plane 0y  , the problem can be viewed as a 

half-plane problem in the region  , 0x y        under the following boundary conditions 

 

   0yx y S x L           for  0 x  ,                                                            (45) 

  00 yyy       for   x  ,                  (46) 

  00 ymyz       for  x     ,                  (47) 

  00 yux       for   x0  ,                  (48) 

 

where    is the Dirac delta distribution with ‘dimensions’ of   1
. 

An exact solution of the boundary value problem described above will be obtained here 

through two-sided Laplace transforms [55,56], and a variant of the Wiener-Hopf technique [48]. The 

direct and inverse two-sided Laplace transforms (which are equivalent to the standard Fourier 

transforms) are defined as 

 

    dxeyxfypf px

 ,,*  ,                                                                                              (49a) 
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   
Br

pxdpeypfyxf ,
i2

1
, *


 ,                (49b) 

 

where Br  denotes the Bromwich inversion path within the region of analyticity of the function 

 ypf ,*  in the complex p -plane. Transforming the field equations (42) and (43) with (49a), we 

obtain the following ODEs 

 

      0,
,

2
, *4

2

*2
2

4

*4

 ypΦp
dy

ypΦd
p

dy

ypΦd
 ,                                                            (50) 

          0,
,

12
, *242

2

*2
22

4

*4
2  ypΨpp

dy

ypΨd
p

dy

ypΨd   .                                    (51) 

 

The above equations have the following general solutions that will be required to be bounded 

as y  

 

     * , yΦ p y A p yD p e      ,                                                                                    (52) 

     * , y yΨ p y B p e C p e     ,                                                                                    (53) 

 

where  pA ,  pB ,  pC  and  pD  are yet unknown functions,     2122 pp    with   

being a real number such that  0 , and     2122 pap    with  1a . In fact, introducing 

  facilitates the introduction of the branch cuts for   212p  (see e.g. [21,58]). Now, for the 

solution to be bounded as y , the p-plane should be cut in the way shown in Fig. 2. This 

introduction of branch cuts secures that the functions   ,  are single-valued and that   0Re   

and   0Re   along the Bromwich path. 

 

 

 



 17

         

 

 

Figure 2. Branch cuts for the functions )( p  and )( p . 

 

 

The transformed stresses and couple-stresses can now be written in terms of the transformed 

stress functions *  and *  as follows 

 

dy

d
p

dy

d
xx

*

2

*2
*    ,      

2

*2*
*

dy

d

dy

d
pxy

   ,                                                            

*2
*

*  p
dy

d
pyx   ,      

dy

d
ppyy

*
*2*    ,                                                      (54a-d) 

** pmxz   ,      
dy

d
myz

*
* 
  ,                                                                               (55a,b) 

 

while the displacements in (44) furnish in the transform domain 

 

 
2 * *

* 2 *
2

1
2 1x

d d
u p p

p dy dy

    
 

    
 

 ,                                                                    (56a) 

   
3 * *

* 2 3 *
2 3

1
2 1 2y

d d
u p p

p dy dy

    
 

      
 

 .                                                     (56b) 

 

In view of the above, the transformed expressions for the stresses and displacements that 

enter the boundary conditions take the following form 
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     * 2, y y y
yx p y p A yD D e p Be Ce             ,                                                (57) 

     * 2, y y y
yy p y p A yD e p Be Ce           ,                                                        (58) 

 * , y y
yzm p y Be Ce       ,                                                                                    (59) 

      * 12 , 2 1y y y
xu p y p A yD e B D p e Ce                .                        (60) 

 

Next, in preparation for formulating a Wiener-Hopf equation, the one-sided Laplace 

transforms of the unknown stress  0,0  yxyx  ahead of the crack tip, and the unknown crack-

face displacement  0,0  yxux  are defined as follows 

 

   
  

0
0, dxeyxpΣ px

yx  ,                (61a) 

    
Br

px
yx dpepΣyx

i2

1
0,


  ,                (61b) 

 

and 

 

    

 
0

0, dxeyxupU px
x  ,                (62a) 

    
Br

px
x dpepUyxu

i2

1
0,


 ,                (62b) 

 

where the Bromwich path is considered to lie inside the region of analyticity of each transformed 

function. In particular, we assume the following finiteness conditions at x : 

   xpMyxyx   exp0,  for x  and    xpNyxu Ux exp0,   for x , where 

 UppNM ,,,   are positive constants. Consequently, the transformed function  p  is analytic and 

defined in the right half-plane  pp Re  , while  pU   is analytic and defined in the left half-

plane   Upp Re . 

Enforcing the boundary conditions (46) and (47) results in the following equations 

 

0 CB   ,                                                                                                                        (63) 

0A  ,                                                                                                                        (64) 
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where the functions  pB  and  pD  are related through the Eqs. (40) and (41) as follows 

 

  pDB 214   .                                                                                                            (65) 

 

Consequently, Eqs. (45), (48), (57) and (60) lead to the following expressions 

 

   2 21 4 1 1Lpp Se pD p
 


   
       

  
  ,                                                            (66) 

   
p

D
pU




 1
 ,                                                                                                           (67) 

 

which provide the final functional (Wiener-Hopf) equation of the problem, connecting the two 

unknown functions  pΣ   and  pU   

 

       
2

1
Lp p

Σ p Se K p U p

 

  


 .                                                                        (68) 

 

The kernel function  pK  is given as  

 

     2 2 2 24 1 1 4 1K p p p
 


         .                                                                     (69) 

 

The problem has now been reduced to the determination of the unknown functions  p  

and  pU   from the single equation (68). At this point, we notice that the standard Wiener-Hopf 

technique needs a modification because the term Lpe  is unbounded as || p . This behavior leads 

to an unfortunate consequence of Liouville’s theorem, which is indispensable in applying the 

Wiener-Hopf technique. More specifically, the entire function that emerges from the standard 

procedure (by applying Liouville’s theorem and the principle of analytic continuation) is a 

polynomial of infinite order with unknown coefficients that cannot be evaluated from the given 

natural conditions of the problem. To circumvent this difficulty we follow here the analytic-function 

technique introduced by Georgiadis and Brock [48]. This technique utilizes simple contour 

integration along with a product kernel factorization. 
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To proceed further a product-factorization of the kernel  pK  is required. First it is checked 

that  pK  has no zeros in the complex plane. This was verified independently by using both the 

principle of the argument [56] and the symbolic computer program MATHEMATICATM. Next, we 

find that the asymptotic behavior of the kernel is   23lim
||




pK
p

. This leads us to introduce a 

modified kernel given as      23 pKpN , which possesses the desired asymptotic property 

  1lim
||




pN
p

. Indeed, this new form of the kernel facilitates its product splitting by the use of 

Cauchy’s integral theorem (see e.g. [57,58]). The functional equation (68) takes now the form 

 

        
 

 
2

1 2 1 2

1 2

3 2

1
Lp p N p

Σ p a p Se a p U p
a p

 


 
    

 
 ,                                    (70) 

 

where the functions  p  and  p  are written as products of two analytic and nonzero functions 

defined in the pertinent half-plane domains of the complex plane  

 

          2121 ppppp     ,                                                                        (71) 

          2121 papappp     .                                                                        (72) 

 

In addition, the modified kernel splits up as 

 

     pNpNpN    ,                                                                                                (73) 

 

where  

 

    


















lC

d
p

N
pN 





ln

i2

1
exp  ,                                                                      (74a) 

    


















rC

d
p

N
pN 





ln

i2

1
exp  .                                                                      (74b) 
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Figure 3. Contour integrations for the factorization of the kernel function )( pN . 

 

 

The use of the Cauchy integral theorem is depicted in Figure 3. The functions  pN   and  pN   are 

analytic and nonzero in the half-planes   pRe  and   pRe , respectively. The original 

integration paths lC  and rC  extend parallel to the imaginary axis in the complex  -plane. 

According to the Cauchy integral theorem and Jordan’s lemma, we are allowed to use equivalent 

integration paths, i.e. the  rl CC ,  contours around the branch cuts of  N p  extending along 

  a  and a . This eventually leads to the following forms of the sectionally analytic 

functions  pN   (see Appendix A for details) 

 

 
  
 

  1 22 2 2 2

1
3 3

0

1 4 1 11
exp tan

4 1

a

d
N p

p

   
   

 








             

 


 ,                        (75) 

 

with the properties    pNpN    and  lim 1
p

N p


 . It is noted that when p  approaches the 

branch cuts in the  -plane from above or below, the integrals defining the functions  pN   or 

 pN   become singular. However, these integrals are not singular simultaneously. Thus, we may 

calculate these exceptional cases without resorting to principal values by employing 
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     pNpNpN  , where we choose in the denominator the  N p  function that is not defined 

by a singular integral.  

In view of the above, Eq. (70) can now be rewritten as 

 

  
 

 
 

 
 

   
1 2 1 2 2

1 2

3 2

1

LpΣ p a p Se a p p
N p U p

N p N p a p

 



 

 

  
  

 
 ,                        (76) 

 

which holds in the strip     pRe . 

Next, in order to obtain the functions   and U  from equation (76), it is convenient to 

change the variable from p  to   (the latter variable should not be confused with the rotation field in 

the original problem) and divide both sides of (76) by  p i2 , getting 

 

  
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 .            (77) 

 

By taking the point p  to lie in the right half-plane   0Re  , Eq.(77) can be integrated over the 

imaginary axis  Imi  to yield the result 
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We now intend to deform the integration path   i,i  by using large semi-circles in the 

left and right half-planes, in order to exploit Cauchy’s theorem and Cauchy’s integral formula. Since 

integration will include large semi-circular paths at infinity, it is first necessary to examine the 

asymptotic behavior of the functions     and  U , entering the integrals in (78). This behavior 

is not clear in advance. Thus, we examine several possibilities, in light also of previous asymptotic 

results obtained for the remote-loading case [16]. 
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First, we examine the following possible behavior for the stress and crack-face displacement 

along the crack faces, which coincides with the corresponding classical case 

 

   210,  xOyxyx      as  0x  ,                                                                        (79) 

   210, xOyxux          as  0x  .                                                                        (80) 

 

This asymptotic behavior has been obtained by Huang et al. [16,17] for the problem of a plane-strain 

crack subjected to remotely applied shear loading (mode-II case), within the context of couple-stress 

theory. Such a behavior was also corroborated by the uniqueness theorem for crack problems of 

couple-stress elasticity which imposes the requirement of boundedness for both crack-tip 

displacement and rotation (Grentzelou and Georgiadis [25]). 

Further, we consider at this point the transformation formula   11Γ    px
LT

 (with 

,3,2,1  ), where  Γ  is the Gamma function with 1  [55,57]. The symbol 
LT

  means 

that the quantities on either side of the arrow are connected through the one-sided Laplace-transform. 

In light of the above, and employing theorems of the Abel-Tauber type (see e.g. [57]), we obtain the 

following asymptotic behavior in the transform domain 

 

   21   O      as  ||   with    0Re   ,                   (81) 

   23   OU      as  ||   with    0Re   .                                                            (82) 

 

Now, for the first integral in (78) we choose to close the integration path with a large semi-

circle at infinity in the right half-plane   0Re  , with a radius that tends to infinity, and then use 

Cauchy’s integral formula. For the third integral, we close the integration path with a large semi-

circle at infinity in the left half-plane   0Re  , where the integrand is an analytic function. Then, 

bearing in mind that p  belongs to the right half plane, Eq. (78) becomes 
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 ,                                                (83) 

 

which, equivalently, gives the transformed solution for the shear stress ahead of the crack-tip as 
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where D E    is the algebraic sum of the two constants ( , )D E  that emerge from the integration, 

along the corresponding semi-circular paths with radius R , of the first and third integral in (78). The 

latter integrals are of the form  0RO  as R . 

Next, we consider another possibility of near-tip behavior (this is the response predicted by 

the dipolar gradient theory [30]) 

 

   230,  xOyxyx      as  0x  ,                  (85) 

   230, xOyxux          as  0x  .                                                                        (86) 

 

Moreover, by using certain results of the theory of generalized functions concerning transforms of 

singular distributions [59,60], we obtain the following asymptotic behavior in the transform domain  

 

   21 O      as  ||   with    0Re   ,                                                            (87) 

   25   OU      as  ||   with    0Re   .                                                            (88) 

 

In this case, due to the asymptotic behavior of the integrand of the first integral in Eq. (78), we get an 

infinite value from the contribution of the semi-circular path of integration as || . This result is 

inadmissible upon considering an inversion in the physical plane. Therefore, the possibility of a near-

tip behavior given by (85) and (86) should be discarded. Finally, any other case like, e.g., 

 1
yx O x   or  2

yx O x  , as 0x , is precluded since even analytic continuation fails to 

define one-sided Laplace transforms of the associated singular distributions [59]. 

Returning now back to Eq. (83), we proceed to calculate the integral by deforming the 

integration path in the left half-plane (see Fig. B.1 in Appendix B) where the integrand is non-

analytic, exploiting in this way the existence of branch cuts for the functions  N   and  1 2
a  . 

Further, recalling that  lim 1N





  and also that         NNN  (cf. Eq. (73)), the integral 

in (83) is written by Cauchy’s theorem as (for the details of the derivation see Appendix B) 
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where 
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  ,                                                                        (90) 

 

and the functions  f ,  h  are defined as 
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The real and imaginary parts above are given by the expressions 
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Our task now is to evaluate the constant  . This is accomplished by examining the 

asymptotic behavior of the solution in (84) as 0p , i.e. as x   in the physical plane. First, 

the limit of the function  G p  will be determined. To this end, use is made of the following series 

expansion 
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Thus, we obtain  
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 .    (94) 
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Next, the limits of  N p  as 0p   will be established. This can be done by performing a 

product factorization of the limit value  
0

lim
p

N p


 by inspection. Indeed, one may obtain first from 

(69) and the definition of  N p  the limit       1 21 2 2

0
lim 3 2
p

N p a p 



    and then 
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    .                                                                                  (95) 

 

Further, a combination of (84), (94) and (95) provides the limit 
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 ,  (96) 

 

where the symbol F.P.  indicates finite-part integration [61,62]. 

The argument now leading to the evaluation of the constant   has as follows. Since a 

behavior of the shear stress at x   of the form 1 2~yx x   is precluded due to the existence of 

the concentrated load at ( , 0x L y   ), the only possibility left from (96) is the vanishing of the 

term inside the first bracket, i.e. the following relation 
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The above argument is supported also by the form of the solution as x   in the respective 

problem of classical elasticity, where 3 2~yx x   [63]. Indeed, Eqs. (96) and (97) lead to a similar 

3 2~ x  behavior for the shear stress as x  . Moreover, it should be noted that since 

   2 3 2f      as 0 , the first integral in the second bracket of (96) should be 

understood in the finite-part sense [61,62]. 



 27

Finally, using (84) in conjunction with (89) and (97), we obtain the following expression for 

the transformed shear stress 

 

       1 2
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S
p a p N p G p G


         ,     Re 0p   .                                           (98) 

 

Also, according to Eqs. (70) and (98), and by using analytic continuation arguments, one may write 

the following expression for the transformed displacement (valid for all p  in the pertinent half-plane 

of convergence) 
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5. BASIC ASYMPTOTIC RESULTS 

 

5.1. Evaluation of the Stress Intensity Factor  

 

The Abel-Tauber theorem, is utilized to obtain the singular part of stress,  0lim ,0x yx x , 

from the large- p  approximation ( p  ) of Eq. (98). Indeed, with the approximation p p   , 

the variable p  can be extracted from the integrand of the integral  G p . Notice also that the 

function  h   defined in (91b) rapidly decays as   . Therefore, the integral  G p  can be 

expressed asymptotically as 
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 ,                                              (100) 

 

where    1 0
a

aG f d h d      .  

Consequently, from (98) and (100), and taking into account that   1lim
||




pN

p
, one readily 

finds that 



 28

  1 2
0

| |
lim
p

S
p G p


 


  .                                                                                                   (101) 

 

Also, using similar arguments, the limit of the solution (99) at infinity is  
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Now, from the Abel-Tauber theorem, we obtain the following near-tip field 
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Then, according to Eq. (103) and the definition    0,2lim 21

0



yxxK yx

x
II  , the ratio of the 

stress intensity factor (SIF) in couple-stress elasticity over the SIF provided by the classical elasticity 

becomes 

 

1 2
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II

clas
II

K L
G

K 
   
 

 .                   (105) 

 

where  1 2. 2clas
IIK S L  is the SIF provided by classical elasticity (see e.g. [63]). The numerical 

computation of the integral 0G  (which was defined in (97)) entering the above expression was 

achieved by the use of the computer program TMAMATHEMATIC  (version 7). 

Figure 4 depicts the variation of the ratio .clas
I IK K  with L  for three different values of the 

Poisson’s ratio. It can be shown that the ratio in (105) has the asymptote  1 2
3 2  as 0L  . It is 

worth noting, that the same result was previously obtained by Huang et al. [17] for a semi-infinite 

crack under remote shear loading, and by Gourgiotis and Georgiadis [41] in the case of a mode II 

central finite-length crack when 0a   ( 2a  being the length of the crack). On the other hand, 

when 0L   (no couple-stress effects), the above ratio should evidently become . 1clas
II IIK K  . 
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However, the ratio plotted in Fig. 4 exhibits a finite jump discontinuity at the limit 0L  ; the ratio 

at the tip of the crack rises abruptly as L  departs from zero. The same discontinuity was observed 

by Sternberg and Muki [39] and by Gourgiotis and Georgiadis [41,42], who attributed this behavior 

to the severe boundary layer effects of couple-stress elasticity in singular stress-concentration 

problems. We also observe that unlike the case of the finite-length traction-free crack [41,42], the 

ratio does not decrease monotonically with increasing values of L . Indeed, the ratio .clas
II IIK K  

exhibits a bounded maximum when the material microstructure becomes comparable with geometric 

length L . In particular, it is observed that for 0.2L   and Poisson’s ratio 0.25  , there is a 

maximum 72%  increase in IIK  when couple-stress effects are taken into account, while for 0   

the increase is 92% . Finally, it can be shown that the ratio tends to unity as L  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Variation of the ratio of stress intensity factors in couple-stress elasticity  

and in classical elasticity with L . 

 

 

5.2. Evaluation of the J -Integral  

 

In this Section, we evaluate the J -integral (energy release rate) of Fracture Mechanics and 

examine its dependence upon the ratio of lengths L  and the Poisson’s ratio  . The J -integral in 
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couple-stress elasticity was first established by Atkinson and Leppington [64] (see also [19] and [40]) 

and is written as 
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 ,                                                           (106) 

 

where Γ  is a piecewise smooth simple 2D contour surrounding the crack-tip, W  is the strain-energy 

density, ( ) ( )( , )n n
q qT M  are the tractions defined in (3) and (4), and ( ) ( )( , )n n

q qP R  are the reduced force-

traction and tangential couple-traction defined in (18) and (19). Moreover, we note that in the 

expression for the J -integral in (106), the edge forces are not included since the latter are zero in 

plane strain (see also Section 3). However, in the context of dipolar gradient elasticity these edge 

forces contribute to the energy release rate, and, therefore, should be taken into account [54]. A more 

general analysis of the energy release rate in the context of finite-strain polar elasticity was provided 

by Maugin [65]. 

For the evaluation of the J -integral, we consider the rectangular-shaped contour Γ  

(surrounding the crack-tip) with vanishing ‘height’ along the y - direction and with 0ε  (see Fig. 

5). Such a contour was first introduced by Freund [66] in examining the energy flux into the tip of a 

rapidly extending crack and it was proved particularly convenient in computing energy quantities in 

the vicinity of crack tips (see e.g. [21,67]). In fact, this type of contour permits using solely the 

asymptotic near-tip stress and displacement fields. It is noted that upon this choice of contour, the 

integral  Γ
dyW  in (106) becomes zero if we allow the ‘height’ of the rectangle to vanish. In this 

way, the expression for the J -integral becomes  
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 .                                                                    (107) 
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Figure 5.  Rectangular-shaped contour surrounding the crack-tip. 

 

 

Further, we note that due to the antisymmetry conditions that prevail in the mode II case, the 

normal stress yy  and the couple-stress yzm  are zero along the whole crack line  0y , whereas the 

crack-faces are defined by  1,0 n . Then, the J -integral in (107) assumes the form 
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Now, by using the asymptotic solution (103) and (104), we finally obtain 
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where for any real   with the exception of 1, 2, 3,...     , the following definitions of the 

distributions (of the bisection type) x  and x  are employed [59] 
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    .                                       (110) 

 

Moreover, the product of distributions inside the integral in (109) is obtained through the use of 

Fisher’s theorem [68], i.e. the operational relation         11
2sinx x x

    
 

        with 

1, 2, 3,...      and  x  being the Dirac delta distribution. Then, in view of the fundamental 

property of Dirac delta distribution that   1x dx






 , Eq. (109) provides the result 

 

 
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2 2
0

2
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3 2

S G
J


 





 .                                                                                                              (111) 

 

Based on the above analysis, we were able to evaluate the J -integral. Our results are shown 

in the graph of Figure 6 that depicts the dependence of the ratio .clasJJ  upon the ratio of lengths 

L  for three different values of the Poisson’s ratio of the material. The quantity 

   . 2 1clasJ S L    is the respective integral in classical elasticity (see e.g. Freund [69]). 

The calculations show that as 0L  , the J -integral in couple-stress elasticity tends 

continuously to its classical counterpart. Moreover, as L  increases form zero, the ratio .clasJ J  

increases exhibiting a bounded maximum in the range 0.2 0.25L   (that depends on the 

Poisson’s ratio). This finding is in contrast with previous results concerning the case of a finite-

length traction-free crack [41,42], and the case of a semi-infinite crack with distributed normal 

loading along the crack faces [40]. Indeed, in the latter cases, the ratio .clasJ J  decreased 

monotonically with increasing values of the material length   to the pertinent geometrical length. 

This change in the behavior of the J -integral is brought out more clearly in the next section, where 

we examine the case of a semi-infinite crack with distributed (exponentially decaying) shear loading 

along the crack faces (see also Fig. 8). Finally, it is worth noting that for 0.55L   the ratio 

becomes less than unity and decreases monotonically to the limit  231   as L  . 
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Figure 6.  Variation of the ratio of the J -integrals in couple-stress elasticity  

and in classical elasticity with L . 

 

 

6. DISTRIBUTED SHEAR LOADING ALONG THE CRACK FACES 

 

For the purpose of comparison with the problem analyzed before and for the purpose of 

completeness of the present study, the case of a semi-infinite crack with a distributed shear loading 

along the crack faces (see Fig. 7) is examined in this Section. The case of a semi-infinite crack with a 

distributed normal loading was treated by Atkinson and Leppington [40]. Regarding the variation of 

the distributed loading, we follow here their idea to consider tractions that are exponentially decaying 

from the crack tip. Instead, if uniform crack-face tractions were considered, an unbounded behavior 

of the solution would occur because a semi-infinite crack is involved in a body of infinite extent. 

Since the analysis of the problem is analogous to that employed in the previous Sections, we 

omit details and cite directly the results obtained. The boundary conditions (46)-(48) still apply, but 

(45) is replaced by  

 

  00 x
yx y e           for  0 x  ,                                                                      (112) 

 

where 0  and    are positive constants having pertinent dimensions. 
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Figure 7. Semi-infinite crack with exponentially decaying shear loading along the crack faces. 

 

 

The Wiener-Hopf equation in this case takes the following form 
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 ,          (113) 

 

where the functions  Σ p  and  U p  are analytic in the pertinent half-planes, and  N p  are 

defined in (75).  

The sum-splitting of the second term in the LHS of (113) required to complete the decoupling 

process can now be obtained by inspection as 
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where 
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 ,                                                             (115a) 
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and   M p  is an analytic function in the same right half-plane where  p   is defined, while 

 M p  is an analytic function in the left half-plane where  Re 1p  . Equations (113) and (114), 

when combined, allow the final re-arrangement of the Wiener-Hopf equation 
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 .             (116) 

 

The above functional equation defines the function  E p  only in the strip     pRe . Now, 

taking into account that 1 2~Σ p   and 3 2~U p   as p   (see also Eqs. (81)-(82)), we conclude 

that the first member of (116) is a bounded nonzero analytic function for  Re p   , whereas the 

second member is a bounded nonzero analytic function for  Re 0p  . Then, in view of the theorem 

of analytic continuation, the two members define one and the same analytic function  E p  over the 

entire complex p -plane [57,58]. Moreover, the extended Liouville’s theorem leads to the conclusion 

that   0E p E , where 0E  is a constant.  

The transformed shear stress is given by (116) as 

 

       1 2

0Σ p E p N p a p         .                                                                      (117) 

 

The constant 0E  will now be determined from conditions at remote regions in the physical plane. 

First, we observe that the exponentially decaying tractions in (112) can be replaced by a statically 

equivalent concentrated load of intensity: 
0

0yx dx  


  . Thus, according to Saint-Venant’s 

principle (see e.g. [70]) and in view of the solution of the concentrated load problem treated in 

Section 4, we anticipate that the shear stress will behave as 3 2~ x  for x  . This, in turn, 

implies the following asymptotic behavior in the transformed domain:    1 2Σ p O p   as 0p  . 

Further, taking into account (95) and (115a), we obtain the limit 
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In view of the above, the only possibility left from (118) is the vanishing of the term inside the 

bracket, i.e. 
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The final transformed expressions (valid for all p  in the pertinent half-plane of convergence) 

for the stress ahead of the tip and the crack-face displacement then become 
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The limits of the latter expressions for p   are found to be 
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which, accordingly, provide the following near-tip field 
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Moreover, following the same procedure as in Section 5, the stress intensity factor and the 

energy release rate in couple-stress elasticity are written as 



 37

 
 

1 21 2
02 1

1II

a
K

N

  


    ,                                                                                               (126)  

 
 

 
 

2 2
0

2

11

3 2 1

a
J

N

  
  

    
   

 .                                                                                 (127) 

 

We proceed now to the discussion of the numerical results obtained. The quantities of primary 

physical interest in this problem are the stress intensity factor and the energy release rate. Figure 8 

depicts the variation of the ratio .clas
II IIK K with   for three different values of the Poisson’s ratio. 

The stress intensity factor for the respective problem in classical elasticity is  1 2.
0 2clas

IIK   . As in 

the concentrated load case (Section 4), the ratio plotted in Fig. 8 exhibits a finite jump discontinuity 

at the limit 0  ; the ratio at the tip of the crack rises abruptly as   departs from zero. In 

particular, it can be shown that  1 2. 3 2clas
II IIK K    as 0  . Moreover, for   , the 

ratio tends to unity. However, a fundamental difference between the two cases is that the ratio here 

decreases monotonically with increasing values of  . The same behavior was observed in the case 

of a mode II finite-length crack in couple-stress elasticity [41]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Variation of the ratio of stress intensity factors in couple-stress elasticity and 

in classical elasticity with  . 
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Figure 9.  Variation of the ratio of the J -integrals in couple-stress elasticity and 

in classical elasticity with  . 

 

 

Figure 9 displays the dependence of the ratio .clasJ J  upon the ratio of lengths  . The 

quantity . 2
0 (1 )clasJ       is the integral provided by the classical elastic analysis. Contrary to the 

concentrated load case treated previously, the ratio .clasJJ  decreases monotonically with increasing 

values of  . A similar result was obtained in the case of a finite-length crack within the context of 

couple-stress [42] and dipolar gradient elasticity [30]. Finally, the ratio tends to the limit  231   

as   . 

 

 

7. CONCLUDING REMARKS 

 

In the present work, we examined the plane-strain problem of a semi-infinite crack under 

concentrated shear loading in a body with microstructure governed by couple-stress elasticity. The 

case of shear loading was chosen since, in principle, couple-stress effects are predominant in this 

type of deformation [9,17,41,42]. The case of a concentrated normal loading along the crack faces 
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will be treated in a future work. In general, solutions to problems with concentrated loads may serve 

as Green’s functions for more general loadings. 

The problem has two characteristic lengths, i.e. the length   representing the material 

microstructure and the distance L  between the point of application of the force and the crack-tip. 

Moreover, the problem involves stress concentration due to both loading and geometry (crack). The 

solution procedure was based on the two-sided Laplace transforms and on an analytic-function 

technique. For comparison purposes, the case of a semi-infinite crack subjected to an exponentially 

decaying shear load was also treated in the present study.  

The results for the near-tip field in the concentrated load case showed some interesting 

features not encountered in previous investigations concerning finite-length or semi-infinite cracks 

under remote or distributed loading, within the framework of generalized continuum theories. More 

specifically, it was shown that the ratio of the stress intensity factors .clas
II IIK K  exhibits a bounded 

maximum within the range 0.2 0.25L   depending on the Poisson’s ratio. This result is in 

contrast to the case of a semi-infinite crack with exponentially decaying shearing tractions (treated in 

Section 6 of the paper), where the respective ratio decreased monotonically with increasing values of 

the ratio of the material length   over the load-induced length  . It is worth noting, that in the latter 

case the ratio .clas
II IIK K  attains its maximum when 0 . A similar behavior was also observed in 

the case of central traction-free crack under remote shear loading [41].  

As regards now the energy release rate, we have found that the ratio .clasJ J  tends to unity 

when the couple-stress parameter   tends to zero. Thus, the transition to the classical theory is 

continuous as far as the energy release rate is concerned (contrary to the behavior of the stress 

intensity factor noticed before). For 0 , the ratio increases is with increasing values of L  

attaining its maximum in the range 0.2 0.3L  . The latter behavior is in marked contrast with the 

distributed load case and the previously investigated cases by Atkinson and Leppington [40], and by 

Gourgiotis and Georgiadis [30,42], where it was found that .clasJ J  diminished monotonically being 

always smaller than unity. The different solution behavior in the concentrated load case may be 

attributed to the fact that it involves both load-induced and crack-induced stress concentrations. 
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APPENDIX A 

 

According to (69) the kernel  pN  is given by the expression 
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Further, for p  real and p a   , the real and imaginary parts of  N p  are 

 

   
 

2 24 1
Re

3 2

p
N p










 ,      
  
 

2 21 4 1
Im

3 2

p
N p

 
 

 





,                                      (A2) 

 

where 
1 22 2a p   and  

1 22 2p   . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1.  Integration paths for the evaluation of the functions )( pN  . 

 

 

In order to determine the functions  pN   and  pN   defined in Eqs. (74), we close the 

integration paths rC  and lC  with large semi-circles at infinity on the right and left half-plane 

respectively, as it is shown in Fig. 3. Next, an alteration of the integration contour along with the use 
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of Cauchy’s theorem and Jordan’s Lemma, allows taking as equivalent integration paths the contours 

lC  and rC , around the branch cuts of  N p  (see Fig. A.1).  

In particular, for the function  pN   we have 

 

   ln1
exp

2 i
lC

N
N p d

p




 









           
 

           
   ln ln1

exp
2 i

a

a

N N
d d

p p





 
 

  

 

 

 
 
 
 

           
 

 

 
 

 
 

1 1Im Im1
exp i tan i tan

2 i Re Re

a

a

N Nd d

N p N p





  
    

 

 

 

 
 
 
 
 

                    

 

 
  

 

1 22 2 2 2

1
1 22 2 2 2

1 4 11
exp i tan

2 i 4 1
a

a d

p



   
    














                  




 

                                  
  

 

1 22 2 2 2

1
1 22 2 2 2

1 4 1
i tan

4 1

a

a d

p


   
   














              




 

                      
  

 
 
 

1 22 2 2 2

1
1 22 2 2 2

0

1 4 11
exp tan

4 1

a

a d

p

   
    










                  




 .      (A3) 

 

Similarly, integrating along rC , we can evaluate the function  N p . Finally, letting 0   

and recalling that 1a   , we obtain  
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APPENDIX B 

 

For the evaluation of the integral in (89) 
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that enters Eq. (84), we expand the integration path in the left half-plane  0Re  , as is shown in 

Fig. B.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1.  The integration contour used for the evaluation of the integral I  

in the complex plane. 
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 , the integral   is 

written by Cauchy’s theorem as  
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where R  is the radius of the two quarter-circular paths having a center at point p a   (see Fig. B.1) 

and the angle   (      ) is defined by the relation iep a R   . In view of the above, it follows 

that 
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where  
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Now, it can be shown that the third integral inside the braces behaves as  1O R  when R  , thus 

the limit of the last term in (B3) tends to zero.  

In view of the above, the integral   takes finally the form 
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