
J
H
E
P
1
2
(
2
0
1
5
)
0
6
0

Published for SISSA by Springer

Received: October 9, 2015

Accepted: November 28, 2015

Published: December 10, 2015

A Lagrangian for self-dual strings

Vasilis Niarchos

Crete Center for Theoretical Physics,

and Crete Center for Quantum Complexity and Nanotechnology,

Department of Physics, University of Crete, 71303, Greece

E-mail: niarchos@physics.uoc.gr

Abstract: We propose a Lagrangian for the low-energy theory that resides at the (1+1)-

dimensional intersection of N semi-infinite M2-branes ending orthogonally on M M5-branes

in R1,2×C4/Zk (for arbitrary positive integers N,M, k). We formulate this theory as a 2d

boundary theory with explicit N = (1, 1) supersymmetry that contains two superfields in

the bi-fundamental representation of U(N)×U(M) interacting with the (2+1)-dimensional

U(N)k × U(N)−k ABJM Chern-Simons-matter theory in the bulk. We postulate that the

boundary theory exhibits in the deep infrared supersymmetry enhancement to N = (4, 2),

or N = (4, 4) depending on the value of k. Arguments in favor of the proposal follow from

the study of the open string theory of a U-dual type IIB Hanany-Witten setup. To formu-

late the bulk-boundary interactions special care is taken to incorporate all the expected

boundary effects on gauge symmetry, supersymmetry, and other global symmetries.

Keywords: Supersymmetric gauge theory, Intersecting branes models, Chern-Simons

Theories, M-Theory

ArXiv ePrint: 1509.07676

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP12(2015)060

mailto:niarchos@physics.uoc.gr
http://arxiv.org/abs/1509.07676
http://dx.doi.org/10.1007/JHEP12(2015)060


J
H
E
P
1
2
(
2
0
1
5
)
0
6
0

Contents

1 Introduction 1

2 M2-M5 from the M-theory lift of a type IIB setup 3

2.1 Type IIB setup 3

2.2 M-theory lift 4

3 ABJM on a space with boundary from open string theory 6

3.1 3d bulk 6

3.2 2d boundary 8

3.3 Summary of the proposed bulk-boundary action 12

4 Outlook 13

A One M2-brane ending on M M5-branes 14

1 Introduction

Since M2-branes can end on M5-branes it has long been suspected that the M5-brane

theory is a still illusive six-dimensional non-critical string theory. The strings of this theory

are charged under a self-dual three-form field strength, hence they are frequently referred

to as self-dual strings. When the M5-branes are coincident the theory is non-abelian

and intrinsically strongly coupled. As a result, it has proven a very hard problem to

formulate this string theory and to extract directly information about the quantum physics

of M5-branes.

Clearly, the two-dimensional intersection of M2-branes ending on M5-branes is at the

heart of this problem. It would be useful to understand precisely the degrees of freedom

that reside on this intersection and how they interact with the three-dimensional and six-

dimensional bulk on the M2 and M5-branes respectively. It is sensible to analyse this

problem first in a symmetric configuration, e.g. the half-BPS configuration of N coincident

M2-branes (extended along the half-plane x2 > 0) that end orthogonally on M coincident

M5-branes
N M2 : 0 1 2+

M M5 : 0 1 7 8 9 10
(1.1)

In flat space the two-dimensional theory at the intersection enjoys N = (4, 4) su-

persymmetry. To date there has been very limited information about this theory. Let

us summarize quickly some of the most prominent developments that are pertinent for

this paper.

From the M5-brane point of view the orthogonal M2-branes can be viewed as a string

soliton spike. The first successful description of this soliton (as an M-theory BIon) was
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given by Howe, Lambert and West [1] for a single M5-brane. A similar analysis for coinci-

dent M2 and M5-branes in the large-N,M limit was performed in [2] using a holographic

supergravity analysis based on the blackfold approach [3, 4]. A noteworthy result of that

work was a specific prediction for the leading behavior of the central charge c of the putative

two-dimensional superconformal theory at the intersection [5, 6]

c ∼ N
3
2

√
λ

+ . . . ∼ M3

λ2
+ . . . (1.2)

in a ’t Hooft-like limit where N,M � 1 with the ratio λ = M2

N fixed and large. The dots

indicate subleading terms in a 1/λ expansion. The appearance of the powers N
3
2 and M3 in

the two expressions on the r.h.s. of (1.2) is suggestive of a close relation to the well-known

scaling of massless degrees of freedom of M2-branes (N
3
2 ), and M5-branes (M3). Different

expressions for c in other regimes were derived in [7] using anomaly considerations in the

Coulomb branch of the M5-brane theory.1

Let us note in passing that an exact fully localized half-BPS supergravity solution that

describes the M2-M5 configuration (1.1) in flat space is currently not known. For an older

attempt to this problem we refer the reader to [9]. A more recent analysis of AdS solutions

that are presumably near-horizon limits of M2-M5 configurations was performed in [10].

It would be interesting to distill further information about the quantum properties of the

M2-M5 intersections from such asymptotically AdS solutions in supergravity.

There have also been several attempts to analyze the field theory of the intersec-

tion (1.1) from the viewpoint of the M2-branes. An M-theory generalization of the Nahm

equations for the BIon was proposed by Basu and Harvey in [11]. Subsequently, with

the advent of the ABJM model [12], the low-energy theory on N M2-branes was formu-

lated as a U(N)×U(N) Chern-Simons-matter theory with explicit N = 6 supersymmetry.

The properties of semi-infinite M2-branes ending on M M5-branes are captured from this

perspective by appropriate boundary conditions and/or appropriate boundary degrees of

freedom in the ABJM model on a half-plane.

The effects of boundaries in supersymmetric Chern-Simons-matter theories were con-

sidered by several authors. A formulation of the boundary problem in the context of the

M2-M5 system in terms of supersymmetric boundary conditions was put forward in [13].

Other authors considered an alternative formulation that employs suitable boundary de-

grees of freedom. With emphasis on the boundary effects on supersymmetry ref. [14]

considered possible boundary interactions in N = 2 Chern-Simons-matter theories using

the technology of [15]. A different set of boundary interactions, that emphasized the role of

gauge symmetry, was considered in [16, 17]. Although both approaches in this direction are

technically relevant for the M2-M5 system, their precise implementation to this problem

has been obscure, because a clear M-theory guide to the boundary degrees of freedom and

interactions that are needed to describe the M2-M5 system was mostly lacking. A specific

proposal towards the resolution of these issues will be the main contribution of this paper.

1For an interesting observation on the role of self-dual string junctions in the Coulomb phase of the

ADE 6d (2,0) superconformal fields theories and the problem of the M3 scaling of the massless degrees of

freedom on the M5-branes see [8].
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Finally, in more recent developments it has proven useful to consider configurations

of intersecting M2 and M5-branes with compactified worldvolumes. In this context a

computation of the elliptic genus of M2-branes suspended between parallel M5-branes was

performed in [18–20], and [21]. Ref. [22] considered M5-branes wrapped around punctured

Riemann surfaces. In this setup the M2-branes realize surface operators in four-dimensional

N = 2 field theories.

Main contribution and brief summary of the paper. The approach we take in

this paper is particularly simple. The successful formulation of the low-energy theory

on multiple M2-branes as supersymmetric Chern-Simons-matter theory, [12], relied on a

U-dual description of M2-branes as D3-branes suspended between appropriate stacks of

5-branes in a type IIB Hanany-Witten setup. In section 2 we describe how to incorporate

an extra stack of M D5-branes in this setup, where N D3-branes can end on a half-BPS

(1+1)-dimensional boundary. We show that the new configuration lifts in M-theory to the

M2-M5 system of interest probing a C4/Zk orbifold singularity. For M = 0 D5-branes our

setup reduces to the well-known brane configuration of [12].

In section 3 we use the type IIB setup to read off the spectrum and interactions

at the D3-D5 boundary. We find that the massless boundary degrees of freedom that

arise in the D3-D5 open string theory are two sets of 2d N = (1, 1) supermultiplets in

the bi-fundamental representation of the U(M) × U(N) group. Using a formulation with

explicit N = 2 supersymmetry in the three-dimensional bulk we present a 2d boundary

theory that exhibits N = (1, 1) supersymmetry. Precise bulk-boundary interactions of this

theory are proposed using the recent results of ref. [23], that is building on the previous

works [15–17]. Analyzing the symmetries of the postulated action and the symmetries of

the underlying brane setup we postulate that for generic Chern-Simons level k > 2 the bulk-

boundary theory flows in the deep infrared to a fixed point with the expected 2d N = (4, 2)

supersymmetry. We anticipate a further enhancement of the boundary supersymmetry for

the special value k = 1 to N = (4, 4). A similar enhancement for k = 2 is possible but

even less obvious at the moment (see comments in section 2).

We conclude in section 4 with a brief discussion of interesting aspects of the proposed

action and its implications in M-theory. Open problems that are worth pursuing further

are also discussed in this section.

2 M2-M5 from the M-theory lift of a type IIB setup

2.1 Type IIB setup

Our starting point is the following Hanany-Witten setup in type IIB string theory that

realizes at low energies the ABJM model [12] on a space with a boundary

N D3 : 0 1 2+ 6+

N D3′ : 0 1 2+ 6−

1 NS5 : 0 1 2 3 4 5

1 (1, k)5 : 0 1 2
[

3
7

]
θ

[
4
8

]
θ

[
5
9

]
θ

M D5 : 0 1 6 7 8 9

(2.1)
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In this setup an NS5-brane and a (1, k)5-brane bound state2 are located at antipodal

points on the S1 direction x6 ∈ [−π, π). The angle θ is fixed by supersymmetry in terms

of the complex axion-dilaton coupling τ

θ = arg(τ)− arg(k + τ) , τ =
i

gs
+ χ (2.2)

where gs is the string coupling constant and χ the value of the axion field (that we set to

zero). Two stacks of D3-branes are suspended between the NS5 and (1, k)5-branes along

the directions (0126): N D3 branes wrap the semi-circle x6 ∈ (0, π), and N D3′ branes

wrap the semi-circle x6 ∈ (−π, 0). The setup of D3-NS5-(1, k)5 branes, with the D3-branes

stretching infinitely across the whole (012) plane and M = 0 D5-branes, is the original

configuration of ref. [12] that formulated the low-energy theory on N M2-branes probing

C4/Zk as a U(N)k × U(N)−k Chern-Simons-matter theory. For k > 2 this theory is an

N = 6 three-dimensional gauge theory. For k = 1, 2 there is an infrared enhancement of

supersymmetry to N = 8 [12, 24].

Compared to ref. [12], the setup (2.1) introduces an additional stack of M D5-branes

(last line in (2.1)) that intersect the N pairs of D3-branes on a two-dimensional boundary

along the plane (01). The semi-infinite D3-branes stretch on the half-line x2 > 0 and end

on the D5-branes at x2 = 0 (hence the notation 2+ in the list of the configuration (2.1)).

From the low-energy point of view, the D5-branes introduce a boundary on the three-

dimensional Chern-Simons-matter theory that resides on the D3-branes. One can verify

by explicit computation (see e.g. appendix A of ref. [23] for a related discussion) that the

brane setup (2.1) preserves 3 real supersymmetries —2 left-moving and 1 right-moving.

Hence this is a non-chiral half-BPS boundary. At low-energies the global symmetries

of the M-theory lift (to be discussed momentarily) suggest the infrared enhancement of

supersymmetry to N = (4, 2) in two dimensions. In the special case where k = 1 they

suggest a further enhancement to large N = (4, 4).

As an aside remark, it is useful to note here, for later purposes, the following fact.

Rotating the (1, k)5-brane in (2.1) along the more general orientation
([

3
7

]
ψ

[
4
8

]
ψ

[
5
9

]
θ

)
further reduces the explicit supersymmetry from 3 real supersymmetries to 2 real super-

symmetries when ψ 6= θ. Namely, changing ψ reduces N = (2, 1) → N = (1, 1) in two

dimensions.

In section 3 we consider the low-energy field theory at the D3-D5 intersection following

a recent similar discussion of open string dynamics in [23]. In the rest of this section we

elaborate further on the M-theory lift of the setup (2.1) and its relation to the orthogonal

M2-M5 intersection which is the system of main interest in this paper.

2.2 M-theory lift

Repeating the steps of the U-duality transformation in [12] we first perform a T-duality

transformation along the direction 6. This results to a type IIA brane configuration on a

2We will be using conventions where (p, q)5 refers to a fivebrane bound state with p units of NS5-brane

charge and q units of D5-brane charge. Moreover, without loss of generality we will henceforth assume that

k > 0. The notation
[
a
b

]
θ

denotes that a brane is oriented along the direction cos θ xa + sin θ xb in the

(xa, xb) plane.
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space with a T-dual S1 direction 6̃:

N D2+ : 0 1 2+

1 KK6̃ : 0 1 2 3 4 5

1 (KK6̃ − kD6) : 0 1 2
[

3
7

]
θ

[
4
8

]
θ

[
5
9

]
θ

M D4 : 0 1 7 8 9

(2.3)

The notation KK6̃ refers to a Kaluza-Klein (KK) monopole associated with the dual circle

6̃. Similarly (KK6̃ − kD6) refers to a KK monopole with k units of D6-brane flux.

Next we lift to M-theory by adding the 11-th (M-theory) direction x10. The N D2-

branes ending on M D4-branes become N M2-branes ending on M M5-branes. The KK

monopole KK6̃ remains a KK monopole associated with 6̃ and the (KK6̃ − kD6) bound

state becomes a KK monopole associated with a linear combination of the circles 6̃ and

10. At the intersection of the two KK monopoles the eight-dimensional space transverse

to the plane (012) becomes the orbifold C4/Zk [12].

To summarize, after the above U-duality transformation we obtain the orthogonal

M2-M5 intersection
N M2+ : 0 1 2+

M M5 : 0 1 7 8 9 10
(2.4)

probing the C4/Zk singularity in the (3456789(10)) directions. The k = 1 case reduces to

the familiar M2-M5 intersection in flat space.

As explained in appendix B of ref. [12] the metric of the transverse eight-dimensional

space takes the form of a toric hyperkähler manifold with a diagonal 2 × 2 matrix of

U -functions in the coordinates

~x′1 = (x7, x8, x9) , ϕ′1 = x6̃ − 1

k
x10 (2.5)

and

~x′2 = (x7 + kx3, x8 + kx4, x9 + kx5) , ϕ′2 =
1

k
x10 . (2.6)

The coordinates (ϕ′1, ϕ
′
2) have periodicity 2π plus the orbifold identification

(ϕ′1, ϕ
′
2) ∼ (ϕ′1, ϕ

′
2) +

(
−1

k
,

1

k

)
. (2.7)

In the absence of the M5-branes the overall symmetry of the transverse space is SO(6) ×
SO(2). SO(6) is associated with transformations in the (345789) directions and SO(2) with

translations of x10, i.e. with translations (ϕ′1, ϕ
′
2)→ (ϕ′1 − ϕ,ϕ′2 + ϕ).

In the presence of the M5-branes the SO(6) in the (345789) directions breaks to SO(3)×
SO(3) transformations that are either fully parallel to the M5-brane worldvolume or fully

orthogonal. Since SO(3) ' SU(2) and SU(2) × SU(2) ' SO(4), the total symmetry of the

M2-M5 configuration in the presence of the orbifold, for k > 2, is SO(4) × SO(2). This

is an R-symmetry for the two-dimensional theory at the M2-M5 intersection. Its presence

suggests that the infrared theory at the intersection exhibits N = (4, 2) supersymmetry.

– 5 –
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For k = 1 the symmetry of the transverse R8 is SO(4) × SO(4) from the separate

rotation symmetries of the two orthogonal R4’s in R8. This symmetry is part of the R-

symmetry group of a 2d CFT with large N = (4, 4) superconformal algebra. The latter

also contains an additional U(1) R-symmetry. It is currently unclear if this U(1) symmetry,

and the full large N = (4, 4) superconformal algebra, are realized in the infrared limit of

the M2-M5 system.

The case with k = 2 is potentially even more interesting. In the absence of the

M5-branes arguments were given in [12] for the quantum mechanical enhancement of the

R-symmetry group in the three-dimensional Chern-Simons-matter theory from SO(6) to

SO(8). In our setup a stack of M5-branes intersects the Z2 singularity. If the non-abelian

interactions of the M5-brane theory exhibit the same global symmetry enhancement one

would expect an SO(4) × SO(4) symmetry for the M2-M5 intersection also at k = 2. It is

currently unclear to us if this enhancement actually takes place.

3 ABJM on a space with boundary from open string theory

In this section we focus on the open string theory dynamics of the type IIB setup (2.1).

Following the discussion of the recent paper [23] we propose a specific action for the 3d-2d

bulk-boundary dynamics at the D3-D5 intersection.

3.1 3d bulk

The 3d bulk theory, which arises as the IR effective field theory description of the open

string dynamics on the D3-branes in the setup (2.1), is the N = 6 U(N)k×U(N)−k ABJM

theory. It is formulated most conveniently as an N = 2 theory with appropriate matter

representations. The Lagrangian for the N = 2 vector multiplet consists of the N = 2

Chern-Simons (CS) theory at level k, and the N = 2 CS theory at level −k. The gauge

group of both CS theories is U(N). To distinguish between the two gauge groups we will

denote them as U(N)+ (with CS level +k), and U(N)− (with CS level −k).

The matter content of the theory consists of 2 chiral superfields Aa (a = 1, 2) in the

bifundamental representation of U(N)+ × U(N)− and 2 chiral superfields Ba (a = 1, 2)

in the anti-bifundamental representation. (The complex conjugate anti-chiral superfields

will be denoted with a bar.) It is convenient, and most appropriate from the point of view

of the brane configuration (2.1), to include two massive N = 2 chiral superfields φ± with

superpotential

W =
k

8π
Tr
[
φ2

+ − φ2
−
]

+ Tr [Baφ+A
a] + Tr [Aaφ−Ba] . (3.1)

Integrating out the massive superfields sets

φ+ = −4π

k
AaBa , φ− =

4π

k
BaA

a (3.2)

and leads in the deep IR to the quartic superpotential

W =
4π

k
Tr
[
A1B1A

2B2 −A1B2A
2B1

]
=

2π

k
εabε

ȧḃTr
[
AaBȧA

bBḃ

]
(3.3)
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which is responsible for the supersymmetry enhancement to N = 6. εab is the totally

anti-symmetric symbol; we use ε12 = 1.

It is useful to highlight the following points regarding the N = 2 formulation of the

ABJM theory:

(i) A general mass m 6= k
8π in (3.1) corresponds in the brane setup (2.1) to a general

angle ψ 6= θ for the (1, k)5-brane oriented along
([

3
7

]
ψ

[
4
8

]
ψ

[
5
9

]
θ

)
, [25, 26]. As we

pointed out near the end of subsection 2.1, and is visible from (3.1), for ψ 6= θ and

m 6= k
8π the explicit supersymmetry of the 3d bulk theory is N = 2 (and therefore

2d N = (1, 1) on a half-BPS boundary). Nevertheless, it was shown perturbatively

in [27] in the large k limit that the N = 6 fixed point is an attractor of the RG flow

in the 3d Chern-Simons-matter theory, so different values of m in the bare action do

not affect the IR physics crucially in the bulk. It is natural to expect a similar effect

for all values of k. For technical reasons that will become clear momentarily, it will

be useful to work with a general mass m in the bulk superpotential

W = mTr
[
φ2

+ − φ2
−
]

+ Tr [Baφ+A
a] + Tr [Aaφ−Ba] . (3.4)

(ii) The bare N = 2 supersymmetric action with superpotential (3.1) does not exhibit

the N = 3 supersymmetry automatically in the non-abelian case unless some of the

auxiliary fields in the N = 2 supersymmetric multiplets are integrated out. Hence,

we would not expect to see the full N = (2, 1) supersymmetry on the half-BPS 2d

boundary in the UV in the above language in a fully N = 2 super-gauge invariant

formulation. Note that the abelian case does not exhibit this issue.

(iii) Finally, working with explicit N = 2 supersymmetry in the bulk allows us to circum-

vent an important technical issue that has to do with the effects of the boundary. It

is well-known that boundaries break the super-gauge invariance of supersymmetric

gauge theories. Therefore, the passage to a preferable gauge may be inappropriate in

the presence of a boundary. As a result, a proper treatement of boundaries typically

requires a formulation with full off-shell supersymmetry. For example, in the case of

the N = 6 Chern-Simons-matter theories of interest this would require the use of an

explicit N = 6 formalism, which is a rather complicated task.

We circumvent this problem by formulating the half-BPS boundary and the corre-

sponding bulk-boundary interactions in the bare N = 2 Lagrangian with superpo-

tential (3.4). Then by tuning the bare mass m to the N = 3 point m = k
8π , or by

just allowing the renormalization group to flow to the N = 6 fixed point in the bulk,

we postulate that our half-BPS boundary flows accordingly from a UV N = (1, 1)

point to the desired IR point with N = (4, 2) (or N = (4, 4)) supersymmetry. We

provide favorable evidence for this conjecture using the available information from

string theory and by checking explicitly that the postulated action has the expected

global symmetries.

– 7 –
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3d bulk action. In the brane setup (2.1) there is a boundary for the 3d theory at

x2 = 0. Accordingly, we will formulate the ABJM theory on the half-plane at x2 > 0. We

use the N = 2 superspace formalism and the set of conventions summarized in [23].3 In

these conventions the content of the N = 2 vector multiplet is summarized in an N = 2

vector superfield V that contains the three-dimensional gauge field Aµ, several auxiliary

scalars and their supersymmetric partners. As we mentioned already, in ABJM there are

two vector multiplets that we call V+, V−, which appear in the CS actions with level +k

and −k respectively. The fully covariant formulation of the N = 2 CS theory is four-

dimensional [29]. In our context

SCS[V+, V−] = − k

2π

∫ 1

0
ds

∫
d3x

∫
d4ϑTr

[
V+D̄

α (
esV+Dαe

−sV+)]
+
k

2π

∫ 1

0
ds

∫
d3x

∫
d4ϑTr

[
V−D̄

α (
esV−Dαe

−sV−)] . (3.5)

Dα is the N = 2 superspace covariant derivative

Dα = ∂α +
(
γµϑ̄

)
α
∂µ , D̄α = ∂̄α + (γµϑ)α ∂µ . (3.6)

The matter sector interactions include the superpotential interactions (3.4) (or (3.1)

for the specific orientations in (2.1))

SW [φ±, A,B] =

∫
d3x d2ϑW + c.c. , (3.7)

and the Kähler interactions that provide the kinetic terms. For simplicity, we will consider

here canonical Kähler interactions. Note however, that, unlike the superpotential inter-

actions, the Kähler interactions receive quantum corrections. Accordingly, the boundary

interactions that will be formulated shortly have to be adjusted suitably to take into ac-

count these quantum corrections in order to preserve the desired amount of supersymmetry.

This can be performed straightforwardly with the prescription that will be described in a

moment. The canonical Kähler interactions that we consider here are

SK [φ±, A,B, V±] =

∫
d3x

∫
d4ϑTr

[
φ̄+e

V+φ+ + φ̄−e
V−φ−

+Āae
V+Aae−V− + B̄aeV−Bae

−V+
]
. (3.8)

In summary, the total bulk action is

Sbulk = SCS[V+, V−] + SK [φ±, A,B, V±] + SW [φ±, A,B] . (3.9)

3.2 2d boundary

The boundary theory of a Chern-Simons-matter theory is not unique. In previous explo-

rations of the subject [14, 16, 17] boundary interactions were formulated with two main

3The superspace coordinates are (xµ, ϑα) with spacetime indices µ = 0, 1, 2 and spinor indices α = ±.

The odd Grassmann variables ϑα are complex: ϑα = 1√
2

(θ1α + iθ2α). θsα (s = 1, 2) are real Grassmann

odd variables in N = 1 superspace. We follow the N = 1 superspace conventions in ref. [28].

– 8 –
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Figure 1. Two stacks of N D3-branes (wrapping different halves of the 6-circle) end from the right

(x2 > 0) on M D5-branes within the brane configuration (2.1). We have isolated the D3-D5 part

of the intersection in the directions (2789) leaving the NS5, (1, k)5 part of the setup implicit.

guiding criteria: the restoration of the appropriate amount of gauge invariance and su-

persymmetry. Even with these criteria there is still considerable freedom on the choice

of boundary degrees of freedom and boundary/bulk-boundary interactions. As a result,

a well-motivated specific proposal for the boundary theory of N M2-branes ending on M

M5-branes has not been possible so far.

In the context of the brane setup (2.1) we find ourselves in a much better situation.

Following the recent discussion in [23] we can now use the open string theory of the type

IIB Hanany-Witten setup as a concrete guide towards a boundary action. Different sectors

of the open string theory at the D3-D5 intersection are summarized figure 1. Besides the 3d

bulk fields V±, φ±, Aa, Ba from 3-3, 3′-3′, or 3-3′ open strings there are also g+ fields from

3-5 (red) strings and g− fields from 5-3′ (blue) strings. Both are 2d N = (1, 1) superfields;

g+ is in the bifundamental representation of U(N)+×U(M) and g− in the bifundamental of

U(M)× U(N)−. There are also fields from 5-5 strings (black color) which will be ignored

since their dynamics is irrelevant at low energies. The group representations in which

different supermultiplets belong are summarized in table 1.

The first step in the construction of a boundary action involves the addition of suitable

boundary interactions that restore the desired amount of supersymmetry. In the case at

hand we have explicit N = 2 supersymmetry in the bulk and want to restore N = (1, 1)

supersymmety on the boundary. Applying the prescription of ref. [15] to a general N = 2
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Superfield U(N)− U(N)+ U(M)

V+ 1 adjoint 1

V− adjoint 1 1

φ+ 1 adjoint 1

φ− adjoint 1 1

Aa � � 1

Ba � � 1

g+ 1 � �

g− � 1 �

Table 1. A summary of group representations.

action (expressed conveniently in N = 1 superspace language)

S =

∫
d3x d2θ1 d

2θ2 L(xµ, θ1, θ2) (3.10)

we obtain the action

S(1,1) =

∫
d3x
{
d2θ1 d

2θ2 L − d2θ1 ∂2L
∣∣∣
θ2=0

+ d2θ2 ∂2L
∣∣∣
θ1=0

− ∂2∂2L
∣∣∣
θ1=θ2=0

}
(3.11)

that preserves the supersymmetries generated by (Q1+, Q2−). In our case, S = Sbulk (see

eq. (3.9)). We will denote this boundary-corrected version of Sbulk

S(1,1)
bulk = S(1,1)

CS + S(1,1)
K + S(1,1)

W . (3.12)

The next step involves the incorporation of the boundary multiplets g± in a manner

that restores the broken U(N) × U(N) gauge invariance at the boundary. Following [23]

we extend the definition of g± in the bulk as 3d N = 2 superfields (denote them g±), and

define the U(M) N = 2 vector superfields V
g±
±

eV
g+
+ = g̃+e

V+g+ , eV
g−
− = ˜̄g−e

V− ḡ− . (3.13)

We are using the notation

g̃ = ḡ (gḡ)−1 (3.14)

that has the useful property

gg̃ = 1N×N . (3.15)

ḡ is the Hermitian conjugate of g. The proposed boundary interactions for the g± bifun-

damentals are [23]

S(gauge)
bdy = S(1,1)

kin [g+, V+] + S(1,1)
kin [g−, V−] + S(1,1)

CS

[
V
g+
+ ,V

g−
−
]
− S(1,1)

CS [V+, V−] . (3.16)
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S(1,1)
kin provides N = (1, 1) supersymmetric, gauge-invariant kinetic terms. In more explicit

form

S(1,1)
kin [g+, V+] + S(1,1)

kin [g−, V−] (3.17)

= − k

2π

∫
d2x

∫
dθ1+dθ2−

{(
ḡ+∇̂

(+)
− g+

)(
ḡ+∇̂

(+)
+ g+

)
+
(
g−∇̂

(−)
− ḡ−

)(
g−∇̂

(−)
+ ḡ−

)}
where the light-cone coordinates x± = x0 ± x1 were used, and ∇̂(±)

α are the boundary

versions of the chiral N = 2 super-gauge-covariant derivatives

∇(±)
α = e−V±Dαe

V± . (3.18)

The last two terms on the r.h.s. of equation (3.16) are a difference of two four-

dimensional actions. This difference is a total derivative term that contributes Wess-

Zumino-like interactions for g± supported only on the two-dimensional boundary. To ob-

tain this result one has to employ the property (3.15).

So far the total bulk-boundary action is

S(1,1)
bulk +S(gauge)

bdy = S(1,1)
kin [g+, V+]+S(1,1)

kin [g−, V−]+S(1,1)
CS

[
V
g+
+ ,V

g−
−
]
+S(1,1)

K +S(1,1)
W . (3.19)

There are explicit couplings of the boundary degrees of freedom g± with the vector multi-

plets V±, but no couplings with the other bulk superfields, φ±, Aa, Ba. From the string/M-

theory discussion in section 2 we recall that the boundary is expected to break the bulk

SO(6)×SO(2) R-symmetry to SO(4)×SO(2) and the action (3.19) does not have this prop-

erty. This is already an indication that the open string theory of the D3-D5 intersection

in configuration (2.1) involves additional boundary interactions.

From the open string theory of the configuration represented in figure 1 it is indeed

clear that there is a cubic interaction on the two-dimensional boundary of the form

S(matter)
bdy =

∫
d2x

∫
dθ1+dθ2−Tr

[
g−

(
φ̂− + ˆ̄φ−

)
ḡ− + ḡ+

(
φ̂+ + ˆ̄φ+

)
g+

]
. (3.20)

φ̂± denotes the N = (1, 1) projection of the bulk superfields φ± on the two-dimensional

boundary. For a succinct summary of boundary projections of superfields see appendix 3

of ref. [14]. More precisely, in the particular context of eq. (3.20) by φ̂± we refer to the

projection

φ̂±(θ1+, θ2−) =
˜̂(

eV± φ± e−V±
)

(3.21)

where the notation ˜̂ refers to the notation of eq. (198) in [14]. The N = 2 vector field

exponents have been inserted to gauge-covariantize the derivatives normal to the boundary

that appear in the ˜̂ projection. Notice that this cubic interaction has exactly the same

form with a corresponding bulk-boundary interaction that appears in the field theory of

the flat-space D3-D5 intersection [30, 31]. Although the physics of the flat-space D3-

D5 intersection (without the additional 5-branes of the HW setup that we consider) is
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considerably different from the physics of our setup the uniqueness of this cubic interaction

in [31] and its crucial role in the expected supersymmetry enhancement in that context,

gives some confidence that (3.21) is the only extra interaction that we need to include at

low energies.

As a further more direct check, we notice that the expected symmetries, e.g. invariance

under the Zk transformations

Aa → e2πi/kAa , Ba → e−2πi/kBa , g± → e∓2πi/kg± , (3.22)

do not allow cubic U(M)-invariant interactions between g± and the bi-fundamental

fields Aa, Ba.

Moreover, the boundary interaction (3.20) implements the breaking of the R-symmetry

SO(6)× SO(2)→ SO(4)× SO(2) (3.23)

that was anticipated from string/M-theory in section 2. This can be verified explicitly in

the following way. In the three-dimensional bulk the UV action with the massive φ± fields

exhibits an SU(2)diag symmetry that rotates simultaneously the bottom components of the

Aa and Ba superfields. In the IR the quartic superpotential (3.3) enhances this symmetry

to SU(2)A × SU(2)B that rotates independently the fields Aa, Ba. These two SU(2)’s

together with an independent SU(2)R symmetry that rotates the fields (A1, B∗1) combine

to the SO(6) of the bulk action. On the boundary the interaction (3.20) respects only the

diagonal SU(2)diag symmetry of SU(2)A × SU(2)B and does not allow it to enhance in the

IR. Hence, in the infrared we expect the theory to exhibit the overall global symmetry

SU(2)diag × SU(2)R × SO(2) ∼ SO(4)× SO(2).

Notice, that by integrating out the massive φ± fields, setting m = k
8π , and using the

identification (3.2), the boundary interaction (3.20) turns into the quartic interaction

S(matter)
bdy =

4π

k

∫
d2x

∫
dθ1+dθ2−TrU(M)

[
g−

(
B̂aÂ

a+ ˆ̄Aa ˆ̄Ba

)
ḡ−−ḡ+

(
ÂaB̂a+ ˆ̄Ba

ˆ̄Aa
)
g+

]
.

(3.24)

Observe that further interactions of the components of the Aa, Ba superfields will be in-

duced on the boundary by this integrating out procedure from the boundary terms included

in S(1,1)
K + S(1,1)

W according to the prescription (3.11).

3.3 Summary of the proposed bulk-boundary action

Collecting all the interactions in favor of which we argued above, we propose that the

infrared limit of the bare bulk-boundary action

Sproposed[g±, V±, φ±, A,B] = S(1,1)
bulk + S(gauge)

bdy + S(matter)
bdy

= S(1,1)
kin [g+, V+] + S(1,1)

kin [g−, V−] + S(1,1)
CS

[
V
g+
+ ,V

g−
−
]

+S(1,1)
K + S(1,1)

W + S(matter)
bdy (3.25)

describes the low-energy theory at the M2-M5 intersection (2.4). All the terms that appear

in (3.25) were defined previously in the main text. We will not attempt to write out this

action in components. In appendix A we present a more explicit form of the interactions in
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the case of a single M2-brane ending on an arbitrary number of M5-branes. The part that

is hardest to expand in components is the non-abelian N = 2 Chern-Simons action (3.5),

which is written as a four-dimensional integral. There is such a non-abelian term, for

general M , even in the abelian case of a single M2-brane, N = 1.

4 Outlook

In this paper we conjectured a specific action for the infrared theory in the M2-M5 in-

tersection (2.4) with explicit N = 2 supersymmetry in the bulk and explicit N = (1, 1)

supersymmetry on the two-dimensional boundary. The boundary degrees of freedom and

their interactions were deduced in large part from the open string theory of the type IIB

Hanany-Witten configuration (2.1). Some evidence from the proposed interactions fol-

lows from the consistency of the constructions in [23]. We verified the expected global

symmetries, and postulated that this action should exhibit the required SO(4) × SO(2)

R-symmetry in the deep infrared. Accordingly we conjectured the enhancement of the

boundary supersymmetry to N = (4, 2) for k > 2.

It would be very useful to find further checks of this preliminary proposal and eventu-

ally prove conclusively that it is the correct infrared description of M2-M5 physics. In this

context, it would be interesting to explore the relation of this work with the Basu-Harvey

equations [11]. It would also be interesting to explore relations with the work [22] upon

compactification. In that respect, notice that the 2d boundary theories in [22] also include

a pair of bi-fundamentals, which are analogous to our g±.

Having a UV bare action is a first step towards the analysis of the quantum properties

of the M2-M5 system. Generically this system is strongly coupled, but the introduction

of the CS level k opens the possibility to go in weak coupling regimes. These are roughly

regimes where the ratio N/k is small. It would be interesting to explore these regimes with

perturbative techniques.

One of the issues that would be worth understanding better is whether the 2d boundary

theory has a well-defined decoupling limit with a conserved 2d stress-energy tensor. One

can then ask about the central charge of the boundary theory, and how it depends on the

three parameters N,M, k. Our UV action introduces the massless boundary degrees of

freedom g± which belong in the bi-fundamental representation of U(N) × U(M). Hence,

their number scales as NM in agreement with the anomaly considerations of ref. [7]. In the

IR the corresponding central charge can exhibit different scalings, similar to the reduction

observed in the ABJM theory, where the N2 UV scaling of the massless degrees of freedom

reduces in the IR to the familiar N3/2. It would be very interesting to see if the action that

we propose has a consistent ’t-Hooft like limit with N,M � 1 and the ratio λ = M2/N

fixed, and if the central charge of the boundary theory scales in the large λ-limit as predicted

by the blackfold supergravity analysis (1.2).
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A One M2-brane ending on M M5-branes

As a more explicit illustration of the proposed bulk-boundary interactions, in this appendix

we consider in more detail the interactions that are packaged in the superspace action (3.25).

We will focus on the relatively simpler case of a single M2-brane ending on an arbitrary

number M of M5-branes. In this case the 3d bulk ABJM theory is abelian.

3d bulk action in N = 1 superspace form. Our starting point is the bulk action (3.9)

Sbulk = SCS[V+, V−] + SK [φ±, A,B, V±] + SW [φ±, A,B]

=
k

4π

∫
d3x d4ϑ

[
V+D

αD̄αV+ − V−DαD̄αV−

+ ϕ̄+ϕ+ + ϕ̄−ϕ− + Āae
V+Aae−V− + B̄aeV−Bae

−V+
]

+

∫
d3x d2ϑ

[
m(ϕ2

+ − ϕ2
−) +BaA

a(ϕ+ + ϕ−)
]

+ c.c. (A.1)

We employ the N = 1 superspace decomposition of the N = 2 vector multiplets

V±(θ1, θ2) = ∆±(θ1) + θ2Γ±(θ1) + θ2
2

(
E±(θ1) +D2

1∆±
)
, (A.2)

where ∆±, E± are N = 1 real scalar superfields and Γ± are N = 1 spinor superfields.

Following the conventions of [28] we use the notation D1α = ∂1α+(γµθ1)α∂µ for the N = 1

superspace derivative with respect to the real Grassmann coordinates θ1α (α = ± is a

spinor index). For the N = 2 chiral superfields we set

φ±(θ1, θ2) = ϕ±(θ1) + iθ2D1ϕ±(θ1) + θ2
2D

2
1ϕ±(θ1) , (A.3)

Aa(θ1, θ2) = Aa(θ1) + iθ2D1Aa(θ1) + θ2
2D

2
1Aa(θ1) , (A.4)

Ba(θ1, θ2) = Ba(θ1) + iθ2D1Ba(θ1) + θ2
2D

2
1Ba(θ1) . (A.5)

Inserting these expansions in the N = 2 expressions and performing the
∫
d2θ2 integrals

we obtain in N = 1 form

SCS[V±] =
k

4π

∫
d3x d2θ1

[
E+E+ + Γα+W+α +

1

2
Dα

1 (D1αE+∆+ − E+D1α∆+)

]
− k

4π

∫
d3x d2θ1

[
E−E−+Γα−W−α +

1

2
Dα

1 (D1αE−∆−−E−D1α∆−)

]
. (A.6)
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We remind that the gauge-invariant field strength for a spinor multiplet Γ is

Wα =
1

2
DβDαΓβ . (A.7)

In passing we note that it would have been considerably harder to write out the corre-

sponding expansion for the N = 2 Chern-Simons action in general gauge in the non-abelian

case. Also, note that in the so-called Ivanov gauge one sets ∆± = 0. This is not possible

in the presence of the boundary unless we want to start with a partially broken super-

gauge symmetry.

Similarly, for the kinetic terms SK we obtain

SK [φ±, A,B, V±]

=

∫
d3x d2θ1

{
1

2
Dα

1

[
ϕ̄+D1αϕ+ +D1αϕ̄+ϕ+ + ϕ̄−D1αϕ− +D1αϕ̄−ϕ−

]
+

1

2
e∆+−∆−Dα

1

[
ĀaD1αAa +D1αĀaAa

]
+

1

2
e∆−−∆+Dα

1

[
B̄aD1αBa +D1αB̄aBa

]
+
(
E+ + E− +D2

1(∆+ + ∆−)
)(
e∆+−∆−ĀaAa + e∆−−∆+B̄aBa

)
−2
[
Dα

1 ϕ̄+D1αϕ+ +Dα
1 ϕ̄−D1αϕ−+e∆+−∆−∇α1 Āa∇1αAa+e∆−−∆+∇α1 B̄a∇1αBa

]}
.

(A.8)

We used the N = 1 super-gauge covariant derivative

∇1α = D1α −
i

2
(Γ+α + Γ−α) . (A.9)

Finally,

SW [φ±, A,B] =
1

2

∫
d3x d2θ1

{
m
(
ϕ2

+ − ϕ2
−
)

+ 2mθ1 (D1ϕ+ϕ+ −D1ϕ−ϕ−)

+m
(
−Dα

1 (ϕ+D1αϕ+)+2D1ϕ+D1ϕ++Dα
1 (ϕ−D1αϕ−)−2D1ϕ−D1ϕ−

)
+BaAa (ϕ+ + ϕ−) + 2θ1D1

(
(ϕ+ + ϕ−)BaAa

)
−θ2

1

[
BaAaD2

1(ϕ+ + ϕ−)−D1BaD1(ϕ+ + ϕ−)Aa −D1AaD1(ϕ+ + ϕ−)Ba

+(ϕ+ + ϕ−)
(
BaD2

1Aa −D1BaD1Aa +D2
1BaAa

)]}
. (A.10)

We will refrain from a further evaluation of the θ1 integrals and the full expansion of

these interactions in components. Nevertheless, it is already apparent from these expres-

sions that there are several total-derivative terms that are supported on the boundary.

Boundary interactions. We restore half of the supersymmetry by adding suitable

boundary interactions to the bulk action according to the rule (3.11)

S(1,1) =

∫
d3x
{
d2θ1 d

2θ2 L − d2θ1 ∂2L
∣∣∣
θ2=0

+ d2θ2 ∂2L
∣∣∣
θ1=0

− ∂2∂2L
∣∣∣
θ1=θ2=0

}
. (A.11)
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In the total bulk-boundary action (3.25)

Sproposed[g±, V±, φ±, A,B] = S(1,1)
bulk + S(gauge)

bdy + S(matter)
bdy

= S(1,1)
kin [g+, V+] + S(1,1)

kin [g−, V−] + S(1,1)
CS

[
V
g+
+ ,V

g−
−
]

+S(1,1)
K + S(1,1)

W + S(matter)
bdy (A.12)

the first two terms on the second line are kinetic terms on the boundary and Smatter
bdy is a

potential term on the boundary (3.20). The third term, S
(1,1)
CS [V

g+
+ ,V

g−
− ], is the N = 2 CS

action for the non-abelian gauge group U(M) with the boundary completion (A.11). The

presence of a non-abelian boundary interaction, even for the abelian M2-brane theory, is a

characteristic difference between our proposal and previous approaches.

The remaining two terms, S(1,1)
K , S(1,1)

W , on the second line of (A.12) are simple to

write down. We collect the relevant expressions here. Once again, in order to keep the

expressions somewhat compact we express everything in terms of N = 1 superfields leaving

the full expansion in components, that follows straightforwardly, implicit. For the kinetic

interactions

S(1,1)
K =

∫
d3x d2θ1

[
LK − ∂2

(
ϕ̄+ϕ+ + ϕ̄−ϕ− + e∆+−∆−ĀaAa + e∆−−∆+B̄aBa

)]
+

∫
d3x ∂2

[
LK − ∂2

(
ϕ̄+ϕ+ + ϕ̄−ϕ− + e∆+−∆−ĀaAa + e∆−−∆+B̄aBa

)]
θ1=0

,

(A.13)

where LK is the integrand in eq. (A.8). Finally, for the superpotential interactions

S(1,1)
W =

∫
d3x d2θ1

[
LW −

1

2
θ2

1∂2

(
m(ϕ2

+ − ϕ2
−) + BaAa(ϕ+ + ϕ−)

)]
+

1

2

∫
d3x ∂2

[
m(ϕ2

+ − ϕ2
−) +m

(
−Dα

1 (ϕ+D1αϕ+) + 2D1ϕ+D1ϕ+

+Dα
1 (ϕ−D1αϕ−)− 2D1ϕ−D1ϕ−

)
+ BaAa(ϕ+ + ϕ−)

]
θ1=0

+ c.c. , (A.14)

where LW is the integrand in eq. (A.10).
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