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In this work, the dynamic magnetic field within a tearing-unstable three-dimensional current sheet

about a magnetic null point is described in detail. We focus on the evolution of the magnetic null

points and flux ropes that are formed during the tearing process. Generally, we find that both mag-

netic structures are created prolifically within the layer and are non-trivially related. We examine

how nulls are created and annihilated during bifurcation processes, and describe how they evolve

within the current layer. The type of null bifurcation first observed is associated with the formation

of pairs of flux ropes within the current layer. We also find that new nulls form within these flux

ropes, both following internal reconnection and as adjacent flux ropes interact. The flux ropes ex-

hibit a complex evolution, driven by a combination of ideal kinking and their interaction with the

outflow jets from the main layer. The finite size of the unstable layer also allows us to consider the

wider effects of flux rope generation. We find that the unstable current layer acts as a source of tor-

sional magnetohydrodynamic waves and dynamic braiding of magnetic fields. The implications of

these results to several areas of heliophysics are discussed. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4896060]

I. INTRODUCTION

The topology of a magnetic field describes how its field

lines are connected and remains invariant if the field exists

in a truly ideal plasma environment.1 However, if the plasma

is only close to ideal, the process of magnetic reconnection

enables the magnetic topology to change—liberating the free

magnetic energy. Reconnection and topology change are

central to many observed phenomena throughout the

Heliosphere, including solar flares, geomagnetic storms in

the Earth’s magnetosphere, and saw-tooth crashes in toko-

maks (Ref. 2, and references therein).

Current sheets are a pre-requisite for the process of

reconnection: within these structures, the plasma can be suf-

ficiently non-ideal that plasma and magnetic field become

decoupled, allowing the magnetic connectivity to change.

Understanding where current sheets form and how they

behave is a crucial element of understanding reconnection,

and consequently any phenomena that depend upon it.

Important topological features common to astrophysical

magnetic fields at which current sheets preferentially form

include three-dimensional (3D) magnetic null points–iso-

lated points in space at which the field strength is zero. In the

solar atmosphere, null points have been inferred to be abun-

dant in the chromosphere and lower corona during quiet peri-

ods of the solar cycle,3,4 and during more active periods

coronal null points are a predominant feature of active

regions.5 They have also been inferred to be involved in so-

lar flares,6–8 jets,9,10 flux emergence,11 and Coronal Mass

Ejections (CMEs).12,13 3D nulls have additionally been

observed using in situ measurements from the Cluster

satellites in the Earth’s magnetotail14 and are a prominent

feature of the polar cusp regions.15,16 When combined with

current sheets, null points are also excellent particle acceler-

ators,17,18 and may be a contributing source of high energy

particles in some solar flares.6,8

It is well established that under the right conditions, cur-

rent sheets will fragment via the tearing instability.19 Recently,

it has been shown that even at Magnetohydrodynamic (MHD)

scales, large aspect ratio current sheets are explosively unstable

to this instability at the high magnetic Lundquist numbers typi-

cal of astrophysical plasmas.20,21 When the field is two dimen-

sional (2D), simulation studies have shown that the subsequent

non-linear phase is dominated by magnetic island formation,

coalescence and ejection and that the average reconnection

rate is only weakly dependent upon the magnetic dissipation

[e.g., Ref. 22]. However, when the field defining the current

layer is fully three-dimensional these magnetic islands are

replaced by flux ropes [e.g., Refs. 23 and 24]. These helical

regions of magnetic field are fundamental elements of evolving

magnetic fields found at all scales throughout the Heliosphere;

from laboratory experiments25 to solar filaments, CMEs, and

interplanetary magnetic clouds.26–28 Therefore, understanding

how flux ropes are generated and behave in the context of the

reconnection process is also of major importance.

In a recent series of numerical experiments, we demon-

strated that high aspect ratio current sheets formed at 3D null

points fragment via the tearing instability, generating multi-

ple evolving flux ropes which become heavily involved in

the reconnection process (Ref. 29, hereafter to referred as

paper 1). In addition, it was noted that multiple null points

were formed during the process of fragmentation. Motivated

by a desire to better understand how flux ropes, reconnec-

tion, and topology change are interlinked, in this paper we

focus on one particular numerical simulation and give a
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detailed account of the dynamics of the magnetic field fol-

lowing the onset of the tearing instability. In particular, we

explain how and when new null points are created and anni-

hilated, the formation and evolution of the flux ropes, and

how flux ropes and null points are coupled in this scenario.

In Sec. II we describe the simulation setup, and Sec. III sum-

marise the evolution of the simulation. In Secs. IV–VI, the

formation and annihilation of null points during the simula-

tion are discussed alongside simple analytical models of the

different bifurcations. Section VII then describes the evolu-

tion of the flux rope structures and their relation to 3D nulls.

Finally, Secs. VIII and IX discuss the significance of our

results and summarise our findings.

II. SIMULATION SETUP

The simulation was carried out using the Copenhagen

staggered mesh code.30 The simulation run that we focus on

in this paper had a constant resistivity (g) value of 5� 10�5,

with a stretched grid of [450, 2000, 200] points spread across

a domain of 6½0:5; 3:5; 4�—case 1 in paper 1. The magnetic

field in the volume contains a radially symmetric null at

t¼ 0, formed by placing two magnetic point sources outside

the simulation box with strengths chosen so that in the vicin-

ity of the null point the linearised field is given by

B ¼ ½�2x; y; z�. This initial equilibrium is disturbed by

applying a tangential driving velocity on the x-boundaries,

localised around the spine footpoints, see Fig. 1. The driving

has opposite sign at x ¼ 60:5, and is smoothly increased to

a constant value of approximately 10% of the local Alfv�en

speed within one time unit, after which it remains constant.

Length and time units are non-dimensionalised such that one

unit of time is the Alfv�en travel time across one unit of

length in a uniform plasma and magnetic field with q¼ 1

and jBj ¼ 1. The plasma is an ideal gas (c ¼ 5=3), initially

at rest with e¼ 0.025 and q¼ 1. All boundaries are closed

and line-tied (B � n fixed, v ¼ 0 outside driving regions). The

mathematical expressions for the magnetic field and driver

can be found in paper 1.

III. STAGES OF EVOLUTION

The evolution of the magnetic field passes through sev-

eral phases. We first define each stage, giving a brief

summary description, before considering the dynamics in

detail further below.

(i) Current Sheet Formation: Once the driving begins,

the footpoints of the spine lines are advected in oppo-

site directions. A current layer forms in the weak field

region around the null, generated by the local collapse

of the spine and fan towards each other. As the driv-

ing continues, the current sheet spreads across the fan

surface, see Fig. 1.

(ii) Quasi-Steady Reconnection: As the current intensity

grows, spine-fan reconnection within the layer ensues,

reconnecting field lines across the spines and the fan

surface.31 The rate of reconnection becomes quasi-

steady since the rate that flux is driven onto the layer

is approximately balanced by the rate it is recon-

nected and ejected. The sheet continues to slowly

lengthen and widen due to a slight imbalance of flux

pile up at the edge of the current layer compared with

the reconnection rate.

(iii) Primary Tearing: Beyond a critical Lundquist number

(Sc � 2� 104, for details see paper 1) the now high-

aspect-ratio current sheet undergoes tearing, forming

a symmetric flux rope pair that is ejected from the

sheet by the out-flowing plasma.

(iv) Kinking Instability and Interaction: Subsequent flux

ropes form in the wake of the initial pair as the current

layer becomes increasingly fragmented. With the

symmetry of the sheet now broken these flux ropes

are susceptible to a 3D instability32,33 that kinks them

so that they interact and break up. At this stage, the

weak field region near the sheet center displays an

increasingly turbulent field behavior, while further

out the layer is characterised by twisted writhing flux

rope structures.

Stages I and II have been investigated by a number of

authors [e.g., Refs. 31 and 34–36]. Following the identifica-

tion of stages III and IV in paper 1, we now aim to give a

detailed account of the magnetic field evolution during these

final two stages with the aim of better understanding the cou-

pling between reconnection, flux rope formation, and topol-

ogy change.

IV. NULL FORMATION

The dynamics of the current layer in stages III and IV is

highly complex, with multiple flux rope and null point inter-

actions. We begin by describing the evolution of the magnetic

nulls, the predominant topological feature of our experiment.

During stages I and II, the topology of the magnetic field

remains relatively simple. The current sheet that forms cannot

be a true discontinuity (due to the non-zero magnetic diffu-

sion and finite resolution of the simulation grid), therefore the

field contains a single, highly collapsed null point, i.e., a null

with a very small angle between its spine and fan.31 Stage III

is marked by the bifurcation of this null and the formation of

helical field structures that we denote as “flux ropes”—

described in greater detail below. To observe this in our simu-

lation, we tracked the number and position of the magnetic

FIG. 1. The magnetic field in the simulation at t¼ 9 (corresponding to the

end of stage I), depicting the setup of the experiment. Arrows show the tan-

gential driving velocities applied on the x boundaries, volume shading shows

the current density, and red and yellow field lines show the 3D null point

magnetic field structure.
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nulls using the trilinear method, described in Ref. 37. The

magnetic structure in the vicinity of a generic 3D null point is

given to first order by the linear terms of a Taylor expansion:

Bnull ¼Mx�, where M is the Jacobian matrix evaluated at

the null, x� ¼ ½x� xn; y� yn; z� zn�T , and the null is located

at ðxn; yn; znÞ [e.g., Ref. 38]. The eigenvalues and eigenvec-

tors ofM at a given null dictate the topological degree (t.d.)

of the null (�1 or þ1),39 its nature (spiral or radial) as well as

the orientation of the spine lines and fan surface. Sixth-order

spatial derivatives (matching those from the numerical

scheme) are used to accurately construct the Jacobian of the

magnetic field for each null point.

We identify two predominant null point bifurcation

processes occurring during the formation and ejection of flux

ropes in our simulation. The first, denoted the primary bifur-

cation, occurs during the initial formation of the flux ropes

following the tearing instability and has a direct analogue

with the change in topology in 2D tearing. Bifurcations of

the second type, referred to hereafter as secondary bifurca-

tions, occur as a result of internal reconnection within newly

formed flux ropes and have no direct analogue in 2D. In

what follows we discuss both classes of bifurcation within

the context of the first flux rope pair formation and ejection

(stage III), and present simple analytical models to describe

them.

A. Primary bifurcations

The original collapsed null (t.d. �1) bifurcates via a

pitchfork bifurcation40 to form two nulls of t.d. �1 flanking

a spiral null of t.d. þ1, see Fig. 2(a). This topology change is

analogous to the formation of islands in 2D current sheets.

However, there are several crucial differences. The first is

that there exists no closed flux surface surrounding the spiral

null (as about the O-point in 2D), but rather plasma and flux

from both domains are efficiently mixed within the associ-

ated helical field structure, Fig. 2(b). This open, spiraling to-

pology occurs because the field normal to the plane

containing the three nulls (Bz) varies in the normal direction.

That is, since the Jacobian of B is the vicinity of the bifurca-

tion has a non-zero real eigenvalue associated with the eigen-

vector ez, the two in-plane (complex conjugated) eigenvalues

must also have a non-zero real part (since r � B ¼ 0). This

means that the field lines must spiral inwards/outwards,

rather than forming closed ellipses (corresponding to purely

imaginary eigenvalues). There is a further complication for

our interpretation of the field structure and evolution intro-

duced by the 3D topology shown in Fig. 2(a). Typically, flux

ropes are thought of as twisted field regions with a strong

“guide field” and no field reversals. Defining “flux ropes” as

such, this bifurcation actually produces a pair of flux ropes

with oppositely directed guide fields, so that each of the two

spine lines of the spiral null forms the axis of one rope, and

the fan of the spiral null lies on the interface of the two

(against which these flux ropes splay out with a 3D

stagnation-point geometry), Fig. 2(a).

A simple model for the magnetic field that captures the

essence of this initial bifurcation and demonstrates clearly

the difference between the 2D and 3D pictures is given by

B ¼ B0

L0

� jþ 1ð Þx; y; jz
� �

þ $� B0

L0

je
�x2

x2
l

�y2

y2
l ẑ

 !
; (1)

where B0 and L0 are some typical field strength and length

scale. This field consists of a current cylinder, with strength

and dimensions controlled by j and xl, yl, respectively, added

to a background linear null field centered on the origin. j¼ 0

sets the background to a 2D null line, and j¼ 1 produces a

radial 3D null.

If j 6¼ 0, as j is increased the null point at the origin

changes in nature from t.d. �1 to t.d. þ1 at the point of

bifurcation. An equivalent 2D measure, the Poincar�e
index,3,41 also exhibits a similar transition for the 2D null

line (j¼ 0), which changes from �1 to þ1 as j is increased.

The Jacobian evaluated at the origin is given by

M¼ B0

L0

�j� 1
1

2
q� jzð Þ 0

1

2
qþ jzð Þ 1 0

0 0 j

0
BBB@

1
CCCA; (2)

where q ¼ 2jð1=x2
l � 1=y2

l Þ and jz ¼ 2jð1=x2
l þ 1=y2

l Þ. The

eigenvalues of this matrix can be written as

k1;2 ¼ �
j
2

6
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2
f þ j2 � j2

z

q
; (3)

k3 ¼ j; (4)

where j2
f ¼ j2

th � j2 and j2
th ¼ ðjþ 2Þ2 þ q2. Now, when jz is

small we have k1;3 > 0 and k2 < 0 corresponding to a null of

t.d. �1. If one now increases jz, one reaches a critical thresh-

old at j2z ¼ j2
f where the bifurcation occurs, and for j2

z > j2
f

we have k3 > 0 and k1;2 < 0, i.e., the null at the origin has

changed to t.d. þ1. Increasing jz further, k1 and k2 become

complex conjugates when j2
z > j2

th. Figure 3 shows this tran-

sition in the eigenvalues as a function of jz for a 2D null line

and a 3D null point. In the singular case of a 2D null line,

j2f ¼ j2
th, therefore the transition in this case is directly from

X-line (real eigenvalues) to O-line (purely imaginary eigen-

values). When j 6¼ 0; j2
th > j2

f and the bifurcation initially

creates a critical spiral with t.d. þ1 (a null where the field

FIG. 2. Model of the field structure immediately after the primary bifurca-

tion. (a) The 3D field structure; (b) schematic of the field in the xy-plane; (c)

schematic of the magnetic topology following a symmetric pitchfork bifur-

cation in 2D, for comparison. When the field is 3D, @Bz=@z 6¼ 0 lending the

field an open configuration, see text for details.
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lines in the fan are aligned to two directions). Once j2z > j2th,

the null becomes a regular spiral null as observed in the

fields from our simulation—see below. This simple model

captures the change in the characteristics of the original 3D

null point during the primary bifurcation process.

Once a bifurcation occurs, the value of j dictates the top-

ological stability of the new magnetic configuration. When

j¼ 0 (i.e., when B is locally two-dimensional), the new field

is topologically unstable since it contains two X-points con-

nected by their separatrix lines, Fig. 2(c). Any perturbation of

this field will break this symmetry and the field will form the

generic configuration shown in Fig. 4(c). The four domains

of the global field are now partitioned by the separatrices of a

single X-point, which we refer to hereafter (following the

usual convention) as the “dominant X-point.” Since the con-

figuration of Fig. 2(c) is inherently unstable, any evolving

field will instantaneously revert to this second configuration.

By contrast, when the field is 3D (j 6¼ 0) the open topol-

ogy of the central spiral means that a finite volume of flux

(red field lines in Fig. 2(a), grey field lines in Fig. 2(b)) sepa-

rates the adjacent spines and fans of the two flanking 3D

nulls. The greater the out-of-plane component of the field

(the larger j), the wider will be the corridor. Thus, this sym-

metric configuration—in which a pair of separators connects

the spiral null to each of the flanking nulls—is topologically

stable. This implies that the situation in which all three nulls

lie on the separatrix surface separating the two topological

domains will persist for a finite period of time following the

pitchfork bifurcation (unlike the 2D case in which the

generic case is to have a dominant null).

Nevertheless, for a sufficiently large perturbation of the

system the symmetry of this null point triplet is eventually

broken in the simulation—as shown in Fig. 4(b). This occurs

as one pair of nulls is caught in an outflow jet and leaves the

fan plane of a single null once more as the interface between

the two global topological regions (referred to hereafter as

the “dominant null”). This requires a spine-fan bifurcation;42

a global topology change whereby the spine of one null

crosses the fan of another, instantaneously becoming part of

the fan in the process. As there is a finite envelope of flux to

traverse for this bifurcation to occur, in our simulation this

does not occur instantaneously (as it would in 2D), but rather

after some finite time—see Figs. 5(a) and 5(c). Later in the

simulation, once the field structure becomes more complex,

spontaneous null pair creation occurs within the outflow

region, leading directly to the latter configuration.

B. Secondary bifurcations

Once the primary bifurcation creates the flux rope pair,

this double rope structure is deformed by the strong recon-

nection outflow in the mid-plane, see Figs. 5(b) and 5(d). At

this stage, magnetic fluctuations lead to the formation of new

null point pairs within the flux rope, in what we will refer to

as secondary bifurcations. These new null pairs appear to

form spontaneously near the axis of the flux rope, close to

the spine of the spiral null (t.d. þ1) produced by the primary

bifurcation, Fig. 6(a). These spontaneous bifurcations lack a

direct analogue in 2D, occurring as they do along the “out of

plane” direction. However, they can be well described by

models with cylindrical symmetry, to which some perturba-

tion is added: making the field more generic.

Such a magnetic field that mimics the structure observed

in the simulations following the bifurcations is given in cy-

lindrical coordinates ðr;/; zÞ by

B ¼ ½0; r/0;B0� þ $� A1 þ Bpert; (5)

where A1 ¼ jr expð� r2

r2
l

� z2

z2
l

Þ/̂. The field Bpert should be

chosen to break the azimuthal symmetry to give a generic

topology—here we set Bpert ¼ kzŷ. The parameter k
controls the amplitude of this perturbation. For the case of

exact symmetry (k¼ 0), the two nulls of opposite degree are

connected spine-to-spine and fan-to-fan in a spheromak con-

figuration, see also Ref. 40. This configuration is topologi-

cally unstable, and in the generic case (k 6¼ 0) where the

symmetry is broken the fan planes intersect only along two

separators,43 Fig. 6(b) (k¼ 0.2). As k is increased from zero

and the symmetry broken the isolated field within the

FIG. 4. Model of the field structure when the symmetry of the primary bifur-

cation is sufficiently broken. (a) The 3D field structure; (b) schematic of the

field in the xy-plane; (c) schematic of the magnetic topology following an

asymmetric pitchfork bifurcation in 2D for comparison. Generally, a 2D

field immediately reverts to the topologically stable configuration shown in

(c), whereas when the field is 3D a global spine-fan bifurcation is necessary

as both the symmetric and asymmetric configurations are topologically sta-

ble, see text for details.

FIG. 3. Real and imaginary parts of the central null point/line eigenvalues as

a function of current at the null (jz) throughout the primary bifurcation in 2D

(j¼ 0) and 3D (j¼ 1). Based on the model in Eq. (1); in both cases

xl ¼ yl ¼ B0 ¼ L0 ¼ 1.
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spheromak becomes connected to the field outside. To be

consistent with the outer magnetic field, the inner spines

(those previously within the spheromak) become connected

with magnetic field near the outer spines, Fig. 6(b). The fan

surfaces of each of the two nulls become split into two

regions bounded by the two separators; some fan field lines

connect directly to external magnetic field, while some con-

nect to field lines that lay inside the spheromak in the unper-

turbed field (k¼ 0). The latter behave in a similar way to the

inner spines, wrapping around on themselves before connect-

ing with magnetic field originally outside the spheromak in

the unperturbed field (as all of the previously isolated flux

within the spheromak eventually must). However, as this is

difficult to visualise the fan plane field lines in Fig. 6 have

been truncated to give a clearer view of the spine lines which

show agreement between the simulation field (black) and the

model (yellow).

It is worth pointing out that such null pair formations

are forbidden in an ideal evolution of the magnetic field.

Thus, their presence within the flux ropes is a clear indicator

that topology change is occurring within the flux ropes them-

selves, not just in the regions of high current density between

them.

V. TURBULENT-LIKE WEAK FIELD EVOLUTION

The magnetic topology becomes challenging to follow

once the first flux rope pair is ejected and the system enters

stage IV, where newly formed flux ropes kink and begin to

interact. However, at least in the central region, the evolution

described above generally follows. The flux rope pairs form

via the primary bifurcation process described above. Prolific

secondary bifurcations then occur within these flux rope

structures, and near to the mid-plane (z¼ 0)—where the field

in the current sheet is weakest—clusters of nulls are formed

as flux rope pairs begin to interact, discussed further below.

Within these clusters, null pairs are formed and annihilated

rapidly. Figure 7 shows an example of a magnetic field with

a cluster of nulls at the intersection of several interacting

flux ropes on its way to being ejected, and a small flux rope

pair beginning to form in its wake. The rapidly fluctuating

and changing nature of the field within the null clusters may

be the beginning of a turbulent evolution, but the lack of re-

solution within these regions prevents us from saying with

any confidence that they exhibit true turbulence. Therefore,

we refer to them simply as exhibiting a “semi-turbulent” or

turbulent-like behavior, see also the discussion in paper 1.

VI. OUTFLOW JETS

The region where the outflow jet collides with ambient

magnetic field is also highly complex with a large number of

null points forming there. In the early stages, the classical

reverse current spike is seen to form (see Refs. 44 and 45).

Soon after, this region becomes unstable to a shear flow

instability and the outflow flails back and forth at regular

intervals, generating turbulent eddies that sweep up the weak

magnetic field in this region. It is not clear whether these

eddies are the result of the Kelvin-Helmholtz instability, as

described in the linear theory of Ref. 46, or perhaps the result

of our asymmetric driving setup and line-tied external field

configuration. The shear flow within these eddies also

leads to the formation of short-lived magnetic null point

pairs, Fig. 7. Similar null generation in the outflow regions

FIG. 5. The magnetic topology of the first flux rope pair formed following tearing within the current layer (stage III). (a) and (b) The overall shape of the magnetic field

within the simulation as the flux ropes form. Grey field lines are plotted from line-tied points on the y-boundaries in the plane of spine-fan collapse (z¼ 0). Shading

indicates current density which is weaker within the flux ropes than in the surrounding sheet. In (a), the initial formation of the flux ropes is indicated by a slightly

weakened region of current near the sheet center. By t¼ 14.2 (b) the flux rope has lengthened and widened such that a broader, curved weakened current region is evi-

dent. (c) and (d) The null point structure within the flux rope pair at each time. Pink circles indicate nulls with a t.d. of –1 and green triangles show nulls with a t.d. of

þ1. A small number of field lines are plotted to show the relative positions of the spines and fan planes of each null, colored according to the key on the left.
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has recently been described in Ref. 47 in 2D as a result of

local enhancements in plasma-b within sheared eddying out-

flows. We do not investigate these bifurcations further, but

postulate that a similar process may be occurring.

The regular formation of the outflow eddies is inter-

rupted by the ejection of a flux rope pair, or multiple pairs

connected via a null cluster. If the flux rope pair is small, as

in the case of the first pair to be ejected (Fig. 5), the central

spiral null (t.d.þ1) of the rope catches up and annihilates

with the collapsed null (t.d. �1) ahead of it in the outflow

region. The null pairs formed through secondary bifurcations

within a given rope also then quickly annihilate with each

other. When the combined structure is larger, as in the multi-

rope example in Fig. 7, the structure generates new null pairs

as it slams into the static field in the outflow region (which is

a region of relatively high plasma and magnetic pressure due

to our closed boundary conditions and the finite extent of the

imposed shear driving velocity). This is analogous to the null

pair generation in the current layers that form between col-

liding islands in the fractal picture of 2D plasmoid acceler-

ated reconnection.48 However, in the present simulation this

burst of additional nulls is short lived and all nulls in the

structure also then quickly annihilate.

VII. FLUX ROPE DYNAMICS

We now focus on the dynamics of the many flux ropes

that form during the simulation. We emphasise again that

such “ropes” are not distinct structures as might be envisaged

by an O-line with an added guide field (see the earlier discus-

sion). Rather the field within the ropes spirals inwards/out-

wards and is connected to the ambient field nearby which

may have no twist, or may even be connected with another

twisted “rope” structure. Therefore, our definition of a flux

rope—a region of helical, twisted field—is somewhat arbi-

trary. However, these structures are co-located with channels

of weak current in our fragmenting current layer (Fig. 5),

and are clearly important in controlling how reconnection

proceeds in the layer. Furthermore, their dynamics can be

complex, since they are susceptible to a 3D instability32,33

which kinks them so that they interact with one another and

break up. We describe below their evolution and dynamics

in the simulation.

A. Formation, propagation, and ejection

As explained above, flux ropes can form in pairs—con-

nected by the spines of a spiral null. Once a pair of flux ropes

has formed, the field near the spiral null in the mid-plane

(z¼ 0) is highly twisted compared with field further out

along the spines of this null (the axis of each flux rope). As a

consequence, bi-directional torsional MHD waves are

launched along the ropes which allow the twist to propagate

away from the centre of the current layer—Fig. 8(b), see also

the online animation (Multimedia view). These waves appear

to travel close to the local Alfv�en speed, so we postulate that

these are torsional Alfv�en waves. Note that these waves are

launched in a direction that is nearly perpendicular to that of

the outflow jets of the reconnection region. Similar three-

dimensional spreading has been observed in laboratory

FIG. 7. A complex cluster of nulls in a turbulent-like region being advected

towards the left outflow jet, with a new flux rope pair forming in its wake

following a primary bifurcation (t¼ 21.5). Field lines are traced from nearby

each null point—following the convention of Fig. 5.

FIG. 6. (a) Close up view of the field topology of a secondary bifurcation at

t¼ 14 in the simulation. Spine and fan field lines are shown for the secondary

nulls (following the key in Fig. 5). The fan plane field lines have been trun-

cated to better view the topology. (b) Analytical model of this secondary bifur-

cation. Yellow and blue field lines depict the magnetic field near the secondary

nulls with t.d. þ1 and �1, respectively. The fan surfaces intersect along two

separators, shown in green and cyan. Model parameters: B0 ¼ �1; j ¼ /0 ¼
rl ¼ zl ¼ 1, and k¼ 0.2. Note that in (a) the spine of the primary bifurcation

null (t.d. þ1) spirals around the entire secondary pair after helically wrapping

the (red) spine of the nearest secondary null (t.d.þ1), not shown.
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experiments49 and two-fluid simulations50 of reconnection in

setups with strong guide fields when reconnection is initiated

in a localised region. As noted in paper 1, this propagation of

the twist away from the site of tearing, along with plasma

ejection along the ropes, leads to a much flatter flux rope

cross section than for islands in comparable 2D simulations.

Depending on where a given flux rope pair forms rela-

tive to the large scale outflow jets of the main layer, different

behaviors occur. If a pair forms near to an outflow jet, as in

the example in Fig. 5, then both ropes and the associated spi-

ral null are ejected together in the outflow. The uni-

directional outflow near the flux rope pair transports the

whole structure, with the spiral null at the center advected

fastest by the more rapidly outflowing plasma in the mid-

plane. An example of this is shown by the red field lines in

Fig. 8(a). As this occurs, the torsional MHD waves propagate

outwards along each rope—sweeping up the separatrix sur-

face where the rope spans it and helping to reconnect flux

across it, see paper 1. The annihilation of the spiral null

when it reaches the outflow is indicative of a disconnection

between the two rope structures, Fig. 8(b). Both flux ropes

then continue to be advected away from the current layer by

plasma flow out of the mid-plane as the twist along their

length spreads out and begins to relax, Figs. 8(c) and 8(d).

While some flux ropes are formed entirely within one

outflow, others that form near the center of the layer can

become highly stretched and distorted when different parts

of the flux rope are caught in oppositely directed outflows.

As such, the flux rope evolution becomes highly dynamic in

stage IV, once secondary kinking sets in. Figure 9—orange

field lines—shows one such example. In this case, the sec-

tion of the flux rope splayed out against the null cluster is

advected downwards, whereas the rest of the rope is

advected upwards towards the opposite outflow region, Fig.

9(a). This stretches the rope as the two sections are moved

further apart.

FIG. 8. Flux rope formation and ejection. Top and bottom-left panels: field lines within different flux rope pairs. The grey field lines are traced from fixed

points on the y ¼ 63:5 boundaries, showing the field evolution in the mid-plane (z¼ 0). Bottom right panels: field lines traced from near the null points. Pink

circles show nulls with t.d. �1 and green triangles nulls with t.d. þ1, see Fig. 5. An animation of this figure is available online. (Multimedia view) [URL:

http://dx.doi.org/10.1063/1.4896060.1]

102102-7 P. F. Wyper and D. I. Pontin Phys. Plasmas 21, 102102 (2014)

http://dx.doi.org/10.1063/1.4896060.1


Lastly, flux rope formation is not just limited to pair for-

mation within the central region of the current sheet. This is

particularly true once the main layer becomes highly frag-

mented. Flux ropes form when the tearing instability occurs

over a finite patch of the current sheet, which subsequently

spreads through the propagation of torsional MHD waves. In

stage III and early in stage IV, these patches form in the

mid-plane as by symmetry the strongest current occurs there.

This generates the “end on” pairs of flux ropes discussed

above, along with their associated null bifurcations.

However, at later times (once these initial flux ropes become

highly kinked) the current in the layer becomes patchy and

fragmented. With the symmetry broken, the patches of high-

est current begin to be found out of the mid-plane, Fig. 10.

Single flux ropes are then formed as these patches also begin

to tear. However, no new nulls are generated as these ropes

form away from the weak field of the mid-plane.

B. Interaction

A predominant feature of stage IV in the evolution is the

interaction of the flux ropes. Due to the direction of the mag-

netic shear outside the layer, the twist (or equivalently the

sign of helicity51) transferred to each of the flux ropes has

the opposite handedness either side of the mid-plane

(z¼ 0)—see Fig. 2. However, all flux ropes on the same side

(z � 0, say) of the mid-plane have the same handedness of

twist and so if two are brought into contact they merge into a

larger rope structure. Figure 11 shows an example of this—

four flux ropes (green, aqua, magenta, and blue) have

become wrapped into one another whilst propagating out-

wards from the mid-plane. Each started out as a localised

twisted region but has been brought into contact following

the onset of the ideal kinking instability—see also the online

material. This merging of twisted flux ropes in the outflow is

a nice example of the upward cascade in scales of magnetic

helicity that has recently been suggested by Ref. 52 in their

“Helicity Condensation” model to account for the smooth-

ness of solar coronal magnetic fields at large scales (albeit on

a much smaller scale in our case).

This continual formation near the center and ejection

beyond the edges of the layer of relaxing flux rope structures

generates a progressively more complex field in the vicinity

of the separatrix surface as the simulation progresses. Newly

forming ropes near the center thread into older relaxing ropes

towards the edge of the sheet, which in turn thread into even

older relaxing ropes beyond them. In this way, a complex

FIG. 9. Example of a flux rope (orange field lines) being stretched as different sections of the rope are caught in opposite outflow regions. Top panels—field

lines within selected flux ropes. Bottom panel—positions of the magnetic nulls with field lines traced along their spines and fans as in Fig. 5.

FIG. 10. The maximum current density in the volume compared with in the

mid-plane (z¼ 0). Note: the layer becomes unstable at t � 10.

FIG. 11. Braiding of multiple flux ropes (t¼ 21). Shown are field lines col-

ored according to their individual flux rope.
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layer of relaxing and propagating flux ropes is formed in the

vicinity of the boundary between the two topological

domains.

This complexity is particularly evident in the footpoint

mapping from the line-tied side boundaries of the simulation

box. Figure 12(b) shows a connectivity map from the z¼�4

boundary coloured according to whether the footpoints con-

nect with the top (black) or bottom (white) of the box. The

flux ropes that straddle the separatrix surface generate the

spirals in this color map and it is the evolution of these spi-

rals that significantly enhances the flux transfer between the

two topological regions, see paper 1. However, not all flux

ropes straddle the separatrix. This would be true of, for

instance, the flux rope pair associated with the spiral null

configuration depicted in Figs. 4(a) and 4(b). The field within

these spiral structures exhibits a large but finite change in the

footpoint mapping and so should be visible as a Quasi-

Separatrix Layer (QSL).53 A simple way of identifying field

lines that pass through a QSL is by evaluating the norm of

the Jacobian of the field line mapping

N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@Y

@x

� �2

þ @Y

@y

� �2

þ @Z

@x

� �2

þ @Z

@y

� �2
s

; (6)

where ðYðx; yÞ; Zðx; yÞÞ are the mapped coordinates on the

top/bottom boundaries of the footpoints (x, y) on the side

boundary. Figure 12(a) shows a contour plot of log N. The

discontinuity in the mapping across the separatrix surface

shows up as the bright curve that follows the intersection of

the black and white regions in Fig. 12(b). However, a num-

ber of QSL layers are evident away from this interface as

ridges of high N, indicating that significant fine scale struc-

ture occurs not only just on the separatrix but also nearby it.

VIII. DISCUSSION

One of the more important conclusions of this work was

to show that in addition to flux rope structures, spiral nulls

are a major element of the magnetic topology when the tear-

ing instability occurs in a weak, fully three-dimensional

field. In particular, since flux ropes are found at all scales

throughout the heliosphere the flux rope and the null point

topology associated with it (especially the primary bifurca-

tion) has implications in a number of areas.

Starting with the smallest scales, kinetic simulation

studies of tearing in 3D neutral sheets without guide fields

have noted that spiral field structures form within the mag-

netic field following tearing.54,55 As neutral sheets are topo-

logically unstable, the tearing in these sheets must collapse

to form a web of 3D magnetic nulls. Those nulls that are

associated with flux ropes are likely to have the configura-

tions associated with the primary or secondary bifurcations.

This is also true of the magnetic configuration in the

Earth’s magnetotail—which is often referred to as an X-line,

but that must actually consist of many fluctuating 3D null

points when the guide field is very weak or non-existent.

Indeed, 3D spiral nulls have been identified from cluster data

to exist within turbulence in the magnetotail14,56 and 3D ki-

netic simulations of tail reconnection.57 Our models help to

explain the origins of these topological features. Elsewhere in

the Earth’s magnetosphere, the general field configuration of

the polar cusps is one of a large-scale magnetic null [e.g., Ref.

16]. Under northward IMF conditions, reconnection occurs at

a high aspect ratio current sheet formed over these regions.

Global simulation and observational studies have noted the

formation of flux ropes in the current sheets formed in these

regions [e.g., Refs. 58 and 59]. Our model for the primary

bifurcation describes the formation and evolution of these flux

ropes. Other simulations have observed that these 3D nulls

bifurcate and form clusters.15 The subsequent dynamics

described herein may also explain the formation of these mul-

tiple nulls. Of more general importance is the fact that we

have shown that these flux ropes form in the vicinity of the

separatrix surface, where they aid to drastically increase flux

transport between the two topological regions (see paper 1).

Therefore, in this context flux rope formation may also help to

mix the solar wind and magnetospheric plasma populations.

At even grander scales, Masson et al. (2013)60 suggested

a scenario based upon the breakout model13 to explain how

impulsively accelerated Solar Energetic Particles (SEPs) are

able to access open flux and escape into interplanetary space.

Their 2.5D (2D with a constant or zero guide field) model

relied upon the interchange of flux between domains divided

by “nulls” at the intersection of closed flux surfaces. We

have demonstrated (in agreement with previous works, e.g.,

Refs. 23 and 61) that such closed surfaces do not in general

exist—except in the case which they studied of a 2.5D field.

The open flux rope structures formed in 3D are even more

likely to aid in SEP transport, given the associated efficient

mixing of flux between the two topological domains.

Concerning the general dynamics, we have also shown

that the tearing instability is a natural mechanism for produc-

ing complex fields not only just on the separatrix surface but

also nearby it. This is in some ways similar to the S-web

model62 proposed to explain the high latitudes at which the

slow solar wind is observed. In this model, a complex web of

QSLs (resulting from deformations of the coronal hole

boundary) surround the heliospheric neutral sheet and are

proposed as likely sites for reconnection. Similarly, the evo-

lution of the flux ropes in our simulations results in the crea-

tion of a series of QSLs in the near vicinity of the separatrix.

FIG. 12. (a) log N showing the presence of QSLs nearby the separatrix sur-

face. Produced at t¼ 21.5. (b) Color map produced by plotting 80 000 field

lines from z ¼ �4:0. Black indicates footpoints of field lines connected with

the top of the box (x¼ 0.5) and white those connected with the bottom of the

box (x ¼ �0:5). The separatrix surface lies at the intersection of the two

domains.
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However, the QSLs in the S-web model are associated with

extra structure in the potential field, whereas by contrast our

results demonstrate that this additional structure around the

separatrix may be generated as a result of the reconnection

process itself even in fields with much simpler global

structure.

IX. CONCLUSIONS

In this paper, we examined the evolution of the magnetic

field within the dynamic layer formed following the onset of

the tearing instability in a current sheet generated about a 3D

magnetic null point. The main motivation was to understand

how topology change, flux rope formation and reconnection

are linked in an evolving, tearing-unstable 3D null point cur-

rent layer. Our main results can be summarised as follows:

(i) New null points are formed within the current layer in

two main ways: (1) primary bifurcations—analogous

to island formation in 2D—and (2) secondary bifurca-

tions occurring within flux ropes, but without a direct

2D analogue. Both produce spiral nulls.

(ii) By contrast with the 2D case, it is possible to have

multiple nulls located on the global separatrix surface.

A global topological (spine-fan) bifurcation is

required when these nulls are ejected from the current

layer to “detach” them from the global separatrix sur-

face, leaving a single “dominant null.”

(iii) Flux ropes form in conjunction with null creation, but

can also form independent of nulls, depending upon

where the tearing occurs in the current layer.

(iv) Flux rope interaction continually increases the com-

plexity of the magnetic field in the vicinity of the sep-

aratrix, broadening the overall width of the non-ideal

layer.

(v) Localised tearing is a source of torsional MHD waves,

launched at an angle to the main reconnection outflow

jets.
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