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We use the very forward neutron energy spectra measured by the LHC forward experiment at 7 TeV
to extract the πþp total cross section at center-of-mass energies in the range 2.3–3.5 TeV. To do this, we
have to first isolate the π-exchange pole in forward neutron production in pp collisions, by evaluating other
possible contributions, namely, those from ρ and a2 exchange, from both eikonal and enhanced screening
effects, from migration, from neutron production by Δ-isobar decay and from diffractive nucleon
excitations. We discuss the possible theoretical uncertainties due to the fact that the data do not exactly
reach the π pole. We choose the kinematical domain where the pion contribution dominates and
demonstrate the role of the different corrections which could affect the final result.
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I. INTRODUCTION

The recent LHC forward (LHCf) measurements of leading
neutron production at 7 TeV [1] have boosted the interest in
attempts to extract the high-energy pion-proton cross section
from these data; see for instance Refs. [2–4]. This, in turn,
would allow new discriminative tests of the existing models
of high-energy hadron interactions. Recall that at present the
results of direct measurements of the πþp cross sections are
known only up to

ffiffiffi
s

p ¼ 25 GeV [5]. In order to extend the
pion-proton interaction energy range, various indirect meth-
ods for extraction of the πp cross section were proposed
in the literature; see, for example, Refs. [6–9]. All these
approaches are based one way or another on the assumption
that one can reliably isolate the pion-exchange contribution
in the corresponding processes. This topic has a long and
checkered history (see, e.g., Refs. [10–16]).
The idea of using the inclusive leading neutron spectra in

high-energy proton collisions for the separation of the pion-
exchange contribution is to exploit the natural conjecture
that, due to the small value of the pion mass, this term
should play an important, or even, dominant role. The
position of the pion pole is rather close to the physical
region, and if it were possible to measure the cross section
just at the pole, then undoubtedly we would deal with pure
pion exchange. In particular, in such a case, absorptive
corrections, caused by rescattering effects (see, for exam-
ple, Refs. [17–19]) would be negligible, and the value of
the so-called survival factor, S2, of the rapidity gap
associated with π exchange would be close to 1, S2 ¼ 1.
The problem is that we cannot reach the pole, which is

outside the physical region, and the only way is to focus on
a limited kinematic domain, located close to the π pole, and
then to evaluate the size of the various corrections caused
by the extrapolation to m2

π. The main effects are:

(i) the contributions from the ρ and a2 Regge trajecto-
ries which have intercepts higher than that for the
pion; these terms will dominate when the momen-
tum fraction carried by the leading neutron xL → 1,

(ii) absorptive corrections, that is a gap survival factor
S2 < 1,

(iii) leading neutrons produced in the decays of higher
proton excitations such as N�ð1440Þ or the Δ isobar,

(iv) migration [19] of the leading neutron due to baryon
rescattering.

In Sec. II, we recall the expressions for the inclusive
neutron cross section caused by the pion and the secondary
Reggeon exchanges; then, in Sec. III, we consider the
screening (or absorptive) corrections. In Sec. IV. we consider
in detail those kinematic domains of the LHCf forward
neutron data [1] which allow us to sufficiently isolate the
π-exchange contribution so as to obtain reliable values of the
πp total cross section. We find that to be closer to the pion
pole and to minimize the transverse momentum effects we
should choose LHCf data from the largest rapidity interval
(η > 10.76) and to concentrate on the three bins of the
neutron energyEn ¼ 3.25 − 3; 3 − 2.75; 2.75 − 2.5 TeV. In
the largest xL bin (En ¼ 3.5–3.25 TeV), the experimental
error and the possible contribution from ρ and a2 trajectories
are too large, while at lower xL values, the pion has larger
virtuality due to the longitudinal component of its momen-
tum (tmin ¼ ð1 − xLÞ2m2

N=xL), and the contribution from
baryon rescattering, that is from migration, becomes non-
negligible.
We present our results for σtotðπpÞ in Sec. V. In Sec. VI,

we use the same formalism to describe the old lower-energy
CERN-ISR data. Our conclusions and the outlook for
applying the formalism to future leading neutron data
are presented in Secs. VII and VIII, respectively.
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II. BORN-LEVEL CROSS SECTIONS

In this section, we evaluate the contributions to the cross
section for forward neutron production in pp collisions
coming from π, ρ, and a2 exchanges and from baryon
excitations of the protons.

A. Pion exchange

Neglecting absorptive effects, the contribution of
Reggeized pion exchange to the inclusive neutron produc-
tion reads

xLdσπðpp→nXÞ
dxLdq2t

¼
G2

πþpnð−tÞ
16π2ðt−m2

πÞ2
F2
πNðtÞσtotπpðM2

XÞð1−xLÞ1−2απðtÞ; ð1Þ

where απðtÞ ¼ α0πðt −m2
πÞ is the pion trajectory with slope

α0π ¼ 0.9 GeV−2 and coupling G2
πþpn=8π ¼ 13.75 [20,21].

The formulas for the invariant mass MX of the produced
system X and of −t are given by

M2
X ¼ sð1 − xLÞ; ð2Þ

−t ¼ ð1 − xLÞ2m2
N=xL þ q2t =xL; ð3Þ

where qt is the neutron transverse momentum andmN is the
nucleon mass.
Here, we have retained in the Reggeon signature

factor ηπðtÞ only the denominator 1=ðt −m2
πÞ, while the

remaining t dependence is absorbed in the effective vertex
form factor FπNðtÞ. Below, we will use the non-Reggeized
version of (1),

xLdσπðpp→nXÞ
dxLdq2t

¼
G2

πþpnð−tÞ
16π2ðt−m2

πÞ2
F2
πNðtÞσtotπpðM2

XÞð1−xLÞ;

ð4Þ

with a dipole parametrization of the form factor

FπNðtÞ ¼ 1=ð1þ ðm2
π − tÞ=0.71 GeV2Þ2: ð5Þ

In such a form, (4), the interpretation of the result in terms
of the πp cross section is more straightforward. It is
possible to slightly modify the expression for FπNðtÞ.
This does not change the result noticeably. Moreover,
since we work in the small jtj domain, where the pion
trajectory απðtÞ is close to zero, in both the Reggeized and
non-Reggeized cases, we get practically the same result.

B. Secondary trajectories

Another contribution to the leading neutron spectrum
is generated by the exchange of ρ and a2 isovector

trajectories. Due to their larger intercepts αρ;a2ð0Þ≃ 0.5,
this contribution should dominate as xL → 1. We write
the cross section arising for ρ exchange in a form analogous
to (1)

xLdσρðpp → nXÞ
dxLdq2t

¼ jηðtÞj2 g
2
nf þ g2sfq

2
t =4m2

N

16π2ðt −m2
ρÞ2

F2
ρNðtÞσtotρpðM2

XÞð1 − xLÞ1−2αρðtÞ:

ð6Þ

We assume “exchange degeneracy” (see, for example,
Ref. [22]) between the ρ and a2 exchanges. That is, the
trajectory αa2ðtÞ¼αρðtÞ¼0.54þα0t (with α0 ¼0.9GeV−2).
Moreover, this means that the ρ and a2 trajectories have the
same residues and vertex form factors. The only difference
is the signature factor

ηðtÞ ¼ 1

2
½1� expð−iπαRðtÞÞ� ð7Þ

with a plus sign for a2 exchange and a minus sign for ρ
exchange (R ¼ ρ, a2). This means that when a2 exchange
is included we have to replace the first factor jηðtÞj2 in (6)
by 1,

xLdσρþa2ðpp → nXÞ
dxLdq2t

¼ g2nf þ g2sfq
2
t =4m2

N

16π2ðt −m2
ρÞ2

F2
ρNðtÞσtotρpðM2

XÞð1 − xLÞ1−2αρðtÞ: ð8Þ

Here, gsf and gnf are the couplings corresponding to the
processes where the neutron helicity is opposite (spin
flip) to that of the incoming proton or the same (nonflip)
as the proton helicity,1 and we use FρNðtÞ ¼ expðBρtÞ
with Bρ ¼ 2.3 GeV−2.2

Contrary to the pion-proton coupling G, which is known
to rather good accuracy, there are no accepted values for
the ρða2Þ-nucleon vertices. The couplings gnf and gsf can
be obtained from old Regge phenomenology, say, from
Ref. [24], or alternately can be based on the vector meson
dominance (VMD) model [25]. Since absorptive correc-
tions were not accounted for in the old Regge phenom-
enological description, we prefer to use the VMD-based

1Recall that in the case of pion exchange we also have flip and
nonflip contributions hidden in the factor −t ¼ q2t þ q2L ¼
q2t þ tmin þ ð1 − xLÞq2t =xL, where the first term, q2t , corresponds
to spin-flip production, while the second term, q2L, describes the
nonflip process.

2This value is consistent with the slope observed for the RRP
term in the triple-Regge analysis [23], accounting for the fact that
part of the RRP slope comes from the Reggeon trajectory term
α0R lnð1=ð1 − xLÞÞ.
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values which are larger (see Table AA3 of Ref. [24]).
That is, our estimate of the correction caused by the ρ, a2
contribution may be considered “conservative.” Finally,
following the additive quark model, we assume that
σðπpÞ ¼ σðρpÞ ¼ σða2pÞ.

C. Baryon excitations

For Δ-isobar production via pion and ρ and a2
exchanges, we use formulas analogous to (1), (8) with
couplings taken from Table AA3 of Ref. [24]. Since the
different helicity states of the Δ are produced with different
couplings, we account for the polarization effects in
Δ → nπ decay.
Larger uncertainties may result from neutrons coming

from the decays of the N� resonances produced via the
diffractive proton dissociation. Currently, there are no
7 TeV data on the cross section and polarization of the
corresponding resonances. The only more or less relevant
experimental cross section is the TOTEM result for low-
mass (MX < 3.4 GeV) proton dissociation, σDlowM ¼
2.62� 2.17 mb [26]. Proton excitations with MX >
2 GeV have a small probability to create a neutron with
large xL and small qT ; these states are decaying mainly
into multiparticle systems with two or more pions. The
main danger represents the contribution from the MX ¼
1.3–1.8 GeV region. In our computations, we assume a
nonpolarized (isotropic) decay with the branching ratio
Brðp� → nπþÞ≃ 1=3 and the corresponding cross section
of one proton excitation3 to be 1 mb; see Sec. IV E.

III. SCREENING CORRECTIONS

Absorptive effects play an important role in processes
where one particle carries away almost all of the beam
energy; that is, its xL is close to 1. This leads to the formation
of a rapidity gap, since the remaining energy is not large
enough to produce secondaries in the forward rapidity
interval. However, any interaction of the fast particle will
decrease the value of its xL and thus diminish the cross
section at large xL. For example, these absorptive or
screening corrections were responsible for the breaking of
factorization, by about an order of magnitude, in diffractive
dijet production at the Tevatron [27].
There are two types of absorptive corrections. These

corrections are discussed in some detail in Ref. [19]. First,
we have the effects caused by the inelastic interactions
between the fast incoming proton (or leading neutron)
and the target proton. The secondary particles from these
interactions populate the rapidity gap separating the neu-
tron from the other hadrons and carry away energy from the
leading neutron. The corresponding correction is described
by additional eikonal-like Pomeron exchanges, and we

denote it as the “eikonal” gap survival factor S2eik. The
corresponding diagrams are sketched in Fig. 1.
Besides this, we have to consider an interaction (shown

symbolically in Fig. 2) of the fast nucleon (proton or
neutron) with the particles within the pion-target proton (or
ρ-, a2-proton) amplitude, that is in the remaining X system.
This contribution could be enhanced due to a large
multiplicity of particles in this system X. Therefore, we
denote the corresponding damping factor as S2enh. The
diagrams where an additional Pomeron screens the pion
(ρ, a2) propagator [such as shown in Fig. 3(b)] are also
included in the S2enh factor, while the diagrams which
describe an interaction of the pion (or ρ, a2) with the
system X [such as shown in Fig. 3(a)] are included in the
π-proton (ρ−, a2-proton) cross section.

FIG. 1. Symbolic diagrams of the eikonal absorptive correc-
tions to the cross section for the inclusive process ap → Xn.
In this paper, hadron a is a proton p, but in general, the target
particle a can be any hadron. The extra lines denoted by P, which
surround the triple-Regge interaction, represent multi-Pomeron
exchanges between the leading hadrons.

FIG. 2. Symbolic diagrams for the “enhanced” absorptive
corrections to the cross section for the inclusive process
ap → Xn, which become important at very high energies. The
extra lines denoted by P, which are coupled directly to the ingoing
p or outgoing n, represent multi-Pomeron exchanges.

FIG. 3. Multi-Pomeron corrections to the Reggeons in the
triple-Regge diagrams.

3Note that 2.6 mb corresponds to excitations of both of the
initial protons.
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A. Eikonal survival factor

To evaluate the most important (eikonal) screening
correction, we follow the approach of Ref. [28] and work
in impact parameter, b space. The “Born” cross section (1)
can be written as (see Fig. 4 for the definition of the
variables)

xLdσπ

dxLdq2t
¼ A

Z
d2b2
2π

eiq⃗t·b⃗2Fπðb2Þ
Z

d2b3
2π

eiq⃗t·b⃗3Fπðb3Þ

×
Z

d2b1
2π

Fσðb1Þ; ð9Þ

where all factors which do not depend on the transverse
momentum are incorporated in the first factor A. The
amplitudes Fπðb2;3Þ are the Fourier conjugates of the
pion-exchange amplitudes written in qt space.. In particu-
lar, the spin nonflip amplitude reads

Fπ
nfðbÞ ¼

Z
d2qt
2π

e−iq⃗t·b⃗
qLFπNðtÞ
t −m2

π
ð1 − xLÞ−απðtÞ; ð10Þ

where qL is given by

qL ¼ ffiffiffiffiffiffiffi
−t∥

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

Nð1 − xLÞ2 þ ð1 − xLÞq2t Þ=xL
q

ð11Þ

and mN is the mass of the nucleon. Care should be taken
in the case of a spin-flip amplitude since it depends on the
direction of the transverse momentum q⃗t. In practical
terms, this means that the angular integration results not
in a zero-order Bessel function J0ðbiqtÞ but in the first
order function J1ðbiqtÞ (with i ¼ 2, 3).
In the last integral, FσðbÞ corresponds to the pion-proton

amplitude. To calculate this amplitude, we use the same
Pomeron-proton vertex form factor FPom and the same
Pomeron trajectory slope, α0Pom, as the ones used in the
model [29] which allows a good description of the elastic
proton-proton cross section measured by TOTEM [30] atffiffiffi
s

p ¼ 7 TeV,

FσðbÞ ¼
Z

d2kt
2π

e−ik⃗t·b⃗FN−Pomð−k2t ÞFπ−Pomð−k2t Þx−k
2
t α

0
Pom

L ;

ð12Þ

where the pion-Pomeron vertex form factor Fπ−PomðtÞ ¼
expðBπtÞ is parametrized by an exponent with slope Bπ ¼
2 GeV−2 [31]. Note that there is no exponent eik⃗t·b⃗ in the
last integral of (9) since this pion-proton amplitude is taken
at kt ¼ 0.
Now, in the b representation, to account for the eikonal

absorptive correction, we just have just multiply the
integrand of (9) by the screening factors

Seikðb⃗2 − b⃗1ÞSeikðb⃗3 − b⃗1Þ
¼ expð−Ωðb⃗2 − b⃗1Þ=2Þ expð−Ωðb⃗3 − b⃗1Þ=2Þ; ð13Þ

where the proton-proton opacity Ω is taken from the model
of Ref. [29] which reproduces well the elastic pp-cross
section at 7 TeV. That is, we have to compute the integral

Iπðb1Þ ¼
Z

d2b
2π

FπðbÞ expð−Ωðb⃗ − b⃗1Þ=2Þ ð14Þ

and to write the cross section as

xLdσπ

dxLdq2t
¼ A

Z
d2b1
2π

Fσðb1ÞjIπðb1Þj2: ð15Þ

For the exchange of the ρ and a2 trajectories, the gap
survival factor S2eik is accounted for in a similar way.
Up to now, we described the calculation within the

framework of a single-channel eikonal model which does
not account for the internal structure of the incoming
nucleon and for the possibility of nucleon excitations,
p → N�, in the intermediate states.
On the other hand, the model [29], which we use,

corresponds to a two-channel eikonal. That is, the nucleon
wave function is described by a superposition of two Good-
Walker [32] (GW) diffractive eigenstates. These are eigen-
states with respect to the high-energy (Pomeron-exchange)
interaction.4 So, to implement the two-channel eikonal, we
have to repeat the prescription described above for each
combination of the GWeigenstates using the corresponding
opacities Ωij where the indices i, j ¼ 1, 2 denote the GW
state in the fast (beam) and target nucleon, respectively.

B. Effect of the enhanced diagrams

The correction caused by enhanced screening can be
calculated using the Abramovsky-Gribov-Kancheli
Reggeon cutting rules [33]. These rules relate the cross
section of high-mass diffractive dissociation with the value
of absorptive correction.
Now, diffractive dissociation plays the role of the elastic

cross section which was used to fit the eikonal proton opacity
ΩðbÞ while calculating the S2eik survival factor (13). The

FIG. 4. The conjugate variables used in (9).

4There are no transitions between the different eigenstates
caused by the Pomeron.
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difficulty is that, unlike the elastic cross section, the
experimental data on high-mass dissociation are quite scarce.
Based on the preliminary TOTEM data [34], we assume that
the cross section of single dissociation (integrated over the
MX ¼ 3.4–1100 GeV mass interval) is σSD ¼ 6.5 mb5 and
that the mean t slope6 is Bdis ¼ 8.5 GeV−2.
Next, in order to estimate the contribution of the

diagrams7 of the type of Fig. 3(b), we use the Pomeron
piece of the pion-nucleon cross section

σðπNÞ ¼ 13.63ðsπN=1 GeV2Þ0.0808 mb; ð16Þ

in the Donnachie-Landshoff [35] parametrization, and the
slope BπN ¼ 6 GeV−2 (see, e.g., Fig. 10 of Ref. [31]).
Strictly speaking, both the cross section and the slope
depend on xL and the transverse momentum of the neutron.
Here, we adopt representative values since the result is
comparatively insensitive to the exact numbers. Indeed, due
to the relatively small t slope (in comparison with that of
the elastic scattering), the corresponding screening ampli-
tude comes from the region of large impact parameters, bt.
The low bt domain is already strongly suppressed by
eikonal absorption (13), while at larger bt the “tail” of
the remaining enhanced screening amplitude is rather
small. Therefore, this component of screening only weakly
affects the final result. The same is valid for πN absorption,
Fig. 3(b). Thus, it is sufficient to calculate the effective πN
and enhanced opacities, Ωenh, in a simplified way as

ΩπNðbÞ ¼
σðπNÞ
2πBπN

e−b
2=2BπN ; ð17Þ

ΩenhðbÞ ¼
σenh

2πBdis
e−b

2=2Bdis ; ð18Þ

where the effective cross section σenh ¼ 14.1 mb was
recalculated8 based on the TOTEM data as

σenh ¼ ðσSD=2ÞBdis=ðσtot=16πÞ: ð19Þ

Combining these results together, the opacity Ωðb⃗ − b⃗1Þ
in (14) is replaced by the sum

Ω ¼ Ωeik;ijðb⃗ − b⃗1Þ þΩπNðbÞ þ ΩenhðbÞ ð20Þ

with Ωeik;ij corresponding to the opacity in the interaction
of the i and j GW components.
Let us examine this last modification in more detail.

In fact, not all inelastic interactions populate the rapidity
gap and reduce the neutron energy fraction, xL. Part of the
inelastic events have, from the beginning, no secondaries
within the gap interval. First, there are events with
dissociation of the target proton. It is evident that for target
proton dissociation no new secondary particles are pro-
duced within the rapidity gap interval between the fast
neutron and the remaining system X. Next, with some
probability, PðxLÞ, such a (moderately large) gap could be
formed at the hadronization stage [36]. Assuming that, in a
standard inelastic event, the neutron distribution is

dN
dxn

≃ const; ð21Þ

we get PðxLÞ ¼ 1 − xL. Therefore, we have to multiply the
full opacity by 1 − PðxLÞ and in addition multiply the
eikonal opacity Ωeik;ij by the factor

1 − σSD=2σinel ¼ 1 − 6.5=2ð98.7 − 24.9Þ ¼ 0.956 ð22Þ

to account for proton dissociation. So, finally, Eq. (20) is
altered so that the full Ω in (14) becomes

Ω ¼ xLð0.956Ωeik;ijðb⃗ − b⃗1Þ þΩπNðbÞ þ ΩenhðbÞÞ: ð23Þ

The absorptive factors for the leading Δ-isobar produc-
tion and for the ρ- and a2-exchange amplitudes are
calculated in a similar way.

IV. ISOLATION OF π EXCHANGE IN LEADING
NEUTRON LHCf DATA

We have seen that the inclusive leading neutron cross
section is not totally given by the simple pion-exchange
formula (1). Above, we have studied several other effects.
We have enumerated contributions from ρ and a2 exchanges
and from neutrons coming from the Δ-isobar or from
diffractive nucleon excitations decays, N� → nπ. Next, we
discussed absorptive corrections; indeed, we considered
both eikonal and enhanced screening effects. So, in order
to confront the LHCf data on forward neutrons, we should
explore the kinematic domains of the data where (a) π
exchange dominates and (b) the original Born amplitude is
minimally modified.

A. Form factor of the πN vertex

Even for pion exchange, the form factor of the pion-
nucleon vertex is poorly known. This is not a big problem
when we are working close to the pion pole, say, using the

5The small value, 6.5 mb, is explained by the smallness of the
triple-Pomeron vertex and strong eikonal absorption.

6In the three measured MX mass intervals, the values of slope
were found to be Bdis ¼ 10.1, 8.5, 6.8 GeV−2 [34].

7The significant role of these diagrams was emphasized in
Ref. [16].

8We do not include here the cross section of low-mass
dissociation, since in the case of a two-channel eikonal the
low-mass dissociation is reproduced by the nonzero dispersion
of the individual GW component cross sections σij (see Ref. [29]
for the details). We take only a half of the whole σSD since the
experimental number accounts for the dissociation of both
protons, while here we have to consider high-mass dissociation
of the target proton only.
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LHCf data for neutron rapidities η > 10.76 and looking for
the neutrons with En ¼ 3.25–2.5 TeV which correspond to
a mean −t ¼ 0.02–0.08 GeV2, respectively. In this case, a
variation of the slope of the form factor, FðtÞ ¼ eBt, by
δB ¼ �1 GeV−2 will lead to a 2δBðm2

π − tÞ ∼�ð8 − 20Þ%
variation of the result, respectively. Already at this stage,
we see that at lower xL the theoretical uncertainty increases,
and it is safer not to go below xL ¼ 0.75 (that is, the
En ¼ 2.75–2.5 TeV bin). The situation becomes much
worse for a smaller rapidities. In particular, for the case
of η ¼ 8.99–9.22, the mean jtj is about 0.5 GeV2 leading to
up to a factor of 0.4 to 2.7 uncertainty.9 Therefore, below,
we consider only the largest η > 10.76 rapidity interval.
Recall that in our calculation we used non-Reggeized

pion exchange. If instead the Reggeized version of (1)
was implemented with a vertex form factor FðtÞ ¼
expð1.5ðt −m2

πÞÞ [where ðt −m2
πÞ is in GeV2], the results

change only by �2% (where +2% is for the En ¼
2.75–2.5 TeV bin).

B. Screening effects

Besides this, for larger jtj, the screening effects become
stronger. For the η ¼ 8.99–9.22 interval, the full survival
factor is rather small, namely S2 ¼ he−Ωi≃ 0.032–0.075;
that is, hΩi ∼ 3. So, due to the exponential dependence,
even a moderate theoretical uncertainty in the calculation of
Ω could strongly influence the result. For larger rapidities
η > 10.76 and xL > 0.75, the major contribution comes
from relatively large impact parameters where the nucleon
is not so black, that is, where the optical opacity Ω is not
large. Here, for En ¼ 3.25–2.5 TeV, the mean survival
factor is, respectively, S2 ¼ 0.45–0.3, and within an accu-
racy of (5%–10)%, we can rely on the calculation of the
absorptive corrections. Indeed, using, instead of the two-
channel eikonal model [29], a one-channel approach with
the opacity taken just from the experimental data multiplied
by the “semienhanced” factor C ¼ 1.3 [37] to account
for possible N� intermediate states (and neglecting the
Re=Im ratio10), we obtain a cross section larger by about
6%–12% only.
Neglecting completely enhanced screening enlarges the

cross section by about 10%–20%, while replacing the
Donnachie-Landshoff Pomeron contribution to the pion-
nucleon cross section by σπN ¼ 26 mb, we obtain a result
smaller by 4%–8%. These numbers correspond to the
En ¼ 3.25–2.5 TeV interval.

C. ρ, a2 and Δ effects

The contribution coming from the secondary ρ and a2
Reggeons calculated using the couplings obtained in
Ref. [24] based on the vector meson dominance model
is rather large in the highest xL bin (with En in the
3.5–3.25 TeV bin and η > 10.76). Assuming the equal
meson-proton cross sections (σðρpÞ ¼ σða2pÞ ¼ σðπpÞ),
it amounts to 37% of the pion-exchange term. However, in
three bins with lower En, the contribution of the ρ and a2
diagrams decreases to (12–9)%. Bearing in mind large
experimental error (46%) and the large admixture of the ρ
and a2-exchange processes in the highest xL bin, we prefer
not to use this kinematic region for extracting the high-
energy pion-proton cross section.
The contribution from the Δ-isobar decay in this domain

is practically negligible. Calculating the cross section of Δ
production using the couplings from Ref. [24], after the
decay, we get less than a 1.1%–2.5% correction.

D. Migration

The next problem is migration. After an additional soft
interaction, the fast nucleon may change its momentum
and “migrate” from one kinematical bin to another. This
possibility was considered in detail in Ref. [19] where it
was shown that for low qt < 0.1 GeV migration practically
does not affect the neutron spectra at xL > 0.75 and thus
could be neglected in the region of interest.11

E. Low-mass diffractive proton excitations

Amore serious problem arises from neutrons produced in
the decay of low-mass diffractive proton excitations,
N� → nπ. At

ffiffiffi
s

p ¼ 7 TeV, the TOTEM result [26] for
the cross section of low-mass proton dissociation is
σDlowM ¼ 2.6� 2.2 mb, with MX < 3.4 GeV; this measure-
ment corresponds to allowingboth protons to diffract. That is,
the cross section of one proton dissociation is about 1.5 mb.
Note that part of this cross section is already included in the
pion-exchange contribution. Indeed, keeping the elastic
component in the total pion-proton cross section, we include
the pp → ðnþ πþÞ þ p process where in almost the whole
essential kinematic region the mass of the nπ system is less
than 3.4 GeV. Accounting for the screening corrections, this
Drell-Hiida-Deck [38] contribution is equal to

σDHD ¼ 0.026σelðπpÞ ∼ 0.2–0.3 mb: ð24Þ

Thus, we still have more than 1 mb of diffractive proton
dissociation which, in its decay, could produce leading

9Besides this, at larger qt values, the relative contribution of
the ρ, a2 trajectories increases since the corresponding vertices
have a very large spin-flip component which is proportional to qt.10The real part of the elastic amplitude was accounted for in
our calculations of the rescattering corrections. It enlarges the
final cross section by less than 1%.

11One rescattering gives about 1.6%–7.1% contribution in the
En ¼ 3.25–2.5 region. Note that after the S2 absorption is taken
into account only the large bt contributions survive, and the mean
number of rescatterings, hνi ¼ hΩi, is less than 0.3 for the En ¼
3.25–3 TeV bin and less than 0.6 for the En ¼ 2.75–2.5 TeV bin.
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neutrons. Unfortunately, there is insufficient information at
the LHC energies; we do not know theMX mass distribution,
the t slope of the low-mass dissociation, nor the possible
polarization of the N� resonances. Looking at the lower-
energydata, we assume that the dominant contribution comes
from the region ofMX ∼ 1.7 TeV and that the N� system is
produced with the same slope as that in elasticpp-scattering;
that is, Bdis ¼ 20 GeV−2 [30].
At large values of the neutron xL > 0.75, the main

contribution arises from the two-body N� → nπþ decay.
For higher multiplicity, it becomes difficult to allow for
such a large neutron momentum fraction. We assume a
nonpolarized decay with the branching ratio12 Br≃ 1=3.
The cross sections that we find, assuming σðN�Þ¼1mb,

can be rather large; see the third column of Table I. In the
highest En ¼ 3.5–3.25 TeV bin, they could account for up

to 25% of the leading neutron cross section. For the next
three bins, this contribution becomes negligible in com-
parison with the experimental error bars of the LHCf data.

V. π + p CROSS SECTION FROM LHCf
LEADING NEUTRON DATA

We use the different contributions to forward neutron
production in pp collisions described above, together with
LHCf data [1], to extract the πþp total cross section at
various energies ffiffiffiffiffiffiffisπp

p . The results are shown in Table II.

We show only the errors coming from the experimental
error bars. The uncertainties arising from the theoretical
approach were discussed in Sec. IV, and the sizes of the
individual contributions are shown in the central part of
Table I. As expected from Sec. IV, we see that the result for
the highest En bin (that is, the bin with the highest xL,
which corresponds to the lowest pion-proton energy ffiffiffiffiffiffiffisπp

p )

is not reliable and is shown only for completeness. On the
other hand, we expect better theoretical accuracy for the
next three experimental En bins where we have a larger
fraction of π exchange. It is clearly seen from Table II and
Fig. 5 that the pion-proton cross section increases with
energy; however, the uncertainties are rather large.

TABLE I. The second and third columns show, respectively, the cross sections (μb=TeV) for leading neutrons as
measured by LHCf [1] and the contributionΔσdiff coming from the decay of low-mass proton excitations, N� → nπ,
calculated as described in Sec. IV E. The i ¼ π; ρþ a2;Δ columns are the ratios Ri ¼ ðdσi=dEnÞ=σðπþpÞ of the
calculated inclusive cross section to the total pion-proton cross section. The ratios presented here are measured in
inverse TeV and multiplied by a factor of 1000, so that the LHCf result divided by Ri gives the value of σðπþpÞ in
mb; for example, for the 3–2.75 TeV bin, accounting for π exchange only, we obtain σðπþpÞ ¼ 282=5.53≃ 51 mb;
since the π fraction is 88% (see Table II), this results in the true σtotðπþpÞ≃ 45 mb. Finally, the “Migr” column
shows the effect of fast neutron rescattering (that is, migration of the leading neutron). The last column shows the
mean value of the momentum fraction carried by the pion in the case of the pion-exchange contribution.

En (TeV) LHCf data Δσdiff π ρþ a2 Δ Migr (%) h1 − xLi
3.5–3.25 232� 106 58 2.41 0.87 0.01 0.2 0.047
3.25–3 249� 78 9.6 5.62 0.66 0.06 0.6 0.109
3–2.75 282� 48 1.6 5.53 0.50 0.09 1.7 0.177
2.75–2.5 298� 34 0.4 3.75 0.34 0.09 5 0.247

TABLE II. The third column is the πþp total cross section (mb) extracted from the LHCf leading neutron data
dσ=dEn (μb=TeV) shown in the second column. The result for the first En bin is not reliable (see the huge error bar)
and is shown only for completeness. The fourth column is the mean pion-proton energy corresponding to the
particular En bin. The value of the πþp cross section (mb) obtained from the extrapolation of a simple Regge pole fit
[35] and from the Compete fit [40] to lower-energy hadron-hadron cross section data are shown for comparison in
the fifth and sixth columns, respectively. The last two columns show the relative contribution of the pion-exchange
process to the total leading neutron cross section and the pion-exchange gap survival factor, respectively.

En (TeV) LHCf data σtotðπpÞ ffiffiffiffiffiffiffisπp
p (TeV) σReg σComp π fraction S2π

3.5–3.25 232� 106 52.7� 32.1 1.52 44.6 60.1 0.55 0.56
3.25–3 249� 78 37.5� 12.2 2.31 47.7 65.9 0.85 0.44
3–2.75 282� 48 45.0� 7.7 2.94 49.6 69.4 0.88 0.36
2.75–2.5 298� 34 67.9� 7.7 3.48 50.9 71.9 0.85 0.32

12The N� → nπþ branching ratio Br ≃ 1=3 comes from
about 50% N� → Nπ branching, with the other 50% due to
the Nππ and Δπ decay channels (these are the typical branching
ratios for N� resonances in the 1400–1700 MeV region [5]).
Finally, a factor 2=3 comes from the isotopic spin factor
Brðp� → nπþÞ=Brðp� → pπ0Þ ¼ 2. Note that the resulting cross
section σðN� → nπþÞ≃ 0.33 mb is in agreement with the lower-
energy data [39] (σ ∼ 0.3 mb) assuming that the flat energy
dependence continues up to LHC energies.

TOTAL πþp CROSS SECTION EXTRACTED FROM … PHYSICAL REVIEW D 96, 034018 (2017)

034018-7



Figure 5 compares the values of σtotðπpÞ extracted from
the LHCf data with two predictions based on extrapolations
of fits to lower-energy hadron-hadron cross sections, shown
by the lower two curves labelled DL [35] and COMPETE
[40]. The large error bars do not allow us to decide between
the two extrapolations. For reference, we also show, by the
upper two curves, the DL and COMPETE descriptions of
the total pp cross section.
The values of the πþp cross section that we obtain are

smaller than those of Ref. [4] extracted from the same LHCf
data but at a lower rapidity interval 8.99 < η < 9.22. Recall,
however, that at lower rapidities we deal with relatively large
qt ∼ 0.6 GeV, that is, with jtj ∼ 0.4 GeV2, where the
uncertainty in the form factor can appreciably change the
result. Moreover, nothing is said in Ref. [4] about the effects
of migration, proton diffractive dissociation, and the
enhanced absorptive corrections. The role of all these effects
was described in Sec. IVabove, and, since for η > 10.76we
work much closer to the π pole, we believe our results,
shown in Table II and Fig. 5, are more reliable.

Nevertheless, one has to remember that the extraction of
the pion-proton cross section from leading neutron inclu-
sive data is not so straightforward. To describe the full
“kitchen” of effects hidden in this procedure is one of the
goals of our paper.

VI. DESCRIPTION OF THE CERN-ISR DATA

In order to check the quality of our approach, in Fig. 6,
we use the same formalism (as that we used to describe the
LHCf data) to calculate the leading neutron cross sections
measured in the CERN-ISR energy range for

ffiffiffi
s

p
pp ¼

30.6–62.7 GeV [41,42]. The description of the data of the
two experiments is puzzling. We underestimate the data
obtained at zero angle (qt ¼ 0) but overestimate the data
obtained at 20 mrad. Note, however, that the two groups of
data come from different experiments and reveal some
inconsistency. It is hard to provide the steep qt dependence
that is needed to reconcile both data sets13 with reasonable
slopes of the vertex form factors FðtÞ.
Moreover, contrary to the zero degree case, the 20 mrad

curve in Fig. 6 is the minimal prediction. It includes
only the π, ρ, and a2 contributions and neglects the
p → N� → nþ X dissociation which in some papers

FIG. 5. The four values of πþp total cross section that we
extract from the LHCf data on leading neutrons [1], compared
with expectations based on fits to lower-energy hadron-hadron
total cross section data parametrized by two Regge poles, DL
[35], or using the COMPETE parametrization [40]. Note that the
results of both parametrizations coincide in the region of the
existing πp cross section data, that is, for

ffiffiffi
s

p
< 25 GeV. For

reference, the upper two (red) curves are the corresponding
descriptions of the pp total cross section. Recall that the error
bars shown here reflect the experimental uncertainties only. The
possible theoretical uncertainties are discussed in detail in the
main body of paper; see Secs. II–IV.

FIG. 6. The description of the CERN-ISR leading neutron data
[41,42].

13The energy dependence in each experiment was rather weak,
and the data are consistent with the scaling behavior; that is, at a
fixed qt and xL, the cross section does not depend on

ffiffiffi
s

p
.
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(e.g., Refs. [39,43]) was described completely via the Deck
process [38].14

It was suggested by Kopeliovich et al. [16] that most
probably the data at qt ¼ 0 have unreliable normalization.
On the other hand, Kaidalov’s group trusts the zero angle
data more; recall that in Ref. [42] it was emphasized that
in the first experiment [41] the background was rather
high. Our prediction is somewhere in between the two
data sets. Recall that, in comparison with the LHCf data,
the CERN-ISR data are at much lower energies, where the
secondary Reggeon contributions are not negligible and
other effects not discussed here may be present; never-
theless, the accuracy of our description should still be
reasonable.

VII. CONCLUSION

We discuss the different contributions to the leading
neutron inclusive spectra of LHCf [1]. Besides pion
exchange, as xL → 1 an important role is played by the ρ
and a2 trajectories. In addition, we have to account for
the neutrons coming from diffractive dissociation such
as pp → ðnπþÞ þ p and for the final state rescattering of
the leading baryon, which leads to migration of the
leading neutron from one to another kinematical bin.
Nevertheless, there exists a small kinematic domain
(xL ∼ 0.75–0.9 and qt < mπ) where the pion pole domi-
nates15 and the π-exchange amplitude provides more
than 80% of the observed cross section. The data
collected in three bins in this region can be used to
extract the value of the πþp total cross section; see
Table II and Fig. 5.
Recall that, even here, we have to account for the

absorptive corrections (that is, include a gap survival factor
S2) which suppresses the original (Born) cross section by
more than a factor of 2 (see the last column of Table II).
However, in this small qt region, the value of S2 can be
reliably calculated with good accuracy based on the data
for elastic pp-scattering which allow a good determination
of the proton optical density [that is, the opacity, ΩðbÞ]. Of
course, there is some uncertainty depending on the par-
ticular model used to describe the differential elastic cross
section, but as we demonstrated in Sec. IV B, this uncer-
tainty is not too large.
Actually, the main aim of our paper is not just to extract

the pion-proton cross section but rather to explain all the
subtleties hidden in the procedure in order to give an
understanding of the possible theoretical uncertainties. One
outcome is that it is indeed possible to find a kinematic

region where the pion pole dominates. However, even in
this case, it is critical to account for the S2 absorptive
correction, which, as mentioned above, appreciably affects
the value of the cross section.
Within the experimental error bars, the results obtained

for σtotðπpÞ are consistent with the extrapolation given by
Donnachie-Landshoff [35] or COMPETE [40] parametri-
zations. The present indications are that the πp cross
section rises with energy steeper than in the proton-proton
case.

VIII. OUTLOOK

The present leading neutron data, and hence our
determination of σtotðπþpÞ in the few TeV energy region,
are not yet sufficiently accurate to be very informative.
But as the experimental statistics improve, it should be
possible, with the framework we discussed, to make a
good determination of the high-energy dependence of
σtotðπþpÞ. Moreover, when the 13 TeV data become
available, it will be possible to extend the energy reach
of the measurements and to enter the region which can
distinguish between the extrapolations (for example,
Refs. [35,40]) from lower energies.
To obtain a more precise result and to better fix the

parameters, it would be valuable to measure the qt
dependence of the leading neutron spectra. As discussed
in Ref. [9], this could be achieved in a CMS measurement
with the zero degree calorimeter. Engaging the forward
shower counters (FSC) [44] would allow the suppression of
the contribution arising from low-mass dissociation of the
beam proton.
On the other hand, in the common runs of LHCf

with ATLAS, it will be possible to study the low-mass
diffractive proton dissociation, p → N� → nþ X, contri-
bution and to exclude this component from the inclusive
(nondiffractive) neutron cross section. Again, FSC analo-
gous to Ref. [44] will allow a better selection of low-mass
dissociation.
Moreover, ATLAS could measure the distribution of

secondaries in the events containing a leading neutron.
In this way, we have a chance to study not only the value of
σtotðπþpÞ but also the inclusive cross sections in the πþp
collisions as well.
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