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Abstract 

I investigate the influence of hot money in equity flows from the U.S. to twelve Emerging 

Markets (EMs) on the local stock markets over the period from January 1993 to December 

2013, including both crisis and non-crisis periods. I identify de facto hot money as the 

temporary component of equity flows, and conduct Vector AutoRegressive models (VARs) 

using monthly data on emerging markets with Granger causality test and impulse response 

analysis. I show that hot money in equity flows from the U.S. to emerging markets does have 

a significant impact on the local stocks, but the local stock market has little effect on hot 

money. The findings suggest a new factor regarding equity predictability and profitability 

which both the investment advisors/consultants and policymakers may take into account. 
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1. Introduction 

Along the path of financial globalisation, Emerging Markets (EMs) have witnessed a sharp 

increase in international capital flows. According to a survey released by the International 

Monetary Fund (2011a, b), the annual amount of foreign private net capital flowing into EMs 

was about 11 billion and 22 billion USD in the 1970s and 1980s respectively, which 

increased dramatically to 150 billion USD over the period from 1991 to 1998, and plunged to 

58 billion USD between 1998 and 2002 due to the 1997 Asian Financial Crisis. After that, the 

volume of equity inflows to EMs resurged until 2007, which was followed by a significant 

reversal in 2008-2009 during the “flight to safety” during the late 2000s Global Financial 

Crisis (Caballero and Krishnamurthy, 2008). As major advanced industrial countries launched 

the quantitative easing schemes during the late 2000s Global Financial Crisis (GFC), 

speculative capital flows (or hot money), have relocated to the EMs with higher interest rate, 

which might bring negative effects to the local stock market stability (Martin and Morrison, 

2008; Korinek, 2011).  

Hot money, characterized by high sensitivity, high mobility and reversibility, refers to the 

flow of capital from one country to another in order to earn a short-term profit on interest rate 

differences, anticipated exchange rate shifts or equity premium (Chari and Kehoe，2003; 

Fuertes et al., 2016). They may become a destabilizing force to emerging market economies 

within an undeveloped financial system (Martin and Morrison, 2008). In the wake of the late 

2000s GFC, a large number of emerging market economies, including South Korea, Thailand, 

Indonesia, Taiwan China, and Brazil have moderated the pace of liberalisation successively 

and turned to re-impose capital controls with various forms (International Monetary Fund, 

2011a, b; Ostry et al., 2010). The current advocacy on capital controls in EMs implicitly 

builds on the presumption that foreign investors destabilize the local financial markets but 

lacks of empirical evidence, probably because a well-defined estimating method of the “hot 

money” inflows amount for a certain country during a period has only become available very 

recently (Fuertes et al., 2016).  

https://en.wikipedia.org/wiki/Interest_rate
https://en.wikipedia.org/wiki/Exchange_rate


3 

 

Given the gap in the extant literature, I investigate the question of the interrelationship 

between hot money in equity flows and the local stock returns. Subjects in my empirical 

studies are 12 emerging market economies that are carrying greater weight in the global 

economy both in terms of GDP and CAP (market capitalization). Following Fuertes et al. 

(2016), I identify de facto hot money as the temporary component of equity flows from the 

U.S. to emerging market economies, by state-space model via Kalman filter using monthly 

data over a relatively long time span from January 1993 to December 2013. After obtaining 

data for hot money in equity flows, I conduct Vector AutoRegressive models (VARs) to 

explore the interrelationship between hot money in equity flows and the local stock returns 

using monthly data on emerging markets with Granger causality test as well as impulse 

response analysis. The VAR models in a strand of literature in this area such as Froot et al. 

(2001), Dahlquist and Robertsson (2004), Richards (2005), Froot and Ramadorai (2008), 

Jinjarak et al.(2011), Yan (2015), and Yan et al.(2016). 

I find that massive hot money in equity flows from the U.S. to emerging markets does yield a 

significant impact on the local stock markets, but the local stock market does not have a 

statistically significant effect on hot money. For investment advisors/consultants, hot money 

can be a clue for them to predict the trend of the stock market. They should pay more 

attention to the composition rather than quantity of cross-border equity flows, especially hot 

money. 

The remainder of this paper unfolds as follows. I present the relevant literature and data in 

Section 2 and 3, respectively. Sections 4 and 5 provide the empirical results from state-space 

models and VAR models, respectively. The last section concludes. 

 

2. Background Literature 

This paper closely relates to two strands of the literature. The first one is the strand of 

literature investigating the impact of hot money or international capital flows on local 

markets, while the second one is the strand of literature studying the “drivers” of hot money 

or international capital flows. 
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Despite an extensive body of research, there remains a heated debate in the literature on the 

benefits and costs of financial globalization (for surveys, see Stulz, 2005; Henry, 2007; Kose 

et al., 2010; and Rodrik and Subramanian, 2009). An often-heard critique of financial 

openness is that the temporary part of capital flows, often termed “hot money”, destabilizes 

local asset markets (see, e.g.: Korinek, 2011, Fuertes et al., 2016). While the inflows of “hot 

money” builds up gradually over time, the outflows happen en masse and simultaneously, 

with each player in asset markets, such as shareholders in the stock market, struggling to be 

the first to exit (for a recent survey, see, Kawai and Takagi, 2010). 

On the one hand, some researchers, especially the neoclassical school, argue that financial 

globalisation and international capital inflows boost economic growth (Bekaert et al., 2005). 

For instance, Bhagwati (1998), Edison and Reinhart (2001) and Kose et al. (2009) argue that 

there is a positive influence of capital account openness on real variables (such as investment, 

economic growth, etc.). Through event study techniques, Henry (2000) notes that there is a 

temporary speed-up in the growth rate of private investment following stock market 

liberalisation for major emerging markets. Henry (2007) adopts “policy-experiment 

approach”, which considers the growth-enhancing effect of a discrete change in capital 

account policy as a one-time event and makes arguments based on the results that stock 

market liberalisation is positively associated with growth and investment. Rather than only 

emphasizing the direct capital flows, literature in this area highlights collateral benefits of 

capital flows, such as developments in domestic financial sectors (see Levine, 2005; Mishkin, 

2006; 2009), improvements in institutions (see Stulz, 2005) and macroeconomic policies 

(Gourinchas and Jeanne, 2006). 

On the other hand, other literature such as Grilli and Ferretti (1995), Rodrik (1998), and 

Prasad et al. (2003) find little evidence supporting the argument that economic growth is 

positively correlated with capital account liberalisation. Calvo (1998) report that international 

capital inflows bring about negative effects like the instability of financial environment, 

rising prices, deterioration of trade conditions and so on. Jeanne et al. (2012) run over 2300 

regressions named a “meta-regression” approach, which employs six de jure and de facto 
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measures of financial liberalisation, attempting to figure out whether capital account openness 

affects output growth or not. They reach a conclusion that little conclusive evidence backs up 

the growth-enhancing role played by capital mobility, and it is essential to establish a 

framework that achieves international consensus for desirable capital controls. With a number 

of emerging market economies broke out a series financial crises after the late 1980s, some 

economists believe that enormous amounts of capital movements after opening a capital 

account may become a source of the local macroeconomic instability and enhance fragility of 

finance. A flood of capital inflows drives credit booms, asset bubbles, and high foreign debt. 

As a result, a financial crisis can be detonated easily when capital flows suddenly stop or 

reverse (Kaminsky et al., 1999). More recently, Caballero and Krishnamurthy (2008) and 

Korinek (2011) have studied the phenomenon of “moving bubble” that when one country or 

sector in the world economy experiences a financial crisis, hot money will flow into another 

less constrained countries or sector.  

A subset of this strand of literature distinguishes different types of international capital flows 

(Sarno and Taylor, 1999a, b; Fuertes et al., 2016). They divide cross-border capital into five 

types (portfolio equity, debt, official capital, FDI and bank flows), and conduct state-space 

models to gauge the relative importance of the temporary component (“hot money”) in every 

form. Their conclusions are that the temporary component or “hot money” plays a key role in 

various categories of international capital flows, and these categories have suffered a high 

degree of reversibility, which provides indirect evidence for the view that these categories of 

capital flows act as a plausible channel for crisis transmission. None of these papers, 

however, indeed examines the impact of hot money on local equity markets. 

The second literature to which this article is related studies the other side of the problem, that 

is, the effect of the local stock returns on hot money in equity flows. Mainstream literature 

distinguishes the drivers of short-term capital inflows to emerging markets into the “pull” 

factors (economic fundamentals of recipients) and “push” factors (international economic 

factors outside recipients). For instance, Taylor and Sarno (1997) indicates that the U.S. 

federal funds rate is the most important factor that affects short-term debt capital inflows into 
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emerging markets while other “push” factors and “pull” factors contribute equally to the 

short-term equity capital or the long-term equity capital inflows. Kim (2000) has shed light 

on the reason for capital movement in Mexico, Chile, South Korea and Malaysia by adopting 

method of structural decomposition and concludes that “push” factors are the driving force. 

Froot et al. (2001) explore not only the correlation between foreign investor inflows and 

contemporaneous returns but also the association between equity inflows and future returns in 

emerging markets. They suggest that it takes local equity prices a few days to drift after the 

trading of foreign investors, which reports a protracted impact instead of a contemporaneous 

impact of foreign flows on equity prices. Richards (2005) examines the trading behaviour of 

foreign investors in six Asian emerging equity markets by VAR and discovers that net foreign 

inflows are positively related to the same-day local equity returns. Focusing on the role 

played by foreign exchange, Yan (2015) exploits the interaction between equity flows and 

stock returns and provides some new evidence on foreign investors' trading behaviour and 

their price impact, and finds that the bidirectional causality is plausible; that is to say, equity 

flows have a positive impact on equity returns and vice versa. Although none of these 

previous papers studies whether and how local equity markets drive the hot money, recent 

literature (such as Fuertes et al., 2016) provides me an opportunity to do so. 

3. Data  

I collect monthly bilateral capital outflow and inflow data in US$ million over a time span 

from January 1993 to December 2013 from the U.S. Treasury International Capital (TIC) 

database. “Gross purchases by foreigners” and “gross sales by foreigners” are classified as 

U.S. sales and U.S. purchases respectively in the International Capital Reports of U.S. 

Treasury Department. The data are collected and presented from the perspective of the 

foreign parties to the transactions. By definition, “gross purchases by foreigners” are gross 

sales by U.S. residents. Similarly, “gross sales by foreigners” are gross purchases by U.S. 

residents. A positive difference indicates net foreign purchases from U.S. residents (U.S. 

capital inflow) while a negative difference indicates net foreign sales to U.S. residents (U.S. 

capital outflow).  
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The twelve emerging markets in my sample are Argentina (AG), Brazil (BR), Mainland 

China (CH), Chile (CL), Indonesia (ID), India (IN), South Korea (KO), Mexico (MX), 

Malaysia (MY), Philippines (PH), Thailand (TH), and Taiwan China (TW). There are eight 

Asian markets: Mainland China (CH), Indonesia (ID), India (IN), South Korea (KO), 

Malaysia (MY), Philippines (PH),  Thailand (TH), and Taiwan China (TW), and four Latin 

American markets: Argentina (AG), Brazil (BR), Chile (CL), Mexico (MX). Daily data for 

such a large number of countries are not available (Yan, 2015).  

These are the main markets covered by the previous literature. The sample size of 12 markets 

is large enough to provide results that are potentially fairly general, yet is small enough to 

allow more attention to market-specific analysis and presenting results market-by-market in 

an intelligible way than might be impossible in datasets with a larger number of markets. My 

sample markets have been studied in earlier literature. For example, Richards (2005) have a 

look at Indonesia, South Korea, Philippines, Thailand and Taiwan China. Fuertes et al. (2016) 

and Yan et al. (2016) include all these market as a subsample of their studies. These markets 

are of vital importance in the global economy no matter in terms of Gross Domestic Product 

or the amounts of capital flows.  

I scale the observed equity flows by U.S. consumer price index (CPI) to eliminate the impact 

of inflation effects. I take the price in 1993 as the price of the base year in the U.S. My results 

do not qualitatively change when I repeat the analysis process based on the un-scaled short-

term equity flows data. CPI data are obtained from Datastream.  

Following Sarno and Taylor (1999a, b) and Fuertes et al. (2016), I decompose the observed 

equity flows from the U.S. to 12 EMs into unobserved permanent and temporary components 

and identify “hot money” in equity flows as the temporary component via deploying state-

space models using Kalman filter algorithm. 

Bloomberg is used to collect data for emerging market stock price indices in US$ for all of 

my sample countries. Then I calculate the monthly returns of the equity market indices in 

EMs, a proxy for equity returns, which can be approximately estimated by taking the 
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logarithm of stock indices.  

4. Identifying hot money 

I report the results from state-space models, which themselves are detailed in the appendix, in 

Table 1. The maximum value of determination R2 is 0.492 while the minimum coefficient is 

0.255. All Q-ratios for the permanent component are extremely low while those for the 

temporary component are much larger, which shows that the irregular or AR component 

explains significant portions of disturbance variance. My results are in line with that of 

Fuertes et al. (2016), the dynamics of equity flows can be mainly interpreted by the 

temporary component. Namely, equity flows from the U.S. to twelve emerging markets 

(EMs) from 1993 to 2013 have been dominated by the temporary component (“hot money”).  

I graph the unobserved temporary component (𝜈it+ 𝜀it) estimation of equity flows generating 

from Kalman filter state space decomposition. To be specific, Figure 1 plots the time-series of 

the unobserved temporary component (or “hot money”) in equity flows from the U.S. to 8 

Asian EMs while Figure 2 reveals the decomposition results of 4 Latin American EMs. 

There are some interesting findings. First, the past decades have witnessed a remarkable 

increase in the scale of hot money from the U.S. to emerging stock markets. Second, there is 

a statistically significant difference between Asia and Latin America in the size of “hot 

money”. It varies markedly across Asia while not that much across Latin America over the 

sample period. Most noticeably, Mexico differs significantly from the other three emerging 

markets as can be seen from the graphs. Perhaps geographic factors and the close co-

operative relations between Mexico and the U.S. shape it. Third, “hot money” inflows to Asia 

and Latin America increased obviously in volatility in the 21st century, especially in the 

recent decade. Clearly, “hot money” has experienced a dramatic fluctuation before and after 

the 2008 global financial crisis.  

Promoted by reductions in stock market investment barriers, equity flows to emerging 

markets have increased in volume as well as in volatility after the Asian financial crisis. 
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Nevertheless, following their 2007 peak ($205 billion), they reversed suddenly in 2008-2009 

affected by the Global Financial Crisis that sparked the flight-to-safety movement. Under the 

background of quantitative easing in advanced economies, investors treat EMs as a fruitful 

destination with higher interest rate. Therefore, equity inflows to EMs rebounded strongly in 

2010 and 2011. Taking Mainland China as an example, there was only small-scale “hot 

money” before 2003 but the magnitude increased basically after 2005. In fact, the expectation 

of RMB appreciation had risen since July 2005 when RMB exchange rate reform was 

implemented. It coupled with expansionary monetary policy and even four rounds of 

quantitative easing in the U.S., leading to more “hot money” flooded into China for arbitrage.  

5. The relationship between hot money and local equity markets 

On the base of VAR framework, I take advantage of standard tools to test whether the model 

agrees with the initial assumption and economic implications so that I can obtain reliable 

interpretations of the interaction between hot money and the local stock returns. Section 5.1 

specifies my VAR model, while Section 5.2 reveals VAR coefficient results. Section 5.3 and 

Section 5.4 present the findings from Granger causality tests and the impulse response 

analysis, respectively.  

5.1 VAR models   

I do not conduct seasonal adjustment on my main variables, as these variables show little 

remarkable seasonal variation. I start the analysis of economic time series from the 

stationarity tests to get rid of the spurious regression. In this paper, I adopt the Augmented 

Dickey–Fuller test (ADF) to test the stationarity of two time-series variables, “hot money” 

and “stock market returns”.  

Table 2 shows that both test statistics for “hot money” and “stock market returns” are larger 

than critical values under the 90%, 95% or 99% likelihood levels. Hence, I reject the null 

hypothesis that these series have a unit root. Put differently,  I treat these series as stationary. 

I primarily propose two hypotheses before examining the interrelationship between hot 
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money in equity flows and the equity returns in EMs. The first is that hot money in equity 

flows has an influence on emerging stock market returns, which is inspired by the views 

drawn from Kohli (2001). Kohli (2001) conducts the empirical analysis on Indian data and 

puts forward that the changes of stock index in India are correlated to international capital 

flows. Nevertheless, the internal mechanism of the impact of hot money on the local stock 

market is still not clear. Although practitioners widely accept the opinion that the impact is a 

consequence of foreign investors' technology or information advantage, there is not much 

empirical evidence to support it. If the standpoint above is plausible, then I expect a positive 

(negative) excess return when hot money flows in (out) of emerging markets.  

Since the 1990s, mainstream literature has made arguments on the motivation of the U.S. 

international equity investments. Different from the previous views that investors invest their 

capital in emerging markets to rebalance their international portfolios, they argue that the 

U.S. investors are motivated by chasing returns. Hot money, aimed at earning a short-term 

profit, is characterized by high sensitivity, high mobility and reversibility, which makes it a 

dangerous tool for portfolio-balancing strategy. In this sense, hot money is more likely to be 

driven by return-chasing strategy. Taking this into consideration, I set up the other hypothesis, 

the reverse causality between hot money and stock returns, that is, stock returns in EMs are 

dominant drivers of equity inflows, as suggested in some literature. For example, event study 

techniques help to come to the conclusion that there is a temporary speed-up in the growth 

rate of private investment following stock market liberalisation for major emerging markets 

in Henry (2000). Richards (2005) examines the trading behaviour of foreign investors in six 

representative Asian emerging equity markets and discovers that net foreign inflows are 

positively associated with the same-day local equity returns. Edison and Reinhart (2001) 

carry on the quantitative analysis of the consequences of capital controls in Brazil, Thailand, 

and Malaysia based on daily data. They conclude that capital controls result in high-interest 

rates, in turn, lead to adjustment of asset prices in Malaysia while they fail to find a 

significant impact of capital controls on asset prices in Brazil and Thailand. If the hypothesis 

holds, I conjecture that a positive correlation between past stock returns in EMs and current 

hot money inflows will be observed.  
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After obtaining data of hot money, I utilize the vector autoregressive modelling approach to 

analyse the interrelationship between hot money and the local stock returns. The reason why I 

introduce VAR models is that they provide us a general method to evaluate bi-directional 

causality, that is, on the one hand, hot money may cause stock prices rise or fall, on the other 

hand, the stock returns would drive hot money flows. The VAR I estimate can be modeled as 

Yt=C+𝜋1Yt-1+𝜋2Yt-2+…+𝜋kYt-k+𝜇t                                          (1)       

where 𝜇t~i.i.d.N (0,𝜴) 

I  can display VAR model in a compact form for t=1,2……T, where Yt ,C and 𝜇t are 2×1 

column vectors, and 𝜋i is a 2×2 coefficient matrix.   

Yt=[ 
𝐻𝑜𝑡 𝑀𝑜𝑛𝑒𝑦𝑡

𝑆𝑡𝑜𝑐𝑘 𝑅𝑒𝑡𝑢𝑟𝑛𝑡
]  ,  C=[ 

𝐶1

𝐶2
]   ,  𝜇t= [ 

𝜇1𝑡

𝜇2𝑡
]  , 𝜋i =[

𝜋11,𝑖 𝜋12,𝑖

𝜋21,𝑖 𝜋22,𝑖
] i=1, 2,…,k 

The unknown parameters C is the constant intercept term, 𝜋i is the coefficients of the 

endogenous variables, and 𝜇t is the disturbance vector. I use aggregate monthly data of hot 

money and equity returns across all emerging market economies, covering a sample period 

from 1993 to 2013. Hot Money is the temporary component of equity flows from the U.S. to 

EMs scaled by the local equity market capitalization; Stock Returns are a monthly percentage 

of value-weighted returns on emerging stock indices 

5.2 VAR model coefficients 

I use the Akaike information criterion (AIC) and Schwartz-Bayes criteria (SC) to specify the 

appropriate lag length of the VAR model, which turns out to be a lag length of one. The VAR 

model employed eventually can be written as 

[ 
𝐻𝑜𝑡 𝑀𝑜𝑛𝑒𝑦𝑡

𝑆𝑡𝑜𝑐𝑘 𝑅𝑒𝑡𝑢𝑟𝑛𝑡
] = [ 

𝐶1

𝐶2
] + [

𝜋11 𝜋12

𝜋21 𝜋22
] [ 

𝐻𝑜𝑡 𝑀𝑜𝑛𝑒𝑦𝑡−1

𝑆𝑡𝑜𝑐𝑘 𝑅𝑒𝑡𝑢𝑟𝑛𝑡−1
]+[ 

𝜇1𝑡

𝜇2𝑡
]                               (2) 

Table 3 reports the coefficient estimates of vector autoregression with one lag for each 

endogenous variable. Clearly, past hot money has a significant positive explanatory power on 
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stock returns in EMs since the t-statistics is 4.3238, much larger than the critical value at 1 

percent statistical significance level. However, lagged stock returns have little forecasting 

power for current hot money (t-statistics is only 0.4778). The following Granger-causality 

tests can confirm the results. 

5.3 Granger-causality tests 

Some economic variables are significantly correlated with each other but not necessarily 

meaningful. Causality is one of the most difficult issues in finance, economics as well as 

other social sciences. One possible way to deal with it is the so-called Granger-causality, 

which is a statistical measure of causality based on prediction. A variable X1 "Granger-

causes" another variable X2, if and only if the past values of X1 contain information which 

helps predict X2 beyond the past values of X2 only (for details, pls refer to Yan et al., 2016 or 

others).  

Following the extant literature, I carry on Granger-causality tests to explore whether the 

variation of hot money in equity flows (stock returns of EMs) does contribute to the change 

of stock returns of EMs (hot money in equity flows). 

According to Table 4, hot money in equity flows only has unilateral Granger causality with 

stock returns in emerging markets, that is, hot money is the Granger causality of stock returns 

and stock returns is not the Granger causality of hot money. In other words, changes of stock 

returns do not yield a significant impact on the flow of hot money.  

5.4. Impulse response analysis 

Moreover, I ensure the stationarity of my VAR model as all eigenvalues of the coefficient 

matrix lie within the unit circle. I adopt generalized impulse response function to illustrate 

how each variable in the model responds to shocks as time goes on, as Pesaran and Shin 

(1998) have demonstrated that the generalized impulse response function is invariant to the 

ordering of the variables in the VAR. Figure 3 show the impact of one-standard-deviation 

shock to hot money in equity flows on equity market returns and the influence of stock 
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returns bring to hot money. 

The vertical axis represents changes in hot money (or stock returns), while the horizontal axis 

stands for lag intervals of shocks (monthly). The solid lines are impulse response function, 

and the dashed line indicates the double standard deviation band. Obviously, both of “hot 

money” and “stock returns” would react strongly to the shocks on themselves and the 

response patterns share a similarity. The reaction extent of hot money itself at the first month 

is the greatest when given a positive shock. Then, the impact decreases gradually and 

vanishes eventually. It indicates that short-term equity flows quickly pool into EMs from the 

U.S. for short-term profits and promptly withdraw from EMs.   

As can be seen from further observation on cross response function, a positive shock of hot 

money by the size of one unit standard deviation in the current period has a positive impact 

on stock returns within the following two months, and reaches a peak after one and a half 

months. However, this impact begins to decline after that until disappear. It demonstrates that 

giving hot money a positive shock; it will bring the same impact on stock markets for about 

1-2 months. Namely, hot money inflows effectively promoted the short-term growth of the 

local stock markets. The other way round, it is clear from the response of hot money to stock 

returns shocks that a positive shock to stock returns would bring a light positive response to 

hot money with short-term persistence effects. In other words, hot money is insensitive to the 

innovation of the local stock returns and the current stock market boom becomes less 

appealing to hot money inflows over time.   

I find an insignificant effect of stock returns on hot money in equity flows, which aligns with 

the previous literature that attributes the reason why short-term foreign equity flows enter 

emerging economies to “push” factors. Taylor and Sarno (1997) suggest that external factors 

other than U.S. interest rate and “pull” factors make an approximate contribution to short-

term and long-term equity capital inflows. Inspired by several previous academic papers (e.g., 

Chuhan et al., 1998) that classify emerging economies into two groups as Asia and Latin 

America when discussing factors affecting international capital movements, I repeat 

empirical analysis to Asia and Latin America EMs respectively. It turns out that the 
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heterogeneity in terms of my results is not that prominent across countries, and my previous 

conclusions are reinforced. Table 5 reports the results from Granger causality tests while 

Figure 4 and Figure 5 provide the details of impulse response analysis.  

5.4. Robustness 

I have done several additional tests to make sure the robustness of my results. First of all, I 

use the local currency equity indices instead of the USD MSCI indices to construct equity 

returns, which is in line with the insights of Yan (2015).  The results are reported in Table 6, 

from which we can see that the main results are qualitatively unchanged. The economic 

magnitude of the impact of hot money on stock returns has been substantially reduced, from 

0.0142 to 0.000108, while statistically significant as before with a t-statistic of 4.02768, 

which is in line with the intuition of Yan (2015). 

Moreover, although this paper demonstrates that hot money is correlated with future returns, 

other variables could be influencing stock returns. I thank a referee for this comment. I have 

tried to control the main exogenous variables in the literature and find the results unchanged, 

if not stronger. For instance, table 7 reports the pooled coefficients estimates of one-month 

lagged hot money and stock returns for all the markets in my sample in aggregate with 

effective fed fund rates, the VIX from CBOE, the TED spread as control variables. The 

coefficient of lagged hot money in the stock return equation increased from 0.0142 to 

0.017961, with a t-statistic of 2.56495. We have also tried other combinations in Yan et al. 

(2016) and find similar results. 

Last but not the least, given the data covers a long period with both crisis and non-crisis 

years, it might be interesting to implement an analysis on the impact of the latest financial 

crisis. I thank the referees for this comment. Table 7 reports the pooled coefficients estimates 

of one-month lagged hot money and stock returns for all the markets in my sample in 

aggregate over the crisis periods. The crisis period is defined from January 2007 to December 

2013, and from August 2007 to December 2013, in panel A and B, respectively. I confirm the 

previous results that past hot money has a significant positive explanatory power on stock 
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returns in EMs, but lagged stock returns have little forecasting power for current hot money. 

More interestingly, the economic magnitude of the impact of hot money on local equity 

markets is larger during crisis period (from 0.0142 to 0.020864), and even larger when the 

crisis is going on (0.022813). 

Overall, I find that hot money have a significant impact on the local stock markets, but not 

the other way around.  

6. Conclusions 

In the wake of the late 2000s Global Financial Crisis (GFC), the impact of hot money on the 

emerging markets (EMs) has come again under intense scrutiny. The resurgence of global 

capital flows, in the aftermath of Quantitative Easing (QE) programs in the U.S., has brought 

back proposals for a Tobin tax on cross-border capital flows, and has led the IMF to publicly 

abandon its position that capital controls are inappropriate for most countries. Several EMs, 

including Brazil, Taiwan China, South Korea, Indonesia, and Thailand have recently re-

adopted capital controls. These advocating capital controls implicitly build on the 

presumption that foreign investors destabilize local financial markets, while the international 

finance literature has provided scarce evidence on this subject. This paper fills this gap. 

Perhaps the most difficult issue is to gauge the actually amount of “hot money” during a 

specific period for a specific country. Following Fuertes et al. (2016), in this paper I identify 

de facto hot money as the temporary component of equity flows，using state-space models 

via Kalman filter algorithm.  

The main part of this paper is the interrelationship between hot money in equity flows and the 

local stock returns. My empirical analysis indicates that massive hot money in equity flows 

from the U.S. to emerging markets does yield a significant impact on the local stock markets, 

but the local stock markets have little effect on hot money. For investment 

advisors/consultants, hot money can be a clue for them to predict the trend of the stock 

market. They should pay more attention to the composition rather than quantity of cross-
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border equity flows, especially hot money.  

One future direction can be to look at the hot money from the perspective of trust (e.g., Massa 

et al, 2015), since the emerging markets are typically low-trust markets while the advanced 

markets are usually high-trust ones. Due to this reason, it is plausible that the hot money in 

equity flows from the U.S. to the emerging markets is greatly trusted by the investors in the 

U.S. Hence, the international hot money is able to affect the emerging equity markets by both 

stock-picking and timing, as well as resist the attraction from the short-term fluctuations from 

the emerging equity markets. However, it is beyond the scope of this paper and I leave it as a 

possible direction for future research.  
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Table 1. State-Space Model for Net Equity Flows in EMs 

This table reports the results from state-space models for net equity flows, which are CPI-scaled capital 

flows in US$ millions. A dash indicates that the component at hand is absent from the model. 0  Q-ratio 

 1 is the standard deviation of the each component over the largest standard deviation across 

components, computed from the variance-covariance matrix of disturbances. Column five reports the 

final level of the stochastic trend and its root mean square error (RMSE). The last column reports the R2. 

The sampling frequency is monthly over the period from January 1993 to December 2013. The 

abbreviation of the country’s name is listed as follows: Argentina(AG), Brazil(BR), Mainland 

China(CH), Chile(CL), Indonesia(ID), India(IN), South Korea(KO), Mexico(MX), Malaysia(MY), 

Philippines(PH),  Thailand(TH), and Taiwan China (TW). 

 

Cou

ntry 

Q-ratio(ωt) 

(Stochastic 

trend) 

Q-ratio(𝜈t) 

(AR) 

Q-ratio(𝜀t)  

(Irregular) 

AR(1) 

coeffi

cient 

AR(2) 

coeffi

cient 

Final level of 

stochastic trend 

[RMSE] 

𝑹𝟐 

AG 0.000 0.202 1.000 1.754 -0.758 -0.655[0.226] 0.492 

BR 0.000 0.809 1.000 0.774 -- 3.487[0.026] 0.353 

CH 0.000 0.569 1.000 0.688 -- -0.784[0.355] 0.404 

CL 0.000 0.249 1.000 0.683 -0.116 -0.471[0.097] 0.467 

ID 0.000 0.514 1.000 0.672 -- 0.203[0.184] 0.391 

IN 0.000 0.520 1.000 0.858 -- 1.392[0.057] 0.423 

KO 0.000 0.789 1.000 0.892 -- 0.482[0.669] 0.372 

MX 0.000 0.894 1.000 0.841 -0.177 -1.582[0.009] 0.353 

MY 0.000 -- 1.000 -- -- -0.067[0.511] 0.334 

PH 0.000 0.480 1.000 0.848 -- -0.034[0.586] 0.404 

TH 0.000 0.486 1.000 0.715 -- 0.260[0.008] 0.397 

TW 0.000 1.000 0.000 0.510 -- 0.978[0.470] 0.255 
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Table 2. ADF Unit Root Test Results 

The table reports the Augmented Dickey Fuller (ADF) test statistic for the null hypothesis of unit root 

(non-stationary) behaviour versus stationarity.  The last three columns report critical values at 1%, 5% 

and 10% level, respectively. The sampling frequency is monthly over the period from January 1993 to 

December 2013. 

 

series t-Statistic test critical values 

ADF test statistic 1% level 5% level 10% level 

hot money -9.7063 -3.4565 -2.8730 -2.5729 

stock market returns -12.7423 -3.4564 -2.8729 -2.5729 
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Table 3. Overall VAR Estimates 

The table reports the pooled coefficients estimates of one-month lagged hot money and stock returns 

for all the markets in my sample in aggregate. Left (right) panel results are for one-month lagged hot 

money (stock returns).  The numbers in the second row (in italics) are t-statistics for the null 

hypothesis that the corresponding coefficient of hot money or stock returns is zero. The VAR 

coefficients and covariance matrix are estimated by OLS. The sampling frequency is monthly over the 

period from January 1993 to December 2013. 

 

series Hot Money Stock Returns 

 coefficient t-statistics coefficient t-statistics 

Hot Money(-1)  0.4261 7.2360 0.0142 4.3238 

Stock Returns(-1) 0.5253 0.4778 0.1527 2.4881 

Intercept  -2.8044 -0.3513 0.3874 0.8693 
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Table 4. Overall Granger Causality Tests  

The table reports F-statistics, P-value, and conclusion for the null hypothesis of ‘no Granger-

causality’ either from stock returns to hot money, or from hot money to stock returns for all the 

markets in my sample in aggregate. The sampling frequency is monthly over the period from January 

1993 to December 2013. 

 

Null Hypothesis F-Statistic P-value Conclusion 

Stock Returns does not Granger Cause Hot Money  0.2282 0.6333 cannot reject 

Hot Money does not Granger Cause Stock Returns 18.6951 2.E-05 reject 
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Table 5. Granger Causality Tests for Asian and Latin American sub-groups 

The table reports F-statistics, P-value, and conclusion for the null hypothesis of ‘no Granger-

causality’ either from stock returns to hot money, or from hot money to stock returns for two sub-

groups in my sample. Panel A pertains to the sub-group of the Asian countries and Panel B to the sub-

group of the Latin American countries. The sampling frequency is monthly over the period from 

January 1993 to December 2013. 

 

Panel A: For Asia 

Null Hypothesis F-Statistic P-value Conclusion 

Stock Returns does not Granger Cause Hot Money  0.0761 0.7828 cannot reject 

Hot Money does not Granger Cause Stock Returns  7.9431 0.0052 reject 

Panel B: For Latin America 

Null Hypothesis F-Statistic P-value Conclusion 

Stock Returns does not Granger Cause Hot Money  1.4001 0.2484 cannot reject 

Hot Money does not Granger Cause Stock Returns  4.5646 0.0113 reject 
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Table 6. Overall VAR Estimates with local-currency stock returns 

The table reports the pooled coefficients estimates of one-month lagged hot money and local-currency 

stock returns for all the markets in my sample in aggregate. Left (right) panel results are for one-

month lagged hot money (stock returns).  The numbers in the second row (in italics) are t-statistics for 

the null hypothesis that the corresponding coefficient of hot money or stock returns is zero. The VAR 

coefficients and covariance matrix are estimated by OLS. The sampling frequency is monthly over the 

period from January 1993 to December 2013. 

 

series Hot Money Stock Returns 

 coefficient t-statistics coefficient t-statistics 

Hot Money(-1)  0.420614   7.17255 0.000108  4.02768 

Stock Returns(-1) 125.0191  0.93336 0.181007  2.95875 

Intercept -3.904870 -0.48506 0.008688 2.36294 
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Table 7. Overall VAR Estimates with control variables 

The table reports the pooled coefficients estimates of one-month lagged hot money and 

stock returns for all the markets in my sample in aggregate with effective fed fund rates, the 

VIX from CBOE, the TED spread as control variables. Left (right) panel results are for 

one-month lagged hot money (stock returns) on the crisis period.  The numbers in the 

second row (in italics) are t-statistics for the null hypothesis that the corresponding 

coefficient of hot money or stock returns is zero. The VAR coefficients and covariance 

matrix are estimated by OLS. The sampling frequency is monthly. The sampling frequency 

is monthly over the period from January 1993 to December 2013. 

 

Panel A Hot Money Stock Returns 

 coefficient t-statistics coefficient t-statistics 

Hot Money(-1)  0.136061  1.10504 0.017961 2.56495 

Stock Returns(-1) -0.400903 -0.20407 0.004269 0.03821 

Effective Fed Fund 

Rate(-1) 

5.534549 0.28153 1.266457 1.13274 

VIX(-1)  0.516221 0.2073 -0.12511 -0.88338 

TED(-1) -75.83571 -1.34064 -3.413345 -1.06101 

Intercept 15.44367 0.32496 4.263328 1.57734 
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Table 8. Overall VAR Estimates on the crisis period 

The table reports the pooled coefficients estimates of one-month lagged hot money and 

stock returns for all the markets in my sample in aggregate over the crisis periods. Left 

(right) panel results are for one-month lagged hot money (stock returns) on the crisis 

period.  The numbers in the second row (in italics) are t-statistics for the null hypothesis 

that the corresponding coefficient of hot money or stock returns is zero. The VAR 

coefficients and covariance matrix are estimated by OLS. The sampling frequency is 

monthly. The crisis period is defined from January 2007 to December 2013, and from 

August 2007 to December 2013, in panel A and B, respectively. 

 

Panel A Hot Money Stock Returns 

 coefficient t-statistics coefficient t-statistics 

Hot Money(-1)  0.179488  1.61331 0.020864 3.32071 

Stock Returns(-1) 0.654370 0.35882 0.149354 1.45013 

Intercept -13.57445 -0.91292 0.520034 0.61928 

 

Panel B Hot Money Stock Returns 

 coefficient t-statistics coefficient t-statistics 

Hot Money(-1)  0.232458 2.01785 0.022813  3.41728 

Stock Returns(-1) 0.569373 0.30622 0.120427 1.11768 

Intercept -11.97567 -0.77806 0.232629 0.26081 
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Figure 1. “Hot Money” in Asian EMs 

The figure shows monthly hot money extracted from net equity flows for eight individual Asian EMs 

(South Korea, India, Taiwan China, Malaysia, Mainland China, Indonesia, Philippines, and Thailand) 

in current US$ million. The sampling frequency is monthly over the period from January 1993 to 

December 2013. 
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Figure 2. “Hot Money” in Latin American EMs 

The figure shows monthly hot money extracted from net equity flows for four individual Asian EMs 

(Argentina, Brazil, Chile, and Mexico) in current US$ million. The sampling frequency is monthly over 

the period from January 1993 to December 2013. 
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Figure 3. Overall Impulse Response Analysis  

For all the markets in my sample, this figure plots the average generalized impulse response functions 

(GIRF) of hot money to one-unit standard deviation shocks to either hot money or stock returns in the 

above two graphs, and equity returns to one-unit standard deviation shocks to either hot money or 

stock returns in the below two graphs. The GIRFs are computed from the VAR coefficients reported in 

Table 3 over the full sample  period. The vertical axis is returns in percentages and the horizontal axis 

is months. The solid lines are impulse response function, and the dashed line indicates double 

standard deviation band. The sampling frequency is monthly over the period from January 1993 to 

December 2013. 
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Figure 4. Impulse Response Analysis for the Asian Sub-group 

For all the eight Asian markets in my sample, this figure plots the average generalized impulse 

response functions (GIRF) of hot money to one-unit standard deviation shocks to either hot money or 

stock returns in the above two graphs, and equity returns to one-unit standard deviation shocks to 

either hot money or stock returns in the below two graphs. The vertical axis is returns in percentages 

and the horizontal axis is months. The solid lines are impulse response function, and the dashed line 

indicates double standard deviation band. The sampling frequency is monthly over the period from 

January 1993 to December 2013. 
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Figure 5. Impulse Response Analysis for the Latin American Sub-group 

For all the Latin American markets in my sample, this figure plots the average generalized impulse 

response functions (GIRF) of hot money to one-unit standard deviation shocks to either hot money or 

stock returns in the above two graphs, and equity returns to one-unit standard deviation shocks to 

either hot money or stock returns in the below two graphs. The vertical axis is returns in percentages 

and the horizontal axis is months. The solid lines are impulse response function, and the dashed line 

indicates double standard deviation band. The sampling frequency is monthly over the period from 

January 1993 to December 2013. 
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Appendix. State-space models 

State-space models (or unobserved components model) have been widely used to estimate 

unobserved time variables like rational expectation, permanent income, measurement error 

and unobserved factors, the trend for example. Using the recursive Kalman filter algorithm, 

it incorporates unobserved variables (state variables) into observable models and eventually 

receives the estimated result. Here, state-space models enable us to measure unobserved 

“hot money” via decomposing the observable equity flows. The unobserved components 

model can be written as follows: 

EFit=ωit+𝜈it+ 𝜀it                                                           (1)  

𝜀t~i.i.d.N (0,𝜎𝜀,𝑖
2 ) , i=1,2,…,N are countries and t=1,2,…,T are months  

Where EFit denotes the observed equity flows from the U.S. to a given emerging market i at 

time t, ωit is the unobserved permanent component of the equity flows that is considered to 

be a random walk process while 𝜈it+ 𝜀it is the unobserved temporary component that is 

dominated by an appropriate function, an order-two autoregressive process to be exact. The 

random disturbance in the system is also a set of time-dependent variables, which is 

represented by a white noise 𝜀it.  

The general form of the permanent component is  

ωit=γ+ωit-1+δit , δt~i.i.d.N(0, 𝜎iδ
2 )                                        (2)  

where γ is the drift, δit is a white noise part. 

The general form for the temporary component is 

𝜈it=λ1𝜈it-1+λ2𝜈it-2+ξit                                               (3) 

Where ξit ~i.i.d.N (0, 𝜎iξ
2) and coefficients satisfy: |λ1+λ2|<1 , |λ1-λ2| <1 , -1<λ2<1 

The state-space models contain two equations, one state equation, and one signal equation. 

The state equation reflects the state of the dynamic system at a certain moment under the 

effect of state variables while the signal equation (or measurement equation) connects the 

state vector of unobserved variables with output variables EFit at some time. When the 

dynamic system is expressed in state space form, important algorithms with Kalman filter 

as the core can be applied to it. The essence of Kalman filter is to reconstruct the state 

vector of the system based upon the measurements.  

The signal equation can be written as  
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EFit =[1 1 1][

ωit

νit

εit

]                                                           (4) 

The state equation is  

[

ωit

νit

εit

] =[
1 0 0
0 λν 0
0 0 0

] [

ωit−1

νit−1

εit−1

] +[
1 0 0
0 1 0
0 0 1

] [

ωit

νit

εit

]                                   (5) 

I use monthly CPI-scaled equity flows for each emerging market and choose Maximum 

Likelihood as the estimation method for recursive Kalman filter. Results produced by 

OxMetrics are shown in the table and graphs below. Specific to each emerging country, I 

have attempted the possibilities within the framework of general state-space models and 

choose the appropriate model according to the 𝑅2 criteria. Models for South Korea, Brazil, 

Malaysia, Mainland China and Indonesia are as follows: EFt=ωt+𝜈t+𝜀t; ωt=ωt-1+δt ;t=λ1𝜈t-

1+ξt . The state-space model for Argentina and Chile can be written as EFt=ωt+𝜈t+ 𝜀t ; 

ωt=ωt-1+δt ; 𝜈t=λ1𝜈t-1+λ2𝜈t-2+ξt. For Taiwan China, the best specification is: EFt=ωt+𝜈t; 

ωt=ωt-1+δt ; 𝜈t=λ1𝜈t-1+ξt . The model I select for India, Philippines and Thailand is: 

EFt=ωt+𝜈t+ 𝜀t; ωt=γ+ωt-1+δt; 𝜈t=λ1𝜈t-1+ξt . Equity flows of Mexico can be decomposed 

using following model: EFt=ωt+ 𝜀t ; ωt=ωt-1+δt . Q-ratios in the table measure the relative 

importance of the temporary and permanent components of equity flows, which are defined 

as Q-ratio(ωit)= 
𝜎iδ

𝑚𝑎𝑥(𝜎iδ, ,    𝜎iξ ,  𝜎iε)
, Q-ratio(𝜈it)= 

𝜎iξ

𝑚𝑎𝑥(𝜎iδ, ,    𝜎iξ ,  𝜎iε)
 and Q-ratio(𝜀it)= 

𝜎iε

𝑚𝑎𝑥(𝜎iδ, ,    𝜎iξ ,  𝜎iε)
. Q-ratio(ωit) is expected to be 1 if the variation of equity flows is mainly 

derived from the dynamics of the permanent component. Q-ratio(𝜈it) or Q-ratio (𝜀it) is 

supposed to be 1 if most variation of equity flows can be explained by the temporary 

component. For details of state-space models and Kalman filter, please refer to Sarno and 

Taylor (1999a, b) and Fuertes et al. (2016). 

 

 

 

 

 


