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ABSTRACT
We incorporate the non-linear clustering of dark matter haloes, as modelled by Jose et al.
into the halo model to better understand the clustering of Lyman break galaxies (LBGs) in
the redshift range z = 3–5. We find that, with this change, the predicted LBG clustering
increases significantly on quasi-linear scales (0.1 ≤ r / h−1 Mpc ≤ 10) compared to that in
the linear halo bias model. This, in turn, results in an increase in the clustering of LBGs by
an order of magnitude on angular scales 5 ≤ θ ≤ 100 arcsec. Remarkably, the predictions of
our new model on the whole remove the systematic discrepancy between the linear halo bias
predictions and the observations. The correlation length and large-scale galaxy bias of LBGs
are found to be significantly higher in the non-linear halo bias model than in the linear halo
bias model. The resulting two-point correlation function retains an approximate power-law
form in contrast with that computed using the linear halo bias theory. We also find that the
non-linear clustering of LBGs increases with increasing luminosity and redshift. Our work
emphasizes the importance of using non-linear halo bias in order to model the clustering of
high-z galaxies to probe the physics of galaxy formation and extract cosmological parameters
reliably.

Key words: galaxies: haloes – galaxies: high-redshift – galaxies: statistics – cosmology:
theory.

1 IN T RO D U C T I O N

The halo model of large-scale structure is a successful formalism
for predicting and interpreting the clustering of dark matter haloes
and the galaxies associated with them (Cooray & Sheth 2002). In
the halo model the galaxy correlation function (ξ g(r)) is the sum of
two terms, the one-halo term and the two-halo term. The one-halo
term accounts for the contributions to the clustering from galaxy
pairs residing within the same dark matter halo and dominates the
galaxy clustering on small scales. Since visible galaxies are formed
in dark matter haloes and subhalos, the shape of the one-halo term
is determined by dark matter halo substructure (Berlind & Wein-
berg 2002). The two-halo term, that accounts for the correlation
between galaxies residing in distinct haloes, dominates the cluster-
ing of galaxies on scales larger than their typical halo virial radius.
The crucial component of the two-halo term is the halo bias that
determines how dark matter haloes trace the dark matter on large
scales (Kaiser 1984; Cole & Kaiser 1989; Bond et al. 1991).

Interestingly, the predicted galaxy correlation functions at low
redshifts have an almost power-law form (ξ g(r) = (r/r0)−γ ), with
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a subtle feature on scales (r ∼ 1–2 h−1 Mpc) corresponding to the
transition from the one-halo to the two-halo term (Berlind & Wein-
berg 2002; Kravtsov et al. 2004; Zehavi et al. 2004; Watson, Berlind
& Zentner 2011). The halo model has been highly successful in ex-
plaining many low-redshift clustering measurements over a wide
range of galaxy–galaxy separations (Zehavi et al. 2004, 2005; Con-
roy, Wechsler & Kravtsov 2006; Zheng et al. 2009; Zehavi et al.
2011; Guo et al. 2013; Parejko et al. 2013). The clustering measure-
ments for high redshift (3 ≤ z ≤ 5) galaxy samples shows stronger
departures from a power law, particularly around the transition from
the one-halo to two-halo terms (Ouchi et al. 2005; Lee et al. 2006;
Hildebrandt et al. 2009; Cooke, Omori & Ryan-Weber 2013). Nev-
ertheless, the measured galaxy correlation functions in this redshift
range are typically approximated as a power law (Kashikawa et al.
2006; Savoy et al. 2011; Bian et al. 2013; Durkalec et al. 2015;
Harikane et al. 2016; Ishikawa et al. 2016; Park et al. 2016). Inter-
estingly, the measured clustering of galaxies retains an approximate
power-law form even at a higher redshift ∼7 (Barone-Nugent et al.
2014).

However, models of the clustering of very high redshift (z ≥ 3)
galaxies using the standard halo model predict a much stronger
deviation from a power law than is suggested by the observations
(Ouchi et al. 2005; Lee et al. 2009; Jose et al. 2013b). In particular,
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Jose et al. (2013b; hereafter J13) point out that the predicted angular
clustering of Lyman break galaxies (LBGs) on angular scales 10 ≤
θ ≤ 100 arcsec is lower than the observed clustering by an order
of magnitude. These angular scales (corresponding to comoving
length of 0.5–10 Mpc) are bigger than the virial radii of the typical
dark matter haloes at that redshift, but smaller than scales where
the linear theory is valid, and therefore referred to as quasi-linear
scales. On these scales, the significant contribution to the galaxy
clustering comes from the two-halo term. J13 modelled the two-
halo term in this regime using the large-scale linear halo bias (Mo
& White 1996; Sheth & Tormen 1999; Tinker et al. 2010). At z = 0,
deviations from the linear halo bias approximation on quasi-linear
scales are found to be of the order of only a few per cent (Tinker
et al. 2005; van den Bosch et al. 2013). However, such a weak
scale dependence of the halo bias is not sufficient to explain the
discrepant clustering strength of high-z LBGs. To summarize, the
halo model predictions of high-z LBG clustering that use linear halo
bias show substantial departures from a power law and underpredict
the observed correlation functions on quasi-linear scales (J13).

Here, we investigate whether considering the scale-dependent
non-linear bias of high-z dark matter haloes on quasi-linear scales
removes the tension between the halo model predictions and the
observed LBG clustering. For this, we use the model introduced by
Jose, Lacey & Baugh (2016; hereafter J16), who showed that the
linear halo bias approximation breaks down on quasi-linear scales at
high-z. In particular, they showed that the scale dependence of non-
linear halo bias in this region is much stronger at high-z compared
to low-z.

There are previous works, especially at low redshifts (z ∼ 0),
which show the importance of using a weakly scale-dependent non-
linear halo bias on quasi-linear scales for a better comparison of
theoretical predictions with observed data (Cooray 2004; Zehavi
et al. 2004; van den Bosch et al. 2013). The consequences of the non-
linear clustering of mini-haloes on quasi-linear scales during the
cosmic dark ages (z ≥ 6) and the implications for future observations
of this epoch are discussed by Iliev et al. 2003 and Reed et al. 2009.
Here, we focus on the clustering of galaxies in the redshift range
3–5, thereby bridging the gap between these two distinct epochs in
the cosmic history. This is the first work, to our knowledge, that
uses the non-linear bias of dark matter haloes on quasi-linear scales
to better understand the measured clustering of LBGs at 3 ≤ z ≤ 5.

The organization of this paper is as follows. In the next section, we
present our model for the halo occupation distribution (HOD) and
the non-linear clustering of high-z dark matter haloes. In Section 3,
we compute the two-point spatial and angular correlation functions
of LBGs and compare them with observations. We present our con-
clusions in the final section. For all calculations, we adopt a flat �

cold dark matter universe with cosmological parameters consistent
with the 9-yr Wilkinson Microwave Anisotropy Probe observations
(Hinshaw et al. 2013). Accordingly, we assume a Hubble parameter
h = 0.70, a baryon density �b = 0.0463, cold dark matter density
�c = 0.233, density of massive neutrinos �ν = 0.0, fluctuation
normalization σ 8 = 0.821 and spectral index ns = 0.972 (where
�i is the background density of any species ‘i’ in units of critical
density ρc).

2 TH E C L U S T E R I N G O F H I G H - R E D S H I F T
L B G s

Here, we discuss the two key components of our galaxy clustering
model: (i) the HOD; and (ii) the model for the non-linear clustering
of dark matter haloes.

2.1 The halo occupation distribution

The HOD is an important ingredient for computing the two-point
correlation function of any galaxy sample. The HOD gives mean
number of galaxies of a given type in a dark matter halo of mass M
and is usually presented in a parametrized form (Seljak 2000; Bul-
lock, Wechsler & Somerville 2002; Hamana et al. 2004; Kravtsov
et al. 2004; Zehavi et al. 2005; Conroy et al. 2006; Hamana et al.
2006). Galaxy clustering can be calculated by combining the HOD
with dark matter clustering, dark matter halo abundance, halo bias
and the halo density profile.

In order to compute the clustering of LBGs selected to be brighter
than some luminosity threshold, we use the HOD computed using
the galaxy formation model of J13 for illustrative purposes (see also
Samui, Srianand & Subramanian 2007). In this model, each dark
matter halo can host a central galaxy and satellite galaxies. The
central galaxy is put at the centre of the halo and satellite galaxies
are distributed around the central galaxy following the dark matter
density profile. The satellite galaxy occupation, which is the mean
number of satellite galaxies in a dark matter halo, is computed using
the conditional or progenitor mass function (Lacey & Cole 1993;
Cooray & Sheth 2002). J13 then incorporate a physically motivated
model for the total star formation rate in a dark matter halo to
compute the ultravoilet (UV) luminosity of the LBGs hosted by the
halo. The parameters of the model are constrained by fitting the
observed UV luminosity functions of LBGs from Bouwens et al.
(2007), Reddy et al. (2008) and Bouwens et al. (2012). Thus, J13
constrains the relation between the UV luminosity and halo mass of
high-z LBGs from which the HOD of LBGs brighter than a given
luminosity is computed.

The mean number of LBGs brighter than apparent AB magnitude
m inside a dark matter halo of mass M, separated into central and
satellite components, can be written as

Ng(M,m, z) = Ncen(M,m, z) + Ns(M,m, z). (1)

Here, Ncen(M, m, z) and Ns(M, m, z) are, respectively, the average
number of central and satellite galaxies in a halo of mass M, sat-
isfying the luminosity threshold condition. The separation of the
HOD of LBGs into central and satellite components is crucial for
computing the clustering (Kravtsov et al. 2004; Zheng et al. 2005;
Cooray & Ouchi 2006; Conroy et al. 2006). Further details about
the computation of the central and satellite contribution to the HOD
can be found in J13.

In Fig. 1 (same as fig. 7 in J13), the average occupation number of
LBGs is plotted as function of the mass of the parent halo computed
using the model of J13 for z = 3–5 and for three apparent magni-
tude thresholds, for which clustering measurements are available
(Hildebrandt et al. 2009). Also shown is Ncen(M, m, z), the mean
occupation number of central LBGs. We note that for all redshifts
and threshold magnitudes shown the mean occupation number of
central LBGs plateaus at a value less than unity. Furthermore, the
average halo mass of LBGs in any sample varies from 3 × 1011

to 1.5 × 1012 M� (see Table 1 and also J13). These galactic dark
matter haloes at high-z correspond to 2σ–4σ fluctuations, whereas
at z = 0 haloes of comparable mass collapse from perturbations that
are less than 1σ . Thus, galactic mass dark matter haloes at z = 4
are much ‘rarer’ than those at z = 0.

2.2 Analytic model for the non-linear clustering of high-z
haloes

Now we briefly describe our model for the non-linear cluster-
ing of high-z dark matter haloes on quasi-linear scales. The dark
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Figure 1. The HOD, Ng(M, m, z), as a function of the mass of the host halo,
given by J13 at various redshifts and limiting magnitudes (m) as labelled
(same as fig. 7 of J13). In each panel, the thin curves correspond to Ncen(M,
m, z). The thick curves give the total occupation Ng(M, m, z) = Ncen(M, m,
z) + Ns(M, m, z). The mean occupation of the central galaxies is always less
than unity. For a fuller description see J13.

matter haloes are assumed to be spherical regions with an over-
density � = 200 times the background density of the Universe.
Then, the virial radius r200 of any halo of mass M is given by
M = (4/3)πr3

200ρc�. In the linear bias approximation, the cross-
correlation between haloes of mass M′ and M′′ is given by (Cooray
& Sheth 2002)

ξhh(r|M ′, M ′′, z) = b(M ′, z)b(M ′′, z)ξmm(r, z), (2)

where ξmm(r, z) is the two-point correlation function of the matter
density field at redshift z and b(M, z) is the scale-independent linear
bias of haloes of mass M. Equation (2) is valid on large scales,
where density fluctuations still grow linearly in redshift.

On quasi-linear scales and for rarer haloes, J16 improved the
model described in equation (2) by replacing the scale-independent
linear halo bias with a scale-dependent non-linear halo bias given
by

bnl(r,M, z) = b(M, z)ζ (r,M, z). (3)

Here ζ (r, M, z) is the scale-dependent part of the non-linear halo
bias, while b(M, z) is the linear halo bias measured on large scales.
The functions b(M, z) and ζ (r, M, z) are calibrated by fitting to N-
body simulations. We also note that, by definition, ζ (r,M, z) −→ 1
on very large scales.

The expression for the large-scale halo bias b(M, z) is given by
the fitting function of Tinker et al. (2010):

b(M, z) = b(ν(M, z)) = 1 − A
νa

νa + δa
c

+ Bνb + Cνc, (4)

where ν(M, z) = δc/σ (M, z) is the peak-height, δc = 1.686 is the
critical density for spherical collapse and σ (M, z) is the linear the-
ory variance of matter fluctuations on a mass scale M at redshift z.
J16 found that the Tinker et al. (2010) fitting function slightly over-
predicts the large-scale bias of the rarest dark matter haloes. This
is probably due to the different algorithms used in these studies to
identify dark matter haloes. Therefore, J16 refitted equation (4) find-
ing the best-fitting parameters A = 1.0, a = 0.0906, B = −4.5002,
b = 2.1419, C = 4.9148 and c = 2.1419. Here, we will use the
parameter values given by J16.

The scale-dependent function ζ (r, M, z) depends on r, M and z
through four quantities: ν(M, z), ξmm(r, z), an effective power-law
index of σ (M), αm(z), and the matter density of the universe at
a given redshift, �m(z). This effective power-law index, αm(z), is
defined as

αm(z) = log(δc)

log[Mnl(z)/Mcol(z)]
. (5)

Here, Mnl is the non-linear mass scale where the peak-height ν(M,
z) = δc (σ (M, z) = 1) and Mcol is the collapse mass scale where ν(M,
z) = 1 (σ (M, z) = δc). These masses can be computed numerically
for any given cosmological model to evaluate αm(z). The matter
density of the universe at any redshift can be written as

�m(z) = �m(0)(1 + z)3

�m(0)(1 + z)3 + ��(0)
, (6)

where �m(0) and ��(0) are the densities of matter and dark energy
at z = 0 in units of the critical density.

The form for ζ (r, M, z) expressed in terms of these quantities was
found by J16 to be well fitted by

ζ (ξ sim
mm, ν, αm,�m(z)) =(
1 + K0 log10

(
1 + ξmm

k1
)
νk2 (1 + k3/αm)�m(z)k4

)
× (

1 + L0 log10

(
1 + ξmm

l1
)
νl2 (1 + l3/αm)�m(z)l4

)
, (7)

with K0 = 0.1699, k1 = 1.194, k2 = 4.311, k3 = −0.0348,
k4 = 17.8283, L0 = 2.9138, l1 = 1.3502, l2 = 1.9733, l3 = −0.1029
and l4 = 3.1731.

In the top panel of Fig. 2, we plot ζ (M, r, z) for haloes as a
function of separation for three different halo masses that host LBGs
at z = 4. The bottom panel shows the corresponding non-linear halo
bias bnl(r, M, z) of the haloes along with the scale-independent linear
halo bias (thin horizontal line) given by equation (4). It is clear from
Fig. 2 that ζ (M, r, z) increases significantly from unity on small
scales. As a result, the non-linear halo bias is not constant and is
strongly scale-dependent on quasi-linear scales (0.5–10 h−1 Mpc).
One can see that there is a significant boost in the halo bias at high-z,

MNRAS 469, 4428–4436 (2017)



The clustering of high-redshift galaxies 4431

Table 1. Column 1: redshift of the galaxy sample; columns 2 and 3: apparent and absolute magnitude limits of the galaxy sample; column 4: mean
halo mass of galaxies in the sample as given in J13; columns 5 and 6: the correlation length obtained from the best fitting power law for the linear and
non-linear halo bias models; columns 7 and 8: the predicted power-law index of the galaxy correlation function in the range 0.1 ≤ r/Mpc ≤ 50 for the
linear and the non-linear halo bias models; and columns 9 and 10: the galaxy bias at 8 h−1 Mpc, predicted by the linear and the non-linear halo bias
models.

ξg in the range 0.1 ≤ r/h−1Mpc ≤ 50

r0 (Mpc h−1) γ bg =
√

ξg
ξmm

z m MAB Mav/ M� Linear Non-linear Linear Non-linear Linear Non-linear

25.5 −21.0 7.0 × 1011 4.41 7.43 1.55 2.06 5.85 6.53
5 26.0 −20.5 4.5 × 1011 3.79 6.36 1.53 1.97 5.31 5.80

26.5 −20.0 2.9 × 1011 3.25 5.39 1.51 1.89 4.82 5.18
25.0 −21.1 9.9 × 1011 4.37 6.71 1.58 1.96 4.72 5.16

4 25.5 −20.6 6.1 × 1011 3.79 5.72 1.56 1.89 4.29 4.61
26.0 −20.1 3.9 × 1011 3.29 4.85 1.54 1.82 3.90 4.14
24.5 −21.1 1.5 × 1012 4.26 6.10 1.60 1.93 3.61 3.84

3 25.0 −20.6 9.0 × 1011 3.67 5.13 1.59 1.86 3.23 4.40
25.5 −20.1 5.5 × 1011 3.20 4.36 1.58 1.81 2.92 3.05

Figure 2. Top panel: the scale dependence ζ (r, M, z) of the non-linear
halo bias as a function of the halo separation for three halo masses at z = 4.
Bottom panel: the non-linear halo bias (thick lines) bnl(r, M, z) = b(M, z)ζ (r,
M, z) at the same redshift. The thin horizontal lines are the scale-independent
linear halo bias b(M, z) for the same masses.

even on scales of 5 − 10 h−1 Mpc. For example, at z = 4 the bias
of dark matter haloes of mass M = 5 × 1012 M� is increased by a
factor of 4.5 at a halo separation r = 1 h−1 Mpc, compared to the
linear bias of those haloes. This will boost the clustering strength

of these haloes by a factor of 20. Furthermore, ζ (M, r, z) increases
with halo mass suggesting that the non-linear bias is stronger for
rarer haloes. As we shall see later, such a strong scale-dependent
non-linear halo bias results in a remarkable change in the predicted
shape of the LBG correlation function compared to the predictions
using linear halo bias.

The halo–halo correlation function is then obtained by replacing
the linear halo bias with the non-linear halo bias, bnl(r, M, z):

1 + ξhh(r|M ′, M ′′, z) =
[
1 + bnl(r,M

′, z)bnl(r,M
′′, z)

× ξmm(r)
]

�
[
r − rmin(M ′, M ′′)

]
(8)

Here, the � function incorporates halo exclusion in our calculations.
The halo exclusion ensures that the correlation between any pair of
haloes of masses M′ and M′′ goes to −1 if r < rmin(M′, M′′), where
rmin = max[r200(M′), r200(M′′)] (van den Bosch et al. 2013). Here,
r200(M) = (3M/4πρc�)1/3 is the virial radius of a dark matter halo
of mass M with � = 200.

3 TH E C O R R E L AT I O N F U N C T I O N S O F L B G s

We now incorporate the non-linear halo bias into the halo model of
large-scale structure to compute the correlation functions of LBGs.
As discussed above, for this we use the HOD (shown in Fig. 1)
of LBGs computed using the model of J13. The galaxy correlation
functions have a contribution from the two-halo term that describe
the clustering between galaxies hosted in distinct haloes and a one-
halo term that accounts for the clustering from galaxies residing in
the same dark matter halo. The non-linear halo bias modifies, the
two-halo term by boosting the clustering of galaxies on quasi-linear
scales. The one-halo term, however, remains unchanged because
the non-linear halo bias does not alter the distribution of galaxies
inside a dark matter halo.

3.1 The two-halo term

When computing the two-halo term with non-linear halo bias, we
assume that the halo density profile is sufficiently peaked that it
does not affect the two-halo term on scales larger than the typical
virial radii of haloes (Cooray & Sheth 2002). This is equivalent
to assuming that the halo density profile is a delta function when
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Figure 3. The spatial correlation functions, ξg, of high-z LBGs at redshifts 3, 4 and 5 and for a given apparent magnitude limit as labelled. The red dashed
and black solid curves are the predictions of scale-independent linear halo bias and scale-dependent non-linear halo bias models, respectively.

computing the two halo term.1 In this case, using equation (8), the
two-halo term for galaxy correlation function can be written as

1 + ξ 2h
g (r,m, z) = 1

ng(m, z)

∫
dM ′ dn

dM
(M ′)Ng(M ′, m, z)

×
∫

dM ′′ dn

dM
(M ′′)Ng(M ′′, m, z)

[
1 + ξhh(r|M ′,M ′′, z)

]
, (9)

where

ng(m, z) =
∫

dM
dn

dM
(M, z)Ng(M,m, z) (10)

is the number density of LBGs brighter than apparent magnitude m
given by equation (1). We use the fitting function of Tinker et al.
(2008) for the halo mass function, dn/dM(M, z), as this is found
to be in excellent agreement with the halo mass function measured
from N-body simulations, which is used to calibrate the non-linear
halo bias. We have also incorporated the halo exclusion in equation
(9) through the � function in equation (8).

3.2 The one-halo term

The one-halo term is computed as in J13, assuming that the radial
distribution of satellite galaxies inside a parent halo follows the
dark matter density distribution (Cooray & Sheth 2002). We use the
Navarro–Frenk–White (NFW) profile for the density distribution
in a dark matter halo (Navarro, Frenk & White 1997). The halo
concentration parameter for computing NFW fitting functions is
taken from Klypin, Trujillo-Gomez & Primack (2011). In this case,
the one-halo term is given by (Sheth et al. 2001; Tinker et al. 2005)

ξ 1h
g (r,m, z) = 1

n2
g

∫
dM

dn

dM
(M, z) ×

[
2Ncen(M,m, z)

× Ns(M,m, z)
ρNFW(r,M, z)

M

+ Ns
2(M,m, z)〉λNFW(r,M, z)

M2

]
. (11)

Here, ρNFW is the NFW profile of dark matter density inside a
collapsed halo and λNFW is the convolution of this density profile
with itself (Sheth et al. 2001).

1 We found that this approximation is sufficient to study the clustering of
LBGs.

3.3 The total spatial correlation function

The galaxy correlation function is obtained by adding the one-halo
and the two-halo terms

ξg(r,m, z) = ξ 1h(r,m, z) + ξ 2h(r,m, z). (12)

In Fig. 3, we show the predicted spatial correlation functions of
LBGs at z = 3, 4 and 5. Each panel corresponds to a given redshift
and threshold apparent magnitude. Fig. 3 clearly shows that, at
each redshift, the linear halo bias model prediction for ξ g breaks
away from a power law on scales from 0.1 to 10 h−1 Mpc. On
similar scales, the non-linear halo bias model predicts much stronger
clustering compared to the linear halo bias model. As a result, the
deviation of ξ g from a power law with the non-linear halo bias
model is far smaller than is the case for the linear halo bias model.
We also find that the discrepancy between the predictions of the two
models increases with redshift and luminosity. In fact, it is clear
from Fig. 3 that, at z = 5, the linear halo bias model underpredicts
the correlation functions by more than an order of magnitude in the
range 0.5 ≤ r/(h−1 Mpc) ≤ 1 compared to the non-linear halo bias
model. This clearly shows that the non-linear bias of dark matter
haloes must be properly accounted for in order to understand the
clustering of high-z galaxy samples that are characterized by low
number densities.

We have fitted the ξ g(r) predicted by the linear and non-linear
halo bias models with a power law ξ g(r) = (r/r0)−γ , where r0 is
the correlation length and γ is the power-law index. The best-fitting
r0 and γ , obtained by fitting ξ g in the range 0.1 ≤ r/h−1 Mpc ≤
50, are tabulated in Table 1. It is clear from columns 5 and 6 of
Table 1 that the correlation lengths predicted by the non-linear halo
bias model are systematically higher than those obtained from the
linear halo bias model. This is a direct consequence of the increased
clustering of LBGs on quasi-linear scales in the non-linear halo
bias model. In particular, for the brightest LBG sample at z = 5,
the predicted correlation length in the non-linear halo bias model
is larger by a factor of 1.7 compared to the linear bias prediction.
Furthermore, r0 increases with redshift and galaxy luminosity. For
example, the correlation length at z = 5 is larger by a factor of ∼1.2
compared to that at z = 3 for a given apparent limiting magnitude.
This is consistent with the observational results of Hildebrandt et al.
(2009), who found a similar evolution of r0 with redshift and limiting
magnitude.

The power-law slopes of the predicted ξ g for the linear and the
non-linear bias models are given in columns 7 and 8 of Table 1.
It is clear from Table 1 that, the linear halo bias model predicts
γ = 1.5–1.6. On the other hand, γ predicted by non-linear and
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scale-dependent bias model ranges typically from 1.8–2.1. This
is remarkably consistent with the values of the power-law index
(γ ∼ 1.7–2.1) inferred from high-redshift observations (Ouchi et al.
2005; Lee et al. 2006; Coil et al. 2006; Hildebrandt et al. 2009; Savoy
et al. 2011; Bian et al. 2013; Barone-Nugent et al. 2014; Durkalec
et al. 2015; Harikane et al. 2016).

Finally, we compare the galaxy bias predicted on large scales
by the linear and non-linear models. We first note that the large-
scale LBG bias has been measured by numerous authors at different
scales using alternative definitions. Several set the scale at which
the bias of LBGs is measured to be 8 h−1 Mpc (Ouchi et al. 2004;
Adelberger et al. 2005; Yoshida et al. 2008; Hildebrandt et al. 2009).
Following these, we have defined the galaxy bias, bg at a scale of
8 h−1 Mpc as

bg =
√

ξg(r)

ξmm(r)

∣∣∣∣∣∣
r=8 h−1Mpc

(13)

The galaxy bias estimated using equation (13) for the linear and non-
linear bias models are tabulated in columns 9 and 10 of Table 1,
respectively. Interestingly, we find that bg predicted by the non-
linear halo bias model are consistently higher than the linear halo
bias predictions. Specifically, in the redshift range 3–5, the galaxy
bias is larger by 4–12 per cent in the non-linear halo clustering
model compared to the linear halo bias model. It is remarkable
that the non-linear dark matter halo clustering results in such an
increment in the galaxy bias even on a scale of 8 h−1 Mpc at high-z
where matter fluctuations are still in the linear regime.2

3.4 The angular correlation function

Now we compute the angular correlation function, a direct mea-
surable of galaxy clustering, from the spatial correlation function.
Several authors have measured the angular correlation function of
LBGs brighter than a given UV luminosity in the redshift range
3 ≤ z ≤ 5 (Ouchi et al. 2005; Coil et al. 2006; Kashikawa et al.
2006; Lee et al. 2006; Hildebrandt et al. 2009; Savoy et al. 2011;
Wake et al. 2011; Bian et al. 2013; Barone-Nugent et al. 2014;
Durkalec et al. 2015; Harikane et al. 2016). Among these studies,
Hildebrandt et al. (2009) use the largest LBG sample in the redshift
range 3 ≤ z ≤ 5. This allows them to estimate the angular correlation
functions with small error bars for a range of magnitudes. Hence,
we will use the Hildebrandt et al. (2009) data when comparing our
model predictions with observations.

The luminosity-dependent angular correlation function w(θ , m,
z) is computed from the spatial correlation function using Limber’s
equation (Peebles 1980):

w(θ,m, z) =
∫ ∞

0
dz′ N (z′)

∫ ∞

0
dz′′ N (z′′)ξg

(
z, r(θ ; z′, z′′)

)
, (14)

where r(θ ; z′, z′′) is the comoving separation between two points at z′

and z′′ subtending an angle θ with respect to an observer. To compute
the angular correlation functions, we used the normalized redshift
selection function, N(z), from Hildebrandt et al. (2009) (BCsim red-
shift distribution; see table 4 and fig. 5 of their paper). Furthermore,
in equation (14), the spatial two-point correlation function ξ g(r, z)
is always evaluated at the central redshift of the selection function
N(z).

2 For example, σ 8 = 0.175 at z = 5.

In Fig. 4, we show in solid black lines, the angular correlation
functions of high-z LBGs computed after incorporating the non-
linear halo bias. The results are presented for 3 ≤ z ≤ 5 and for
a wide range of magnitude limits. Fig. 4 also shows the angular
correlation function of LBGs computed using the linear halo bias
model given in J13 as dashed red lines.

First, we note that the clustering predictions using linear halo bias
compare reasonably well with the observed data for θ > 100 arcsec.
However, on intermediate angular scales (5 ≤ θ ≤ 100 arcsec), the
linear halo bias predictions do not match the observed clustering.
Here, there is a clear break in the predicted angular correlation
functions around θ ∼ 10 arcsec, due to which the correlation func-
tions look like a double power law. This scale corresponds to the
transition from the two-halo to one-halo contributions to the cluster-
ing. Furthermore, the discrepancy between theory and observations
seems to increase for brighter and higher-z galaxy samples.

The strong feature in the predicted LBG clustering at intermediate
angular scales can also be found in earlier studies using the halo
model (Hamana et al. 2004; Ouchi et al. 2005; Lee et al. 2009;
Bian et al. 2013; J13; Harikane et al. 2016). These studies use the
linear halo bias model for the two-halo contribution, which, in turn,
results in a very strong deviation of the predicted angular correlation
function from a power law. It is possible to increase the clustering
strength over the range 5 ≤ θ ≤ 100 arcsec by changing the HOD
given by Ng in equation (9). However, this will simply rescale ξ g

upwards and as a result, on large scales, the linear halo bias model
will overpredict the observed clustering.

Our model predictions using non-linear halo bias significantly
increase the clustering strength of LBGs only in the angular range
5 ≤ θ ≤ 100 arcsec, on the whole greatly improving the agreement
with observational measurements. It is also clear that the boost in
the clustering strength due to the non-linear halo bias on this scale
is larger for higher redshift and for brighter galaxy samples. As a
result, the feature predicted by the linear halo bias model at the
two-halo to one-halo transition region (at θ ∼ 10 arcsec), weakens
and the correlation function is closer to a power law. Therefore,
we conclude that the non-linear bias of high-z dark matter haloes
plays a major role in reshaping the correlation functions of high-z
galaxies, thereby providing better agreement with the observational
data.

We also note from Fig. 4 that, for fainter galaxy samples (m = 25.0
and 25.5) at z = 3, the non-linear bias model slightly overpredicts
the clustering on intermediate angular scales, and the linear bias
model provides a better fit to the data. One could, in principle,
investigate whether this is due to uncertainties in the HODs of those
samples by using alternative HODs derived from more sophisticated
galaxy formation models, but such an analysis is beyond the scope
of this paper. However, apart from these two cases, the clustering
measurements for all of the other galaxy samples are much better fit
by the non-linear halo bias model than the linear halo bias model.

Finally, it is clear from Fig. 4 that, on scales smaller than
∼10 arcsec and larger than ∼100 arcsec, the correlation functions
of LBGs, as predicted by linear and non-linear halo bias models,
agree well with each other. As noted earlier, for θ ≤ 10 arcsec, the
non-linear halo bias does not affect the correlation function because
the clustering on these scales is dominated by the one-halo contri-
bution due to pairs of galaxies sitting inside the same dark matter
halo. On the other hand, on large scales ζ (r,M, z) → 1 and hence
the expression for the non-linear halo bias in equation (3) reduces
back to the linear halo bias. As a result, for θ ≥ 100 arcsec, the
effect of scale-dependent non-linear bias is insignificant for LBG
clustering.
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Figure 4. The angular correlation functions of LBGs predicted using non-linear (solid black) and linear (dashed red) halo bias models at redshifts 3, 4 and 5
and for various limiting magnitudes as labelled. In each row there are three panels showing the clustering predictions of LBGs samples with three apparent
magnitude limits. The observational clustering measurements are taken from Hildebrandt et al. (2009)

4 D I S C U S S I O N A N D C O N C L U S I O N S

We have investigated the non-linear clustering of high-z LBGs in
the redshift range 3 ≤ z ≤ 5 using the halo model of large- scale
structure. Specifically, we find that incorporating the non-linear halo
bias of these haloes in the halo model is of utmost importance for
understanding the clustering of LBGs in the quasi-linear regime
corresponding to angular scales of 5 ≤ θ ≤ 100 arcsec.

Our work is motivated by J13, who showed that the halo model
predictions using linear halo bias for halo clustering fail to explain
the observed clustering amplitude of LBGs at 3 ≤ z ≤ 5 on angular
scales 5 ≤ θ ≤ 100 arcsec. The linear halo bias models underpredict
LBG clustering on these scales by an order of magnitude. As a result,
the predicted LBG correlation functions in the above redshift range
depart significantly from a power law in contrast with observations.

We address this issue using the model of J16, who investigated
the non-linear clustering of high-z dark matter haloes in the redshift
range and on the scales of interest. In particular, these authors
provide an analytic fitting function for the scale-dependent non-
linear halo bias of high-z haloes on quasi-linear scales, which is
a function of four quantities that can be readily computed for any
cosmology. Using this, we find that, at z = 4, the non-linear bias of

dark matter haloes of mass ∼1012 M�, that host typical LBGs at
this redshift, is quite significant on quasi-linear scales. As a result,
the clustering amplitude is enhanced by up to a factor of 20 at a
scale of 0.5 h−1Mpc.

We combined the analytic fitting formula for non-linear halo bias
given by J16 with the halo model to predict the spatial correlation
function of LBGs. For this we used the HOD of LBGs given by J13,
computed using their galaxy formation model. The corresponding
predicted correlation function shows much stronger clustering on
scales 0.1–10 h−1 Mpc compared to the predictions of the linear
halo bias model. Furthermore, the difference between the models
increases with redshift and galaxy luminosity. The resulting galaxy
correlation function in the non-linear halo bias model are much
closer to a power law than the predictions of the linear halo bias
model. The corresponding correlation lengths of LBGs are consis-
tently larger in the non-linear halo bias model compared to the linear
halo bias model. For example, at z = 5 and for a limiting magnitude
of m = 25.5, the predicted correlation length in the non-linear halo
bias model is larger than the linear halo bias model by 70 per cent.
Moreover, the non-linear halo bias model predicts a power-law in-
dex of γ ∼ 1.8–2.1 compared to γ ∼ 1.5–1.6 obtained from the
linear halo bias model. Remarkably, the power-law index estimated
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using the non-linear halo bias model at high redshifts compares very
well with the values deduced from several high-redshift observa-
tions.

The spatial correlation functions are then used to compute the an-
gular correlation functions of LBGs. We find that the non-linear bias
of dark matter haloes significantly boosts the clustering of LBGs on
angular scales of interest (10 ≤ θ ≤ 100 arcsec). The resulting LBG
correlation functions provide a much better fit to the observed data
on these angular scales compared to the predictions of the linear
halo bias model, except for the fainter galaxy samples at z = 3.
The effect of non-linear halo clustering is also found to increase
with redshift and galaxy luminosity. This is expected because the
non-linear bias is larger for more massive and higher redshift dark
matter haloes. This, in turn, reshapes the angular correlation func-
tions of LBGs in the redshift range 3–5 into an approximate power
law over the entire angular scale. While at low- z, a power law ξ g(r)
is achieved by the fine-tuning of several ingredients including the
HOD and the dark matter clustering (Watson et al. 2011), we believe
at high-z the non-linear halo bias plays a critical role in making the
shape of the galaxy correlation function close to a power law.

Finally, the predicted LBG bias at 8 h−1 Mpc is larger in the non-
linear halo bias model compared to the linear halo bias predictions
for all redshifts and limiting magnitudes. In particular, for 3 ≤ z
≤ 5, we find a 4–12 per cent increase in the galaxy bias on this
scale in the non-linear halo clustering models. This is because the
effective bias on this scale is not the linear asymptotic bias, but
is still subject to a substantial scale-dependent effect, as shown by
Fig. 2. Since several studies measure the galaxy bias of LBGs at
8 h−1 Mpc (Ouchi et al. 2004; Adelberger et al. 2005; Yoshida
et al. 2008; Hildebrandt et al. 2009), it is very important to include
the non-linear halo bias in the halo model of LBG clustering for a
reliable comparison of data and theory.

The observed clustering of LBGs has been used in numerous
studies as a probe of the physics of high-redshift galaxy formation
(Hamana et al. 2004, Ouchi et al. 2005, Lee et al. 2009, Ouchi et al.
2010, Bian et al. 2013, Cooke, Omori & Ryan-Weber 2013, Jose,
Srianand & Subramanian 2013a; Durkalec et al. 2015; Harikane
et al. 2016). These studies used the linear halo bias model to place
constraints on several interesting quantities such as the average mass
of haloes hosting LBGs, the duty cycle of star formation activity
and the fraction of satellite galaxies at high redshifts. The use of
the linear halo bias model potentially introduces systematics in the
inferred values of these quantities. For example, for LBGs brighter
than m = 26.5 at z = 5, focusing on just the measured galaxy clus-
tering at θ ∼ 14 arcsec rather than the whole correlation function
(see Fig. 4), comparing to the clustering expected in the dark matter
suggests a galaxy bias of bg ∼ 9.3. In the linear model, this bias
translates into a mean halo mass of ∼4.2 × 1012 M�. However, if
instead we use the non-linear halo bias model to interpret the clus-
tering at this fixed angular scale, part of the difference in amplitude
between the galaxy clustering and the dark matter clustering is due
to the non-linear effects. This means that the asymptotic bias on
large scales is smaller than in the linear halo bias model, imply-
ing a lower mean halo mass ∼3.9 × 1011 M�, which is an order
of magnitude smaller than that inferred from the linear halo bias
model. Therefore, it is very important to incorporate the non-linear
halo bias of high-z haloes in the clustering models of LBGs to better
explore the physics of galaxy formation and cosmology.

Even though we have focused on the importance of the non-
linear halo bias for the clustering of LBGs at 3 ≤ z ≤ 5,
one can expect similar trends in the clustering of rare, high-
redshift galaxies for other sample selections. In particular, strongly

non-linear clustering is expected for high-z quasars, Lyman-α emit-
ters, dusty star-forming galaxies and redshifted 21 cm signals from
the pre-reionization era. The extended version of the halo model,
we have introduced that incorporates the non-linear bias of dark
matter haloes will be a useful tool for the robust interpretation of
such measurements.
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