
 Page 1 of 54 

Cost-Effective Non-Metric Photogrammetry from Consumer-Grade sUAS: 1 

Implications for Direct Georeferencing of Structure from Motion 2 

Photogrammetry 3 

P.E. Carbonneau1 and J.T. Dietrich2 
4 

 
5 

1: Department of Geography, Durham University, Lower Mountjoy site, South road, 6 

Durham, UK.  7 

2: William H. Neukom Institute for Computational Science, Dartmouth College, 8 

Hanover, NH. USA 9 

 10 

Abstract 11 

The declining costs of small Unmanned Aerial systems (sUAS), in combination with 12 

Structure from Motion (SfM) photogrammetry have triggered renewed interest in 13 

image-based topography reconstruction.  However, the potential uptake of sUAS-14 

based topography is limited by the need for ground control acquired with expensive 15 

survey equipment.  Direct georeferencing (DG) is a workflow that obviates ground 16 

control and uses only the camera positions to georeference the SfM results.  17 

However, the absence of ground control poses significant challenges in terms of the 18 

data quality of the final geospatial outputs.  Here, we present an examination of DG 19 

carried out with consumer-grade sUAS.  We begin with a study of surface 20 

deformations resulting from systematic perturbations of the radial lens distortion 21 

parameters.   We then test a number of flight patterns and develop a novel error 22 

quantification method to assess the outcomes.  Our perturbation analysis shows 23 
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families of predictable equifinal solutions of K1-K2 which minimise doming in the 1 

output model. The equifinal solutions can be expressed as K2 = f (K1) and they have 2 

been observed for both the DJI Inspire 1 and Phantom 3 sUAS platforms.   This 3 

equifinality relationship can be used as an external reliability check of the self-4 

calibration and allow a DG workflow to produce topography exempt of non-affine 5 

deformations and with random errors of 0.1% of the flying height (e.g. ±5cm @ 50m), 6 

off-vertical tilts below 1° and easily-corrected linear offsets from 0.3m to 8m.  Whilst 7 

not yet of survey-grade quality, these results demonstrate that low-cost sUAS are 8 

capable of producing reliable topography products without recourse to expensive 9 

survey equipment and we argue that direct georeferencing and low-cost sUAS could 10 

transform survey practices in both academic and commercial disciplines.  11 

 12 

Keywords: sUAS, UAV, Structure from Motion, SfM, photogrammetry, Direct 13 

Georeferencing, camera calibration, Point Clouds.  14 
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Introduction 1 

The staggering uptake of small Unmanned Aerial Systems (sUAS), commonly 2 

referred to as drones, has led some to coin the term ‘the Drone Age’ in reference to 3 

our era (Economist 2015).  In parallel, the integration of Structure from Motion (SfM) 4 

and multi-view stereo (MVS) algorithms into the standard workflow of digital 5 

photogrammetry has led to a series of software products that can restitute 6 

topography from imagery with an unprecedented level of automation and ease 7 

(Westoby et al. 2012; Fonstad et al. 2013).  Several authors have already 8 

demonstrated that imagery acquired from sUAS platforms can deliver high quality 9 

topographic survey data (Niethammer et al. 2012; Hugenholtz et al. 2013; Bemis et 10 

al. 2014; Immerzeel et al. 2014; Clapuyt et al. 2015; Eltner et al. 2015; Ryan et al. 11 

2015; Turner et al. 2015; Woodget et al. 2015).  The appearance of consumer-grade 12 

sUAS with imaging sensors that approach the quality of professional and scientific 13 

digital cameras is therefore precipitating a fundamental shift in topographic mapping 14 

whereby individuals or small organisations in need of such data no longer depend on 15 

national mapping agencies or geospatial/survey companies.  Whilst some progress 16 

has been made towards lowering the cost of terrain mapping via digital 17 

photogrammetry e.g. (Carbonneau et al. 2003), the uptake has largely remained 18 

contained to academic circles with the commercial topographic sector currently 19 

dominated by laser-ranging technology.  However, with low-cost drones and 20 

affordable SfM-photogrammetry software, photogrammetry is gaining and may return 21 

as the dominant method of topography production and become as common a tool as 22 

standard photography.  23 

Currently, the combination of a consumer-grade sUAS equipped with a high-24 

definition camera and free SfM-photogrammetry software, such as 123D Catch by 25 
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Autodesk or Microsoft Photosynth, can produce virtual 3D objects that are suitable 1 

for visualization or 3D printing.  However, the production of topographic data and the 2 

associated orthoimagery for the purpose of formal mapping or any other scientific 3 

application is significantly more challenging and has much more stringent data 4 

quality requirements.  The 3D data initially produced by SfM are not scaled and 5 

oriented to any real dimensions or directions (Westoby et al. 2012; Fonstad et al. 6 

2013; Javernick et al. 2014).  Therefore, SfM photogrammetry requires generally 7 

expensive survey equipment (e.g. RTK-GPS) to provide accurate (i.e. small mean 8 

error) and precise (i.e. small standard deviation of error) real-world map-coordinates 9 

of objects in the scene (e.g. ground control points or targets).   These points are 10 

used to scale, rotate, and translate the initial model to map coordinates.  However, 11 

errors present in the survey data propagate through the transformation and result in 12 

errors of scaling, rotation, and translation as illustrated in figure 1.  In addition to 13 

these linear errors, detailed investigations have revealed that systematic doming 14 

deformations can often be present in the final topographic outputs for both standard 15 

photogrammetry (Wackrow and Chandler 2008, 2011) and SfM-Photogrammetry 16 

(Carbonneau and James 2012; James and Robson 2014; Woodget et al. 2015; 17 

Dietrich 2016).  These deformations are caused by optical lens distortion (Figure 2). 18 

Figure 2a, illustrates how lens distortion can warp images.  Under ideal 19 

circumstances, a lens would produce an image with a regular orthogonal grid pattern 20 

preserves straight lines and right angles.  In practice, lens design and aberration 21 

effects warp the conformal image projection and result in non-right angles and 22 

curved lines with either barrel or pin-cushion distortion patterns.  Furthermore, many 23 

compact lens systems, increasingly prevalent in small-format and mobile cameras, 24 

display complex patterns where the distortion is not a monotonic function of radial 25 
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distance from the centre of the image.   When the lens distortions from multiple 1 

images are combined and allowed to propagate through the SfM-MVS process, the 2 

effect on the final topographic outputs is generally seen as either a doming or dishing 3 

effect (Figure 2b).  Correcting the lens-distortion effects has been the focus of a very 4 

large body of work in both photogrammetry and computer vision (Brown 1966, 1971; 5 

Fraser 1997; Clarke and Fryer 1998; Luhmann et al. 2014). Use of the Brown-6 

Conrady lens distortion model (table 1) is now standard practice in all forms of 7 

photogrammetry.  Furthermore, the parametrisation of this model is now performed 8 

by so-called, automatic-, or on-the-job self-calibration algorithms which automatically 9 

parametrise the Brown-Conrady model, (i.e calibrating the camera/lens combination) 10 

from the image dataset intended for 3D reconstruction (Fraser 1997; Luhmann et al. 11 

2014). 12 

High-quality SfM-photogrammetry, therefore, requires both a correct scaling, 13 

rotation, and translation of a raw 3D point cloud and an accurate parametrisation of 14 

the Brown-Conrady lens distortion model.  The dominant approach for this is the 15 

acquisition of centimetric quality ground control data (ground control points, GCPs) 16 

with professional survey equipment (e.g. RTK-GPS or total station). The 17 

photogrammetric software (standard or SfM) can then use ground control data for 18 

both georegistation and camera calibration.  However, the requirement for GCPs to 19 

be acquired with survey-grade equipment remains the largest barrier, both in terms 20 

of time and cost, to the wider uptake of sUAS-based photogrammetry.  The 21 

alternative is to develop so-called ‘Direct Georeferencing (DG)’, whereby the 22 

photogrammetric solution is determined with precise and accurate knowledge of the 23 

camera positions (X, Y, and Z) and orientation (pitch, roll, and yaw) at the time of 24 

image acquisition (Turner et al. 2014).  This methodology is routinely used in the 25 
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case of full-sized airborne photography and LiDAR surveys (without the camera 1 

calibration requirement) and some authors have started reporting on its application 2 

to sUAS (Turner et al. 2014).   3 

The advantages of DG are clear: by removing the need for ground control, 4 

professional survey equipment is no longer required, which could dramatically 5 

reduce the cost of topographic surveys (e.g. RTK-GPS equipment costs in excess of 6 

$10 000). Furthermore, with DG, ground access to the survey area would not be 7 

required, which would facilitate high-quality topographic monitoring in hazardous or 8 

inaccessible areas.  We therefore argue that the development and wider uptake of 9 

cost-effective photogrammetry from sUAS platforms that are capable of producing 10 

outputs suitable for a range of mapping and technical applications is reliant on the 11 

further development of direct georeferencing.  To a certain extent, this has already 12 

begun.  In recent years, there has been an explosion of sUAS options made 13 

available to consumers and researchers, both fixed-wing and rotorcraft. They range 14 

from higher priced ready-to-fly (RTF) models to lower priced do-it-yourself or 15 

“scratch-built” options.  There are now a wide range of options for consumer-grade 16 

camera drones priced from £500 to £2500.  As discussed further in this paper, these 17 

drones have many desirable features for scientific mapping and they have enabled 18 

an emergence in consumer-grade photogrammetry, colloquially called ‘3D mapping’.  19 

However, much of this activity is not informed by photogrammetry and the specific 20 

challenges of data quality and camera calibration quality in the absences of GCPs 21 

have not been addressed in the consumer market and only researched by a few 22 

authors in academic circles (Turner et al. 2014; Eling et al. 2015; Milik and Gabrlik 23 

2015).  Direct georeferencing of SfM has been demonstrated from manned aircraft 24 

(Nolan et al. 2015). However, the reliability of the DG approach from consumer-25 
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grade sUAS and its suitability as a fully-fledged topographic survey method is yet to 1 

be demonstrated. 2 

In this paper, we deploy two popular consumer-grade sUAS models and we examine 3 

their ability to produce topography within a direct georeferencing workflow.  Our 4 

approach is informed by core photogrammetry concepts and particular attention was 5 

paid to camera calibration issues:  Perturbation analysis of lens distortion and 6 

corresponding doming deformations were conducted within a space of the K1 and K2 7 

lens distortion parameters (Table 1).  Furthermore, we develop a new approach to 8 

error assessment which is tailored to the SfM-photogrammetry workflow and 9 

explicitly determines errors in translation, rotation, scale, and surface noise and 10 

demonstrates that whilst some form of limited ground truthing is still required, survey-11 

grade ground control is not required to achieve a satisfactory data quality. 12 

 13 

Methods 14 

sUAS Platforms 15 

We deployed a Phantom 3 Professional (P3P) and an Inspire 1 (I1) both 16 

manufactured by DJI Inc.  These popular quadcopters have many features of interest 17 

for scientific applications.  The P3P and the I1 both have an integrated camera 18 

(Model FC300 on the P3P and Model FC350 on the I1) mounted on a three-axis 19 

gimbal that stabilizes the camera, absorbs vibrations, and compensates for the 20 

rotational motion of the quadcopter. The integrated cameras both use a wide-angle 21 

rectilinear lens and thus avoid the heavy distortions common with the fish-eye lenses 22 

employed in several drone and camera models (e.g. GoPro cameras or the DJI 23 
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Phantom 2-series).  Both the P3P and I1 cameras can acquire 12-megapixel still 1 

imagery in raw (DNG) or JPEG formats.  For navigation and flight stabilisation, the 2 

internal consumer-grade GPS system uses both the GNSS and GLONASS systems, 3 

increasing the number of satellites used in the GPS position determination. DJI’s 4 

specifications report a GPS accuracy of ≈2.5 meters in X-Y.  These positions are 5 

automatically exported to the EXIF metadata for each image in WGS84 latitude and 6 

longitude thus providing a location stamp (geotag) for each image.  Finally, the low-7 

cost of the P3P (£1200) and the I1 (£2400) make them accessible and limits the 8 

impact of a total loss in the event of a crash, allowing for flights in risky environments 9 

such as volcanos or large flood-stricken areas.   10 

Camera calibration experiment 11 

The optical components of any real lens system do not transmit light rays from the 12 

object scene to the imaging sensor in a perfectly linear manner (Wolf et al. 2014) .  13 

In order for SfM, or any photogrammetric method, to recover accurate 3D data 14 

defining and correcting lens distortions are a critical (Zhengyou 1996; Heikkila and 15 

Silven 1997). Lens distortions are typically generalized with two components: 16 

symmetric radial distortions and decentring (tangential) distortions (Förstner et al. 17 

2013).  The Brown-Conrady lens model was developed in order to correct these lens 18 

distortions.  In table 1, we can see the form of the model which is based on Taylor 19 

expansions of radial, Kn and tangential Pn, distortion terms.  The radial distortion 20 

parameters (K1, K2, and K3) are associated with barrel and pincushion distortion 21 

patterns (Wolf et al. 2014) (Figure 2) and are combined to create a 2D polynomial 22 

representation of the lens distortions.  The Pn terms quantify the decentring 23 

distortions, offsets of the radial distortion from the center of the image. Fraser (2013) 24 

states that there is a temptation to use the full 10-parameter form of the model to 25 
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achieve the highest possible accuracy. However, the two most critical terms in the 1 

model are the focal length (F) and K1, followed by K2 and the principal point 2 

coordinates (Cx, Cy) (Förstner et al. 2013; Wolf et al. 2014).  For “medium accuracy” 3 

applications, K1 is sufficient, but for higher accuracy applications, especially those 4 

utilizing wide-angle lenses (e.g. those used in modern, compact camera systems), K2 5 

and possibly K3 are required (Förstner et al. 2013). For K3, P1, and P2 to be solved 6 

accurately the image network needs to be highly redundant with a very strong, 7 

convergent geometry (Wolf et al. 2014), which is often only possible in highly 8 

controlled environments. It is however recognized that the Kn parameters can be 9 

highly correlated, due to the nature of the polynomial base (Zienmann 1986; Fraser 10 

1997). Fraser (1997) suggests that statistical tests can be conducted on the 11 

parameters to determine if additional Kn parameters result in a statistically significant 12 

difference in the radial distortion profile. However, the Kn parameters are not strongly 13 

coupled to the other parameters in the model or with the external orientation 14 

parameters and therefore an over-parameterization (additional Kn terms) will still 15 

yield a valid distortion profile (Fraser 1997). Additionally, P1 and P2 are highly 16 

correlated with the principle point coordinates and the errors are typically small 17 

compared to the K-terms. If P1 and P2 are supressed (i.e. set to zero) the errors can 18 

be absorbed by Cx, Cy (Fraser 2013, Förstner et al. 2013). Förstner et al (2013) also 19 

states that the perturbations associated with P-terms are “universally ignored in 20 

analytical photogrammetry”. 21 

When errors associated with radial image distortion are allowed to propagate 22 

through the photogrammetric process, it has been established that the final 23 

topographic model can contain non-linear deformations that take form as doming or 24 

dishing of the land surface (Figure 2b) (Wackrow and Chandler 2008; James and 25 
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Robson 2014).  We therefore begin with an experiment aimed at determining the 1 

optimal radial distortion parameters for the P3P and I1 lenses.  We used Photoscan 2 

Professional (ver. 1.1) for all the processing described in this work. However, this 3 

software expresses the above distortion parameters in focal length units according 4 

to: 5 

𝐾1(𝑓𝑜𝑐𝑎𝑙 𝑢𝑛𝑖𝑡𝑠) = 𝐾1(𝑝𝑖𝑥𝑒𝑙 𝑢𝑛𝑖𝑡𝑠) ∗  𝑓2   (1) 6 

𝐾2(𝑓𝑜𝑐𝑎𝑙 𝑢𝑛𝑖𝑡𝑠) = 𝐾2(𝑝𝑖𝑥𝑒𝑙 𝑢𝑛𝑖𝑡𝑠) ∗  𝑓4   (2) 7 

𝐾3(𝑓𝑜𝑐𝑎𝑙 𝑢𝑛𝑖𝑡𝑠) = 𝐾3(𝑝𝑖𝑥𝑒𝑙 𝑢𝑛𝑖𝑡𝑠) ∗  𝑓6   (3) 8 

Where f is the focal length in pixel units.  The expression of Kn in focal length units 9 

yield easily manageable numbers which can be expressed without scientific notation, 10 

but it hinders cross-comparability of calibration results with different focal lengths.  11 

Therefore, from this point onwards, we will systematically report Kn values in pixel 12 

units as converted from equations 1-3.   13 

To identify the correct distortion parameters for our lenses, we used a systematic 14 

perturbation approach with the objective of iteratively finding the optimal K1 and K2 15 

values that minimized the distortions in a flat wall test site. The sUAS were operated 16 

hand-held without propellers.  By walking in front of a flat wall on the campus of 17 

Durham University (for the P3P) and Dartmouth College (for the I1) at a distance of 18 

roughly 10 meters, a series of 24 images were acquired as a series of 12 convergent 19 

viewing pairs.  For each pair, the optical axis of the camera intersects the wall at 20 

±45.  Our only assumption is that the wall is flat and, in keeping with the objective 21 

of direct georeferencing, no other ground validation is used.  Based on our other 22 

research and recreational photogrammetry experiments and data collections, the 23 
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range of K1 and K2 values was set as K1  [-3.7, -1.9] x10-8 pixels and K2  [1.7, 7] 1 

x10-15 pixels converted as per equations 1-3 with a focal length of 2320.06 pixels for 2 

the P3P and 2326.07 for the I1.   3 

Within Photoscan, the 24 flat wall images were processed in order to establish initial 4 

camera calibration values. Using the Python scripting API (application program 5 

interface) for Photoscan we were able to produce and process a total of 6232 6 

photogrammetric blocks with the same imagery but with fixed calibration parameters 7 

spanning the full K1-K2 space while keeping the calibration values for the focal 8 

length, principal point offset and K3 as per the initial self-calibration.  Tangential 9 

distortion and K4 were not used in this experiment.  The resulting point clouds were 10 

exported automatically as part of the Python processing script. In Matlab, each 11 

model was centred and normalised to the same dimensions and a 3D second-order 12 

polynomial fit in (x,y) was calculated for each point-cloud data.  Given that the test 13 

wall is flat, any significant doming distortions in the point clouds are detected in the 14 

second order terms of the polynomial regression.  In this case, the wall was longer in 15 

the x direction and therefore we expect significant doming to be detected in the x2 16 

term of the polynomial.  Optimal calibration parameters will be those where these 17 

second order terms are minimised (≈ 0).  The compiled results of the experiments 18 

were plotted as a matrix to display the data as a function of K1 and K2. 19 

Lens distortion modelling 20 

Our personal experience with camera calibration has shown that for a given camera, 21 

the outputs of self-calibration are never identical even in cases where imagery is 22 

acquired on the same day, under similar conditions and where external validation 23 

indicates that the final topographic model is of high quality.  In order to further 24 
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examine similarity in the outputs of the camera calibration as observed in the 1 

perturbation experiments, we conducted additional simulations of lens perturbations. 2 

We used a Monte Carlo framework (i.e. randomly generated perturbations) 3 

implemented in MATLAB.  This random Monte Carlo approach is less 4 

computationally intensive than a full examination of the parameter space and thus 5 

facilitates the exploration of this parameter space.  To start, we take the optimal K1, 6 

K2 and K3 calibration parameters as determined by self-calibration in the flat wall 7 

experiment described above and we calculate the associated displacement with the 8 

Brown-Conrady model (table 1), in pixels, over a profile of 2000 pixels (the positive 9 

horizontal axis of our photographs).  Then a Monte Carlo approach is used to 10 

randomly generate 1 million combinations of K1 and K2, once again in the interval K1 11 

 [-3.7, -1.9] x10-8 pixels and K2  [1.7, 7] x10-15 pixels (as above).  For each of the 12 

parameter combinations the pixel displacement profile is re-calculated.  We then 13 

take the maximum difference, irrespective of location in the distortion profile, 14 

between the simulated K1-K2 combination and the optimal K1-K2-K3 calibration. 15 

Finally, the maximal difference results from the 1 million Monte Carlo samples are 16 

interpolated to a regular grid for analysis and display.   17 

Airborne Surveys and validation 18 

Additional experiments were conducted with the P3P at two sites in county Durham, 19 

UK.  First, a fallow field in the village of Lanchester was used as the main site (Site 20 

A).   This triangular field is ringed by trees and it is characterised by a curved 21 

topography which is sloping in an eastwards direction.  The field is fallow with wild 22 

grasses and flowers grown to a height of 10-40cm.  Second, a sports field on the 23 

grounds of Durham University was used (Site B).  This area was flat and had 24 

trimmed lawn.  The northern limit of the area is set by a flood levee approximately 1 25 
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meter high.  Figure 3 shows an aerial view of each site.  The topography of both 1 

sites was established with an RTK-GPS survey using a Leica 1200 model RTK rover 2 

and base pair.  For each site, RTK-GPS points were acquired with the objective of 3 

establishing the overall shape of the area.  Instead of working on a gridded basis, 4 

care was taken to capture the outer bounds of the study sites and break-lines in the 5 

local topography.  The GPS base-stations were set to relative positions but post-6 

processed with added data from a permanent base station located at Newcastle 7 

Airport.   The results of the survey were two sparse GPS point datasets that captured 8 

the shape of each study site. 9 

Flight patterns and image acquisition 10 

Based on the work of James and Robson (2014) and Fonstad et al. (2013) there is a 11 

consensus view that image acquisition geometry has an impact on the quality of the 12 

outputs with convergent views and multiple flight altitudes to be preferred.  We 13 

therefore designed an intuitive set of flight patterns based on reasonable 14 

combinations of altitude, camera orientation, and flight direction that are expected to 15 

illustrate both good and bad performance of the SfM-photogrammetry process and 16 

test the potential of DG.  The flights were grouped in two experiments both aiming to 17 

test the effect of flight pattern and image acquisition on final model geometry 18 

(detailed in Table 2).  We experimented with a combination of NADIR and 19 

convergent imagery (James and Robson 2014) .  Four flight patterns were tested: 1) 20 

nadir imagery from an altitude of 60 meters; 2) nadir imagery from an altitude of 60 21 

and 80 meters; 3) nadir imagery combined with eight convergent-view images at an 22 

altitude of 60 meters; and 4) nadir imagery at 60 and 80 meters combined with eight 23 

convergent view images acquired at 60 meters.  It was found that the P3P had 24 

sufficient battery life to acquire all the imagery for these four flight patterns in one 25 
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flight.  Flights began with the camera at nadir at two altitudes and ended with the 1 

series of oblique view images. In the analysis stage, the images were grouped 2 

according to the four flight patterns for both sites thus yielding eight ‘flights’ labelled 3 

A1 – A4  and B1 – B4.  Finally, at the time of our experiments, the DJI firmware for 4 

both the P3P and I1 recorded the relative elevation from the launch point to the EXIF 5 

data of each photo. Before every flight, we needed to establish a zero elevation 6 

datum for the flight by taking a single image on the ground from the launch position 7 

in order to get the GPS position corresponding to the launch point.  8 

   9 

Pre-Processing 10 

For all 8 flights, the raw RGB images (DNG format) were converted to 48-bit TIFF 11 

imagery (16-bit per band) with Adobe Photoshop elements.  No image equalisation 12 

or other such adjustments were applied. We imported the initial TIFF images into 13 

MATLAB, removed the geotag (latitude /longitude) from the EXIF data, converted 14 

and output the coordinates into UTM (Zone 30 North, WGS84) to a text file, which 15 

could be imported into Photoscan Pro.  In addition, the X-Y coordinates of the launch 16 

point were used to get the absolute elevation from a hydrologically corrected SRTM 17 

dataset available from the United States Geological Survey (USGS).  This value was 18 

added to the relative elevation data recorded in the image metadata thus resulting in 19 

each image defined by a 3D position in UTM coordinates with elevations above the 20 

WGS 1984 ellipsoid.   21 

TIFF images are then imported into Photoscan Pro in separate ‘chunks’ which act as 22 

distinct processing blocks.  The converted camera station coordinates were imported 23 

providing an immediate geographic reference for each block.  Based on the DJI 24 
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manual, which states that the on-board GPS is accurate to 2.5 meters in X-Y, the 1 

camera position accuracy setting, in Photoscan, was set to a conservative value of 5 2 

meters.  Each image block was reconstructed using the high quality image-alignment 3 

setting followed by a dense reconstruction at a low-density setting.  4 

 5 

Error modelling and assessment 6 

Error and quality assessment for 3D point clouds and topography data typically relies 7 

on root mean square error (RMSE) values when compared to some ground truth-8 

value (ASPRS 2015; Whitehead and Hugenholtz 2015).  We argue that these 9 

generic metrics do not provide a full description of the possible errors associated 10 

with SfM-photogrammetry.  A single RMS statistic cannot explicitly identify 11 

systematic patterns such as tilt or non-affine warp.  Mapping the spatial distribution 12 

of error at checkpoints can be useful in identifying these patterns, but often low 13 

checkpoint density does not capture the full extent of any systematic distortions.  In 14 

the absence of a dense network of survey-grade GCPs, the georeferencing process 15 

used in SfM-photogrammetry relies on a rigid 7-parameter transformation, errors in 16 

the ground control or camera position can propagate as errors of position, 17 

orientation, and/or scale in the model (Figure 1).  Each of these errors has impacts 18 

with respect to specific applications.  Position/translation errors can affect change 19 

detection studies by creating false horizontal or vertical offsets. Orientation errors, 20 

especially off-vertical rotations, will affect gravity-dependent models (i.e. flow 21 

models) by producing incorrect slopes and flow directions. Scale errors will also 22 

influence change detection and volume calculations, again by creating false 23 

horizontal or vertical offsets.  A single RMSE statistic, even if accompanied by a full 24 
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error distribution, is therefore not a powerful diagnostic tool when deciding if a 1 

topographic dataset is suitable for any given application. A more process-specific 2 

error assessment approach is therefore required.  We propose the following error 3 

model: 4 

𝑃𝑆𝑓𝑀 = 𝑀7𝑃𝑡𝑟𝑢𝑒 + 𝜂       (4) 5 

Each of the three terms in equation 4 is a point cloud: Ptrue is a reference point-cloud 6 

giving the true (i.e. ground truth) representation of the surface. PSfM is the point cloud 7 

calculated by SfM-photogrammetry.  The matrix factor M7 denotes the affine rigid-8 

body 7-parameter transform needed to scale (one parameter), rotate (3 parameters: 9 

Rφ, Rθ, Rψ), and translate (3 parameters: Tx, Ty, Tz) Ptrue in order to match PSfM.  𝜂 10 

is a non-linear, non-rigid, error term (also a point cloud) which can be seen as a 11 

quasi-random field produced by noise in the SfM process.  We can therefore use the 12 

standard deviation of 𝜂 as a measure of precision (scatter) of PSfM.  This will be 13 

reported as a single number and noted as p. 14 

To assess errors in the SfM reconstructions we used dGPS survey data and the 15 

open-source point cloud processing software Cloud Compare (Girardeau-Montaut 16 

2014).  The first step in the process is establishing the parameters for M7 for all 8 17 

experiments.  We duplicated each model (A1 – A4 and B1 – B4) in Photoscan and 18 

using the point cloud editing functions, edited each model to clear all points except 19 

those around the periphery of the sites where dGPS point density was the greatest.  20 

For site A, only those points located along the unvegetated and narrow footpath that 21 

circumscribes the field were kept.  For site B, only the narrow concrete border (3 cm 22 

in width) of the paved footpath and the bottom and top of the flood defence ridge 23 

were preserved.  These ‘hollow’ clouds were imported into Cloud Compare along 24 
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with the matching dGPS data.  Then, automated cloud-to-cloud registration, an 1 

iterative closest point algorithm, was employed to calculate a transformation matrix 2 

that could transform the dGPS data (Ptrue) to match the hollow PSfM clouds.  The 3 

resulting transformation matrix is M7 in equation 1.  The accuracy and precision of 4 

the automated cloud-to-cloud registration (i.e. co-registration) procedure were 5 

evaluated separately for sites A and B and we use the residuals of points after the 6 

adjustment as an indication of fit quality.  After automated co-registration for site A, 7 

we obtain a mean residual of 5.2cm with a standard deviation of 23.4cm.  For site B, 8 

we obtain a mean residual of  0.1cm and a standard deviation of 3.1 cm.  The higher 9 

errors for site A are to be expected due to the presence of tall grasses which will add 10 

error in the comparison of a bare earth DSM derived from dGPS to a DTM derived 11 

from photogrammetry. 12 

Next we calculated 𝜂 with the full point clouds.  In practice, we calculate 𝜂 as the 13 

differences between Ptrue and PSfM after the application of M7. The transformation 14 

matrix derived from the first step was applied to the full dGPS dataset and we 15 

constructed a Delaunay mesh of the dGPS points.  Then the full SfM point cloud was 16 

imported into Cloud Compare and a cloud-to-mesh distance was calculated.  The 17 

advantage of using the cloud-to-mesh function is that distances between the 18 

transformed Ptrue and PSfM are calculated along the Z-axis and the sign of the 19 

difference is preserved. Positive differences are above Ptrue and points with negative 20 

differences are below Ptrue. The topography at our sites was relatively flat allowing us 21 

to use the simpler cloud-to-mesh distances along the Z-axis. In more complicated 22 

terrain with vertical surfaces and/or overhangs, other differencing algorithms, such 23 

as Multiscale Model to Model Cloud Comparison (M3C2), could be used to generate 24 

the difference map (Lague et al. 2013) .  The differences are stored as an additional 25 
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field in the point cloud, and we calculate precision by taking the standard deviation of 1 

𝜂.  Furthermore, we extracted profiles from the difference clouds (see figure 3 for 2 

profile locations) and used in conjunction with the spatial distribution of cloud-to-3 

mesh differences we were able to check for the presence of the doming deformation 4 

associated with errors in the camera calibration process.  Our main objective here 5 

was to test if a hypothesised degradation of camera calibration parameters would 6 

result in the now famous doming deformation (Wackrow and Chandler 2008, 2011; 7 

James and Robson 2014; Woodget et al. 2015) .  In this case, the reference surface 8 

could not be taken as the dGPS surface.  The presence of tall grasses on site A 9 

hides any dome since the dGPS data represents the ground and the 10 

photogrammetric point clouds represent the top of the vegetation, which is a variable 11 

10 cm to 40 cm above the bare earth.  Therefore, the profiles were based on what 12 

was assumed as the best possible reference for the top of the vegetation: flights A4 13 

and B4.  In all cases, we corrected for translation, rotation, and scaling errors with 14 

the application of the appropriate M7 transformation matrix (as described above) prior 15 

to differencing and profile extraction.   16 

 17 

Results 18 

Figure 4 examines the self-calibration results for the Phantom 3 camera.  For the 19 

wall experiment, the self-calibration of the image block returned a focal length of 20 

2320.06 pixels with K1 of -2.53 x 10-8 pixels-2, K2 of 3.96 x10-15 pixels-4 and K3 of -21 

1.15 x 10-22 pixels-6. In figure 4, we plot lens distortion profiles over the 2000 pixel 22 

positive horizontal axis of the image for each Kn component separately.  The K1 23 

component profile has a parabolic, concave-down shape.  With an opposite sign, the 24 
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K2 component profile has concave-up shape and, especially at the edges, a similar 1 

displacement magnitude when compared to the K1 component.  Finally, the K3 2 

component profile can be seen to have a small contribution. Figure 5 presents the 3 

results of the Monte Carlo lens distortion simulations for both the Phantom 3 and 4 

Inspire 1 lens calibrations.  These graphs display a strong degree of equifinality.  5 

Along the central diagonal, it is clear that a large range of K1-K2 combinations can 6 

produce lens distortion profiles which match the optimal lens calibration to within 7 

displacements of 10 pixels.  Further, we see zones which match to within 5 and even 8 

2 pixels.  Crucially, these zones follow the diagonal and indicate that only certain 9 

combinations of K1 and K2 yield equifinal solutions.  Given the opposing concavity of 10 

the K1 and K2 components seen in figure 4, this is a sensible result.   Linear 11 

regression indicates that solutions similar to within 2 pixels are predicted by: 12 

𝑃3:  𝐾2  =  −2.7364 ∗  10−7  ×  𝐾1  +  −3.4086 ∗ 10−15   (5) 13 

𝐼1:  𝐾2  =  −2.7335 ∗  10−7 × 𝐾1  +  −3.5858 ∗  10−15   (6) 14 

 15 

Where the domain of validity for eq. (5) is K1  [-2.56, -2.35] x10-8 pixels and K2  16 

[2.97, 3.62] x10-15 pixels and for eq (6) is K1  [-2.46, -2.25] x10-8 pixels and K2  17 

[2.52, 3.18] x10-15 pixels. 18 

Figure 6 shows the output of the perturbation experiments for the P3P and I1 in 19 

raster format.  Similar to figure 5, we see a strong degree of equifinality with a large 20 

range of K1-K2 combinations resulting in lens distortion profiles which match the 21 

optimal lens calibration to within displacements of 10 pixels. Also, we see positive 22 

curvature (pin-cushion distortion) on the top-left and negative curvature (barrel 23 

distortion) on the bottom right.  In the central diagonal, we have a ledge where a 24 
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family of solutions in the K1-K2 parameter space that minimise doming deformations 1 

with the following fits of K2 = f(K1), where Kn is expressed in pixel units, 2 

𝑃3𝑃:  𝐾2 =  −2.392 ∗ 108 × 𝐾1
3 − 18.264 × 𝐾1

2 − 6.924 ∗ 10−7 × 𝐾1  − 5.887 ∗ 10−15  (7) 3 

𝐼1:  𝐾2 =  −2.781 ∗ 108 × 𝐾1
3 + −19.604 × 𝐾1

2  − 6.900 ∗ 10−7 × 𝐾1 − 5.362 ∗ 10−15  (8) 4 

Furthermore, since each point in figure 6 is the result of a least-squares surface 5 

fitting, we examined the fit quality of all points.  For the P3P, the mean R2 is 0.94, the 6 

5th percentile is 0.75 and the median is 0.98.  For the I1 the mean R2 is 0.99, the 5th 7 

percentile is 0.99 and the median is also 0.99.  Additionally, if we consider only the 8 

subset of solutions along the line of equifinality, we find that for the P3P the mean R2 9 

is 0.97, the 5th percentile is 0.94 and the median is 0.98.  For the I1, the results are 10 

the same as above with a mean R2 of 0.99, a 5th percentile of 0.99 and the median 11 

of 0.99.  The differences between the P3P results and the I1 results suggest an 12 

improved matching success for the I1 which could either be due to lighting 13 

conditions, surface texture or sensor quality.  Overall these statistics indicate that the 14 

wall remained reasonably flat in the entire K1/K2 parameter space, especially for the 15 

subset of equifinal solutions defined by equations (7) and (8).  However, based on 16 

figure 5, we might expect very slight doming in the upper left and bottom right of 17 

figures 6A and 6B.  Woodget et al. (2015) observed a doming amplitude of 1.5cm 18 

during calibration flights at similar distances.  It can therefore not be ruled out that 19 

our usage of the 2nd order polynomial coefficient as a test of flatness does not 20 

capture curvature with amplitudes below  0.1% to 0.15% of flying height.  Figure 6 21 

also displays points that correspond to calibration results (in pixel units) from the 22 

flight experiments with the P3P and, for the I1, a sample of other data acquired at a 23 

variety of field sites.  We can see that most, but not all, self-calibration outputs plot 24 
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near the zero distortion line.  Table 3 lists the self-calibration parameters returned for 1 

the eight P3P flights.  We first evaluated the self-calibration by calculating the value 2 

of K2 as per equation (7) and then calculating the error, K2, between the self-3 

calibrated and predicted values of K2. According to this metric, flights A1 and A2 4 

were the furthest from the zero distortion line and flights A3, A4 and B2 the closest.  5 

Flights B1, B3 and B4 seem to be in an intermediate range.   Equations 5 and 7 6 

suggests that doming deformations present due to a mis-calibration of K1/K2 can be 7 

corrected with an adjustment of K2 or K1.  Preliminary experiments with corrections 8 

derived from equation 7 were only partial successful at removing doming.  We 9 

systematically observed that using pre-calibrated, fixed, values lead to a degradation 10 

of results, even when using optimal values derived from figures 5 or 6.  However, 11 

constraining the corrections to the zone in figure 5 with solutions equifinal to within 12 

displacements of 2 pixels (i.e. using equation 5) was successful.  When applying 13 

equation (5), K1 values self-calibrated as being outside the domain of validity were 14 

forced to the nearest value within the domain and the K2 value re-calculated 15 

accordingly.  Figure 7 presents both self-calibrated and adjusted deformation profiles 16 

along the  to  profile in figure 3.   Deformation is calculated as a given profile 17 

differenced from the optimally calibrated profiles A4 and B4.  Figure 7 shows that 18 

self-calibration for flights A1 and B1 returned a strong doming deformation while self-19 

calibration of A2 resulted in a dishing deformation. The adjusted calibration values 20 

eliminated both doming and dishing deformations.  However, this has come at the 21 

cost of increased surface error (random noise).    This level of random noise, in 22 

equation 4, along with other errors, are presented in table 4.  In table 4, we note that 23 

Tz (datum shifts) are large for A1 and A2, and a re-examination of table 3 shows that 24 

variations in Tz to be a part of a complex and non-intuitive response to focal length 25 
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calibration issues.  According to single image geometry, the scale of the image is 1 

directly proportional to the focal length.  Therefore, if we consider the calibration 2 

results for A1 and A2, we might expect that a focal length difference of 565 out of 3 

2539 would result in a 22% difference in scale.  Table 4 shows that this is clearly 4 

not the case with a scaling errors of 0.2% in the case of A1.  Furthermore, a re-5 

examination of the point clouds via simultaneous display for cases A1-A2 shows that 6 

these models, with focal length calibrations ranging from 1974 to 2539 have a clear 7 

vertical offset but visible scale differences in the X-Y plane.  This is illustrated in 8 

figure 8, which shows raw elevation profiles for flights A1 and A2 taken from points 9 

along the  to  cross section in figure 3.  The raw elevations in figure 8 were 10 

calculated from separate DEM outputs where the exact beginning and end-points of 11 

the profiles were manually chosen from accurately visible points in the respective 12 

orthoimagery rather than from fixed coordinates.  For this purpose, we used 13 

orthoimagery with a 2.5 cm resolution and we estimate that the point selection was 14 

accurate to at least 3 pixels (7.5 cm). By using recognisable conjugate points as the 15 

bounds of the profiles, any scaling errors in the models will be visible as a difference 16 

in profile length between points  and .  However, figure 8 shows no visible 17 

difference in profile length but a significant vertical offset of 12 m.  The exact profile 18 

length in the X-Y plane was 132.36 m for A1 and 132.79 m for A2.  If we consider 19 

our estimated measurement error, we obtain a scale discrepancy of 0.26% to 0.38%.  20 

This is slightly smaller but consistent with the results in table 4, which shows scaling 21 

ranging from 99.7% to 100.9%.  However, closer examination does reveal errors in 22 

the vertical scaling of the model. Figure 9 plots the full set of deformations (i.e. 23 

residuals) vs elevation.  This figure shows a strong correlation between errors and 24 

elevations with large scatter capable of enveloping the profiles shown in figure 7.  25 
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Closer examinations of the data confirmed this and showed that the vertical scale 1 

was either compressed (A2) or dilated (A1).  Therefore, focal length calibration 2 

remains crucial.  In this regard, a re-examination of table 3 shows that imagery 3 

acquired at nadir viewing angles (A1, A2, B1 and B2) leads to poor focal length 4 

calibrations whilst focal lengths calibrated from convergent view acquisitions (A3, A4, 5 

B3 and B4) are all consistent with the initial flat wall experiment.   6 

 7 

Overall, the results for rotation, scale, and random error are very encouraging. In 8 

terms of rotation, R is a rotation around the vertical axis (Z) and therefore leads to 9 

errors in the azimuths of the model. R  is rotation around the X-axis (north and 10 

south tilt, after application of R).  This therefore represents a rotation away from 11 

verticality and should be considered as an important source of error for surface 12 

process science applications. Finally, R gives the rotation around the Y-axis (east 13 

and west tit) after the application of R and R.  Values of R are encouraging, most 14 

values are below 1 degree and as low as -0.12 degrees. As a reference, our 15 

maximum and minimum R errors of 2.42 and -1.42 degrees would translate as 16 

vertical errors of 4.23 m and -2.48 m (respectively) at a distance of 100 m from the 17 

rotation centre. Errors in the scaling parameter are also a potentially important since 18 

they will affect any measurements of distance and volume.  The results are again 19 

encouraging with several values being within ±1% of the correct scale (i.e. 99-20 

101%).  However, some results are poor with the minimum value of 94.9% for B3 21 

and a maximum value 104.8% for B4.  Random error (p) values are also 22 

encouraging.  Given the non-uniform vegetation present at site A, we would expect 23 

an precision of 0.3-0.4m when comparing the photogrammetric point clouds to the 24 
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dGPS bare earth surface.  However, at site B the short-cropped lawn should have 1 

little impact on the data.  This is consistent with the data in table 4 where random 2 

errors are in the area of 0.4 m for site A and as low as 0.06 m for site B.  This 3 

promising result of 0.06, at a flying height of 60m, m would indicate an optimal 4 

precision of 0.1% (1:1000) of flying height.   5 

 6 

  7 
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Discussion 1 

Our results demonstrate that Direct Georeferencing from low-cost aerial platforms is 2 

a viable workflow for high-quality topography mapping.  Predictable equifinality in the 3 

K1-K2 parameter space of calibration solutions provides a measure of external 4 

reliability capable of assessing the quality of a camera calibration without the 5 

recourse to external ground control.  In optimal cases, we find that surface errors of 6 

0.1% of flying height can be achieved.  James and Robson (2012) also found a 7 

similar performance but since these authors used a network of 45 surveyed ground 8 

control points, our observation of a similar performance in a DG context is a 9 

significant step forward.   Our findings further confirm the recommendations of 10 

James and Robson (2014) stating that convergent viewing angles optimise the 11 

results of camera self-calibration.  However, in addition to the knowledge that 12 

convergent viewing angles are qualitatively ‘good’ for camera calibration, our results 13 

provide a quantitative approach to calibration assessment.  We recommend the 14 

following steps (summarised in figure 10): The camera should be calibrated before 15 

aerial acquisition, 20-30 images at convergent angles should be acquired of a flat 16 

wall on a recently constructed surface with a good level of texture.  In our 17 

experiments, we acquired heavily overlapping (>80%) imagery with the optical axis 18 

of the camera intersecting the wall surface at an angle of ±45. Rather than 19 

implementing the computationally onerous parameter space exploration we 20 

conducted in Photoscan (leading to figure 6), we recommend that users simply self-21 

calibrate the convergent imagery in order to obtain an assumed optimal calibration.  22 

As a check of this assumption, the flat wall surface point cloud should be regressed 23 

in a 2nd order polynomial model.  The second order terms should be negligible.  24 

Once an optimal calibration value is determined, users can replace the Photoscan 25 
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parameter exploration with the low-impact Monte Carlo approach described here 1 

(leading to figure 5) to determine equifinal solutions in the K1-K2 (potentially adding 2 

K3) parameter space. Our findings indicate that solutions need to be similar to within 3 

a maximum displacement of 2 pixels. However, if we consider figures 5 and 6, it 4 

becomes apparent that the acceptable domain of equifinal solutions will scale with 5 

flying height.  In the case of the flat wall experiment where the effective flying height 6 

was 10 meters (roughly 20% of the width of the wall), equifinality was observed over 7 

a wide range of solutions with displacements similar to within 10 pixels.  In the case 8 

of real data, the flying height was 60 meters (50% of the site width) and in this case, 9 

we found that displacements similar to 2 pixels were required.  Users operating at 10 

lower altitudes can therefore expect satisfactory results from calibrations delivering 11 

lens distortions that match optimum values to displacements somewhere between 2 12 

and 10 pixels.  Based on our experience, it is recommended that at least 10% of an 13 

image dataset be acquired at convergent angles of 20-45 off-nadir. One possible 14 

approach might be to use the ‘orbit’ flight function now available on most consumer-15 

grade drones.  This function allows the drone to fly a fully automated orbit around 16 

specific point at a user-determined height and radius. By setting the camera to 20-17 

45 off-nadir in the direction of the centre of the orbit, a set of strongly convergent 18 

images can easily be acquired to augment nadir imagery.   Once real aerial survey 19 

data are processed, the resulting self-calibration can then be checked against the 20 

range of equifinal Kn parameters.  Furthermore, the focal length calibration should 21 

match to within 0.1% of the initially calibrated value.  Since SfM-photogrammetry 22 

packages self-calibrate the camera during the initial camera alignment stage, the 23 

calibration can be checked on a field laptop without the need for the more 24 

computationally demanding stage of dense topography reconstruction.  If calibration 25 
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results are not satisfactory, we recommend adding extra convergent-view images 1 

acquired from a higher altitude.  At this point in our research, we do not recommend 2 

adjusting calibration values to match equifinal Kn solutions and/or using a fixed 3 

calibration during photogrammetric processing.  Figure 7 clearly shows that whilst 4 

this improves the accuracy of the model by eliminating doming and dishing, it 5 

increases surface noise and thus lowers the precision of the final model. 6 

Furthermore, calibrations values fixed to those of the flat wall experiment also 7 

produced increased levels of noise with the associated loss of precision.  This is 8 

consistent with the findings of (Fraser 1997; Förstner et al. 2013; Fraser 2013; Wolf 9 

et al. 2014) that recommend on-the-job self-calibration as best-practice for small 10 

format, non-metric, photogrammetry.  However, we note that our approach requires 11 

a certain pattern of lens distortion which is based in the effect of parameter 12 

correlation as discussed by Zienmann (1986) and Fraser (1997).  This concept of 13 

parameter correlation for the Kn components is relatively obscure but it explains our 14 

observations of equifinality.  Given the level of development and computational 15 

expense of digital photogrammetry in the 1980s and 1990s, it is not surprising that 16 

earlier authors did not examine large parameter spaces of Kn.  However, in the 17 

modern context of SfM where automated camera calibration is the norm, 18 

practitioners of SfM-photogrammetry should be aware of parameter correlation and 19 

equifinality in the calibration solutions.   If we examine the Brown-Conrady lens 20 

model in table 1 and the lens distortion profiles in figure 4, it can be inferred that a 21 

necessary condition for equifinality and correlation in the K1-K2 parameter space is 22 

opposite signs for K1 and K2.  This is what allows for various combinations of K1 and 23 

K2 to compensate each other and forms the basis for the parameter correlation 24 

effect.  In order to assess transferability of these findings, we conducted a survey of 25 
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a range of cameras and examined their Kn radial distortion parameters as obtained 1 

by the self-calibration algorithm in Photoscan.  Table 5 shows that in all cases, K1 2 

and K2 have opposite signs.  This suggests that the lens distortion profile will have 3 

inflection points that require the use of at least K1 and K2.  Therefore, it can 4 

reasonably be expected that these lenses will display some equifinality (i.e 5 

correlation between K1 and K2) in their own K1-K2 parameter spaces.   6 

 Once it is confirmed that a self-calibrated block adjustment has been achieved 7 

within a family of zero distortion solutions, the rigid-body 7-parameter transformation 8 

that is employed to transform a point cloud from the arbitrary space of the initial 9 

block adjustment to map coordinates, can successfully produce topographic models 10 

to a precision of 0.1% of flying height.  This translates to decimetric precisions at 11 

altitudes less than 100m AGL.  These findings have significant implications for 12 

surface process studies where the DG workflow from low-cost drones offers the 13 

potential for easy and rapid topographic surveys, which are suited to a wide range of 14 

study environments including hazard-stricken and inaccessible areas.  In the 15 

commercial sector, the use of drones and the DG workflow could provide a low-cost 16 

alternative to laser range-finding based approaches. If future research can improve 17 

the quality of DG-derived topography, the DG-workflow might out-compete laser 18 

scanning for certain applications with much smaller operational and capital costs.  19 

We therefore argue that the combination of low-cost drones, low-cost SfM-20 

photogrammetry and a DG workflow will transform mapping by allowing both 21 

specialists and non-specialists to generate topography and 3D virtual landscapes 22 

with meaningful levels of accuracy and precision.  23 

We will now proceed to a closer examination of the errors and likely sources that 24 

affect the direct georeferencing approach with sUAS and propose a few simple steps 25 
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that will improve both the accuracy and precision of the resulting topographic 1 

models.  Generally, table 4 shows that flight patterns with convergent views at 2 

multiple altitudes have the most reliable performance with self-calibrations that plot 3 

along the line of zero distortion in figure 6.  However, there is variability that needs 4 

further consideration.  Since the model is georeferenced via the image geolocations, 5 

the spatial structure of the GPS error, and the size of the overall flight path envelope 6 

relative to this GPS error, can have a significant impact on the outcome.  In figure 3, 7 

we can see that Site B is significantly narrower than Site A.  This might explain why 8 

the scaling errors for Site B are larger, it suggests the size and shape of the flight 9 

path envelope is crucial in averaging out GPS errors.  Whilst it is generally accepted 10 

that photogrammetric errors should be reported as a fraction of the flying altitude, in 11 

this case, this should be taken with the caveat that lower flights covering a smaller 12 

area will likely have larger relative errors caused by the GPS error occupying a larger 13 

percentage of the flight path envelope.  14 

An examination of table 4 clearly shows that the optimal precision (p) does not 15 

coincide with optimal scale and tilt.   Corrective steps must be taken to get the best 16 

results and in fact, we find that DG from consumer-grade sUAS still requires minimal 17 

ground-truthing for most science applications. However, this ground-truthing does 18 

not necessarily require survey-grade data or equipment. Datum shift and translation 19 

errors in XY (Tx, Ty, Tz in table 4) could arguably have no impact where a single-20 

epoch DEM is acquired for purposes such as hydrologic or hydraulic modelling.  21 

These errors are the easiest to correct as they require only one point with a known 22 

3D position.  This can be retrieved from freely available global or national datasets.  23 

However, for change detection studies, correction of these linear shifts will be critical.  24 

In these cases, any given point in the survey area which has remained static can be 25 
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used to correct translation errors.  Scaling errors may have an impact on studies of 1 

erosion and volumetric change.  Their correction requires 2 points with a precisely 2 

known relative distance.  Fortunately, a single scale object with accurately known 3 

dimensions in the study site is sufficient. Since the scale parameter used in the 7-4 

parameter transform is isotropic, the scale object can be in any orientation and the 5 

resulting scale correction is valid for the whole model. The accuracy of this scale 6 

correction will be a function of the size of the object.  For corrections to within 0.1%, 7 

a scale object separated by 1000 pixels is required which can be obtained from 8 

larger man-made features.  In certain cases, even Google Earth can provide suitable 9 

scales.  In the case of B4, we used Google Earth to measure the length of a pale 10 

cement border along the path and used this measurement in Photoscan as a scale 11 

bar.  This improved model quality and resulted in a scaling parameter of 100.2 % 12 

(down from 104.8%).  However, readers should be cautious when using Google 13 

Earth data for accurate mapping of any sort.  Google Inc. acquires data from multiple 14 

sources and there is no stated, universal, quality standard. In fact, care should be 15 

taken with scale measurements from remotely sensed imagery, often times the 16 

measurement error from certain imagery sources can be larger error than the errors 17 

from the sUAS GPS. Tilt errors are significant in the context of surface processes 18 

where models of sediment and/or water fluxes will be sensitive to gradient errors.    19 

These errors can be corrected with two scale objects set at a right angle and levelled 20 

to an accurate horizontal pitch.  If using projected map coordinates, it is also 21 

recommended to use a compass to align the azimuths of these two scale objects to 22 

N-S and E-W directions. Alternatively, secondary elevation datasets with sub-metric 23 

vertical precisions might be used (i.e. existing airborne or terrestrial LiDAR).  Here 24 

we recommend a simple planar detrending operation based on the difference 25 
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between the DG topography and the reference topographic data.  With the growing 1 

availability of high-resolution (metric and sub-metric) datasets, correcting for datum 2 

shifts, scale and tilt is now relatively straightforward in many parts of the globe.   3 

If survey-grade RTK-GPS is available, the workflow presented here still has 4 

implications.  Traditionally, it is recommended to have in excess of 20 ground control 5 

points well distributed in the XYZ space of the study site (Carbonneau et al. 2003).  6 

However, in combination with a DG workflow, three to four survey-grade ground 7 

control points distributed along the periphery of the study site, preferably collocated 8 

with pseudo-invariant features, could accurately correct for datum shifts, scale, and 9 

tilt.  This could allow for topographic surveys in inaccessible areas provided that the 10 

edges of these sites are accessible.  In particular, change detection studies with 11 

such a DG workflow will require careful experimental design.  Multiple static points in 12 

the study site will be needed to correct for scale and datum shifts.  Levelled features 13 

will also be required to correct for off-vertical titl errors.  Furthermore, the error 14 

tolerance of each specific study should used to establish the sUAS flying height as 15 

one thousand times the maximum error.   16 

The residual error of 0.1% of flying height (here 0.06 m with flights at an altitude of 17 

60 m AGL) can at best be qualified as a ‘good’ performance.  With the use of GCPs, 18 

significantly better sUAS photogrammetry precisions have been reported (Eltner et 19 

al. 2015; Woodget et al. 2015) and therefore the next steps should be the 20 

understanding of DG non-affine errors.  However, it is difficult to assess this 21 

explicitly.  Proprietary SfM-photogrammetry software packages such as Photoscan 22 

Pro protect many details in their matching processes for commercial reasons.   At 23 

the moment, carefully designed empirical experiments appear to be the only way 24 

forward and further research on the relationship between surface noise amplitude 25 
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and pattern matching performance in the DG workflow will be required to achieve 1 

survey-grade outputs. Additionally, improving the positional accuracy of each image 2 

geotag should be a priority. (Bláha et al. 2012) have demonstrated that sub-metric 3 

positioning of sUAS can be achieved with on-board RTK-GPS positioning.  4 

Furthermore, (Chiang et al. 2012) and (Milik and Gabrlik 2015) have demonstrated 5 

that when RTK-GPS positioning is propagated through a photogrammetric solution, 6 

the position of GCPs can also be predicted with decimetric accuracies.  Moreover, 7 

(Eling et al. 2015) report predictions of GCP positions with centimetric accuracy.  8 

Whilst these authors use experimental RTK-GPS equipment and high-cost platforms, 9 

low-cost RTK-GPS units are appearing.  Swiftnav inc. is currently marketing their 10 

PIKSI GPS, which is a fully miniaturised GPS capable of real-time kinematic 11 

differential corrections.  At a cost of 900 USD, the units are well suited to low-cost 12 

sUAS.  Furthermore, RTK-enabled UAVs are appearing on the consumer market 13 

with models aimed at both the scientific (.e.g the RTK-ebee fixed-wing made by 14 

Sensefly inc.) and the cinema (e.g. the DJI Matrice 600 hexacopter) sectors.  These 15 

units will inevitably make their way into the consumer market and we expect 16 

publications of results from these RTK-equipped platforms in the near future to 17 

strengthen the case for the use of DG in sUAS photogrammetry.  However, we note 18 

that our findings re-emphasize the importance of camera calibration as a crucial 19 

factor in accurate topography reconstruction.  The addition of RTK-GPS to sUAS 20 

might provide considerable improvements to the performance of the DG workflow, 21 

but it will not obviate the need for accurate camera calibration.  This point 22 

emphasizes the fact that SfM-photogrammetry is in no way exempt from the 23 

principles of photogrammetry. Advances in image matching algorithms from the area 24 

of computer vision, integrated into the photrogrtammetric workflow, have clearly 25 
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enabled a step-change in image-based topography generation.  However, 1 

practionners of SfM-photogrammetry still require traditional, ‘pre-SfM’ knowledge of 2 

photogrammetry.  The illusion that SfM is not photogrammetry must now be 3 

dispelled.    4 

  5 
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Conclusion 1 

The problem of producing topography from directly georeferenced sUAS imagery 2 

poses many significant challenges and opportunities.  When we compare our results 3 

to those published by other authors, it is clear that the DG workflow results in the 4 

expected higher levels of error.  However, our results and innovative approach to 5 

error characterization indicate that current consumer-grade drones along with low 6 

cost SfM-photogrammetry packages and a DG workflow can produce topographic 7 

data with sufficient quality for a limited number of applications.  Given that the cost of 8 

RTK-GPS equipment is generally above £10 000 and that the low-cost drones used 9 

here are in the area of £1000-£2000, our DG approach offers a reduction of costs of 10 

2 orders of magnitude.   We therefore argue that further development and integration 11 

of DG into the UAS/SfM workflow has significant implications for topographic survey 12 

that justify further research and development.  The facilitation of mass-production of 13 

topographic data and associated sub-metric resolution imagery will have a 14 

transformative impact on all Earth surface process sciences as well as the 15 

topographic survey and natural disaster management industries.   16 

 17 
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  Tables and figures 
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Parameters Description 

Fx, Fy Focal length of the camera in X and Y dimensions. 

Cx, Cy Principle point of the image (x and y image coordinates) 

K1 Second-order radial distortion 

K2 Fourth-order radial distortion 

K3 Sixth-order radial distortion 

P1, P2 X (P1) and Y (P2) tangential distortion 

Brown-Conrady distortional model(Brown 1966; Heikkila and Silven 1997): 
 

[
𝑥̂
𝑦̂

] =  (1 + 𝐾1𝑟2 + 𝐾2𝑟4 + 𝐾3𝑟6) ∗ [
𝑥
𝑦] + [

2𝑃1𝑥𝑦 + 𝑃2(𝑟2 + 2𝑥2)

𝑃1(𝑟2 + 2𝑦2) + 2𝑃2𝑥𝑦
] 

 

𝑟 = √(𝑥 − 𝐶𝑥)2 + (𝑦 − 𝐶𝑦)
2
 

 

where: 𝑥, 𝑦 are the distorted pixel coordinates; 𝑥̂, 𝑦̂ are the undistorted pixel 
coordinates 

 

Table 1: Camera calibration parameters in the Brown-Conrady model. 
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Site A Site B Flight Pattern 

A1 B1 nadir imagery from an altitude of 60 meters 

A2 B2 nadir imagery from an altitude of 60 and 80 meters 

A3 B3 nadir imagery combined with eight convergent-view images at an 
altitude of 60 meters 

A4 B4 nadir imagery at 60 and 80 meters combined with eight convergent 
view images acquired at 60 meters 

 

Table 2: Description of the 11 experimental flights. 
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Table 3. Self-Calibration outputs for all flight experiments.  K2 gives the error in 

K2 when calibrated values of K2 are compared to those predicted by equation 

5.   

 Site A 

Flight  F [pix] K1 x10
-8

 K2  x10
-15

 K3  x10
-23

 K2 x10
-15

 

A1: Nadir 1 2539 -2.48 3.86 -9.48 1.69 

A2: Nadir 2  1974 -2.50 3.83 -9.97 3.89 

A3: Oblique 1  2317 -2.52 3.84 -9.69 0.04 

A4: Oblique 2  2320 -2.52 3.86 -10.6 0.06 

 Site B 

B1: Nadir 1  2304 -2.45 4.11 -11.9 0.45 

B2: Nadir 2  2229 -2.58 4.12 -13.0 0.02 

B3: Oblique 1  2323 -2.59 4.13 -13.2 0.18 

B4: Oblique 2  2323 -2.58 4.10 -12.2 0.16 
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Table 4. Error parameters for all flight experiments. Tx,y,z give translations 

(systematic offsets), R,, give Euler rotation angles with R being giving off-

vertical tilt angles.  S is the scaling error with 100% meaning that the model 

scale is identical to the actual scale. pis the precision of the final SfM point 

clouds, calculated as the standard deviation of the quasi-random field .  For 

each site, we give the overall co-registration residual estimate for the cloud 

alignments as accuracy ± precision where the accuracy is the mean residual 

and precision is one standard deviation of the residuals. 

 

  

 Experiment 1: Site A 

Flight Tx [m] Ty [m] Tz [m] R [] R [] R [] S [%] p [m] 

A1: Nadir 1 4.02 1.32 -2.48 -0.93 -0.38 0.40 99.7 0.46 

A2: Nadir 2  3.31 -1.79 8.88 -0.60 -1.42 -0.34 100.9 0.36 

A3: Oblique 1  0.65 0.35 3.49 -1.34 -0.44 -0.02 99.5 0.55 

A4: Oblique 2  3.04 1.63 0.36 -0.62 -0.78 -0.18 100.4 0.32 

 Co-registration residual [m]: 0.05 ± 0.23 

 Experiment 1: Site B 

B1: Nadir 1  0.82 6.38 -5.73 0.86 -1.20 1.11 98.4 0.12 

B2: Nadir 2  -0.46 4.20 5.19 0.09 0.33 -0.06 95.8 0.24 

B3: Oblique 1  0.79 5.85 1.17 -0.08 -1.05 0.66 94.9 0.15 

B4: Oblique 2  -3.31 2.43 -0.49 0.68 0.23 0.02 104.6 0.06 

 Co-registration residual [m]: 0.00 ± 0.03 
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Camera 
Focal 
[pix] 

K1 [f] K2 [f] K3 [f] 

Canon EOS REBEL T2i (18-135mm Zoom @ 18 mm) 4411.34 -0.169 0.144 0.026 

Canon PowerShot A3300 IS 3827.51 -0.040 0.045 -0.033 

Canon PowerShot A4400 IS ** 3801.63 -0.082 0.070 -0.003 

Canon PowerShot S110 2930.36 -0.04 0.01 -0.01 

Canon PowerShot SD1000 (IXUS 70) 1822.4 -0.17 0.25 -0.07 

Canon PowerShot SX170 IS ** 3823.95 -0.091 0.432 -0.877 

LG Nexus 5 ** 3019.65 -0.215 0.385 -0.078 

Microdrone 2.0 HD 1466.43 0.20 -1.40 3.00 

Nikon D1X 35mm lens* 4535.33 -0.10 0.16 -0.12 

Nikon D5200 (18-55mm Zoom @ 18mm) ** 4635.72 -0.102 0.065 -0.079 

Sony Nex-7, 20mm lens 5231.44 -0.15 0.13 0.03 

* Traditional airborne survey pattern, acquired at nadir with 2 altitudes. 

** Parameters derived from the camera calibration operations in OpenCV (opencv.org) 

 

Table 5: Calibrated focal lengths and Kn parameters for a selection of cameras. 

Most of the calibration data was extracted from real surveys processed with 

Photoscan. Four of the cameras were calibrated with the camera calibration 

operations in the OpenCV software libraries. All of the cameras tested have 

opposite signed K1 and K2 values. 
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Figure 1: Potential affine model errors in SfM models. The grey squares 

represent the ideal orientation; the blue and magenta represent the expression 

of the different affine errors types. The axes in the illustration are 3D (green = 

x, red = y, blue = z). 
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Figure 2. (a) Lens distortion examples, the ideal distortion pattern represents a 

lens with no distortion. The barrel and pin cushion distortions can 

characterised by either a positive or negative K1 parameter. Most modern lens 

system in compact cameras have complex lens distortions that require more 

than that a single K1 parameter, and often need a K2 and K3. (b) Illustration of 

systematic doming and dishing distortions that can present in SfM models. 

These errors are often attributed to incorrect survey patterns or incorrect lens 

distortion corrections (the colour ramp is relative, red = higher elevation, blue 

= lower elevations). 
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Figure 3. Study sites A and B near Durham UK, with profiles locations used in 

figures 7 and 8. The colour difference in the site A image (around α) was due to 

blending errors in orthophotograph for this shadowed area. 
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Figure 4. Lens distortion profiles for the P3P.  K1, K2 and K3 components of the 

optimal lens distortion profile for the Phantom 3 as derived from the flat wall 

experiment.  Note the comparable magnitudes of the K1 and K2 contributions in 

the outer portion (>1500 pixels) of the profile.   
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Figure 5. Equifinality in K1-K2 space for the Phantom 3 and Inspire 1 lenses.  

Colour scales and contours represent the maximum deviation, in pixels, for a 

given set of (K1, K2) values when compared to the optimal calibration 

parameters.  We note a wide range of solutions equifinal to within 0.01 pixels.  
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Figure 6. Perturbation outputs of surface doming as a function of K1, K2 for the 

Phantom 3 and the Inspire 1.  The color ramps represent the magnitude of x2 

coefficients from the polynomial fits. The central diagonal bands with null x2 

coefficients are interpreted as families of K1-K2 solutions that sucessfully model lens 

distortion and eliminate parabolic doming.   Points added to each surface represent 

calibrated (K1,K2) values for real data.  In the case of the Phantom 3 surface, these are 

the outputs for all 11 direct georeferencing (DG) flight experiments.  In the case of the 

Inspire 1, these represent other data not discussed in this paper and they use a DG, 

traditional GCP and software optimisation (a Photoscan function).  
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Figure 7.  Linear profiles from  to  with self-calibrated and adjusted 

calibration values.  Deformation amplitude is calculated by comparing sites 

A1-A3 to the optimal A4 and B1-B3 to the optimal B4.  We note that whilst 

doming is eliminated, the adjustment results in increased surface noise.  
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Figure 8.  Effects of focal length calibration errors on datum along .  Note 

that profile length in XY is not affected. 
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Figure 9. Altitude dependent errors.  Here we show the correlation between absolute 

altitude and error for flights A1 and A2 which had the poorest calibration of focal 

length.   
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Figure 10. Summarised DG workflow.  The two stages of the proposed workflow.  The 

camera calibration stage aims to identify the focal length and the set of equifinal 

solutions along with their domain of applicability.  This information can then be used in 

the calibration check, potentially carried out in the field, that allows for a reliable 

topographic model to be produced with a direct georeferencing. 
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