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Abstract

It is well known that the solutions of the 3d Navier–Stokes equations remain

bounded for all time if the initial data and the forcing are sufficiently small

relative to the viscosity, and for a finite time given any bounded initial data.

In this article, we consider two temporal discretisations (semi-implicit and fully

implicit) of the 3d Navier–Stokes equations in a periodic domain and prove that

their solutions remain bounded in H1 subject to essentially the same respective

smallness conditions (on initial data and forcing or on the time of existence) as

the continuous system and to suitable timestep restrictions.
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1. Introduction

Much work has been done on the stability and convergence of various timestep-

ping schemes for the Navier–Stokes equations in two space dimensions (2d NSE).

The long time stability of Euler schemes for the 2d NSE has been treated in, e.g.,

[2, 6, 4, 8], and more recently extended to higher-order schemes in [9, 3]. Once5

the numerical solutions are shown to be bounded in suitable space, either on a
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limited interval of time or for all time, convergence can usually be established

using standard techniques (cf., e.g., [5]).

In three dimensions, the existence of a solution bounded in L∞(R+, H
1) is

not known, we only know a globally bounded solution with small data and of a10

local bounded solution with arbitrary data; for more background on the NSE,

see e.g. [1, 7]. Hence, the extension of the numerical stability results from 2d

or 3d is not straightforward. We conduct it here in the two cases for which the

existence of strong solution is known, namely, as we said, a globally bounded

solution with small data or a locally bounded solution with arbitrary data.15

In this article we consider temporal discretisations of the 3d NSE using the

semi-implicit (2.1) and fully implicit (3.1) Euler schemes, and their boundedness

in H1 for interval of times corresponding to the existence of solutions. As in

the earlier works cited above, we do not consider spatial discretisations, giving

the advantage that our results will be free of Courant–Friedrichs–Lewy-type20

constraints, although some smallness of the timestep may be required.

We consider the Navier–Stokes equations in Ω = (0, 2π)3 with periodic

boundary conditions,

∂tu+ (u·∇)u+∇p = ν∆u+ f,

∇·u = 0,
(1.1)

plus the initial data u(0) = u0. With no loss of generality, we assume that

∇·f = 0, and that the integrals of f and u0 vanish over Ω. The last assumption25

implies that u = u(t), whenever it is well-defined for t ≥ 0, also has vanishing

integral over Ω, giving us the Poincaré inequality

|u|2L2 ≤ c0(Ω)|∇u|2L2 . (1.2)

For notational convenience, we redefine c0 to give also the bound

|∇u|2L2 ≤ c0|∆u|2L2 . (1.3)

In order to facilitate comparison with the numerical solutions, in the rest of

this section we briefly review the boundedness of solutions of the 3d NSE, both30
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in L2 and in H1 for the two cases (small data, large time and short time for

arbitrary data).

Multiplying (1.1) by u in L2(Ω), integrating by parts and using the fact that

(u·∇u, u) = 0, we find

1

2

d

dt
|u|2 + ν|∇u|2 = (f, u). (1.4)

Here and henceforth, unadorned norm | · | and inner product (·, ·) are taken35

to be L2. Bounding the rhs by the Cauchy–Schwarz inequality and using the

Poincaré inequality, (1.4) becomes

d

dt
|u|2 + ν

c0
|u|2 ≤ 1

ν
|f |2L∞(H−1), (1.5)

where |f |L∞(H−1) := supt≥0 |f(t)|H−1 . Hence, we have

d

dt

(

|u|2 exp
(

ν

c0
t

))

≤ exp

(

ν

c0
t

)

1

ν
|f |2L∞(H−1). (1.6)

Integrating from 0 to t (here we change the dummy variable of integration to

s), we obtain40

|u(t)|2 exp
(

ν

c0
t

)

≤ |u(0)|2 + c0
ν2

|f |2L∞(H−1)

(

exp

(

ν

c0
t

)

− 1

)

. (1.7)

We then find the uniform L2 bound valid for all t ≥ 0:

|u(t)|2 ≤ |u(0)|2 + (c0/ν
2)|f |2L∞(H−1) =: K0(u0, f ; ν,Ω). (1.8)

1.1. H1 estimate for small data

Now multiplying (1.1) by −∆u in L2(Ω) and integrating by parts, we find

1

2

d

dt
|∇u|2 + ν|∆u|2 = (u·∇u,∆u)− (f,∆u). (1.9)

Bounding the nonlinear term using the Sobolev inequality |u|L6 ≤ c|∇u|L2 ,

which is specific to dimension three, we find45

∣

∣(u·∇u,∆u)
∣

∣ ≤ |u|L3 |∇u|L6 |∆u|L2 ≤ c1
2
|u|L3 |∆u|2L2 , (1.10)

and the forcing term in the obvious fashion

(f,∆u) ≤ 1

ν
|f |2 + ν

4
|∆u|2. (1.11)
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We then arrive at

d

dt
|∇u|2 + (3ν/2− c1|u|L3)|∆u|2 ≤ 2

ν
|f |2. (1.12)

Assuming that

|u0|L3 ≤ ν

4c1
, (1.13)

we find that on some interval of time (0, T )

|u|L3 ≤ ν/(2c1). (1.14)

We then find that50

3ν/2− c1|u|L3 ≥ ν. (1.15)

Using the Poincaré inequality, (1.12) becomes on this interval

d

dt
|∇u|2 + ν

c0
|∇u|2 ≤ 2

ν
|f |2L∞(L2), (1.16)

where |f |L∞(L2) := supt≥0 |f(t)|L2 . We then have

d

dt

(

|∇u|2 exp
(

ν

c0
t

))

≤ exp

(

ν

c0
t

)

2

ν
|f |2L∞(L2). (1.17)

Integrating from 0 to t (here we change the dummy variable of integration to

s), we deduce that

|∇u(t)|2 exp
(

ν

c0
t

)

≤ |∇u(0)|2 + 2c0
ν2

|f |2L∞(L2)

(

exp

(

ν

c0
t

)

− 1

)

. (1.18)

We obtain55

|∇u(t)|2 ≤ |∇u(0)|2 + (2c0/ν
2)|f |2L∞(L2) =: K1(u0, f ; ν,Ω). (1.19)

Using the Sobolev inequality |u|2L3 ≤ c |u|2
H1/2 ≤ c |u| |∇u|, we find that (1.14)

and then (1.19) hold for all time provided.

K0K1 =
(

|u0|2 + c0 |f |2L∞(H−1)

)(

|∇u0|2 +2c0 |f |2L∞(L2)/ν
2
)

≤ c2(Ω) ν
4, (1.20)

where c2 = c2(Ω) = c/c41. It therefore follows that whenever this holds, the 3d

NSE has a global solution bounded by (1.8) and (1.19).

4



1.2. H1 estimate for short times60

Let us now recall the uniform H1 estimate for short time and arbitrary data.

Multiplying (1.1) by −∆u in L2(Ω) and integrating by parts, we find

1

2

d

dt
|∇u|2 + ν|∆u|2 = (u·∇u,∆u)− (f,∆u). (1.21)

Bounding as before the nonlinear term using the Sobolev and interpolation

inequalities, we find

|(u · ∇u,∆u)| ≤ |u|L6 |∇u|L3 |∆u|L2 ≤ c |∇u| |∇u|H1/2 |∆u|

≤ c |∇u|3/2|∆u|3/2 ≤ c4
2ν3

|∇u|6 + ν

2
|∆u|2,

(1.22)

and using the Cauchy–Schwarz inequality for the last term, this gives65

d

dt
|∇u|2 ≤ c4

ν3
|∇u|6 + 1

ν
|f |2L∞(L2). (1.23)

This implies
d

dt
(|∇u|2 + F ) ≤ c4

ν3
(|∇u|2 + F )3, (1.24)

where F :=
(

ν2|f |2L∞(L2)/c4
)1/3

. Writing z(t) := |∇u(t)|2 + F and integrating,

we find
z(t)2

z(0)2
≤ 1

1− 2tc4z(0)2/ν3
, (1.25)

as long as t < ν3/(2c4z(0)
2). It is clear from this that our solution will remain

bounded, say, z(t)2 ≤ 2z(0)2, for 0 ≤ t ≤ ν3/(4c4z(0)
2).70

In view of results in Sections 1.1 and 1.2, we aim to study the H1 stability

of two different time discretizaion schemes in the following sections; namely, the

semi-implicit and the fully implicit Euler scheme.

2. Semi-implicit scheme

Given a fixed k = ∆t > 0, we discretise (1.1) in time using the semi-implicit75

Euler scheme

un − un−1

k
+ un−1 ·∇un +∇p = ν∆un + fn, (2.1)

5



where un and fn are approximations such that

un = u(n∆t), fn =
1

k

∫ nk

(n−1)k

f(t)dt. (2.2)

For the 2d NSE, this scheme was proved in [4] to be globally stable in H1.

For the 3d NSE, its stability mirrors that (which is known) of the continuous

system, subject to relatively mild timestep restrictions.80

We note a few facts that will be useful later on. First, for any a and b ∈ L2,

2(a− b, a) = |a|2 − |b|2 + |a− b|2. (2.3)

Next, for b > 0 and given positive real sequences (xn) and (rn) satisfying

(1 + b)xn ≤ xn−1 + rn−1, (2.4)

we have

xn ≤ (1 + b)−nx0 +
1 + b

b
maxj rj . (2.5)

The L2 bound works out essentially as in the continuous case: multiplying

(2.1) by 2kun, using (2.3) and noting that (un−1 ·∇un, un) = 0, we find85

|un|2 + |un − un−1|2 + 2νk|∇un|2 = |un−1|2 + 2k(fn, un). (2.6)

Bounding the forcing term using Cauchy–Schwarz, we obtain

|un|2 + 2νk|∇un|2 ≤ |un−1|2 + 2k(fn, un)

≤ |un−1|2 + k|fn|2H−1/ν + kν|∇un|2.
(2.7)

Using the Poincaré inequality, we deduce that

(1 + νk/c0)|un|2 ≤ |un−1|2 + k|fn|2H−1/ν. (2.8)

Integrating this using (2.5), we find for all n ∈ {1, 2, · · · },

|un|2 ≤ |u0|2 + c0 + νk

ν2
|f |2L∞(H−1)

= K0(u0, f ; ν,Ω) + (k/ν)|f |2L∞(H−1),

(2.9)

where K0, and K1 below, are as in the continuous case. We note that this bound

(the rhs of (2.9)) tends to K0 as k → 0.90
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2.1. H1 estimate for small data

Theorem 1. For small data, let the initial data u0 ∈ H1, the forcing f and the

timestep k satisfy

(K0 + k|f |2L∞(H−1)/ν)(K1 + 2k|f |2L∞(L2)/ν) ≤ c2(Ω)ν
4, (2.10)

where K0(u0, f) and K1(u0, f) are as in the continuous case, (1.8) and (1.19).

Then un is bounded in H1 as follows,95

|∇un|2 ≤ K1 + (2k/ν)|f |2L∞(L2) for all n ≥ 0. (2.11)

Proof. We now turn to stability in H1 for small solutions. Multiplying (2.1) by

−2k∆un and using (2.3), we find

|∇un|2 + |∇(un − un−1)|+ 2νk|∆un|2

= |∇un−1|2 − 2k(fn,∆un) + 2k(un−1 · ∇un,∆un).
(2.12)

Bounding the nonlinear term using the Sobolev inequality,

∣

∣(un−1 ·∇un,∆un)
∣

∣ ≤ |un−1|L3 |∇un|L6 |∆un|L2 ≤ c1|un−1|L3 |∆un|2L2 , (2.13)

and using the Cauchy–Schwarz inequality for the forcing, (2.12) implies

|∇un|2 + (3ν/2− c1|un−1|L3)k|∆un|2 ≤ |∇un−1|2 + (2k/ν)|fn|2. (2.14)

As in (1.14) of Section 1.1, if we now assume that100

|un−1|L3 ≤ ν/(2c1), (2.15)

we deduce from (2.14) that

(1 + νk/c0)|∇un|2 ≤ |∇un−1|2 + 2k|fn|2/ν. (2.16)

As long as (2.15) holds, we can integrate this using (2.5) to get the bound

|∇un|2 ≤ |∇u0|2 + 2(c0 + νk)

ν2
|f |2L∞(L2)

≤ K1(u0, f ; ν,Ω) + (2k/ν)|f |2L∞(L2),

(2.17)
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which proves (2.11). As in the continuous case, we now use the Sobolev inequal-

ity and interpolation inequalities to bound

|un−1|2L3 ≤ c |un−1|2H1/2 ≤ c |un−1| |∇un−1|. (2.18)

The timestep restriction (2.10) then becomes a sufficient condition for (2.15).105

More explicitly, since (2.10) holds at n = 0, (2.9) and (2.11) imply that it

will hold at n = 1 and, by induction, for all n ∈ {2, · · · }, i.e. the solution

of the scheme (2.1) is bounded uniformly in (discrete) time subject to (2.10).

Comparing to (1.20), we note that this condition also depends on the timestep

k in addition to u0 and f . This timestep restriction is however relatively mild110

compared to that for the fully implicit scheme in §3 below.

2.2. H1 estimate for short times

Theorem 2. For short times, assuming the timestep restriction (2.26), we have

|∇un|2 ≤ 2 |∇u0|2 + F, where F :=
(

ν2|f |2L∞(L2)/c4
)1/3

, (2.19)

for all n such that nk = tn ≤ ν3/
(

8c4(|∇u0|2 + F )2
)

.

Proof. For short-time H1 stability, we bound the nonlinear term in (2.12) as in115

(1.22),

|(un−1 · ∇un,∆un)| ≤ |un−1|L6 |∇un|L3 |∆un|L2

≤ c|∇un−1||∇un|H1/2 |∆un|

≤ c|∇un−1||∇un|1/2|∆un|3/2

≤ c4
2ν3

|∇un−1|4|∇un|2 + ν

2
|∆un|2.

(2.20)

Then, (2.12) becomes

|∇un|2 + 2νk|∆un|2

≤ |∇un−1|2 − 2k(fn,∆un) + kν|∆un|2 + kc4
ν3

|∇un−1|4|∇un|2,
(2.21)

this implies

|∇un|2 ≤ |∇un−1|2 + c4k

ν3
|∇un−1|4|∇un|2 + k

ν
|f |2L∞(L2). (2.22)
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We can rewrite (2.22) as

(

1− c4k

ν3
|∇un−1|4

)

|∇un|2

≤
(

1− c4k

ν3
|∇un−1|4

)

|∇un−1|2 + c4k

ν3
|∇un−1|6 + k

ν
|f |2L∞(L2).

(2.23)

Since we are interested in short times, we assume that |∇un−1|2 ≤ 2|∇u0|2 for120

all relevant n and demand that k satisfy

k ≤ ν3

8c4|∇u0|4 . (2.24)

This implies that the brackets in (2.23) are ≥ 1
2 , that is

1

2
≤ 1− 4c4k

ν3
|∇u0|4 ≤ 1− c4k

ν3
|∇un−1|4; (2.25)

For later use we add the extra F , which make a stronger condition than (2.24)

k ≤ ν3

2c4(2|∇u0|2 + F )2
. (2.26)

With this assumption, (2.23) implies

|∇un|2 − |∇un−1|2
k

≤ 2c4
ν3

|∇un−1|6 + 2

ν
|f |2L∞(L2). (2.27)

Unlike its continuous-time analogue (1.23), this difference inequality implies125

|∇un| < ∞ for all n, although for sufficiently large time nk, it (i.e. the bound)

grows without bound as k → 0. This is a well-known pitfall in discretising

differential equations in time. To obtain a finite-time bound on |∇un|, we

proceed in analogy with (1.24) and define

zn := |∇un|2 + F. (2.28)

We then get from (2.27)130

zn − zn−1

k
≤ 2c4

ν3
z3n−1 =: g(zn−1). (2.29)

Observe that g(ζ) > g(ζ̂) whenever ζ > ζ̂, that is, g ≥ 0 is a strictly monotone

increasing function.
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Now let ζn be the positive solution of the difference equation,

ζn − ζn−1

k
= g(ζn−1), (2.30)

and observe that ζn ≥ 0 if ζn−1 ≥ 0. Denoting tn := nk, we claim that

ζn ≤ ζ(tn) (2.31)

where ζ(·) is the solution of the differential equation135

dζ

dt
= g(ζ) with ζ(tn−1) = ζn−1. (2.32)

To show this, we first note that ζ(t) is non-decreasing since g ≥ 0. Then

ζ(tn)− ζ(tn−1) =

∫ tn

tn−1

g(ζ(t)) dt ≥
∫ tn

tn−1

g(ζ(tn−1)) dt = kg(ζn−1). (2.33)

Thanks to (2.30), we obtain that

ζ(tn)− ζ(tn−1) = ζn − ζn−1, (2.34)

and this prove our claim. By induction, taking ζ(0) = ζ0 > 0 instead of the

initial data in (2.30), we then have ζn ≤ ζ(tn) for all n ∈ {1, 2, · · · }. Comparing

with the continuous case (1.24)–(1.25), we conclude that ζn ≤ ζ(tn) ≤ 2ζ(0) =140

2ζ0 for nk = tn ≤ ν3/(8c4ζ
2
0 ).

Taking ζ0 = z0, clearly zn ≤ ζn for all n ≥ 0. We therefore have

zn = |∇un|2 + F ≤ ζn ≤ 2ζ0 = 2 |∇u0|2 + 2F

=⇒ |∇un|2 ≤ 2 |∇u0|2 + F,
(2.35)

for all n such that nk = tn ≤ ν3/
(

8c4(|∇u0|2 + F )2
)

, which is half as long as

the bound in the continuous case.

3. Fully implicit scheme145

We now consider the fully implicit Euler scheme

un − un−1

k
+ un ·∇un +∇p = ν∆un + fn, (3.1)
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with ∇ · un = 0 for all n and u0 = u0. In two space dimensions, uniform

boundedness in H1 for this scheme was proved in [8].

The L2 bound obtains as before: multiplying (3.1)1 by 2kun and using (2.3),

|un|2 + |un − un−1|2 + 2νk|∇un|2 = |un−1|2 + 2k(fn, un). (3.2)

Bounding the forcing term in the obvious manner and using Poincaré, this150

implies

(1 + νk/c0)|un|2 ≤ |un−1|2 + k|fn|2H−1/ν. (3.3)

Integrating this using (2.5), we find for all n ∈ {1, 2, · · · },

|un|2 ≤ |u0|2 + c0 + νk

ν2
|f |2L∞(H−1)

= K0(u0, f ; ν,Ω) + (k/ν)|f |2L∞(H−1).

(3.4)

As before, this bound tends to K0 as k → 0. For later use, we define

K̃0(u0, f ; ν,Ω) := |u0|2 +
2c0
ν2

|f |2L∞(H−1). (3.5)

The central ingredient for our main results of theH1 stability is the following

local-in-time estimate:155

Lemma 1. We assume the L2 uniform bound (3.4) and that un−1 ∈ H1. As-

suming further the timestep restrictions

K(n−1) ≤ 1

2

( ν3

3c4k

)1/2

, (3.6)

(

1 +
c5
ν4

K̃0K
(n−1)

)

K(n−1) + |f |2L∞(H−1)/ν
2 ≤

( ν3

12c4k

)1/2

, (3.7)

where K(n−1) := |∇un−1|2 + (10c0/ν)|f |2L∞(L2), then the solution un of (3.1)

is bounded as |∇un|2 ≤ y1 where y1 is the smallest positive root of the cubic

equation (3.10).

Proof. Multiplying (3.1) by −2k∆un, we have

|∇un|2 + |∇(un − un−1)|2 + 2νk|∆un|2

= |∇un−1|2 + 2k(un ·∇un,∆un)− 2k(fn,∆un).
(3.8)
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Figure 1: The graph of G(y) in (3.11): y+ is a local minimum.

Bounding the nonlinear term as we did in (1.22),160

2k
∣

∣(un ·∇un,∆un)
∣

∣ ≤ c4k

ν3
|∇un|6 + νk|∆un|2, (3.9)

we find

0 ≤ c4k

ν3
|∇un|6 − |∇un|2 − νk

2
|∆un|2 + |∇un−1|2 + 2k

ν
|fn|2

⇒ 0 ≤ c4k

ν3
|∇un|6 −

(

1 +
νk

2c0

)

|∇un|2 + |∇un−1|2 + 2k

ν
|f |2L∞(L2). (3.10)

Let y := |∇un|2, x := |∇un−1|2 + 2k|f |2L∞(L2)/ν and

G(y;x) := (c4k/ν
3)y3 − (1 + νk/(2c0))y + x. (3.11)

We write G(y) instead of G(y;x) when there is no risk of confusion. We are of

course interested in the solution set of G(y) ≥ 0.

Under the assumption (3.14) below on the timestep k, the graph of the cubic

G is (qualitatively) as shown in Figure 1. We note in particular that G(y) = 0165

has a negative root y0 and two positive roots y1 and y2. To verify this, we

note the following. First, G(y) → ±∞ as y → ±∞. Next, G(y) has two local

extrema,

y± = ±
( ν3

3c4k

[

1 +
νk

2c0

])1/2

, (3.12)

with y− < 0 being a local maximum and y+ > 0 a local minimum, as verified

by computing G′′(y±). Since G(0) = x > 0 (the problem is trivial if x = 0), we170

12



have G(y−) > 0. Finally, computing

G(y+) = −2

3

(

1 +
νk

2c0

)( ν3

3c4k

[

1 +
νk

2c0

])1/2

+ x, (3.13)

we conclude that G(y+) < 0 if (this is essentially a restriction on k)

|∇un−1|2 + 2k

ν
|f |2L∞(L2) <

2

3

( ν3

3c4k

)1/2

. (3.14)

This implies the existence of the two positive roots y1 and y2 with y1 < y+ < y2.

Now (3.10) implies that |∇un|2 = y lies in the disjoint set [0, y1] ∪ [y2,∞).

However, y2 > y+ ∼ k−1/2, which is absurd for small k. To prove that y 6∈175

[y2,∞), we multiply (3.1)1 by 2k(un − un−1) in L2 to get

2|un − un−1|2 + νk|∇un|2 − νk|∇un−1|2 + νk|∇(un − un−1)|2

= −2k(un ·∇un, un − un−1) + 2k(fn, un − un−1) =: I1 + I2.

(3.15)

Bounding the rhs as

|I2| ≤
k

ν
|fn|2H−1 + νk|∇(un − un−1)|2

|I1| = 2k
∣

∣(un ·∇un, un−1)
∣

∣ ≤ 2k|un|L3 |∇un|L2 |un−1|L6

≤ ck|un|H1/2 |∇un| |∇un−1| ≤ ck |un|1/2|∇un|3/2|∇un−1|

≤ νk

2
|∇un|2 + ck

ν3
|un|2|∇un−1|4,

and dropping the 2|un − un−1|2 on the lhs in (3.15), we arrive at

|∇un|2 ≤
(

2 +
2c5
ν4

|un|2|∇un−1|2
)

|∇un−1|2 + 2

ν2
|f |2L∞(H−1). (3.16)

If we now assume that (effectively a timestep restriction)

(

2 +
2c5
ν4

|un|2|∇un−1|2
)

|∇un−1|2 + 2

ν2
|f |2L∞(H−1) ≤

( ν3

3c4k

)1/2

, (3.17)

noting that the rhs < y+ < y2, we can conclude that |∇un|2 < y2 and therefore

|∇un|2 ∈ [0, y1]. This gives us the local H1 integrability of the scheme (3.1): if180

k (is small enough that it) satisfies (3.14) and (3.17), the one-step solution of

(3.1) is bounded in H1.
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The crucial point which is not immediately obvious is that y1 = |∇un−1|2 +
O(k) for small k. By estimating the O(k) more carefully, we obtain our main

results.185

3.1. H1 estimate for small data

Theorem 3. For small data, let u0 and f be such that

|∇u0|2 +
2c0
ν2

|f |2L∞(L2) ≤
ν2

2
√
c0c4

, (3.18)

and let the timestep k satisfy (3.24)–(3.26) below. Then un is bounded as

|∇un|2 ≤ K̃1(u0, f ; ν,Ω) := |∇u0|2 +
10c0
ν2

|f |2L∞(L2), (3.19)

for all n ∈ {0, 1, · · · }.

Proof. For small data, we first assume the hypotheses (local in n) of Lemma 1.190

We then derive a more useful explicit bound for |∇un−1|2. We claim that with

the assumption (3.18), |∇un|2 ≤ y1 implies

(

1 +
νk

4c0

)

|∇un|2 ≤ |∇un−1|2 + 2k

ν
|f |2L∞(L2), (3.20)

where y1 is the smallest positive root of the cubic equation (3.10). To prove

this, we set y∗ :=
(

|∇un−1|2 + 2k|f |2L∞(L2)/ν
)

/
(

1 + νk/(4c0)
)

and compute

G(y∗) = y∗

(

1 +
νk

4c0

)−2{

− νk

4c0

(

1 +
νk

4c0

)2

+
c4k

ν3
x2

}

, (3.21)

where G(y) is as in (3.11) such that

G(y) = (c4k/ν
3)y3 − (1 + νk/(2c0))y + x,

and x := |∇un−1|2 + 2k|f |2L∞(L2)/ν. Now G(y∗) ≤ 0 implies that y∗ ≥ y1, and

the former is true if

− νk

4c0

(

1 +
νk

4c0

)2

+
c4k

ν3
x2 ≤ 0,

and this implies195

|∇un−1|2 + 2k

ν
|f |2L∞(L2) = x ≤ ν2

2
√
c0c4

. (3.22)
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Hence, |∇un|2 ≤ y1 ≤ y∗ implies (3.20). Then, the claim is proved.

To obtain the uniform bound, we sum (3.20) using (2.5) to find

|∇un|2 ≤
(

1 +
νk

4c0

)−n

|∇u0|2 + 8c0
ν2

|f |2L∞(L2) +
2k

ν
|f |2L∞(L2). (3.23)

Assuming that

k ≤ c0/ν, (3.24)

we can absorb the last term into the penultimate one to obtain (3.19). Consoli-

dating our assumptions, the smallness condition (3.22) is now implied by (3.18),

while the timestep restrictions (3.14) and (3.17) can both be satisfied by taking

k sufficiently small to satisfy

K̃1 ≤ 1

2

( ν3

3c4k

)1/2

, (3.25)

(

1 +
c5
ν4

K̃0K̃1

)

K̃1 + |f |2L∞(H−1)/ν
2 ≤

( ν3

12c4k

)1/2

. (3.26)

This proves the theorem.

We note that, up to the constant depending only on the domain Ω, the200

bound (3.19) is the same as that in the continuous case (1.19). In addition,

considering |f |2H−1 ≤ c∗0|f |2L2 and using Poincaré inequality, we estimate K0 in

(1.20) such that

K0 := |u0|2 + c0|f |2L∞(H−1) ≤ c0|∇u0|2 + c0c
∗
0|f |2L∞(L2). (3.27)

Assuming k ≤ (c∗0ν)/2, we deduce from (3.22) that

c0

(

|∇u0|2 + c∗0|f |2L∞(L2)

)

≤ ν2
√
c0

2
√
c4

. (3.28)

From (3.18) and (3.28), we find, up to the constant depending only on the205

domain Ω, the same smallness condition as in (1.20).

3.2. H1 estimate for short times

Theorem 4. For short times, let the timestep k satisfy (3.40), (3.41) and (3.42)

below. Then there exists a t∗f = ν3/(8c4ζ
2
0 ), as long as 0 ≤ nk ≤ t∗f we have

|∇un|2 ≤ 2 |∇u0|2 + (ν2|f |2L∞(L2)/c4)
1/3. (3.29)
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Proof. We first assume the hypotheses (local in n) of Lemma 1. Since y1 is the210

root of a cubic G(y1) = 0, the bound |∇un|2 ≤ y1 is not very convenient, so we

compute a more useful bound. Recalling that x > 0, we consider for some a > 0

G
(

(1 + ak)x;x
)

= xk
[ c4
ν3

(1 + ak)3x2 −
( ν

2c0
+ a

)

− aνk

2c0

]

< xk
[ c4
ν3

(1 + ak)3x2 − a
]

.

(3.30)

Setting a = 2c4x
2/ν3, this implies G

(

(1 + ak)x
)

< 0 if

1 + ak ≤ 21/3 ⇔ (|∇un−1|2 + 2k|f |2L∞(L2)/ν)
22c4k/ν

3 ≤ 21/3 − 1. (3.31)

Assuming this, Lemma 1 then gives us the explicit one-step estimate

|∇un|2 ≤ y1 ≤ (1 + ak)x

= |∇un−1|2 + 2k

ν
|f |2L∞(L2) +

2c4k

ν3
(

|∇un−1|2 + (2k/ν)|f |2L∞(L2)

)3
,

(3.32)

which we can rewrite as215

|∇un|2 − |∇un−1|2
k

≤ 2c4
ν3

[(

|∇un−1|2+ 2k

ν
|f |2L∞(L2)

)3

+
ν2

c4
|f |2L∞(L2)

]

. (3.33)

To obtain a finite-time bound on |∇un|, we proceed in analogy with (1.24)

and define

zn := |∇un|2 + F where F 3 =
2ν2

c4
|f |2L∞(L2). (3.34)

By expanding both sides, we have

(

|∇un−1|2 + 2k

ν
|f |2L∞(L2)

)3

+
ν2

c4
|f |2L∞(L2) ≤ z3n−1, (3.35)

subject to the timestep restriction

k ≤ ν5/3

2c
1/3
4 |f |4/3L∞(L2)

⇒























41/3c
1/3
4 |f |4/3L∞(L2) k ≤ ν5/3,

42/3c
2/3
4 |f |8/3L∞(L2) k

2 ≤ ν10/3,

8c4|f |4L∞(L2) k
3 ≤ ν5.

(3.36)

The time step restriction above can be found by direct computations. Indeed,220
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expanding (3.35), we have

|∇un−1|6 + 3|∇un−1|4
(

2k

ν
|f |2L∞(L2)

)

+ 3|∇un−1|2
(

2k

ν
|f |2L∞(L2)

)2

+

(

2k

ν
|f |2L∞(L2)

)3

+
ν2

c4
|f |2L∞(L2)

≤ |∇un−1|6 + 3|∇un−1|4F + 3|∇un−1|2F 2 + F 3

= |∇un−1|6 + 3|∇un−1|4
(

2ν2

c4
|f |2L∞(L2)

)1/3

+ 3|∇un−1|2
(

2ν2

c4
|f |2L∞(L2)

)2/3

+
2ν2

c4
|f |2L∞(L2).

(3.37)

Hence, assuming the three conditions in the brace of (3.36), the inequality (3.37)

holds term by term. Then (3.32) implies

zn − zn−1

k
≤ 2c4

ν3
z3n−1 =: g(zn−1). (3.38)

Arguing as we did in the semi-implicit case [cf. (2.30)–(2.33)], we conclude that

zn ≤ 2z0 for all n ≥ 0 such that225

nk = tn ≤ ν3/(8c4ζ
2
0 ) =: t∗f . (3.39)

This proves the theorem subject to the timestep restrictions, which we collect

here. First, (3.6) and (3.7) are implied by

K̃ ≤ 1

2

( ν3

3c4k

)1/2

, (3.40)

(

1 +
c5
ν4

K̃0K̃
)

K̃ + |f |2L∞(H−1)/ν
2 ≤

( ν3

12c4k

)1/2

, (3.41)

where unlike in Lemma 1, here

K̃ := 2 |∇u0|2 + 2 (ν2|f |2L∞(L2)/c4)
1/3 + (10c0/ν)|f |2L∞(L2).

Next, (3.36) is good as it stands. Finally, using (3.36) to handle the k inside

the bracket, (3.31) is implied by

(

2 |∇u0|2 +
(1 + 21/3)ν2/3|f |2/3L∞(L2)

c
1/3
4

)2

≤ (21/3 − 1)ν3

2c4k
. (3.42)

This proves the short-time case.
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The time bound t∗f is essentially that in the continuous case (smaller by a230

factor of 1
2 which can be improved to 1−ε with some work and more restriction

on k).
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