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Abstract

Context: As a fault-based testing technique, mutation testing is effective at evaluating the quality of existing test
suites. However, a large number of mutants result in the high computational cost in mutation testing. As a result,
mutant reduction is of great importance to improve the efficiency of mutation testing.
Objective: We aim to reduce mutants for weak mutation testing based on the dominance relation between mutant
branches.
Method: In our method, a new program is formed by inserting mutant branches into the original program. By analyz-
ing the dominance relation between mutant branches in the new program, the non-dominated one is obtained, and the
mutant corresponding to the non-dominated mutant branch is the mutant after reduction.
Results: The proposed method is applied to test ten benchmark programs and six classes from open-source projects.
The experimental results show that our method reduces over 80% mutants on average, which greatly improves the
efficiency of mutation testing.
Conclusion: We conclude that dominance relation between mutant branches is very important and useful in reducing
mutants for mutation testing.
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1. Introduction

Software testing, which is used to seek existing defects or faults in software before it is released to the market, is
an important way to improve software quality. Mutation testing is commonly used to evaluate the quality of existing
test suites to guide testers how they might be able to improve them [1]. Compared with other structural coverage
criteria, test suites that are mutation adequate can reveal more faults [2]. It is noticeable that mutation testing has
attracted widespread attention from researchers and developers in both academia and industry.

Mutation testing is a fault-based technique [3, 4], and the related concepts are given as follows. By making a
simple syntactic change to the original program, a mutant is generated. A rule used to perform the syntactic changes
is called a mutation operator. If a test datum can distinguish the outputs between a mutant and its original program,
the mutant is said to be killed. A mutant is equivalent, if it cannot be killed by any test datum. Generally, the adequacy
of mutation testing named mutation score is defined as the ratio of the number of killed mutants to the total number
of non-equivalent mutants.

In order to optimize the execution of the traditional mutation testing, Howden first proposed weak mutation test-
ing [5]. Instead of checking a mutant after executing the whole program, weak mutation testing checks a mutant
immediately after executing the mutated statement.

In mutation testing, mutants are employed to reflect possible real faults in software under test [6–8]. Many lines
of code (LOCs), complicated statements, and a variety of data types [9] in software greatly increase the number
of mutants. It results in the high computational cost in mutation testing, therefore the mutant reduction is of great



importance and necessity. Although there have been several techniques for mutant reduction [10–16], their efficiency
needs to be further improved.

Just et al. focused on the COR and ROR mutation operators to identify redundant mutants [13]. Kaminski et al.
sought a subset of relational operators that subsumes the others to reduce mutants [14]. Focusing only on a subset of
mutation operators opens new research directions [13, 14]. Papadakis and Malevris transformed the problem of killing
mutants into the problem of covering mutant branches in the new program, and generated test data by conventional
approaches [17]. Although it is relatively efficient, a large number of mutants without reduction, will inevitably add
high complexity to the new program.

In the previous work on dominance analysis, Marre and Bertolino employed the subsumption relation between
entities in a ddgraph (a simplified control flow graph) to seek the minimal set of entities named the spanning set, so
as to reduce the number of entities needed to cover [18]. In addition, Ghiduk and Girgis identified the non-dominated
nodes in a control flow graph (CFG) by analyzing the dominance relation between nodes [19]. Both the above
methods are performed among the original entities (nodes) for structural coverage testing. Different from the above
work, we analyze the dominance relation between mutant branches, which are instrumented branches transformed
from mutants based on the method presented by Papadakis and Malevris for weak mutation testing, with the aim to
reduce the number of mutants, and to improve the efficiency of testing.

Considering all the traditional (method level) mutation operators, we first construct mutant branches based on
the statements before and after mutation, and form the new program by fusing all mutant branches into the original
program using the method proposed by Papadakis and Malevris [17]. Then, we identify redundant mutants according
to the dominated mutant branches after manual analysis with the aid of the dominance relation graph. Mutants
associated with the non-dominated ones will remain. The test data that cover the non-dominated mutant branches can
also cover all the mutant branches, i.e., kill all the mutants before reduction in weak mutation testing.

The basic idea of defining the dominance relation between mutant branches and applying the dominance relation
to reduce mutants was initially reported, with examples on several small programs, at the 2nd Chinese Search Based
Software Engineering (CSBSE’2013) workshop [20]. Given the fact that the 2-page abstract is preliminary, we have
extended the idea in the following four new directions:

(1) defining four concepts, mutant branch, dominance relation, non-dominated branch, and dominance relation
graph;

(2) presenting two theorems on how to form the non-dominated mutant branch set and identify the non-dominated
mutants;

(3) providing an example throughout the whole paper to intuitively demonstrate the above work;
(4) evaluating the proposed method by applying it to ten benchmark programs and six classes from open-source

projects with various sizes and complexities.
The main contributions of this paper are as follows:
• A method of reducing mutants is proposed for weak mutation testing, which is conducted by analyzing the

dominance relation between mutant branches in the new program.
• Four definitions of identifying the dominance relation between mutant branches are provided, and the dominance

relation graph is given to describe all the dominance relations in the new program.
• Two theorems of determining the non-dominated mutant branches are given, so as to reduce redundant mutants.
• The proposed method is applied to ten benchmark programs and six classes from open-source projects, and the

experimental results suggest that our method reduces over 80% mutants.

2. Related Work

Reducing mutants is of effectiveness to save computational cost for mutation testing. Weak mutation testing is a
technique in view of saving execution time. Additionally, there are correlations among statements in a program, and
correlation analysis is helpful to mutation testing. This section will review the related work from the above aspects.

2.1. Mutant Reduction

For software under test, a large number of mutants cause high cost in mutation testing, which can be solved by
mutant reduction. Mutant sampling proposed by Acree and Budd randomly selects a specific percentage of mutants to
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execute testing [21, 22]. Mathur and Wong investigated the influence of the sampling rate on the mutation adequacy
[23]. They conducted a series of experiments by changing the rate from 0.1 to 0.4 in the step of 0.05, and the
experimental results suggest that the mutation score decreases as the sampling rate reduces. Unlike random sampling,
Hussain extracted a set of representative mutants to test after clustering, and his method maintains a high mutation
score [24].

To reduce mutants, Mathur suggested that two mutation operators (i.e., Array reference for Scalar variable Re-
placement (ASR) and Scalar Variable Replacement (SVR)), which will generate around 30% to 40% of the total
mutants, should be omitted, and proposed selective mutation testing [25]. By Extending Mathur’s idea, Offutt et
al. performed 2-selective experiments (omitting ASR and SVR) and achieved 24% mutant reduction with 99.99%
mutation score. Further in 4-selective and 6-selective experiments, they got much higher reduction rates but lower
mutation scores [26]. By analyzing the distribution of 22 mutation operators in 28 programs, Offutt et al. obtained a
high mutation score with only 5 operators [27]. Different from the prior selective mutation that reduces mutants with
acceptable loss in the test adequacy, Mresa and Bottaci compared mutation operators in terms of both score and cost
to seek the most efficient mutation operators [28]. By manual analysis, Yao et al. revealed a highly uneven distribution
of equivalent mutants and stubborn mutants (those that remain undetected by a test suite with high quality, yet are
non-equivalent) [29]. Their work is beneficial to designing mutation tools, and reduces the human effort involved in
mutation testing.

The above techniques, mutant sampling and selective mutation, are from First Order Mutants (FOMs) perspective.
In view of the fact that High Order Mutants (HOMs, more than one syntactic change in a program) not only represent
complex faults in practical software, but also reduce the number of mutants [30], studies on HOMs have arisen in
recent years. Jia and Harman utilized meta-heuristic search algorithms to generate semantic HOMs which are hard
to kill, and reduced mutants greatly [4]. Langdon et al. combined FOMs with close semantic relations to form
HOMs [31]. Second-order mutants (SOMs, two syntactic changes in a program) proposed by Polo et al. get 50%
cost saving [32]. Kintis et al. focused on control relations among nodes in the CFG of a program, and presented
three strategies for combining SOMs [33]. Papadakis and Malevris conducted an empirical study for the first and the
second order mutation testing strategies, and found that the first order mutation testing strategies are generally more
effective than the second order ones, and the latter drastically reduce equivalent mutants, thus forming a valid cost
effective alternative to mutation testing [34]. However, the growing order of HOMs results in significant cost increase
in generating HOMs, which further illustrates the necessity of reducing mutants.

2.2. Weak Mutation Testing

In strong mutation testing, a mutant is killed when its output differs from that of the original program. DeMillo
and Offutt summarized the conditions for killing a mutant as reachability, necessity, and sufficiency [35]. Reachability
claims that a test datum must execute the mutated statement in the mutant, while necessity requires that an unexpected
state must occur after executing the mutated statement. Finally, sufficiency means that the unexpected state must be
propagated up to the output of the mutant. For software under test, running code after the mutated statement is usually
time-consuming.

Weak mutation testing proposed by Howden [5] only satisfies reachability and necessity. Experiments from De-
Millo and Offutt suggest that test data that satisfy necessity can largely satisfy sufficiency [36]. Moreover, Horgan and
Mathur’s analysis shows that on certain circumstances, test data generated in weak mutation testing are as effective
as those in strong mutation testing [37]. Instead of executing the whole program, weak mutation testing greatly saves
the execution time. Offutt and Lee’s experiments report that weak mutation testing saves about 50% test cost, and in
most cases, weak mutation testing is an effective alternative to strong mutation testing [38, 39].

To further improve weak mutation testing, Papadakis and Malevris combined the statements before and after
mutation to construct a mutant branch, and formed a new program by inserting all the mutant branches into appropriate
positions in the original program. Test data that cover mutant branches also kill the corresponding mutants in weak
mutation testing. Their experiments indicate that without much loss in the mutation score, the method further saves
execution time [17]. However, a large number of mutant branches in the new program dramatically increases the
complexity. Moreover, Papadakis and Malevris generated mutation-based test data by covering the selected paths
[40]. Similarly, without reduction, a lot of mutants result in a large search space, which severely increases cost in
generating test data.
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2.3. Testability Transformation and Mutant Reduction

The transformation method proposed by Papadakis and Malevris saves the cost in executing all mutants one by
one. However, numerous mutants are inserted into the program under test, which greatly increase the complexity of
the new program. Reducing mutants can further simplify the transformed problem.

Based on the dominance and implication relations in a ddgraph, Bertolino and Marre sought a set of unconstrained
arcs, and generated the minimal path set which covers all the branches in a program. By transforming branch coverage
into path coverage, testing is highly simplified [41]. Using the ddgraph, Marre and Bertolino proposed the concept
of spanning set which is the minimal set under a specific coverage criterion, and test data that cover the spanning set
also cover the original set. The experimental results suggest that their approach not only saves testing cost, but also
reduces the number of generated test data [18].

Previous research shows that test strategies based on the correlations among statements are of effectiveness. In
structural testing, Ghiduk and Girgis reduced the statements needed to cover by only covering the non-dominated
ones [19]. Gong and Yao identified infeasible paths according to the correlations among branches to save valuable
testing resources [42]. Correlations are also helpful to mutation testing. Shan et al. analyzed the correlations among
mutated statements at the same position, and combined a small amount of compound mutants. Their method gets a
high reduction rate [43]. Kintis et al. generated SOMs based on the control relations among nodes in the CFG of a
program [33]. Their research demonstrates that there exists subsumption between mutants.

Ammann et al. determined the minimal set of mutants by dynamic subsumption analysis, which is performed by
executing mutants against test data [44]. Kurtz et al. defined the following three types of subsumption relations, i.e.,
true subsumption, dynamic subsumption and static subsumption, and built a graph model to represent the subsumption
relation between mutants [45]. In addition, they indicated that the true subsumption is not computable, the dynamic
subsumption which is an approximation to the true one can be detected by a specific test set, and the static subsumption
which approaches the true one can be manually or automatically analyzed. Later, Kurtz et al. developed a method of
building the static mutant subsumption graph (SMSG) by the symbolic execution, so as to generate test data to kill
mutants. Further, they refined the SMSG to form a statically-derived dynamic mutant subsumption graph (SDMSG)
by generating test data in a feedback mechanism [46].

The dominance relation graph used in our paper shares several similar features with MSG. For the dominance
relation graph and MSG, each node represents one or more killable mutants, and each edge between nodes indicates
the dominance relation between mutants. MSG suggests that describing the dominance relations with a graph is
feasible. Nonetheless, the significant difference between the dominance relation graph and MSG is that each node in
the dominance relation graph represents only one mutant (mutant branch), whereas each node in MSG refers to one
or more mutants that are indistinguishable from each other.

3. The Proposed Method of Reducing Mutants

This section describes the method of reducing mutants by the dominance relation. In this method, we first construct
mutant branches based on the statements before and after mutation, and a new program is formed by fusing all the
mutant branches into the original program. Then, we analyze the dominance relation between mutant branches in the
new program. Finally, we obtain the non-dominated mutant branches which correspond to the mutants after reduction.

3.1. Constructing Mutant Branches and Forming the New Program

Constructing mutant branches and forming the new program is the first step of our approach, which transforms the
problem of killing mutants into that of covering mutant branches. The detailed process of the transformation method
proposed by Papadakis and Malevris is provided as follows.

The original program is denoted as P. Suppose that the mutant position is statement s, and a mutated statement of
s is s′. A mutant of P, denoted as m, is generated by substituting s′ for s in P. In weak mutation testing, if a test datum
kills m, it must reach s′ and cause a different state after executing s′, i.e., s != s′. Taking “s != s′” as the predicate,
and the marked statement(s), which reflect that m is killed, as the true branch, denoted as b, a conditional statement
is constructed. Then the problem of killing m is transformed into that of covering the true part of b. In view of the
one-to-one mapping relation between b and s′, or equivalently between b and m, b is called a mutant branch.

Definition 1 Mutant Branch
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Table 1: The construction process of mutant branches.

Mutation
operator

Description Original
statement (s)

Mutated state-
ment (s′)

Mutant branch (b)

AORB Basic Arithmetic Operator Replacement a + b a ∗ b i f ((a + b) != (a ∗ b))

AORS Short-cut Arithmetic Operator Replacement a + + + b a − − + b i f ((a + 1 + b) != (a − 1 + b))

AOIU Insert basic Unary Arithmetic Operators a + b −a + b i f ((a + b) != (−a + b))

AOIS Short-cut Arithmetic Operator Insertion a + b + + a + b i f ((a + b) != (a + 1 + b))

AODU Delete Basic Unary Arithmetic Operators −a + b a + b i f ((−a + b) != (a + b))

AODS Short-cut Arithmetic Operator Delete a + + + b a + b i f ((a + 1 + b) != (a + b))

ROR Relational Operator Replacement a > b a <= b i f ((a > b) != (a <= b))

COR Conditional Operator Replacement a > b||c < d a > b&&c < d i f ((a > b||c < d) != (a > b&&c < d))

COD Conditional Operator Deletion !(a > b) a > b i f (!(a > b) != (a > b))

COI Conditional Operator Insertion a > b !(a > b) i f ((a > b) != !(a > b))

SOR Shift Operator Replacement a >> b a >>> b i f ((a >> b) != (a >>> b))

LOR Logical Operator Replacement a | b a&b i f ((a|b) != (a&b))

LOI Logical Operator Insertion a + b ∼ a + b i f ((a + b) != (∼ a + b))

LOD Logical Operator Deletion ∼ a + b a + b i f ((∼ a + b) != (a + b))

ASRS Assignment Operator Replacement a+ = b a∗ = b i f ((a + b) != (a ∗ b))

For a statement s in P and its mutated one s′, the corresponding mutant branch b is composed of a conditional
expression in the form of “s! = s′” and a true branch which marks that an input satisfies the conditional expression.

When forming a mutant branch, only the conditional expression and its true part are of necessity. The reason lies
that if the true part is covered, it indicates that the corresponding mutant is killed in weak mutation testing. From this
point of view, we usually call the conditional expression and its true part mutant branch.

We combine all the mutant branches by the mutated statements and the original ones after performing all the
mutation operators on P. The combined mutant branches are denoted as b1, b2, ..., bN , and their corresponding mutants
as m1,m2, ...,mN , where N is the number of mutant branches (mutants). By fusing all the mutant branches into the
original program in order, a new program, denoted as P′, is formed.

Table 1 lists the construction process of mutant branches by performing traditional mutation operators of Mu-
Clipse. Here, MuClipse is a plug-in for Eclipse from MuJava (a widely used mutation testing tool in various research)
[47], which can automatically generate and execute mutants [47, 48]. In this table, the original statement s, a mutated
statement s′ generated by performing a mutation operator on s, and the mutant branch b constructed by combining s
and s′ are provided. For example, a mutated statement “a ∗ b” is generated after performing AORB on “a + b”, and its
corresponding mutant branch, “i f ((a + b)! = (a ∗ b))”, is constructed by combining “a + b” and “a ∗ b”.

Several mutation operators in Table 1 may affect the execution result P′. For example, performing AOIS on
variable “a” in “a + b” will generate “+ + a”, “− − a”, “a + +” and “a − −”. In our study, “+ + a” and “− − a” are
directly replaced with “(a + 1)” and “(a − 1)”, respectively. For “a + +” and “a − −”, since they affect the consequent
code in P′, we replace them with“(a + 1)” and “(a − 1)”, respectively.

The program, Triangle, is a familiar example in software testing [2, 4, 30, 31], and Figure 1 (a) is its Java version.
Figure 1 shows the process of forming P′ where (a) is the code of P (Triangle); (b) represents the CFG of code from
lines 7 to 9 in the dashed box of (a); (c) means the mutant branches constructed after performing ROR on “i f (a == b)”
and AORB on “trian = trian + 1”, respectively; and (d) is the CFG after inserting mutant branches into P. The dashed
boxes in Figure 1 (d) represent the inserted mutant branches. Although each has two branches, i.e., the true and the
false branches, we only consider the true one. Further, the statement(s) in the true branch indicates that its true part is
covered, i.e., there is an unexpected state in weak mutation testing.

After Forming the new program, P′, the problem of killing N mutants of P is transformed into the problem of
covering N mutant branches in P′. However, a lot of mutant branches in P′ greatly increase the complexity in solving
the transformed problem. We use the program in Figure 1 (a) to illustrate the increased structural complexity in P′.
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public static int getTri(int a, int b, int c) {

int trian;

if (a <= 0 || b <= 0 || c <= 0) {

return 4;

}

trian = 0;

if (a == b) {

trian = trian + 1;

}

if (a == c) {

trian = trian + 2;

}

if (b == c) {

trian = trian + 3;

}

if (trian == 0) {

if (a + b <= c || b + c <= a || a + c <= b) {

return 4;

} else {

return 1;

}

}

if (trian > 3) {

return 3;

} else if (trian == 1 && a + b > c) {

return 2;

} else if (trian == 2 && a + c > b) {

return 2;

} else if (trian == 3 && b + c > a) {

return 2;

}

return 4;

}

if(a == b)

trian=trian + 1

if(a == c)

...

...

original: if(a == b)

mutant branches:

if((a == b) != (a < b)){...}

if((a == b) != (a <= b)){...}

if((a == b) != (a != b)){...}

if((a == b) != (a >= b)){...}

if((a == b) != (a > b)){...}

original: trian = trian + 1

mutant branches:

if((trian + 1) != (trian - 1)){...}

if((trian + 1) != (trian * 1)){...}

if((trian + 1) != (trian / 1)){...}

if((trian + 1) != (trian % 1)){...}

(a)

(b)

(c)

if(a == b)

trian=trian + 1

if(a == c)

...

...

(d)

if((a == b) != (a < b))

...

...

if((trian + 1) != (trian - 1))

...

...

Figure 1: The process of forming a new program. (a) triangle.java translated from [2, 4, 30, 31]. (b) the CFG of lines 7 to 9 in (a); (c) the constructed
mutant branches by applying ROR to statement “i f (a == b)” and AORB to “trian = trian + 1”, respectively; (d) the CFG after inserting mutant
branches.
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Table 3: The predicates of the constructed mutant branches.

Mutation operator Predicate

AOIS 1. i f ((a == b) != (++a == b)); 2. i f ((a == b) != (− − a == b));

3. i f ((a == b) != (a == ++b)); 4. i f ((a == b) != (a == − − b));

5. i f ((trian + 1) != (++trian + 1)); 6. i f ((trian + 1) != (− − trian + 1);

21. i f ((a == b) != (a++ == b)); 22. i f ((a == b) != (a − − == b));

23. i f ((a == b) != (a == b++)); 24. i f ((a == b) != (a == b − −));

25. i f ((trian + 1) != (trian++ + 1)); 26. i f ((trian + 1) != (trian − − + 1)).

AOIU 7. i f ((trian + 1) != (-trian + 1)).

AORB 8. i f ((train + 1) != (trian - 1)); 9. i f ((trian + 1) != (trian * 1));

10. i f ((trian + 1) != (trian / 1)); 11. i f ((trian + 1) != (trian % 1)).

COI 12. i f ((a == b) != (!(a == b))).

LOI 13. i f ((a == b) != (∼ a == b)); 14. i f ((a == b) != (a == ∼ b));

15. i f ((trian + 1) != (∼ trian + 1)).

ROR 16. i f ((a == b) != (a < b)); 17. i f ((a == b) != (a <= b));

18. i f ((a == b) != (a != b)); 19. i f ((a == b) != (a >= b));

20. i f ((a == b) != (a > b)).

All the 15 traditional operators of MuClipse are selected to mutate the program, and 78 mutants are generated from
lines 6 to 15 in Figure 1 (a). The mutants are listed in Table 2, where “others” represents the other nine mutation
operators which generate 0 mutants. For “i f (a == b){trian = trian + 1; }” (from lines 7 to 9 in Figure 1 (a)), 26
mutants are generated, where 16 of them are generated from “i f (a == b)” (line 7) and 10 from “trian = trian + 1”
(line 8). The number of constructed mutant branches is also 26, and their predicates are listed in Table 3. Figure 2
shows the simplified CFG of the new program by integrating these mutant branches into the original program (lines 7
to 9), where each number shown in Figure 2 corresponds to a predicate in Table 3.

if(a == b)

trian=trian + 1

if(a == c)

...

...

1-4, 12-14, 16-24

5-11, 15, 25, 26

Figure 2: The CFG of the new program.

Mutation operator Mutants

AOIS 33

AOIU 3

AORB 12

COI 3

LOI 9

ROR 15
others 0

Total 78

Table 2: The mutation operators and the number of mutants they generate.

According to Table 1, the mutant branches generated by AOIS in Table 3 need further transformations. For
a mutated statement, if there is no variable reference in the consequent code, or the effect cannot be propagated,
its mutant branch is infeasible, and the corresponding mutant is said to be equivalent. As a result, statements like
“trian = trian + + + 1” and “trian = trian − − + 1” (corresponding to predicate 25 or 26 in Table 3) are infeasible.
Further predicate 7 in Table 3 is also infeasible, due to that the initial value of “trian” is 0.

After 78 mutant branches from 10 lines of code (from lines 6 to 15 in Figure 1 (a)) are added to P′, the number
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of branches is increased by 26 times (the original program includes three branches from lines 6 to 15, which is shown
in Figure 1 (a)). Since each mutant branch includes at least three lines of code, the number of lines in P′ is at least
increased 23 times (78 × 3 ÷ 10), which suggests that it is of necessity to reduce mutant branches in P′.

To simplify P′, it is critical to seek the dominance relation between mutant branches. The next subsection will
analyze the dominance relation in P′.

3.2. Determining the Dominance Relation between Mutant Branches
Although the fusion of mutant branches increases the structural complexity, the branches which include the origi-

nal and the mutant ones in P′, are not completely independent. For example, in Table 3 and Figure 2, if mutant branch
17 is executed, 16 and 18 must be executed. The reason is given as follows. First, the above three branches have the
same reachability condition. Second, the conditional expression of 17 can be simplified as “a < b”, while those of 16
and 18 can be simplified as “a == b || a < b” and “a == b || a < b || a > b”. Since “a < b” is the sufficient condition
of both “a == b || a < b” and “a == b || a < b || a > b”, any test datum that executes the true branch of 17 must also
execute those of 16 and 18.

Additionally, if (the true part of) mutant branch 5 is executed, mutant branches 6, 9 and 10 must also be executed.
The above observations lead to the conclusion that (1) the correlation exists between mutant branches in P′, and
(2) such correlation is useful in identifying redundant mutant branch. Note that the above correlation is called the
dominance relation.

Definition 2 Dominance Relation
Consider two mutant branches bi and b j in P′, for any test datum, if bi is executed, b j must be executed, bi is said

to dominate b j, denoted as bi � b j. In this case, bi is called the dominating branch, and b j the dominated branch.
From Definition 2, the dominance relation exists only between feasible mutant branches. When defining the

dominance relation, we highlight that a dominating mutant branch must be feasible. This is because if a mutant
branch is infeasible, it will neither dominate any other mutant branch, nor be dominated by any other mutant branch.
As a result, we can conclude that the definition neither loses any dominated mutant, nor reduces the mutation score.
The dominance relation has the properties of reflexivity and transitivity described as follows:

(1) bi � bi;
(2) for three branches bi, b j, and bk in P′, if bi � b j and b j � bk, one has bi � bk.
Besides the dominance relation between branches, it also exists among three or more branches. Generally, for

branches b1, b2, · · · , bk−1, and bk in program P′, a set of branches, {b1, b2, · · · , bk−1}, is said to dominate bk, when
{b1, b2, · · · , bk−1} is executed with any input of P′, bk must also be executed, denoted as {b1, b2, · · · , bk−1} � bk.
Although the dominance relation commonly exists among three or more branches, it is extremely time-consuming and
difficult to analyze the dominance relation among them, not to mention listing all the dominance relations among them.
This is because many additional combinatorial searches have to be conducted so as to list all the dominance relations
among three or more mutant branches, and the complex combinatorial conditions further increase the difficulty of
identifying such dominance relations. As a result, to reduce the number of mutants on the premise of complete
dominance relations is not applicable. Instead it is well known that analyzing the dominance relation between mutant
branches is relatively simple and time-effective. Although a very small portion of redundant mutants will survive after
analyzing the dominance relations between mutant branches, they do not worsen the effectiveness of mutation testing
at all. As a result, we consider the dominance relation only between mutant branches in this paper.

For two mutant branches bi and b j in P′, if bi does not dominate b j, and b j does not dominate bi, it is said that
there is no dominance relation between bi and b j, denoted as bi||b j. Therefore, for two branches, bi and b j, in P′, their
dominance relation can be only one of the following three cases: bi � b j, b j � bi, and bi||b j.

An interesting observation from the above example is that mutant branch 12 (b12) dominates 18 (b18), and mutant
branch 18 (b18) dominates 12 (b12). This is, the above two mutant branches dominate each other. As a common
rule, we select the mutant branch which will be executed earlier (e.g., b12 � b18 in the above example), to potentially
improve the computing efficiency. Similarly, the above rule will be applied to b13 and b14 (b13 � b14 and b14 � b13).
Additionally, when two mutant branches dominate each other, it is possible that one branch is easier to be covered
than the other for an automated testing tool, and remaining the mutant branch that is easier to be covered generally
saves cost in generating a test datum.

Further, it is worth noting that the number of non-dominated mutant branches is the same, no matter which
dominance relation is chosen. Besides, the chosen dominance relation does not affect the capability of a test suite in
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Figure 3: The dominance relation graph.

detecting faults. The reason is provided as follows. For two mutant branches that dominate each other, if we select a
mutant branch as the non-dominated one, a test datum that covers the non-dominated mutant branch will also cover
the dominated one. As covering a mutant branch equals to killing its corresponding mutant in weak mutation testing,
the test datum can detect the faults corresponding to both mutant branches.

Based on Definition 2, all the dominance relations between each pair of mutant branches in Table 3 are provided
as follows:

b1 � b4
b4 � b21, b24
b2 � b3
b3 � b22, b23
b5 � b6, b9, b10
b12 � b18
b13 � b1, · · · , b6, b8, · · · , b12, b14, b15, b16, b20
b17 � b12, b16, b18
b19 � b12, b18, b20

3.3. Reducing Mutants

In view of the one-to-one mapping relation between a mutant and its mutant branch in P′, this subsection only
considers the set composed of all the mutant branches, denoted as B. The number of mutant branches is reduced after
dominance analysis, and mutants corresponding to the non-dominated branches will remain.

Definition 3 Non-dominated branch
For an element bi in B, it is called as a mutant branch. For ∀b j ∈ B, if either bi � b j or bi||b j is held, bi is a non-

dominated mutant branch. A set composed of all the non-dominated mutant branches is called the non-dominated
branch set, denoted as Bnd.

Theorem 1: Mutants corresponding to Bnd are the ones after reduction.
Theorem 1 tells that seeking Bnd is of considerable importance to reduce mutants. In order to show the dominance

relation more intuitively, we will introduce the definition of dominance relation graph as follows.
Definition 4 Dominance Relation Graph
The dominance relation graph of P′ is a directional graph, denoted as D(P′) = {V(B), E(B)}, where V(B) is a

vertex set, E(B) is a directional edge set, and each mutant branch is represented as a vertex in V(B). If the dominance
relation exists between a pair of branches in B, e.g., bi � b j, there will be an edge from vi to v j, i.e., < vi, v j >∈ E(B).

Figure 3 is the dominance relation graph constructed from the dominance relations obtained in the last subsection.
In the figure, there are 23 vertices (the other three correspond to infeasible mutant branches), v1, v2, · · · , v6, v8, v9, · · · , v24,
and 26 edges with each representing the dominance relation in subsection 3.2. Figure 3 also reveals the transitivity of
the dominance relation, e.g., v13 � v4 is held since there exist edges < v13, v1 > and < v1, v4 >.

In graph theory, in-degree and out-degree are two important indicators of the connectivity among vertices [49].
For vi in D(P′), its in-degree indicates the number of branches in B that dominate bi (the corresponding mutant branch
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of vi); on the contrary, its out-degree represents the number of branches in B that are dominated by bi.
Theorem 2: Mutant branches corresponding to the vertices with zero in-degree form Bnd.
From Theorems 1 and 2, mutant branches corresponding to the vertices with zero in-degree in D(P′) are non-

dominated ones, and mutants corresponding to those non-dominated mutant branches remain.
In Figure 3, vertices with zero in-degree are v13, v17 and v19. Therefore Bnd is composed of mutant branches

corresponding to v13, v17, v19, and the predicates of these non-dominated mutant branches are “i f ((a == b) != (∼
a == b))”, “i f ((a == b) != (a <= b))”, and “i f ((a == b) != (a >= b))” (b13, b17 and b19 in Table 3). Clearly, the
original 23 (mutant branches 7, 25 and 26 in Table 3 are infeasible) mutants are reduced to 3.

As aforementioned in section 3.2, we choose b12 � b18 and b13 � b14 in the above example, although b18 � b12 and
b14 � b13, where b12 is a dominated mutant branch (b13 � b12, b17 � b12 and b19 � b12) and b13 is a non-dominated
one. If b18 � b12 and b14 � b13 are chosen, we will get another graph by only swapping v12 with v18, and v13 with v14 in
Figure 3, respectively. In such case, b18 will be reduced, and b14 will be an element in Bnd instead of b13. However for
such dominance relation, although different choices might result in different mutant branches that remain, the number
of non-dominated mutant branches is the same, i.e., the reduction rate remains unchanged.

The above illustrations and results suggest that our method can greatly reduce the number of mutant branches
though its effectiveness needs further validation.

3.4. The Steps of Reducing Mutants

The steps of the proposed method for mutant reduction are as follows:
Step 1: Perform mutation operators on P to obtain the mutated statements.
Step 2: Construct mutant branches based on the statements before and after mutation, and then form the new

program, P′, according to subsection 3.1.
Step 3: Determine all the dominance relations between each pair of mutant branches.
Step 4: Construct the dominance relation graph D(P′) as described in subsection 3.3.
Step 5: Seek vertices with zero in-degree to form Bnd.
The time complexity of the above method depends on the step with the highest complexity in the above 5 steps. As

defined in subsection 3.1, the number of mutants (mutant branches) is N. In step 1, to obtain N mutated statements,
the mutation operation should be executed N times. To construct mutant branches in step 2, each mutated statement
will be combined with its original one, i.e, the number of combinations is N. To identify all the dominance relations
between each pair of mutant branches in Step 3, in the worst case, each of the N mutant branches will be compared
with the other (N − 1) ones, so the biggest number of combinatorial search is N × (N − 1). If D(P′) is stored in a
matrix DomN×N , the complexity of both Steps 4 and 5 are N2. From the above analysis, we can obtain that the time
complexity of our method is O(N2).

To identify dominance relations, we need to do the combinational search among mutant branches, which seems to
have greatly increased the time complexity. However, as a dominated mutant branch will be deleted from B once it is
found and therefore the number of branches in B becomes smaller, which in turn will reduce the time complexity in
searching dominance relations and will obtain an acceptable time complexity of the combinational search process.

To obtain the non-dominated mutant branches, first, we choose a mutant branch bi from B according to the time
order in which a mutant branch enters B, and determine whether there is the dominance relation between bi and any
remaining mutant branch. If yes, delete all the dominated mutant branch(es) from B. Then we choose the next mutant
branch from the set, B, and perform the above same process. By repeating the above process until no dominated
mutant branches are left in the set, we will finally get the set Bnd.

4. Experiments

This section performs an experimental study to validate the effectiveness of the proposed method. First, the
research questions are raised. Then, the experimental process is given. Finally, the experimental results on benchmark
programs and open-source classes are analyzed.

10



4.1. Research Questions

Our purpose is to reduce mutants for the weak mutation testing. To this end, our experiment aims to answer the
following questions:

RQ1: Can the proposed method effectively identify redundant mutants? This will be answered by the reduction
rate, i.e., the ratio of the number of reduced mutant branches to the number of the total feasible mutant branches.

RQ2: Is the proposed method cost-effective to generate test data after reduction? This is reflected by the compar-
ison on the time consumption between two programs before and after mutant reduction when using the same method
to generate test data.

RQ3: Are test data yet effective after mutant reduction? This is illustrated by the mutation score achieved by the
generated test data.

RQ4: How about the capability of test data generated after mutant reduction in detecting injected faults? The
number of test data needed to achieve a desired mutation score is used to reflect the capability of test data in killing
mutants.

4.2. The Experimental Process

Our experiments are done under the following environment: Intel(R) Core(TM)2 Duo CPU E7400 @ 2.80GHz,
2.79GHz, 2.0 GB ROM, Microsoft Windows XP SP3 operating system, and Eclipse 3.4 integrated development
environment (IDE) with MuClipse 1.3 plug-in. MuClipse provides 15 method-level mutation operators and a bridge
between the MuJava mutation engine and Eclipse IDE. By MuClipse, we generate mutants and execute mutation
testing automatically, and compare the output of each mutant with that of the original one in Eclipse IDE. We extract
the original and the mutated statements from MuClipse log to construct the mutant branches. The original program,
P, is processed as follows: (1) the new program, P′ (before reduction), is formed by fusing all the mutant branches
into P manually, and (2) another new program, P′′ (after reduction), is formed by fusing all the mutant branches after
reduction into P manually.

Up to present, we have not found any existing tool that can generate mutant branches, form the transformed
program, and especially, identify the dominance relations between each pair of mutant branches automatically. In our
experimental study, mutant branches are first automatically formed based on the file, mutation log, which is created
by MuClipse when generating mutants. Then, these mutant branches are manually incorporated into the original
program to construct the new program. Finally, manual analysis is performed to identify the dominance relation.
Once all the dominance relations are identified, the dominance relation graph can be constructed automatically, and
non-dominated branches will be obtained based on the vertices with zero in-degree.

Although it is feasible to automatically analyze and determine the dominance relation between mutant branches,
the accuracy resulting from such an automatic way is not usually high. In fact, the dominance relation is semantic
between mutant branches, which can be accurately obtained by manually semantic analysis. Unfortunately, it is
difficult to form these semantic rules for further automatic analysis. Some would argue that the dominance relation
can be detected by executing mutant branches with test data. However, the accuracy of this method highly depends
on the number and the distribution of these test data, and to get enough test data with a good distribution is extremely
difficult. As a result, we get the dominance relation between mutant branches manually instead of automatic analysis
in this paper. Although our manual analysis is a bit time-consuming in these experiments, it is acceptable when
considering the high accuracy of identified dominance.

Figure 4 shows the instrumented statements, “i f (a == b){trian = trian+1; }”, in Triangle, where (a) is P′ obtained
by fusing 23 mutant branches into P at appropriate positions, and (b) is P′′ obtained by only fusing the non-dominated
mutant branches. Array A in the figure indicates whether a mutant branch is covered or not, and each array index of
array A is associated with a number in Table 3. All the instrumented branches in P′ and P′′ should be covered in our
experiments.

We generate test data by the random approach. The random generation approach used in our experiments is
composed of the following steps. First, the input domain of the program under test is determined. For example, the
input of Triangle is (a, b, c), where a, b, c∈[-10, 9] which indicates that the value of each element can be sampled from
[-10, 9]. Second, test data are generated by randomly sampling the input domain to cover the mutant branches before
(after) reduction in P′ (P′′). The above steps are implemented in Java shown in Figure 4 (c).
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if((a == b) != (a + 1 == b)){

A[1]=1;

}// 1

...//2, 3, 4, 12, 13, 14, 16,

...//17, 18, 19, 20, 21, 22, 23, 24

if (a == b) {

if((trian + 1) != (trian + 1 + 1)){

A[5]=1;

}//5

...//6, 8, 9, 10, 11, 15,

trian = trian + 1;

}

(a)

if((a == b) != (~a == b)){

A[13]=1;

}//13

if((a == b) != (a <= b)){

A[17]=1;

}//17

if((a == b) != (a >= b)){

A[19]=1;

}//19

if (a == b) {

trian = trian + 1;

}

(b)

import java.util.Random;

…

Random ran = new Random();

…

int a = ran.nextInt(20) - 10;

int b = ran.nextInt(20) - 10;

int c = ran.nextInt(20) - 10;

…

(c)

Figure 4: Instrumentation and test data generation, where (a) and (b) are transformed programs after inserting the mutant branches before and after
reduction, respectively; and (c) is the test input sampling when generating test data.

Note that the main objective of this paper is to reduce mutants, and we aim to achieve that the mutants after
reduction can be as effectiveness as the original ones, i.e. test data that cover all the mutant branches after reduction
can also cover all the mutant branches before reduction. When comparing the effectiveness and the efficiency in
generating test data, it is possible to select any reasonable method for test data generation. In this paper, the random
sampling method is applied. Although there exist methods or tools such as Randoop for test data generation, test data
generated by Randoop are not coverage-adequate, suggesting that additional test data must be added. Furthermore, the
time spent in generating test data before and after mutant reduction should be calculated to evaluate the performance of
the proposed method. Unfortunately, test data generated by Randoop is conducted in a given time. Although existing
tools are not used when generating test data, the random method accords with the principle of random testing.

When generating test data to cover mutant branches in B (Bnd), first, we choose a mutant branch from B (Bnd),
and then generate a test datum by randomly sampling the input domain until the test datum has covered the mutant
branch. Taking mutant branch 5 (see A[5] in Figure 4 (a)) as an example, to generate a test datum that covers it, we
sample the input domain, [−10, 9]3, for a number of iterations until a test input, (2, 2, 3), has covered it. In this way,
we generate the test datum that covers mutant branch 5. The above process is repeated until all the mutant branches
in B (Bnd) have been covered.

It is clear that if the generated test data always first target the non-dominated branches, the results will be the
same, no matter if it is before and after reduction. Nevertheless, the possibility of always targeting the non-dominated
branches in B before reduction is very small, especially when there is a large number of mutant branches in B.

4.3. The Experimental Results and Analysis

To answer the questions raised in subsection 4.1, our method is applied to test ten benchmark programs and six classes
from open-source projects.

4.3.1. Benchmark Programs
Ten programs in Table 4 are selected for the experiments. Among these programs, J1 is from [2], [4], [30] and

[31]; J2, J3 and J4 are classical mutation testing programs appeared in [3]; J5 and J6 are example programs in [50],
and J5, J6 and J7 are experimental programs in [17]; J8, J9 and J10 are from [51]. All these are programmed in Java.

(1) Regarding RQ1
Table 5 lists the reduction rates of the proposed method, where “Total” refers to the number of mutant branches in

the new program, “Infeasible” represents the number of infeasible mutant branches, and “Remaining” is the number
of feasible mutant branches after reduction by our approach.

From Table 5, we have two observations: (1) the ten programs achieve 80.59% reduction rate on average. For each
program in Table 5, the dominance relation commonly exists not only between mutant branches constructed from the
same statement, but also between those constructed from different statements. This explains the high reduction rates
in Table 5; (2) the reduction rates vary from 73.27% to 92.22%, with the highest reduction rate from J5, and the lowest
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Table 4: Information of benchmark programs.

ID Name LOCs Methods Function

J1 Triangle 35 1 Return the type of a triangle with three integer inputs.

J2 Euclid 12 1 Euclid’s algorithm to find the greatest common divisor of two integers.

J3 Mid 26 1 Return the mid value of three integers.

J4 Bubble 16 1 Bubble sort algorithm.

J5 TrashAndTakeOut 26 2 Not reported.

J6 Cal 50 2 Calculate the number of days between two dates in the same year.

J7 Bank Account 34 3 Simulate bank account deposit and withdrawal services.

J8 Smoke Detector 40 1 Detect the current room smoke level by double inputs.

J9 Vending Machine 112 4 Vend some products through inserting coins, choosing items and getting changes.

J10 Sort Code 70 4 Validate the UK bank sortcode of the form XX-XX-XX, where X is a digit.

Table 5: Reduction of the proposed method.

ID Mutant branches Reduction Before reduction (P+M) After reduction (GZY) Speedup
Total Infeasible Remainingrate (%) Test data Time consumption (ms) Test data Time consumption (ms)

J1 325 22 67 77.89 33.8 4.334284 23.6 0.650308 6.665

J2 57 11 10 78.26 5.7 0.439317 3.8 0.220242 1.995

J3 115 14 27 73.27 16.5 3.840068 9.8 0.699357 5.491

J4 92 5 16 81.61 5.8 10.002405 4.2 3.656434 2.736

J5 112 22 7 92.22 6.8 1.394492 4.7 0.297708 4.684

J6 316 43 54 80.22 25.7 169.806308 17.5 5.194644 32.689

J7 97 9 14 84.09 13.4 1.010467 9.5 0.329932 3.063

J8 175 19 33 78.85 11.8 2.028524 9.8 0.661253 3.068

J9 492 35 95 79.21 44.5 4698.295507 28.4 189.996382 24.728

J10 209 21 37 80.30 16.9 6.657047 12.5 1.686543 3.947

Avg. 80.59 8.907
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Table 6: The effectiveness of the generated test data.

ID Mutants Equivalent mutants Before reduction (P+M) After reduction (GZY)

Killed Mutation score (%) Killed Mutation score (%)

J1 325 40 282 98.95 280 98.25

J2 57 12 45 100.00 45 100.00

J3 115 18 97 100.00 97 100.00

J4 92 7 85 100.00 85 100.00

J5 112 29 82 98.80 82 98.80

J6 316 43 273 100.00 266 97.44

J7 97 13 83 98.81 83 98.81

J8 175 20 155 100.00 155 100.00

J9 492 36 449 98.46 446 97.81

J10 209 40 168 99.41 168 99.41

Sum 1990 258 1719 Avg. = 99.44 1707 Avg. = 99.05

from J3. The reasons why the reduction rates vary among programs are given as follows. Different mutant branches are
constructed from different programs. These mutant branches have different semantic relations for different programs,
resulting in different dominance relations. A high reduction rate of program J5 is due to more dominance relations
between each pair of its mutant branches. In contrast, the reason why program J3 has a low reduction rate is that there
are relatively fewer dominance relations between each pair of its mutant branches.

(2) Regarding RQ2
In Table 5, time is employed to reflect the improvement of efficiency in generating test data after mutant reduction,

which is more intuitive than other metrics such as the number of test data to demonstrate the efficiency. For example,
a test data generation with less time is naturally to be regarded as more efficient. As a result, we compare the time
consumption in generating test data after mutant reduction (GZY, Gong, Zhang, and Yao) to that before reduction
(P+M, Papadakis and Malevris).

Note that the time consumption in generating test data is only a part of the cost in our method, which includes
the time consumption spent in identifying dominance relations, determining non-dominated mutant branches, and
generating test data. Furthermore, as we identify the dominance relation and reduce mutants manually, it is very
difficult to give the time consumption in performing the manual tasks for each program. In fact, the time consumption
in performing the manual tasks is closely related to the familiarity and skill of a tester, and a skilled tester who is
familiar with the program often spends little time in performing the manual tasks. The complexity of the program
and the constructed mutant branches is another factor that impacts the time consumption. To be specific, several
seconds are required to identify a dominance relation between mutant branches constructed from the same original
statement, such as b19 � b20 in Table 3. Besides, tens of seconds are required to identify a dominance relation between
mutant branches constructed from different original statements. Furthermore, if there is more complex code between
mutant branches in the formed program, to identify the dominance relation will be very time-consuming, and the
corresponding time consumption will be in the magnitude of minute. For a program under test, several hours or more
time will be taken to identify all the dominance relations, e.g., the time consumption of J1 in Table 4 is over six
hours. In practical testing, the manual process of a program is generally conducted by more than one tester. Therefore
there is a difficulty in presenting the unified time consumption. Based on the above reasons, the time consumption of
manual tasks is not provided any more in Table 5. “Speedup” which represents the ratio of the time consumption in
generating test data before (P+M) to after reduction (GZY) is given in Table 5, without accounting for the cost spent
on the manual tasks.

From Table 5, we have the following observations: (1) the ten programs obtain a speedup as high as 8.907 on
average, due to the fact that over 80% mutant branches are reduced, and the newly formed programs are greatly
simplified after reduction; (2) however, the speedups are different for different programs. For example, J6 and J9 get
high speedups of 32.689 and 24.728, respectively. In addition to the high reduction rates of the two programs, reduced
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Table 7: The number of test data needed for different mutation scores.

ID Before reduction (P+M) After reduction (GZY)

30% 60% 90% Top 30% 60% 90% Top

J1 6 8 24 34 2 4 12 24
J2 1 2 5 6 1 2 3 4
J3 2 7 14 16 2 4 7 10
J4 1 3 5 6 1 1 3 4
J5 1 4 6 7 1 2 3 5
J6 1 11 22 26 1 5 13 17
J7 4 5 10 13 1 3 6 9
J8 1 6 10 12 1 3 5 10
J9 4 12 28 45 3 10 16 28
J10 4 8 14 17 1 3 6 12

complexity of these programs is another reason for their high speedups.
(3) Regarding RQ3
To validate the effectiveness of test data generated after reduction, in strong mutation testing, we run all the mutants

(without reduction) against test data generated before and after reduction. Table 6 lists the experimental results, where
“killed” represents the number of killed mutants after (before) mutant reduction and ”Mutation score (%)” represents
the mutation score by the test data generated after (before) mutant reduction. In strong mutation testing, killing a
mutant is more difficult than in weak mutation testing. Therefore, the number of equivalent mutants in Table 6 are
more than the number of infeasible mutant branches in Table 5.

Although the number of equivalent mutants of programs J1-J7 in Table 4 can be obtained from the previous work of
other researchers, they are not applicable in our approach. This is because we either employ a different programming
language or use a different mutation tool from those used in the previous work, which results in a different numbers
of equivalent mutants for the same program. On this circumstance, we identify all the equivalent mutants of each
program manually, where the identification process is as follows. After running a series of test data on all the mutants
of a program, survived mutants are semantically analyzed manually one by one in the “Compare Mutants” panel of
MuClipse, and mutants that cannot be functionally differentiated from the original program are equivalent mutants.
Mutants not killed by random chance have generally a high probability, and can be removed, which is helpful to
improve the accuracy of manual analysis. As a result, our process of identifying the equivalent mutants has a high
confidence.

As shown in Table 6, the mutation scores achieved by test data generated before and after reduction are 99.44%
and 99.05%, respectively. The reason why a slight change occurs is as follows. Although our method can identify
many dominated mutant branches. It also mistakenly takes seldom non-dominated mutant branches as dominated ones
in the manual analysis process for dominance relation identification. Nevertheless, from Table 5, we can see that our
method obtains a higher efficiency, where the average speedup is 8.907. From this point of view, it appears that there
is an improvement on the speedup achieved by our method, however, one needs to take into account the additional
time spent in producing the dominance relation set.

(4) Regarding RQ4
To illustrate the capability of test data generated after mutant reduction by our method in detecting the injected

faults (mutants), for each program before and after reduction, the number of test data required to achieve the desired
mutation scores are listed in Table 7. In the table, “Top” represents the number of test data required to reach the
highest mutation score (which can be found from Table 6), and “30%” means the number of test data needed to reach
the mutation score of 30%. The similar definition also applies to “60%” and “90%”.

We have two observations from Table 7: (1) for each program, no matter whether its mutants are reduced or
not, the number of test data needed increases with the desired mutation scores (30%, 60%, 90% and Top). This is
because more test data are needed to kill increasing mutants, so as to achieve higher mutation scores; (2) for the same
program, the number of test data needed to reach the same mutation score after reduction is less than that before
reduction, which is due to the fact that the number of mutants needed to kill is less after reduction.
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Table 8: Description of classes from open-source projects.

ID Class LOCs Total methods Tested methods Mutants Source

I1 WordUtils 173 12 2 243 org.apache.commons.lang3.text

I2 DurationFormatUtils 365 9 3 576 org.apache.commons.lang3.time

I3 HelpFormatter 416 39 4 477 org.apache.commons.cli

I4 NumberUtils 636 47 33 1406 org.apache.commons.lang3.math

I5 UnixCrypt 311 12 9 1097 org.apache.commons.codec.digest

I6 Md5Crypt 107 7 2 158 org.apache.commons.codec.digest

Sum 2008 126 53 3957

Five programs, J1, J3, J6, J9 and J10, are selected to show the change of the mutation scores along with the number
of test data, which can be found in Figure 5. Since these programs generate many test data before and after reduction,
the change cannot be intuitively reflected in Table 7. For the other five programs, J2, J4, J5, J7 and J8, as they generate
a relatively smaller number of test data, so the change can be directly reflected in Table 7. Based on the above reason,
we only graphically display the change of the mutation scores along with the number of test data for programs J1, J3,
J6, J9 and J10.

For all the programs shown in Figure 5, the mutation scores increase rapidly before reaching 80% (or even 90%
in some cases), and then increase slowly from 80% to the Top. For J1, before mutant reduction, only 12 test data
are needed to achieve a mutation score of 80%. However, from 80% to Top (98.95%), 22 test data are needed; after
mutant reduction, to achieve a mutation score of 80%, only 9 test data are needed, while from 80% to Top (98.25%),
15 test data are needed. This suggests that it is difficult to boost the mutation score greatly when it has reached a
specific value (such as 80% or 90%), and there exist a few mutants that are difficult to kill.

Figure 5 also illustrates that, for each program, the same number of test data generated after mutant reduction
usually achieves a higher mutation score. For example, five and twelve test data of program J10 get 50% and 70%
mutation scores, respectively, before reduction. However, the same number of test data generated after mutant re-
duction obtains over 90% and Top (99.41%) mutation scores, respectively. The reason is that the number of test
data needed to generate after reduction is reduced, and the capability of the generated test data in killing mutants is
improved in the meanwhile.

The following conclusions can be drawn from the above experiments: (1) the proposed method can significantly
reduce the number of mutants; (2) the time consumption for generating test data is shortened; (3) test data are effective
for both weak and strong mutation testing; and (4) our approach generates a less number of test data. Therefore, the
proposed method achieves an improvement for weak mutation testing.

In the experiments, we find that if a non-dominated mutant branch is covered by a test datum, its dominated ones
are also covered. However, if a non-dominated mutant branch is not covered, it does not necessarily mean that its
dominated ones cannot be covered. In fact, some or even all the dominated ones are covered, although the non-
dominated one is not covered. That is to say, a non-dominated mutant is more difficult to kill than its dominated
ones.

4.3.2. Classes from Open-source Projects
Six classes in Table 8 are selected from five open-source projects (http://commons.apache.org) to further

validate our approach. The total LOCs of these classes is 2008. For 53 out of 126 methods, mutation testing is
performed, and 3957 mutants are generated. Test data are generated to cover all the mutant branches in P′ (before
reduction) and P′′ (after reduction), respectively, and all test data are output in the form of JUnit assertions. For
example, in “assertEquals(1, Triangle.getTri(3, 4, 5));”, the first parameter, 1, represents the expected output (a triangle
type) given input “(3, 4, 5)”, and the second parameter, Triangle.getTri(3, 4, 5), is the actual output of the program
under test.

The following observations are drawn from Table 9: (1) the six classes generate 3957 mutant branches, among
which 476 are infeasible. After mutant reduction by our method, the number of non-dominated mutant branches is
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Figure 5: The change of the mutation scores along with the number of test data.

Table 9: Reduction of the proposed method.

ID Mutant branches Infeasible Equivalent mutants Remaining Reduction rate (%)

I1 243 26 34 36 83.41

I2 576 52 65 83 84.16

I3 477 35 44 91 79.41

I4 1406 184 212 293 76.02

I5 1097 167 209 131 85.91

I6 158 12 12 30 79.45

Sum 3957 476 576 664 Avg. = 81.39
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Table 10: The mutant branch coverage rates and the mutation scores achieved by test data generated before mutant reduction (P+M).

ID Test data Covered Coverage rate (%) Killed Mutation score (%)

I1 9.7 213 98.16 203 97.13

I2 24.7 523 99.81 501 98.04

I3 23.9 434 98.19 426 98.38

I4 102.5 1208 98.85 1163 97.40

I5 9.4 903 97.10 859 96.73

I6 6.8 146 100 146 100

Sum 177.0 3427 Avg. = 98.69 3298 Avg. = 97.95

Table 11: The mutant branch coverage rates and the mutation scores achieved by test data generated after mutant reduction (GZY).

ID Test data Covered Coverage rate (%) Killed Mutation score (%)

I1 4.8 211 97.24 199 95.22

I2 19.3 518 98.85 498 97.46

I3 18.9 429 97.06 420 97.00

I4 79.8 1178 96.40 1146 95.98

I5 5.7 901 96.88 842 94.82

I6 4.2 146 100 146 100

Sum 132.7 3383 Avg. = 97.74 3251 Avg. = 96.75

664 (shown as “Remaining” in Table 9), and the average reduction rate, which is as high as that of the benchmark
programs shown in subsection 4.3.1, is up to 81.39%, where 2817 (calculated as 3957 − 476 − 664) mutant branches
are reduced; (2) among the six classes, the highest reduction rate is 85.91% from class I5, and the lowest is 76.02%
from I4. The reason for the above observations is twofold: On one hand, each program achieves a relatively high
reduction rate, and on the other hand, different programs would achieve different reduction rates.

Table 10 reports the mutant branch coverage rates and the mutation scores achieved by test data generated before
mutant reduction (P+M). “Test data” in Table 10 represents the number of generated test data before reduction, while
“Covered” (“Killed”) means the number of covered (killed) mutant branches (mutants). Before reduction, 177.0 test
data are generated, and 98.69% mutant branch coverage rate and 97.95% mutation score are achieved. It is also
observed that, the lowest mutation score is 96.73% from class I5, and the highest is 100% from class I6.

In Table 11, after mutant reduction (GZY), the total number of generated test data of the six classes is 132.7. These
test data cover 3383 feasible mutant branches (in Table 9, the total is 3957−476 = 3481) with an average coverage rate
of 97.74%, and kill 3251 mutants (from Tables 8 and 9, the number of non-equivalent mutants is 3957 − 576 = 3381)
with an average mutation score of 96.75%. Among them, the lowest mutation score is 94.82% from class I5, and the
highest is 100% from class I6.

According to definition 3, if all the non-dominated mutant branches are correctly identified and covered by the
generated test data, all the dominated mutant branches will be also covered in theory. However, identifying all the non-
dominated mutant branches is very difficult, and closely related to a tester’s familiarity with the program. Therefore,
if a tester is unfamiliar with the program, one or more non-dominated mutant branches will be mistakenly regarded as
the dominated ones. On this circumstance, the number of branches covered will decrease which is reflected by results
in Tables 10 and 11.

Tables 10 and 11 suggest that: (1) the coverage rate and the mutation score after reduction drop by 0.95% and
1.20%, respectively, which are subtle compared with the reduction rate of 81.39% (in Table 9). The slight drop in
coverage rate and mutation score is due to the manual analysis mistake made in identifying the dominance relation
between mutant branches. The influences of the mistake are twofold: first, the dominated mutant branches being
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Table 12: Comparison with mutant sampling

Sampling rate ID Remaining Covered Coverage rate (%) Killed Mutation score (%)

About 20%

I1 36 196 90.32 181 86.60

I2 83 481 91.79 418 81.80

I3 91 388 87.78 367 84.76

I4 293 1104 90.34 1039 87.02

I5 131 852 91.61 784 88.29

I6 30 137 93.84 131 89.73

Sum. 664 3158 Avg. = 90.95 2920 Avg. = 86.37

30%

I1 65 207 95.39 194 92.82

I2 157 501 95.61 454 88.85

I3 133 410 92.76 389 89.84

I4 367 1126 92.14 1060 88.78

I5 279 867 93.23 802 90.32

I6 44 139 95.21 135 92.47

Sum. 1045 3250 Avg. = 94.06 3034 Avg. = 90.51

40%

I1 87 210 96.77 195 93.30

I2 210 510 97.33 471 92.17

I3 177 416 94.12 398 91.92

I4 489 1136 92.96 1084 90.79

I5 372 894 96.13 820 92.34

I6 59 141 96.58 139 95.21

Sum. 1394 3307 Avg. = 95.65 3107 Avg. = 92.62

mistakenly regarded as non-dominated ones will result in a low reduction rate without changing the coverage rate;
second, the non-dominated mutant branches being mistakenly regarded as dominated ones will cause a high reduction
rate but a low coverage rate; (2) among the six classes, the maximal drops of the coverage rate and the mutation score
are only 2.45% from I4 and 1.91% from I1 and I5, respectively, given that seldom mistakes are made in processing
these two programs; (3) in addition, the average reduction of the number of test data is 44.3 dropping from 177.0 to
132.7, which is due to the fact that a great number of mutant branches are reduced.

Mutant sampling randomly selects a certain percentage of mutants to test, and the sampled mutants are those after
reduction. There are some similar features between mutant sampling and our method, which are given as follows:
(1) selecting (identifying) a small set of mutants to execute the mutation testing; (2) not for a small set of mutation
operators. In fact, the mutants to be reduced by our method are from all the traditional operators of MuClipse.
Furthermore, the distinct characteristics of our method are given as follows: (1) we transform mutants into mutant
branches based on weak mutation testing; (2) instead of randomly sampling, we select mutants by dominance analysis.

To compare our method with mutant sampling, we first sample a certain number of feasible mutant branches from
each class according to column “Remaining” in Table 9, and analyze the effectiveness of the sampled mutant branches,
i.e. generating test data to cover the true parts of the sampled mutant branches and investigating how many mutant
branches (mutants) are covered (killed) by the generated test data. Then, given the fact that the remaining mutant
branches with our method is about 20% (the average reduction rate in Table 9 is 81.39%), we randomly sample 30%
and 40% mutant branches to generate test data to cover (kill) all mutant branches (mutants).

In Table 12, “About 20%” means sampling the same number of mutant branches according to Table 9 (see “Re-
maining”). Table 12 reports that (1) when sampling “20%” mutant branches, the six classes get the same reduction
rate as our method, whereas they achieve only 90.95% coverage rate and 86.37% mutation score, respectively, which
are 6.79% and 10.38% lower than ours. The reason for low performances of mutant sampling lies in its inherent
randomness, which will possibly cause a part of non-dominated mutant branches being reduced. (2) With the sam-
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pling rates of 30% and 40%, random sampling has good performances in terms of coverage rate and the mutation
score, but a low reduction rate, for which the reason is that the number of reduced non-dominated mutant branches
decreases as the sampling rate increases. It is clear that a higher (more than 40%) sampling rate will achieve much
better effectiveness, but much lower reduction rate (less than 1 − 40%). Compared with mutant sampling, our method
can achieve a high reduction rate without much loss of the mutation score.

The experimental results from the six classes consist with those from the ten benchmark programs. By the pro-
posed method, a great number of mutants are reduced; meanwhile, the mutation score remains high and each generated
test datum can get an enhanced capability in detecting injected faults.

Although determining the dominance relation between mutant branches increases the complexities, our approach
is suitable for programs with different scalabilities. To demonstrate this, we have done various experiments by ap-
plying our approach to programs with different sizes. As listed in Tables 4 and 8, our experimental subjects are from
benchmark programs to classes from open-source projects, from programs with only one method to those with more
than 30 methods, and from programs with ten LOCs to those with 636 LOCs. The experimental results show that our
approach obtains a high reduction rate (see Tables 5 and 9), a great efficiency in generating test data after reduction
(see Table 5), and a well-maintained effectiveness (see Tables 6, 7, 10, 11, and 12 as well as Figure 5).

5. Threats to the Validity

This section presents several threats to the validity of our experiments and the methods of addressing them.
Construct validity: Determining the dominance relation between mutant branches is of considerable importance

to mutant reduction. In the experiments, we determine the dominance relation by manual analysis. It is clear that
testers with different skills and familiarities with a program will give different analysis results for the same pair of
branches. To reduce this kind of threats, we select skilled testers who are as familiar with the program as possible,
and make sure they follow all the steps of the proposed method strictly in the experiments. Nevertheless, the above
threats cannot be completely eliminated. To overcome this, we will further study how to automatically identify the
dominance relation between mutant branches.

The time consumption is an important indicator to reflect the efficiency in generating test data. In the experiments,
we describe the time consumption in the form of millisecond which is closely related to the configuration of our
implementation environment such as the number and the type of processors, the operating system, etc. It is clear that
environments with different configurations will have different time consumptions when fulfilling the same task. To
alleviate this kind of threats, for each program before and after mutant reduction, we run the same task of generating
test data for ten times in the same environment, then record all these time consumptions, and finally calculate the
average time consumption of them.

Internal validity: The mutant reduction rate is the unique indicator to reflect the capability of our approach in
reducing mutants. In order to calculate the mutant reduction rate, we need to know the number of feasible mutant
branches and the remaining mutant branches after reduction. We can easily obtain the number of mutant branches
after reduction. However, to determine the feasibility of a mutant branch, we need to employ appropriate approaches.
In this paper, we utilize the method proposed in [42]. However, this method cannot guarantee that all the feasible
mutant branches of a program are detected. To overcome this, we will investigate other more effective methods and
this is left for our further work.

External validity: In the experiments, we utilize the random method to generate test data to cover mutant branches
before and after reduction. Although the random method is highly intuitive and easy to implement, it is not an approach
with the highest efficiency for generating test data. However, what we highlight in this paper is to propose an efficient
approach to reduce mutants other than generate test data. As a result, we will not put much efforts at this stage to
select the best method of generating test data. Nevertheless, we will explore other more effective methods to fulfil this
task in our future work.

Additionally, although the preliminary experimental studies suggest that our approach is effective for a set of small
programs, the above conclusion cannot be directly generalized to more complicated programs. To alleviate this kind
of threats as much as possible, we select programs with different sizes and features when conducting the experiments.
Further experiments on more complicated programs will be conducted in the future to validate the scalability of the
proposed approach.
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6. Conclusions

In mutation testing for complex software, there will be a large number of mutants being generated, which leads to
a too high computational cost to be practically used. Reducing mutants is proved to be an effective way to improve
the efficiency of mutation testing. However, there have been not yet efficient approaches available, which are able to
reduce a large number of mutants and maintain a high mutation score at the same time.

We focus on mutant reduction in weak mutation testing, and propose a novel method of reducing mutants based
on dominance relation. In our method, a mutant branch is first constructed by combining the statements before and
after mutation, and a new program is formed by integrating all the mutant branches into the original program. Then,
dominance analysis is conducted in the new program. Finally, a dominance relation graph is built, and the non-
dominated mutants are identified from vertices with zero in-degree. The experimental results show that the proposed
method is competent in reducing mutants. After mutant reduction, time spent in generating test data is shortened,
while the generated test data are effective in killing all the mutants. The capability of each test datum in detecting the
injected faults is also proved to be strong. As a result, we conclude that the efficiency of mutation testing is greatly
improved by our method.

It should be pointed out that the proposed method is only suitable for reducing mutants generated by traditional
(method-level) mutation operators and not suitable for class-level operators. Therefore, it is of necessity to study
effective methods to reduce mutants generated by the class-level mutation operators. Additionally, in the proposed
method, there is a necessity to manually analyze the source code, which will cause scalability issues and therefore
restrict the practical applications of our method. Therefore, it is of considerable necessity to develop appropriate
solutions to automate the proposed method, and this is part of our future work. To fulfill this task, we first mutate
the statement to construct the mutant branches, and insert each mutant branch before its original statement. Then, we
employ statistical methods to analyze the probability of covering mutant branch b j when bi is covered, prob(b j|bi),
and conclude that bi dominates b j when prob(b j|bi) = 1. Finally, we determine all the dominated mutant branches
by the above statistical approach. The automated analysis of the dominance relation between mutant branches will
be a significant research task in our near future work, and related work such as Kurtz et al. [46], Kintis and Malevris
[52], Offutt and Pan [53], and Zhang et al. [54] will be of great help in achieving this goal. Furthermore, we find
that different branches have different numbers of dominated branches. Based on this observation, if the priority of
generating a test datum can be determined, the quality of test data will be further improved, which is one of our
future research directions. Finally, the implementation of a prototype system based on the proposed method and the
evaluation on larger software projects are also in the plan.
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