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We present Bogomolny-Prasad-Sommerfield (BPS) indices of the supergroup Wess-Zumino-Witten
(WZW) models that live on intersecting M2-M5-brane systems. They can encode data of the stretched
M2-branes between M5-branes and count the BPS states. They are generally expressed in terms of mock theta
functions via the Kac-Wakimoto character formula of the affine Lie superalgebra. We give an explicit
expression of the index for the PSLð2j2Þk¼1 WZW model in terms of the second-order multivariable Appell-
Lerch sum. It indicates that wall crossing occurs in the BPS state counting due to theC field on theM5-branes.
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I. INTRODUCTION

We recently proposed that a particular topologically
twisted field theory arising from the intersection of
M2-branes and M5-branes is described by a supergroup
Wess-Zumino-Witten (WZW) model [1]. In this paper, we
explore this description, and in particular, we present a
Bogomolny-Prasad-Sommerfield (BPS) index for such a
WZW model. It encodes data of the stretched M2-branes
between the M5-branes. When all the M2-branes are
suspended between the M5-branes, the index can be
computed via the Kac-Wakimoto character formula [2,3].
This gives an explicit expression for the index in the case of
supergroup PSLð2j2Þ. The result can be expressed in terms
of Jacobi theta functions and second-order multivariable
Appell-Lerch sums. However, while it is holomorphic, it is
not modular. Based on Zwegers’ method [4] and the results
of Dabholkar et al. [5] and Ashok et al. [6], we demonstrate
how to complete the expressions to give a modular index,
which would contribute to the torus partition function. The
Appell-Lerch sum of order 2 in the counting function is
suggestive of the occurrence of the wall-crossing phenome-
non due to the dependence of the Fourier expansion on the
parameter region. The structure of the paper is as follows.
In Sec. II, we review some backgroundmaterial, including

notation for supergroups and summarize our previous work
[1]. Then, we review the main result of that paper, that, after
topological twisting, a certain configuration of M2-branes
stretched between M5-branes gives rise to a supergroup
WZW model. We also comment on type-IIB brane con-
figurations related to these M-branes configurations.
InSec. III,we reviewproperties of affineLie superalgebras,

which are relevant to the supergroup WZW index derived in

this paper. As well as defining notation, we discuss the
important concept of atypical modules. In Sec. IV, the
connection between these atypical modules and brane con-
figurations is explained. This relation for M-branes is similar
to the relation proposed by Mikhaylov and Witten [7] for
branes in type IIB. We discuss the connection between these
realizations of atypical modules from brane configurations.
Section V contains the main result of this paper, the

derivation of an index for the supergroup WZW models.
The details of the index are explained, including an explicit
evaluation for the case of supergroup PSLð2j2Þ. The result
is a holomorphic but not modular expression. In Sec. VI,
we adapt results in Ref. [6] to find the modular completion
of this index. We comment on the relation to wall crossing
in counting of the BPS states of the M2-M5 system and
black hole microstates. In Sec. VII, we summarize our
results and discuss future directions.

II. M2-M5 SYSTEM AND SUPERGROUP
WZW MODEL

We start with some preliminaries, reviewing some
essential properties of supergroups before summarizing
our previous results. In particular, we briefly review the
M2-M5-branes construction and the resulting supergroup
WZW model. We also give a description of type-IIB brane
configurations related to these M-brane configurations
through compactification and T duality.

A. Preliminaries

To formulate our result in detail, we first fix our notation
and conventions. Let sg ¼ g0̄ ⊕ g1̄ be the Lie superalgebra
where g0̄ and g1̄ are, respectively, the even and odd parts of
the superalgebra sg. The bilinear form ð·; ·Þ∶ sg ⊗ sg → C
obeys the properties [8]
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ða; bÞ ¼ 0 for a ∈g0̄; b ∈g1̄; ðevenÞ ð2:1Þ

ða;bÞ¼ð−1Þdega·degbðb;aÞ; ðsupersymmetricÞ ð2:2Þ

ð½a; b�; cÞ ¼ ða; ½b; c�Þ ðinvariantÞ; ð2:3Þ

and the Lie superbracket ½·; ·�∶ sg ⊗ sg → sg satisfies the
axioms [8]

½a; b� ¼ abþ ð−1Þdeg a·deg bba; ð2:4Þ

½a; ½b; c�� ¼ ½½a; b�; c� þ ð−1Þdeg a·deg b½b; ½a; c�� ð2:5Þ

where we have assigned the grade such that dega ¼ 0 for
a ∈ g0̄ while dega ¼ 1 for a ∈ g1̄. The relation (2.5) is the
Jacobi identity.
Let h be the Cartan subalgebra of sg ¼ glðNjMÞ, which

is a set of diagonal matrices with basis fE1;1;…; EN;N ;

ENþ1;Nþ1;…; ENþM;NþMg where Eij is the matrix of which
the entries are all zero except for the ij entry, which is 1.
Let fϵ1;…; ϵN ; δ1;…; δMg be the basis for the dual space

h�. The bilinear form on h� can be defined by ðϵi; ϵjÞ ¼
−ðδi; δjÞ ¼ δij and ðϵi; δjÞ ¼ 0. We denote a set of roots by
Δ ¼ Δ0̄ ∪ Δ1̄, where

Δ0̄ ¼ fϵi − ϵjj1 ≤ i ≠ j ≤ Ng ∪ fδk − δlj1 ≤ k ≠ l ≤ Mg;
ð2:6Þ

Δ1̄ ¼ fϵi − δkj1 ≤ i ≤ N; 1 ≤ k ≤ Mg: ð2:7Þ

Simple roots are the elements αi ∈ h� that obey αiðhjÞ ¼
aij where A ¼ ðaijÞ is a symmetrized Cartan matrix.
Let Π be a set of simple roots, Q ≔ ZΠ be the root lattice,
and Qþ ¼ Z≥0Π. We define a set of positive roots by
Δþ ¼ Δ ∩ Qþ. A set Π of simple roots specifies the
decomposition of Δ into positive and negative roots
Δ ¼ Δþ ∪ Δ− and the Borel decomposition sg ¼ nþ ⊕
h ⊕ n− where b ¼ h ⊕ nþ is the Borel subalgebra and
n� ¼ ⨁α∈Δþsg�α with ½h;nþ� ⊂ nþ, ½h;n−� ⊂ n−.
The Weyl vector is defined by ρ ¼ 1

2

P
α∈Δþ

0̄
α−

1
2

P
α∈Δþ

1̄
α, and it depends on a choice of the set of positive

roots. The Weyl group W ⊂ GLðh�Þ of sg is the group

generated by the reflections rαðΛÞ ¼ Λ − 2ðα;ΛÞα
ðα;αÞ with

respect to nonisotropic roots α ∈ Δ0̄. Let h
∨ be the dual

Coxeter number, i.e., half of the eigenvalue of the Casimir
operator associated to the bilinear form ð·; ·Þ. For h∨ ≠ 0,
we define [2]

Δ♯
0̄
≔ fα ∈ Δ0̄jh∨ðα; αÞ > 0g;

W♯ ≔
n
rα ∈ Wjα ∈ Δ♯

0̄

o
: ð2:8Þ

For h∨ ¼ 0, i.e., sg ¼ glðNjNÞ, ospð2N þ 2j2NÞ, and
Dð2; 1; αÞ, the root system Δ0̄ is a union of two
orthogonal root subsystems. For glðNjNÞ, we define
Δ♯

0̄
¼ glðNÞ [9,10].
We set

Δ̄0̄ ¼
n
α ∈ Δ0̄j

1

2
α∉Δ

o
; Δ̄1̄ ¼ fα ∈ Δ1̄jðα; αÞ ¼ 0g

ð2:9Þ

and define

sgnþðwÞ ≔ ð−1ÞlðwÞ; sgn−ðwÞ ≔ ð−1ÞmðwÞ; ð2:10Þ

where lðwÞ is the length function on W, i.e., the number
of reflections with respect to roots from Δþ

0̄
appearing in

the decompositions of w ∈ W, and mðwÞ is the number of
reflections for the realization of w from Δ̄þ

0̄
. In terms of

the isotropic root β ∈ Π, we can define an odd reflection
by [11]

rβðΔþÞ ¼ ðΔþnfβgÞ ∪ f−βg; ð2:11Þ

and it is also a set of simple roots for sg [12]. It turns out
that any two sets of positive roots can be obtained from
each other by applying a finite sequence of odd reflections.
A weight λ ∈ h� is called dominant if 2ðλ;αÞ

ðα;αÞ ≥ 0 for all

α ∈ Δþ
0̄
, strictly dominant if 2ðλ;αÞ

ðα;αÞ > 0 for all α ∈ Δþ
0̄
, and

integral if 2ðλ;αÞ
ðα;αÞ ∈ Z for all α ∈ Δþ

0̄
. Let P be a set of

integral weights and Pþ be a set of dominant integral
weight. We define

Pþ ¼ fλ ∈ Pþjðλþ ρ; ϵiÞ ∈ Z; ðλþ ρ; δkÞ ∈ Zg: ð2:12Þ

Pþ does not depend on a choice of Π.

B. M2-M5 system

The starting point for the brane construction is a set of N
M2-branes suspended between two M5-branes. As is well
known, the description of multiple M2-branes is given by
supersymmetric Chern-Simons matter theories, either the
Bagger-Lambert-Gustavsson (BLG) or Aharony-Bergman-
Jafferis-Maldacena (ABJM) model. In fact, the configura-
tion of a fuzzy funnel of M2-branes producing anM5-brane
is described by the Basu-Harvey equation [13], a gener-
alization of the Nahm equation. Requiring this to be a BPS
equation of the M2-brane theory was a crucial ingredient
used by Bagger and Lambert [14] in the derivation of the
supersymmetry transformations, leading to the BLGmodel.
Such BPS equations were already studied in the context of
the a variety of M2-M5 systems [15,16], including a
generalization of the Basu-Harvey equation by Berman
and Copland [17], which was shown to apply to the BLG
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model in Ref. [18]. However, as discussed in Ref. [19],
it is not clear how the required geometry, a funnel with
fuzzy 3-sphere cross section, can be realized for arbitrary
numbers of M2-branes, although BPS configurations
of the BLG or ABJM models describing the M2-M5 or
D2-D4 systems have also been discussed in detail in
Refs. [20,21].
When describing open M2-branes by the BLG or ABJM

action, a crucial feature is that when we have a boundary a
Chern-Simons term will give rise to a WZWmodel. On the
other hand, the boundary of M2-branes on M5-branes
corresponds to the self-dual strings in the M5-brane theory.
The description of such systems has been considered in
terms of boundary conditions for the Chern-Simons the-
ories and through adding boundary degrees of freedom to
restore the gauge symmetry of the Chern-Simons theory in
the presence of a boundary [22–29].
In Ref. [1], with the aim of describing the internal

dynamics of these strings, we choose a brane configuration
in order to project out the transverse scalar degrees of
freedom and to decouple the two-dimensional boundary
theory from the “bulk” three-dimensional M2-brane world
volume theory. Another motivation was the construction
of Mikhaylov and Witten [7] building on results in
Refs. [30–32] studying field theories in one higher dimen-
sion. There, four-dimensional twisted N ¼ 4 Super-
symmetric Yang-Mills (SYM) theory with a boundary
was shown to give rise to a three-dimensional Chern-
Simons theory with a supergroup.
In the type-IIB setting, this is realized for D3-branes

ending on both sides of a single NS5-brane (see Fig. 1).
When N D3-branes end on one side ðx6 < 0Þ of a single
NS5-brane at x6 ¼ 0, and M D3-branes on the other side
ðx6 > 0Þ, the system supports four-dimensional N ¼ 4

UðNÞ SYM theory for x6 < 0 and UðMÞ SYM theory for
x6 > 0. With an appropriate choice of supercharges Q via
topological twist, the complete action of the effective
theory is shown to be written as a sum of a Q-exact term
and a UðNjMÞ supergroup Chern-Simons theory at the
common boundary at x6 ¼ 0,

S ¼ fQ; � � �g þ iK
8π

Z
Str

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
;

ð2:13Þ

where A is a uðNjMÞ-valued field and K is a complex
parameter.
To meet the counterpart of the above construction in M

theory, we considered the M2-branes to be suspended
between two differently oriented M5-branes, labeled M5
and M50, which share a four-dimensional world volume.
The details are summarized as

0 1 2 3 4 5 6 7 8 9 10

M5 ∘ ∘ ∘ ∘ ∘ ∘
M50 ∘ ∘ ∘ ∘ ∘ ∘
M2 ∘ ∘ ∘

; ð2:14Þ

where ∘ are the directions spanned by the branes.
Taking the limit where the separation between the M5-

andM50-branes vanishes would produce a two-dimensional
theory but still with two transverse scalar degrees of
freedom corresponding to the freedom of the M2-branes
to move in the ðx9; x10Þ directions. To relate the standard
Chern-Simons matter theory to a supergroup WZW model,
we first implement a topological twist. We consider the
theory in the Euclidean space with the ðx0; x1; x9; x10Þ
directions a K3 manifold, and the M2-brane wrapping a
Riemann surface Σ ⊂ K3. Then, we twist the theory by
identifying the twisted two-dimensional Euclidean Lorentz
group as

SOð2ÞE0 ¼ diagðSOð2ÞE × SOð2ÞRÞ;

where SOð2ÞE is the Euclidean Lorentz group on the two-
dimensional Riemann surface and SOð2ÞR is the rotation
group in the ðx9; x10Þ directions (see Ref. [33] for details).
Now, it turns out that in the twisted theory the fields

combine, with the result that theChern-Simonsmatter theory
becomes a Chern-Simons theory with complexified gauge
fields. The boundary action then becomes a WZW model
with the bosonic part described by the complexified gauge
group, i.e., SLð2;CÞ × SLð2;CÞ for the BLG theory.
However, the fermionic fields couple in such a way that
the complete description is in terms of a supergroup. In other
words, in this construction, the two groups on the boundary
are identified together as the even part of a supergroup.
Specifically, for the BLG theory, we arrive at a boundary
PSLð2j2Þ WZW model. This theory is summarized in the
following section. Of course, this can also be viewed as a
special case arising from the ABJM action. However, note
that in detail, while SUð2Þ×SUð2Þ→SLð2;CÞ×SLð2;CÞ→
PSLð2j2Þ, with gauge group UðNÞ×UðNÞ, we have
UðNÞ×UðNÞ→GLðN;CÞ×GLðN;CÞ→GLðNjNÞ.

FIG. 1. A brane configuration with N D3-branes and M D3-
branes terminating on a single NS5-brane at x6 ¼ 0 from left
and right, respectively. The horizontal lines are the D3-branes
extending in the x6 direction. The sequences fxig and fykg of the
heights of the D3-branes in the picture label the Ramond-Ramond
(RR) charges of the D3-branes. In this example, N ¼ M ¼ 7.
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Before proceeding, we also note that the ABJM theory
can be seen to arise from a type-IIB brane configuration.
The basic connection is that D3-branes wrapped on a circle
T-dualize to D2-branes in type IIA and then lift to M2-
branes. However, to get a Chern-Simons theory rather than
SYM theory, the D3-branes are taken to intersect two NS5-
branes at points on this circle, and furthermore k D5-branes
also intersect at the position of one of the NS5-branes. This
is summarized as

0 1 2 3 4 5 6 7 8 9

NS5 ∘ ∘ ∘ ∘ ∘ ∘
D5 ∘ ∘ ∘ ∘ ∘ ∘
D3þ ∘ ∘ ∘ þ
D3− ∘ ∘ ∘ −

. ð2:15Þ

The x6 direction is taken to have period 2πR, and the two
NS5-branes are located at x6 ¼ 0 and x6 ¼ πR. The D3-
branes split into two stacks of D3-branes suspended
between the NS5-branes, each stack covering one-half of
the circle and distinguished by� in the above table. TheD5-
branes are located at x6 ¼ 0. Note that here the D3-branes
are free to move in the ðx3; x4Þ directions (see Fig. 2).
Finally, the intersection of the NS5-brane with the k

D5-branes is deformed to form a ðp; qÞ-5-brane web in the
ðx5; x9Þ plane. Specifically, the parts of the NS5- and D5-
branes with positive x5 and x9 are separated from the parts
with negative x5 and x9. The two “corners” are then linked
by a ð1; kÞ-5-brane with a suitable orientation in the ðx5; x9Þ
plane to preserve supersymmetry. As explained in
Refs. [34–36], this gives rise to a SYM theory with massive
fundamental chiral multiplets, and integrating those out
produces a Chern-Simons theory.
T-dualizing the brane configuration along x6 and then

lifting to 11 dimensions results in M2-branes with world
volume directions ðx0; x1; x2Þ, while the 5-branes become
KK monopoles and D6-branes in type IIA, both of which

arise from KK monopoles in 11 dimensions. The resulting
low-energy background is given by a Zk orbifold in the C4

transverse to the M2-branes.
It is interesting to observe that the type-IIB brane

origin of ABJM theory contains D3-branes ending on an
NS5-brane. As shown by Mikhaylov and Witten [7],
after topological twisting, this intersection gives rise to a
supergroup Chern-Simons theory at the intersection of the
D3-branes with the NS5-brane. In the case, as here, with
N D3-branes on either side of the NS5-brane, this can
be interpreted as a codimension-1 defect in the four-
dimensional N ¼ 4 SYM theory, and at the defect, we
have a UðNjNÞ supergroup Chern-Simons theory. It is
tempting to speculate that the appearance of a supergroup
in this way is related to the supergroupWZWmodel arising
in Ref. [1].1 However, the precise link is not clear as, in the
case of M2-branes ending on an M5-brane, the supergroup
theory arose due to the boundary for the M2 -branes.
In particular, the result did not require a supergroup
Chern-Simons theory. However, it is certainly the case
that the structure of the ABJM model is constrained, e.g.,
the conditions for such Chern-Simons matter theories to
preserve large amounts of supersymmetry can be expressed
in terms of supergroups [31,38,39].
Now, in order to relate to an M theory configuration with

M5-branes, we need to introduce additional 5-branes in
the type-IIB configuration. This has been discussed in the
similar context of M2-branes between parallel M5-branes
by Niarchos [28]. Of course, in the case of parallel 5-
branes, the BPS index for the M strings has been calculated
in Ref. [40] using various techniques including topological
strings. However, the type-IIB construction as discussed by
Niarchos can be used to provide an explicit Lagrangian
description, albeit without all supersymmetry manifest.
In our case, the following additional D5-branes will give

rise to the M5- and M50-branes in 11 dimensions:

0 1 2 3 4 5 6 7 8 9

D5 ∘ ∘ ∘ ∘ ∘ ∘
D50 ∘ ∘ ∘ ∘ ∘ ∘

: ð2:16Þ

The complete brane configuration in type IIB now pre-
serves two supercharges. However, this is not quite the
right configuration, as in the 11-dimensional configuration,
there is an obvious discrete symmetry relating the M5- and
M50-branes. In type IIB, we see that the D5-brane shares
the world volume directions x3 and x4 with the NS5-
and ð1; kÞ-5-branes, while the D50-brane has a lower-
dimensional set of common directions. However, we can
maintain this symmetry in the type-IIB configuration by
taking the D5-brane to have embedding w1 ¼ w2 while

FIG. 2. The type-IIB configuration of the ABJM model. Here,
the x6 direction is compact, and there are two stacks of D3-branes
on the circle labeled by D3þ and D3−.

1Indeed, the appearance of supergroup WZW models in this
way has subsequently been analyzed by Gaiotto and Rapčák [37]
at junctions in webs of 5-branes which are filled by D3-branes.
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the D50-brane has w1¼−w2, where we define w1¼x3þ ix4

and w2 ¼ x7 þ ix8. This preserves exactly the same
supersymmetries in type IIB, while in 11 dimensions, this
just corresponds to a change of coordinates. We can
therefore schematically describe the D5- and D50-branes
embeddings as

0 1 2 3 4 5 6 7 8 9

D5 ∘ ∘ ↗ ↗ ∘ ∘ ↗ ↗

D50 ∘ ∘ ↘ ↘ ∘ ∘ ↘ ↘

; ð2:17Þ

and these D5-branes would correspond to the following
M5-branes:

0 1 2 3 4 5 6 7 8 9 10

M5 ∘ ∘ ↗ ↗ ∘ ↗ ↗ ∘
M50 ∘ ∘ ↘ ↘ ∘ ↘ ↘ ∘

: ð2:18Þ

However, this is not the only way to introduce branes
corresponding to the M5-branes in the type-IIB configu-
ration. We can alternatively map the M5- and M50-branes
to NS5- and NS50-branes in type IIB. Preserving the
same supersymmetry, we can instead add the following
NS5-branes (see Fig. 3):

0 1 2 3 4 5 6 7 8 9

NS5 ∘ ∘ ↗ ↗ ∘ ↗ ↗ ∘
NS50 ∘ ∘ ↘ ↘ ∘ ↘ ↘ ∘

: ð2:19Þ

Now, the map to 11 dimensions will result in the following
M5-branes:

0 1 2 3 4 5 6 7 8 9 10

M5 ∘ ∘ ↗ ↗ ∘ ↗ ↗ ∘
M50 ∘ ∘ ↘ ↘ ∘ ↘ ↘ ∘

: ð2:20Þ

In either of these cases (2.18) or (2.20), we end up with
M5- and M50-branes which share the ðx0; x1Þ directions
with the M2-branes; are at fixed x2 so they can provide a
boundary for the M2-branes; and in the transverse space

to the M2-branes, the M5- and M50-branes share two
directions and are orthogonal in the remaining space.
Therefore, by simply changing coordinates in 11 dimen-
sions, we can arrive at the brane configuration (2.14). Note
also that in either type-IIB configuration, after introducing
either D5- and D50- or NS5- and NS50-branes, the
D3-branes can no longer move in the ðx3; x4Þ directions.
In the type-IIB configuration, we will choose the case in

which the M5- and M50-branes are NS5- and NS50-branes.
The reason for this is that the boundary conditions for
D3-branes ending on NS5-branes allow preservation of the
full gauge symmetry, and in our M theory configuration, we
took boundary conditions for the M2-branes so that the full
gauge symmetry of the Chern-Simons theory could be
preserved [41].
Now that we have a type-IIB configuration, we can

consider generalizations of the M2-M5 system. In par-
ticular, we could have M2-branes ending on both sides of
an M5-brane, and we could also consider more M5- or
M50-branes with M2-branes stretched between them. In
type IIB, this would correspond to including D3-branes on
both sides of the NS5- and NS50-brane, and more gen-
erally including several such NS-branes. The advantage of
the type-IIB configuration is that it is possible to describe
the field theory on the D3-branes in terms of open strings.
Mapping this back to M theory should indicate the effect
of having two ABJM theories coupled through the brane
configuration of M2-branes ending on both sides of an
M5-brane. Some results in this direction have been
derived by Niarchos [28], without M50-branes or topo-
logical twisting. It would be interesting to understand the
relation in detail.
We leave a full analysis of the type-IIB configurations

to future work. However, we note that our expectation is
that the configuration with N D3þ- and N D3−-branes
stretched between an NS5- and an NS50-brane gives a
GLðNjNÞWZWmodel after taking the limit of coincident
NS5- and NS50-branes and dualizing to M theory. If we
introduce a stack of M D3þ- and M D3−-branes on the
other side of the NS50-brane and allow these to end on an
additional NS5- or NS50-brane, we will arrive at a
GLðNjNÞ ×GLðMjMÞ WZW model with bifundamental
matter from the open strings connecting the D3-branes
across the NS50-brane. In M theory, this would correspond
to the configuration with (along increasing x2) M5-N
M2-M50-M M2-M5. While we hope to return to this
type-IIB description in the future, for this paper, we now
focus on the case with just the single stacks of N D3þ- and
D3−-branes.

C. Supergroup WZW model

The action of the supergroup WZW model for maps
s∶Σ → SG from a two-dimensional Euclidean Riemann
surface Σ to the supergroup SG is given by

FIG. 3. The type-IIB configuration of the ABJM model with
two boundaries of M5- and M50-branes which correspond to
NS5- and NS50-branes. The D3-branes are in finite boxes in the
ðx2; x6Þ plane.
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S½s� ¼ −
k
8π

Z
Σ
d2xðs−1∂αs; s−1∂αsÞ

−
ik
24π

Z
M
d3xϵμνλðs−1∂μs; ½s−1∂νλ; s−1∂λs�Þ; ð2:21Þ

where k ∈ Z is the level.2 Here, the second term is the
Wess-Zumino term integrated over a 3-manifold M of
which the boundary is Σ.
The action (2.21) is invariant under the transformation

sðz; z̄Þ → ΩðzÞsðz; z̄ÞΩ̄−1ðz̄Þ; ð2:22Þ

where ΩðzÞ and Ω̄ðz̄Þ are arbitrary SG-valued functions of
the complex variables z ¼ x0 þ ix1 and z̄ ¼ x0 − ix1. This
realizes the semilocal symmetry SGðzÞ × SGðz̄Þ, the direct
product symmetry group of left and right multiplications.
Under the infinitesimal transformation ΩðzÞ ¼ Iþ ωðzÞ, s
transforms as δωs ¼ ωs, and the action (2.21) is invariant.
Hence, we find the conserved currents

JðzÞ ¼ JaðzÞTa ¼ −k∂zs · s−1; ð2:23Þ

where Ta is a generator of sg. The conservation of the
currents can be derived from the classical equations of
motion ∂ z̄J ¼ 0, which ensure that J is holomorphic. Let us
concentrate only on the holomorphic current J. Substituting
the transformation δωJ into the Ward identity, we obtain the
Operator Product Expansion

JaðzÞJbðwÞ ∼ kðTa; TbÞ
ðz − wÞ2 þ ½Ta; Tb�cJcðwÞ

z − w
: ð2:24Þ

Since the current is an analytic function of z, it can be
expanded as

JaðzÞ ¼
X∞
n¼−∞

Jan
znþ1

: ð2:25Þ

Then, the Operator Product Expansion (2.24) leads to the
affine Lie superalgebra csg,

½Jan; Jbm� ¼ ½Ta; Tb�cJcnþm þmðTa; TbÞδnþm;0k: ð2:26Þ

III. AFFINE LIE SUPERALGEBRA

Because of the underlying symmetry algebra (2.26),
we need to study the affine Lie superalgebra

csg ¼ ðC½t; t−1� ⊗ sgÞ ⊕ CK ⊕ Cd: ð3:1Þ

Here, C½t; t−1� ⊗ sg ⊕ CK is a central extension of the
loop algebra fsg ¼ C½t; t−1� ⊗ sg with C½t; t−1� being
Laurent polynomial in variable t, K being a central element
called the level, and d ¼ t d

dt being the derivation. The

generators of csg obey the commutation relations

½atn; btm� ¼ ½a; b�tnþm þmδmþn;0ða; bÞK; ð3:2Þ

½d; atn� ¼ natn; ½K;csg� ¼ 0; ð3:3Þ

and the nondegenerate supersymmetric invariant bilinear
form is

ðatn;btmÞ¼ δmþn;0ða;bÞ; ð ~sg;CKþCdÞ¼0; ð3:4Þ

ðK;KÞ ¼ ðd; dÞ ¼ 0; ðK; dÞ ¼ 1; ð3:5Þ

with a; b ∈ sg, m; n ∈ Z. Note that in the physical setup
(2.26) the derivation d corresponds to the Virasoro gen-
erator −L0, while the level K is the constant value for the
SG WZW model (2.21).
The Cartan subalgebra ĥ ofcsg can be defined in terms of

a Cartan subalgebra h of the finite Lie superalgebra sg,

ĥ ¼ hþ Cdþ CK: ð3:6Þ

We will introduce the coordinate on ĥ,

h ≔ 2πið−τdþ zþ tKÞ; ð3:7Þ

with τ, t ∈ C, z ∈ h.

A. Roots and weights

The nondegenerate bilinear form of csg is extended
to ĥ as ðh;CK þ CdÞ ¼ 0, and one gets the dual ĥ� of
ĥ. The roots and weights belong to the dual ĥ� of ĥ. The
root space is

ĥ� ¼ h� ⊕ Cδ ⊕ CΛ0; ð3:8Þ

where the elements δ and Λ0 of ĥ� are defined by

δjhþCK ¼ 0; δðdÞ ¼ 1; ð3:9Þ

Λ0jhþCd ¼ 0; Λ0ðKÞ ¼ 1 ð3:10Þ

and they are represented by δ¼ð0;0;1Þ and Λ0 ¼ ð1; 0; 0Þ.
As ĥ is identified with ĥ� by the bilinear form (3.5),
we have

δ ¼ K; Λ0 ¼ d: ð3:11Þ
2As in Ref. [1], our description of the M2-M5 system is for the

case k ¼ 1, for which the BLG and ABJM models describe flat
membranes.
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Let Δ̂ ⊂ ĥ�; Δ̂0̄, and Δ̂1̄ be the set of roots and the subsets of
even and odd roots, respectively. Δ̂0̄ turns out to be a union
of a finite number of root systems Δ̂reþ ≔ fαþ sδjα ∈
Δ; s > 0g ∪ Δþ of the affine Lie superalgebra with the
same primitive imaginary roots Δ̂imþ ≔ fsδjs > 0g. We
define a coroot as α∨ ¼ 2α

ðα;αÞ for nonisotropic root α ∈ Δ̂
and α∨ ¼ α for isotropic root α ∈ Δ̂.
The set of simple roots of csg is given by Π̂ ¼ Π ∪ α0,

where Π ¼ ð0; αi; 0Þ with αi being simple roots of sg
and α0 ≔ δ − θ ¼ ð0;−θ; 1Þ with θ being the highest root
of sg, which is defined by θ ¼ PNþM−1

i¼1 kiαi ∈ Δþ so thatPNþM−1
i¼1 ki is maximal for glðNjMÞ. For example, the sets

of simple roots of ĝlðNjNÞ, which consist of isotropic
roots, are

fδ − ϵ1 − δN; ϵ1 − δ1; δ1 − ϵ2;…; δN−1 − ϵN; ϵN − δNg:
ð3:12Þ

The Borel subalgebra b̂ of csg is given by

b̂ ¼ ĥ ⊕ n̂þ ¼ ĥ ⊕ nþ ⊕
�
⨁
n>0

tn ⊗ sg

�
: ð3:13Þ

A weight Λ ∈ ĥ� takes the form ðk; λ; nÞ where λ is
the weight of sg. The fundamental weight Λi ∈ ĥ� is
defined by

ðΛi; α∨j Þ ¼ δij; ðΛi; dÞ ¼ 0; ð3:14Þ

and the label of the weight λ is defined by

mi ¼ ðΛ; α∨i Þ: ð3:15Þ

B. Weyl group

The affine Weyl vector ρ̂ is defined by

ρ̂ ¼ ρþ h∨Λ0: ð3:16Þ

It obeys ðρ̂; αÞ ¼ 1
2
ðα; αÞ for ∀α ∈ Π̂, ðρ̂; dÞ ¼ 0 and

ðρ̂; KÞ ¼ h∨. For α ∈ h�, we define tα ∈ Autðĥ�Þ by

tαðΛÞ ¼ Λþ ΛðKÞα −
�
ðΛ; αÞ þ 1

2
ðα; αÞΛðKÞ

�
δ:

ð3:17Þ

The affine Weyl group is

Ŵ ¼ W⋉ftαjα ∈ Lg; ð3:18Þ

where W is the Weyl group of sg and L ⊂ h is the coroot
lattice.

C. Representations

For each weight Λ ∈ ĥ�, one can define the irreducible
highest weight module LðΛÞ overcsg such that there exists a
nonzero vector vΛ satisfying

hvΛ ¼ ΛðhÞvΛ; for h ∈ĥ; ð3:19Þ

nþvΛ ¼ 0; ð3:20Þ

ðtn ⊗ sgÞvΛ ¼ 0; for n > 0: ð3:21Þ

The central element K on LðΛÞ is the scalar k ¼ ΛðKÞ
called the level in (3.8). The irreducible highest weight
module LðΛÞ is called integrable if (i) dimLðΛÞ < ∞ and
(ii) tn ⊗ sgα are locally nilpotent for all α ∈ Δ♯

0̄
and n ∈ Z.

It is known that LðΛÞ is integrable if the numbers 2ðΛ;αÞ
ðα;αÞ

and 2ðΛ;K−θÞ
ðθ;θÞ are non-negative integers for all simple roots

α ∈ Π̂ and the highest root θ. The necessary condition of
integrability of LðΛÞ over glðNjMÞ is [2]

mi ∈ Zþ; m0 ¼ m0 þmN −
XNþM−1

i¼Nþ1

mi ∈ Zþ; ð3:22Þ

and the sufficient condition is [2]

m0 ≥ M ð3:23Þ

for N ≥ 2.
Let S be a subset of a simple root system Π. We call it a

(λþ ρ)-maximal isotropic subset if it consists of d pairwise
orthogonal isotropic roots fβig, i ¼ 1;…; d that are also
orthogonal to λþ ρ, i.e., [3,9],

ðλþ ρ; βiÞ ¼ 0; ðβi; βjÞ ¼ 0: ð3:24Þ

The number d of linearly independent pairwise orthogonal
isotropic roots is called the atypicality of LðλÞ. The
atypicality of a simple finite-dimensional module does
not depend on the choice of simple root system, and the
maximal number d of the Lie superalgebra sg is called
the defect and denoted by defðsgÞ.
An irreducible highest weight module LðλÞ over sg is

called typical if S is empty and atypical or tame otherwise.
Similarly, an irreducible highest weight module LðΛÞ of
level K over csg is called atypical or tame if the corre-
sponding module LðλÞ over the finite part sg of csg is
atypical and if K þ h∨ ≠ 0 [3,9].
Note that the irreducible highest weight module LðλÞ

is characterized by the vectors annihilated by nþ acting as
the raising operators. However, the choice of nþ is not
unique but depends on the Weyl groupW that permutes the
different weights. To characterize LðλÞ over sg so that the
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choice of nþ does not depend on W, we need to take the
shifted weight λþ ρ on which w ∈ W acts.

IV. BRANES AND WEIGHT DIAGRAM

A. Weight diagram

In terms of the basis fϵ1;…; ϵN ; δ1;…; δMg of h�, one
can write the dominant integrable weight λ of the irreduc-
ible highest weight modules LðλÞ as

λþ ρ ¼
XN
i¼1

xiϵi −
XM
k¼1

ykδk; ð4:1Þ

where the integral condition requires that the coefficients xi
and yk are integers and the dominant condition is satisfied
by the ordering x1 ≥ � � � ≥ xN , y1 ≤ � � � ≤ yM. It can be
represented diagrammatically in terms of the weight dia-
gram, and the irreducible characters over the Lie super-
algebras have been computed using a combinatorial
algorithm [42–45]. Consider a horizontal number line with
vertices labeled by a set of consecutive integers n in
increasing order from left to right. Then, we label the
vertex of n by

8>>><
>>>:

∨ if n ∈ fxig ∩ fykg
> if n ∈ fxignfykg
< if n ∈ fykgnfxig
∧ if n∉fxig ∪ fykg

ð4:2Þ

Each ∨ corresponds to an atypical root β, and the degree d
of atypicality of λ is the number of ∨’s in the weight
diagram. The dominant weight is uniquely determined by
the weight diagram.
For example, the weight

λþ ρ ¼ 9ϵ1 þ 5ϵ2 þ 3ϵ3 þ 2ϵ4 − δ1 − 3δ2 − 7δ3 − 9δ4

ð4:3Þ

corresponds to the following weight diagram:

∧ ∧ < > ∨ ∧ > ∧ < ∧ ∨ ∧
−1 0 1 2 3 4 5 6 7 8 9 10

: ð4:4Þ

The λþ ρ-maximal isotropic subset is

S ¼ fϵ1 − δ4; ϵ3 − δ2g; ð4:5Þ

and the atypicality of the corresponding irreducible highest
weight module LðΛÞ is d ¼ 2.
One can consider certain combinatorial operations on

the weight diagrams by moving ∨’s and ∧’s at specific
positions to other locations [42–44]. We define a right
move Ri→jðλÞ on the weight diagram λ by exchanging
(counting from the left) the ith ∨ with a ∧ to its right. This

∧ is specified in such a way that there are exactly
k≡ j − i∨’s and the same number of ∧’s between the
ith ∨ and this ∧. As a consequence, the ith ∨ moves to
become the j ¼ ðiþ kÞth ∨. For example, for the weight
diagram (4.4), R1→2∘R1→1∘R1→1∘R1→1ðλÞ is

∧ ∧ < > ∧ ∧ > ∧ < ∧ ∨ ∧ ∨
−1 0 1 2 3 4 5 6 7 8 9 10 11

:

ð4:6Þ

Note for the last step that all locations to the right (or left)
of the weight diagram are filled by ∧’s. The right move
Ri→j corresponds to a raising operator for the correspond-
ing module [44].
A left move Li←j is similarly defined by swapping (still

counting from the left) the jth ∨ with a ∧ to its left, again
separated by k≡ j − i∨’s and k ∧’s. Then, the jth ∨ is
shifted to the i ¼ ðj − kÞth ∨. For example, for the weight
diagram (4.4), L1←2∘L2←2∘L2←2∘L2←2ðλÞ gives

∨ ∧ ∧ < > ∨ ∧ > ∧ < ∧ ∧ ∧
−2 −1 0 1 2 3 4 5 6 7 8 9 10

:

ð4:7Þ

This operation corresponds to a lowering operator in the
corresponding module [44].

B. Brane construction

Now, we return to theGLðNjNÞWZWmodel describing
the M2-M5-brane system. We argue that the dominant
integrable weight λ of the irreducible highest weight
atypical module LðΛÞ over ĝlðNjNÞ corresponds to the
vacuum configuration of branes.
Let C (respectively, C0) be the M theory 3-form “C field”

on the M5-brane (respectively, M50-brane), and let
Σa, a ¼ 1;…; N be the 2-cycle wrapped by ath M2-brane.
In the two-dimensional intersection with the M5-brane
(respectively, M50-brane) Σa, Abelian gauge fields fAig,
i ¼ 1;…; N (respectively, fA0kg, k ¼ 1;…; N) arise from
the Kaluza-Klein reduction of the M theory 3-form

C ¼
XN
i¼1

Ai ∧ Σi; C0 ¼
XN
k

A0k ∧ Σk: ð4:8Þ

The presence of the M5- and M50-branes independently
carryingN M2-brane charges of the C field implies that one
can specify data of the M2-M5 system by a choice of two
sets of vector bundles E → Σi, E0 → Σk and connections on
E, E0. From the M2-brane point of view, they are viewed
as global charges. We denote the eigenvalue of the ith M2-
brane charge in the M5-brane by xi ∈ Z, i ¼ 1;…; N and
that of the kth M2-brane charge for the M50-brane by
yk ∈ Z, k ¼ 1;…; N. Then, we can obtain a unique weight

TADASHI OKAZAKI and DOUGLAS J. SMITH PHYSICAL REVIEW D 96, 026017 (2017)

026017-8



diagram from the brane configuration by considering an
integer coordinate and putting a symbols f∨; >;<;∧g on it
in the same manner as (4.2).
Similarly, Mikhaylov and Witten [7] point out that a

vacuum configuration of the brane system with N D3-
branes ending on one side, and M D3-branes ending on
the other side, of a single NS5-brane corresponds to the
dominant integrable weight λ of uðNjMÞ and its weight
diagram (see Fig. 1). In that case, the two sequences fxig
and fykg would represent the charges of wrapped D3-
branes under the RR fields.
This construction gives interesting physical implications

of the weight diagram. The nonzero eigenvalues of M2-
brane charge correspond to ∨’s that are shared by both
M5-branes and to > or < that is taken by only one of the
M5-branes. Since the limit in which the separation of
the M5-branes is taken to zero requires the same eigen-
values for both M5-branes, the ∨’s are identified with the
M2-branes, which are suspended between the M5- and
M50-,brane. Thus the atypicality, that is, the number of ∨’s,
is the number of M2-branes attached to both M5-branes. In
particular, for GLðNjNÞ arising from N M2-branes all
stretched between the two M5-branes, the modules of
interest have maximal atypicality N.
For example, consider the brane configuration in Fig. 4

with d ¼ 4 M2-branes stretched between the M5- and
M50-brane and ðN − dÞ ¼ ð7 − 4Þ ¼ 3M2-branes attached
to one of them. Set the eigenvalues of the ith M2-brane
charge for the M5-brane as fxig ¼ f12; 10; 8; 7; 5; 4; 1g
and those of the kth M2-brane charge for the M50-brane
as fykg ¼ f3; 4; 5; 6; 8; 12; 13g, which correspond to the
heights of the M2-branes in Fig. 4. Then, the corresponding
weight reads

∧ ∧ > ∧ < ∨ ∨ < > ∨ ∧ > ∧ ∨ <

−1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
;

ð4:9Þ

and the dominant weight is

λþ ρ ¼ 12ϵ1 þ 10ϵ2 þ 8ϵ3 þ 7ϵ4 þ 5ϵ5 þ 4ϵ6 þ ϵ7

− 3δ1 − 4δ2 − 5δ3 − 6δ4 − 8δ5 − 12δ6 − 13δ7:

ð4:10Þ
The λþ ρ -maximal isotropic subset S is

S ¼ fϵ1 − δ6; ϵ3 − δ5; ϵ5 − δ3; ϵ6 − δ2g; ð4:11Þ

and the atypicality of the module is d ¼ 4, that is, the
number of M2-branes stretched between the M5- and M50-
brane. The right move R2→3ðλÞ gives the weight diagram

∧ ∧ > ∧ < ∧ ∨ < > ∨ ∧ > ∨ ∨ <

−1 0 1 2 3 4 5 6 7 8 9 10 11 12 13;

ð4:12Þ

and the left move L1←2 yields the weight diagram

∧ ∨ > ∧ < ∨ ∧ < > ∨ ∧ > ∧ ∨ <

−1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
:

ð4:13Þ

They correspond to new charge assignments of the brane
configuration depicted in Fig. 5. The right move Ri→j

and the left move Li←j are, respectively, interpreted as a
raising operator and a lowering operator of the suspended
M2-brane charges.
Quantum mechanically, a transition amplitude is given

by a weighted sum over all paths as the Feynman path
integral. As shown in Fig. 5, it will be achieved by
summing over all possible paths of excitation modes by
acting with raising or lowering operators. However, it
can be now rephrased as a sum over all possible paths
of the sequence of left moves, or equivalently right moves
with a weight characterized by multiplicity of the path.3

FIG. 5. The operation of the right move and the left move on the
brane configuration in Fig. 4. The right move R2→3 lifts the
second mode at 5 (shown in dotted red) to the third at 11 (shown
in red), while the left move L1←2 reduces the second mode of the
location 5 (shown in dotted blue) to 0 (shown in blue).

FIG. 4. (N − d) M2-branes attached to one of the M5-branes
and d M2-branes stretched between the two M5-branes. The
vertical bold (respectively, dotted) line represents the M5-
(respectively, M50-)brane, and the horizontal lines denotes M2-
branes in the x2 direction. The M2-brane charges fxig and fykg
are illustrated as the heights of the M2-branes. Here is the case
with N ¼ 7 and d ¼ 4.

3Interestingly, the terminology path is also used for the
collection of the left moves and right moves in the mathematical
literature [43,44].
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Therefore, the dominant weight of the irreducible highest
weight atypical module LðΛÞ over the underlying sym-
metry bglðNjNÞ can be determined by the vacuum configu-
ration of the M2-M5 system.
In the absence of atypical roots, the dominant integral

weight λ defines a typical highest weight module LðλÞ [46].
In the M2-M5 system, there is no stretched M2-brane. It is
known that most questions in the typical irreducible
representations reduce to those in the ordinary affine Lie
algebra ĝ. For example, it was shown in Ref. [47] that the
classical Weyl-Kac character formula holds for arbitrary
typical finite-dimensional irreducible modules such
that dimcsg < ∞ and dimLðλÞ < ∞. In the context of
the Alday-Gaiotto-Tachikawa (AGT) correspondence, the
intersection of nonparallel M5-branes wrapping Σ leads to a
relation between instanton partition functions in the four-
dimensional N ¼ 2 quiver gauge theories in the presence
of certain surface operators and the conformal block of the
affine Lie algebra ĝ [48–52]. Since the typical modules ofcsg essentially contain the affine Lie algebra ĝ, and likewise
the M2-M5 system realizes two intersecting M5-branes
without any suspended M2-branes as a special case (see
Fig. 6), it may be possible to extend the AGT correspon-
dence, in the presence of surface operators as a combination
of M2-like and M50-like surface operators, in terms of the
affine Lie superalgebra csg.
A relation between brane configurations and atypical

representations of a supergroup has also been described
previously by Mikhaylov and Witten [7]. In that case, the
supergroup arose from D3-branes ending on both sides on
an NS5-brane. The labels fxig and fykg were associated
with the D3-branes ending on the left and right, respec-
tively, of the NS5-brane. In the type-IIB configuration dual
to our M-brane construction, we have the stacks of D3þ-
and D3−-branes on each side of an NS5-brane. Since the
M2-branes arise as a combination of these two stacks of
branes, it is consistent that the two sets of labels are both
associated with the same M2-branes. Also, as previously
noted, the introduction of the M5- and M50-branes corre-
sponds to NS5- and NS50-branes, which remove the free-
dom for the D3-branes to move in the 34 directions. Thus, it
should not be surprising that in the limit we are considering

the D3þ- and D3−-branes should have the same vacuum
configuration, and hence the fxig and fykg should be the
same, giving maximum atypicality.
We could introduce further stacks of D3þ- and D3−-

branes on the other side of the NS50-brane. We would
expect the case in which some D3þ-branes (and likewise
for D3−-branes) on either side of the NS50-brane carried the
same charges to have special properties. This would give
the M theory case in which M2-branes ended on both sides
of the M50-brane. However, further study of this is beyond
the scope of this paper.

V. MOCK MODULAR INDEX

A. Definition

We have identified the highest weight atypical module
LðΛÞ over bglðNjNÞ for a given vacuum configuration of
M2-M5 system. Now, we want to study these modules via
the indices and partition functions. We define an index for
the supergroup WZW models by

Iðτ; zÞ ≔ TrHð−1ÞFqHL

Yd
a¼1

xFa
a : ð5:1Þ

Here, ð−1ÞF is the fermion number operator, and q ≔ e2πiτ

is a complex parameter associated with the left-moving
Hamiltonian HL ¼ 2ðH þ iPÞ ¼ L0 − c

24
. The vector Fa is

the charge vector associated with the Cartan subalgebra for
the atypical block of atypicality d in the bosonic subalgebra
g0̄, where a ¼ 1;…; d. We have introduced the associated
chemical potential xa ≔ e2πiza . This index is an analog of
the Witten index for the supersymmetric quantum mechan-
ics in that the za → 0 limit gives the Witten index.
Now, we are ready to explain how the index (5.1)

encodes the data of the M2-M5 system. We take the
Hilbert space H as the irreducible atypical highest weight
modules with atypicality d being the number of the
stretched M2-branes. The left-moving Hamiltonian HL is
an energy of the sandwiched M2-branes, i.e., a winding
number of the stretched M2-branes along one of the
cycles of Σ, viewed as the Euclidean time circle. The
Fa, a ¼ 1;…; d are the Uð1Þ charges for a holomorphic
Uð1Þ vector bundle over the Riemann surface wrapped by
the stretched M2-branes, which originates from the 3-form
C field (4.8). Therefore, the index (5.1) counts BPS states
of the M2-M5 system.
In addition, we consider a partition function,

Zðτ; τ̄; zÞ ≔ TrHð−1ÞFqL0− c
24q̄L̄0− c

24

Yd
a¼1

xFa
a : ð5:2Þ

Here, q̄L̄0− c
24 insert the right-moving Hamiltonian HR ¼

2ðH − iPÞ ¼ L̄0 − c
24

into the index (5.1). The partition
function has the same form as the equivariant elliptic genus.
It can be formulated by a path integral on a torus with a

FIG. 6. The M2-M5 system for a typical module with N ¼ 2,
d ¼ 0, for which no M2-brane is stretched between the M5-
branes.
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coordinate w ¼ σ1 þ τσ2 where σ1 and σ2 are periodic with
periodicity 2π and τ. Here, τ ¼ τ1 þ iτ2 characterizes the
complex structure of a torus w≃ wþ 2π ≃ wþ 2πτ, on
which the WZW model is defined. From the point of view
of the M2-M5 system, the right-moving Hamiltonian HR is
a momentum of the stretched M2-branes along the other
cycle of Σ, viewed as the Euclidean spatial circle.
A torus partition function should be the same for

equivalent tori. A holomorphic function φ on the upper
half-plane H transforming under the modular group
SLð2;ZÞ of reparametrizations of the torus as

φ

�
aτþb
cτþd

�
¼ðcτþdÞkφðτÞ;

�
a b

c d

�
∈SLð2;ZÞ ð5:3Þ

is called a modular form of weight k. The effect of a
chemical potential xa is equivalent to the coupling of
external gauge fields Aa on the torus to the current so that

xa ¼ e2πiza ¼ e
2πi

hH
t
Aa−τ

H
s
Aa

i
; ð5:4Þ

where
H
t (respectively,

H
s) is the temporal (respectively,

spatial) cycle of the torus. Such coupling is translated into
the twisted boundary conditions of the fields ϕðw; w̄Þ along
the two cycles,

ϕðwþ 2π; w̄þ 2πÞ ¼
Y
a

e2πiFa

H
t
Aa

ϕtðw; w̄Þ; ð5:5Þ

ϕðwþ 2πτ; w̄þ 2πτ̄Þ ¼
Y
a

e2πiτFa

H
s
Aa

ϕsðw; w̄Þ; ð5:6Þ

where ϕt (respectively ϕs) is the untwisted boundary
condition along the temporal (respectively spatial) cycle.
A function φðτ; zÞ is called elliptic with index m in z if it
has a transformation law

φðτ; zþ λτ þ μÞ ¼ e−2πimðλ2τþ2λzÞφðτ; zÞ; λ; μ ∈ Z

ð5:7Þ

under the translation of z. A holomorphic function φðτ; zÞ
on H × C with the ellipticity (5.7) which transforms under
the modular group SLð2;ZÞ as

φ

�
aτ þ b
cτ þ d

;
z

cτ þ d

�
¼ ðcτ þ dÞke2πimcz2

cτþd φðτ; dÞ;�
a b

c d

�
∈ SLð2;ZÞ ð5:8Þ

is called a Jacobi form of weight k and index m.

B. Kac-Wakimoto formula

To compute the indices, we recall the definition of
the character chLðΛÞ and the supercharacter schLðΛÞ of the
module LðΛÞ:

chLðΛÞ ≔
X
h∈ĥ

dimLðΛÞeh; schLðΛÞ ≔
X
h∈ĥ

sdimLðΛÞeh:

ð5:9Þ

The module LðΛÞ is integrable if and only if the character is
invariant under Ŵ♯ ¼ W♯⋉tL♯, which is the subgroup of the
affineWeyl group Ŵ where L♯ is the sublattice of the coroot
lattice L corresponding to the root system (2.8).
Using the coordinate (3.7) for h ∈ h, the supercharacter

can be written explicitly as

schLðΛÞðτ; z; tÞ ¼ StrLðΛÞe2πið−τdþzþtKÞ: ð5:10Þ

It is demonstrated in Ref. [53] that for an integrable
LðΛÞ the supercharacter absolutely converges in the
convex domain D ¼ fh ∈ ĥjReαiðhÞ > 0; i ¼ 1;…; lg to
a holomorphic function. Also, for all known examples, it
converges in the upper half-plane H ¼ fðτ; z; tÞjImτ > 0g
to a meromorphic function.
Since the replacement of Λ with Λþ aδ for a ∈ C

keeps LðΛÞ irreducible, we further consider the super-
character multiplied by qa. The normalized supercharacter
schΛ is defined by multiplying the supercharacter schLðΛÞ
by qmΛ [53],

schΛ ¼ qmΛschLðΛÞðτ; z; tÞ; ð5:11Þ

where mΛ ¼ ðΛþρ̂;Λþρ̂Þ
2ðkþh∨Þ − sdimsg

24
¼ hΔ − c

24
is called the

modular anomaly. The normalized factor qmΛ is necessary
to realize the contributions from the zero mode of the
Virasoro generator L0. It is associated to the modular
invariance for the bosonic WZW models. However, for
the supergroup WZW models, it is needed to acquire the
intriguing mock modular property, as we will see later.
The supercharacter formula for the atypical integrable

module LðΛÞ given by the Kac-Wakimoto formula [9,54]

eρ̂R̂−schLðΛÞ ¼
X
w∈Ŵ♯

sgn−ðwÞ ewðΛþρ̂ÞQ
β∈Sð1 − e−wðβÞÞ ; ð5:12Þ

where

R̂− ¼
Q

α∈Δ̂þ
0̄

ð1 − e−αÞQ
α∈Δ̂þ

1̄

ð1 − e−αÞ ð5:13Þ

is the affine superdenominator, Ŵ♯ ¼ W♯⋉tL♯ , is the sub-
group of the affine Weyl group Ŵ, L♯ is the corresponding
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sublattice of the coroot lattice L, and sgn−ðwÞ is the sign
factor defined by (2.10).
Furthermore, from Eqs. (5.11) and (5.12), the normal-

ized supercharacter is expressed as [2,3]

schΛ ¼
P

w∈W♯sgn−ðwÞΘL♯;−
Λþρ̂;S

q
sdimsg
24 R̂−

: ð5:14Þ

It turns out that the denominator in the formula (5.14)
consists of the theta functions ϑ11 and ϑ10 and powers of the
eta function ηðτÞ (see Appendix), which are members of a
modular invariant family. On the other hand, the function
ΘQ;�

Λ;S in the numerator is a Ramanujan mock theta function
[55–57] defined as the series [3,58,59]

ΘQ;�
Λ;S ¼ q−

2ðΛ;ΛÞ
2K δ

X
γ∈Q

sgn�ðtγÞ
etγðΛÞQ

β∈Sð1 − e−tγðβÞÞ ; ð5:15Þ

where tγ is the element of the affine Weyl group Ŵ defined

in (3.17). The mock theta function ΘQ;�
Λ;S is determined by

four data: (i) the weight Λ ∈ ĥ� with ΛðKÞ > 0, (ii) the
positive definite integral root lattice Q of h�R, (iii) the finite
subset S ⊂ ĥ�R composed of pairwise orthogonal isotropic
vectors orthogonal to Λ, and (iv) the homomorphism
sgn�ðγÞ∶ Q → f�g, with γ ∈ Q. The degree of the mock

theta function (5.15) is ΛðKÞ ¼ k, and the ΘL♯;−
Λþρ̂;S in the

Kac-Wakimoto formula (5.14) is a mock theta function of
degree kþ h∨.

C. Computation

Comparing (5.1) with (5.10), we find that the index (5.1)
is the specialization of the supercharacter

Iðτ; zÞ ¼ schΛðτ; z; 0Þ ð5:16Þ

for k ¼ 1. From now on, we restrict our attention to the
atypical module LðΛÞ and take it as the Hilbert space H in
the definition of the indices. Applying the Kac-Wakimoto
formula (5.14), we see that the index Iðτ; zÞ can be
expressed in terms of the mock theta function. We thus
call this index, which is analogous to the Witten index, a
mock modular index.
Next, consider the torus partition function Zðτ; τ̄; zÞ. For

the equivariant elliptic genus in compact superconformal
field theories, the Hilbert spaces only contain discrete sets
of primary fields. The additional factor q̄L̄0− c

24 requires the
combined left- and right-moving sectors. However, there is
a cancellation between bosonic and fermionic fluctuations
from supersymmetry. Then, due to the discreteness of the
spectrum in the Ramond sector, there is just an algebraic
sum of the spectrum in the Ramond sector, and the
contribution only arises from the ground states of the

Ramond sector. This ensures the holomorphicity of the
elliptic genus.
However, the emergence of the mock theta function does

not allow us to extend Iðτ; zÞ to Zðτ; τ̄; zÞ by naively
inserting the factor q̄L̄0− c

24 without any modification of the
result. This is because the index Zðτ; τ̄; zÞ should be
modular invariant due to the path integral formalism, while
the index Iðτ; zÞ is not. This indicates that some pieces in
Zðτ; τ̄; zÞ are missing in Iðτ; zÞ, and a proper completion
must be added to restore the modular invariant Zðτ; τ̄; zÞ.
Such a property of the spectrum stems from the structure

of the Hilbert space H of the theory under consideration.
The holomorphic elliptic genus relies on the fact thatH has
a holomorphically factorized form

H ¼ ⨁
μ
Hμ ⊗ H̄μ; ð5:17Þ

where Hμ (respectively, H̄μ) is the holomorphic (respec-
tively, antiholomorphic) sector. However, for the super-
group WZW models, the space of the states has been
argued to have the form [60–63]

H ¼
�

⨁
μ∈typical

Hμ ⊗ Hμ

�
⊕

�
⨁

ν∈atypical
Ĥν

�
: ð5:18Þ

Although there is the holomorphic factorization Hμ ⊗ Hμ

in the typical sector, in the atypical sector Ĥν, the
holomorphic and antiholomorphic parts are entangled with
each other in a complicated way. This observation is
consistent with our conclusion as we are now dealing with
Ĥν, the Hilbert space of an atypical module.
The appearance of the mock theta function ΘQ;�

Λ;S in the
normalized supercharacter is remarkable in that, although
the mock modular functions are not exactly modular
invariant, they can be made modular invariant by adding
suitable nonholomorphic completions developed by
Zwegers [4]. The basic idea is that a new nonholomorphic
function

ĥðτ; τ̄Þ ¼ hðτÞ þ g�ðτ; τ̄Þ; ð5:19Þ

created by the addition of the nonholomorphic Eichler
integral

g� ¼
�

i
2π

�
k−1 Z ∞

−τ̄
dzðzþ τÞ−kgð−z̄Þ ð5:20Þ

constructed from a holomorphic modular form gðτÞ of
weight 2 − k, called a shadow of hðτÞ, turns out to be
modular invariant at the cost of holomorphicity. This
naturally leads to a prescription for the evaluation of the
nonholomorphic part of the modular invariant partition
function Zðτ; τ; zÞ defined by (5.2) on an elliptic curve as
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Zðτ; τ̄; zÞ ¼ Î ðτ; τ̄; zÞ þ ðholomorphic modular functionÞ:
ð5:21Þ

The first term Îðτ; τ̄; zÞ is the modular completion of
Iðτ; zÞ via Zwegers’s method (5.19), which is the con-
tribution from the atypical sector Ĥν, while the remnant is
the holomorphic modular function arising from the typical
sectorHμ ⊗ H̄μ. Note that the index Zðτ; τ̄; zÞ is no longer
holomorphic due to Îðτ; τ̄; zÞ, but it is modular invariant.

D. PSLð2j2Þk= 1 WZW model

In this subsection, we will provide a simple example of
the index computation for the PSLð2j2Þk¼1 WZW model.
The corresponding brane configuration is illustrated in
Fig. 7 where N ¼ d ¼ 2 M2-branes are stretched between
the M5- and M50-brane. For example, given M2-brane
charges fxig ¼ f4; 2g and fykg ¼ f2; 4g, the weight of the
irreducible highest weight module with maximal atypicality
d ¼ 2 is given by

λþ ρ ¼ 4ϵ1 þ 2ϵ2 − 2δ1 − 4δ2; ð5:22Þ
and the weight diagram has only ∨’s and ∧’s as follows:

∧ ∧ ∨ ∧ ∨ ∧ ∧
0 1 2 3 4 5 6

: ð5:23Þ

The Cartan subalgebra ĥ of ˆpslð2j2Þ takes the form
of (3.6), where h is the quotient of diagonal matrices
of slð2j2Þ by CI4. We choose a simple root system of
pslð2j2Þ as

Π ¼ fα1; α2; α3g ¼ fϵ1 − δ1; δ1 − δ2; δ2 − ϵ2g; ð5:24Þ

where α1 ¼ α3. The corresponding Cartan matrix is0
B@

0 1 0

1 −2 1

0 1 0

1
CA; ð5:25Þ

and the Dynkin diagram is shown in Fig. 8. We then have
inner products

ðα1;α1Þ ¼ ðα3; α3Þ ¼ ðα1; α3Þ ¼ 0; ðα2; α2Þ ¼ −2;

ðα1;α2Þ ¼ ðα2; α3Þ ¼ 1; ðθ; θÞ ¼ 2;

ð5:26Þ

where θ ¼ α1 þ α2 þ α3 ¼ ϵ1 − ϵ2 is a highest root. The
positive root systems and the Weyl vectors of pslð2j2Þ are

Δþ
0̄
¼ fα2; θg ¼ fδ1 − δ2; ϵ1 − ϵ2g; ð5:27Þ

Δþ
1̄
¼ fα1; α3; α12; α23g
¼ fϵ1 − δ1; δ2 − ϵ2; ϵ1 − δ2; δ1 − ϵ2g; ð5:28Þ

ρ0̄ ¼
1

2
ðα12 þ α23Þ ¼

1

2
ðϵ1 − ϵ2 þ δ1 − δ2Þ; ð5:29Þ

ρ1̄ ¼ θ ¼ α123 ¼ ϵ1 − ϵ2; ð5:30Þ

ρ ¼ ρ0̄ − ρ1̄ ¼ −
1

2
α13 ¼ −

1

2
ðϵ1 − ϵ2 − δ1 þ δ2Þ; ð5:31Þ

where αij≔αiþαj and αijk ≔ αi þ αj þ αk. Let us choose

a coordinate (3.7) on ĥ as

h ≔ 2πið−τd − ðz1 þ z2Þα1 − z1α2 þ tK;Þ ð5:32Þ

where τ, z1, z2, t ∈ C and z ≔ −ðz1 þ z2Þα1 − z1α2 is a
coordinate on h with an inner product ðz; zÞ ¼ 2z1z2.

For dpslð2j2Þ, the normalized affine superdenominator
(5.13) is expressed as [3]

R̂−ðτ; z1; z2Þ ¼ ηðτÞ4 ϑ11ðτ; z1 − z2Þϑ11ðτ; z1 þ z2Þ
ϑ11ðτ; z1Þ2ϑ11ðτ; z2Þ2

;

ð5:33Þ

where ηðτÞ is the Dedekind eta function (A1) and ϑ11ðτ; zÞ
is the Jacobi theta function (A6). Since pslð2j2Þ has zero
dual Coxeter number, R̂−ðτ; z1; z2Þ has no dependence on
parameter t ∈ C in (5.32). From Eqs. (A2), (A8), and
(A10), the modular transformations of R̂−ðτ; z1; z2Þ read

FIG. 7. N ¼ d ¼ 2 M2-branes stretched between the M5- and
M50-branes.

FIG. 8. The Dynkin diagrams corresponding to (5.24). The
white dot ○ represents a simple even root, and the gray dot ⊗
represents a simple odd root of zero length.
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R̂−
�
−
1

τ
;
z1
τ
;
z2
τ

�
¼ iτe

πiz1z2
τ R̂−ðτ; z1; z2Þ; ð5:34Þ

R̂−ðτ þ 1; z1; z2Þ ¼ e−
πi
3 R̂−ðτ; z1; z2Þ: ð5:35Þ

Following Ref. [3], we consider here the normalized
supercharacter of the atypical module LðΛÞ for Λ admis-
sible [64,65].4 The admissible weight Λ is classified by
the so-called simple subset S ¼ φ�−1ðΠ̂Þ ∈ Δ̂þ [65] for the
compatible homomorphism φ∶csg → csg. Let φðKÞ ¼ MK
where M is a positive integer called the degree of φ. For
ˆpslð2j2Þ, the conditions for the admissible weights are

given by [3]

K ¼ m
M

; gcdðm;MÞ ¼ 1; ð5:36Þ

where m is a nonzero integer. There exist four simple
subsets S [3],

S1 ¼
�
kiδþ αiji ¼ 0;…; 3;

X3
i¼0

ki ¼ M − 1

�
;

S2 ¼
�
kiδ − αiji ¼ 0;…; 3;

X3
i¼0

ki ¼ M þ 1; ki > 0

�
;

S3 ¼
�
k0δþ α0; k1δþ α12; k2δ − α2; k3δ

þ α23j
X3
i¼0

ki ¼ M − 1; k2 > 0

�
;

S4 ¼
�
k0δ − α0; k1δ − α12; k2δþ α2; k3δ

− α23j
X3
i¼0

ki ¼ M − 1; k2 > 0

�
; ð5:37Þ

where we have introduced the integers ki ∈ Z≥0, i ¼ 0, 1,
2, 3 with k1¼k3. Setting ðj; kÞ ≔ ðk1; k1 þ k2Þ, j; k ∈ Z≥0,
we obtain all the possible admissible highest weights Λjk

labeled by ðj; kÞ as

Λjk ¼

8>>><
>>>:

k ≥ j ≥ 0; jþ k ≤ M − 1 for s ¼ 1

M − 1 ≥ j ≥ k ≥ 1; jþ k ≥ M for s ¼ 2

0 ≤ k < j; jþ k ≤ M − 1 for s ¼ 3

1 ≤ j ≤ k ≤ M − 1; jþ k ≥ M for s ¼ 4;

ð5:38Þ

with s ¼ 1, 2, 3, 4 labeling the four simple subsets (5.37).
Collecting all the results, the Kac-Wakimoto supercharacter
formula (5.14) for the admissible representations Λjk ofdpslð2j2Þ reads [3]
schΛjk

¼ ð−1Þðs−1Þðs−2Þ2 q
mjk
M e

2πim
M Φ½m�ðMτ; z1 þ jτ; z2 þ kτ; τ

MÞ
R̂− ;

ð5:39Þ

where

Φ½m�ðτ; z1; z2; tÞ ¼ e2πnmt
X
n∈Z

�
e2πinmðz1þz2Þe2πiz1qmn2þn

ð1 − e2πiz1qnÞ2

−
e−2πinmðz1þz2Þe−2πiz2qmn2þn

ð1 − e−2πiz2qnÞ2
�
: ð5:40Þ

To proceed with the index computation of the PSLð2j2Þk¼1

WZW models, we first observe that the fixed level k ¼ 1
requires that the degree M is equal to 1. Furthermore,
the conditions (5.36), (5.37), and (5.38) are realized only
when K ¼ M ¼ m ¼ 1, ðj; kÞ ¼ ð0; 0Þ for s ¼ 1. Making
use of the formulas (5.16) and (5.39), we obtain the mock
modular index Iðτ; zÞ for the PSLð2j2Þk¼1 WZW model

Iðτ; z1; z2Þ ¼
1

ηðτÞ4
ϑ11ðτ; z1Þ2ϑ11ðτ; z2Þ2

ϑ11ðτ; z1 − z2Þϑ11ðτ; z1 þ z2Þ

×
X
n∈Z

�
e2πinðz1þz2Þe2πiz1qn2þn

ð1 − e2πiz1qnÞ2

−
e−2πinðz1þz2Þe−2πiz2qn2þn

ð1 − e−2πiz2qnÞ2
�
: ð5:41Þ

VI. APPELL-LERCH SUMS

The holomorphic index (5.41) takes the form

I ¼ 1

η4ðτÞ
ϑ211ðz1; τÞϑ211ðz2; τÞ

ϑ11ðz1 − z2; τÞϑ11ðz1 þ z2; τÞ
× ðA2;1ðτ; z1; z1 þ z2Þ −A2;1ðτ;−z2;−z1 − z2ÞÞ;

ð6:1Þ

where the second-order Appell-Lerch sum is given by

A2;1ðτ; u; vÞ ¼ U
X
n∈Z

qnðnþ1ÞVn

ð1 − UqnÞ2 ð6:2Þ

and we have denoted U ¼ expð2πiuÞ and V ¼ expð2πivÞ.
As previously noted for the atypical modules, the issue,
which we will now address, is that the Appell-Lerch sums
are not modular.

4It has been conjectured in Refs. [64,65] that if the highest
weight module LðΛÞ is modular invariant Λ is realized as an
admissible weight.
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Following closely the method in Ref. [6], based on
Refs. [4,5], we can complete the second-order Appell-
Lerch sums. The idea is to express the second-order sum
as a derivative of a first-order sum. It is already known how
to complete the first-order sum, so replacing it by its
modular completion gives the modular completion of the
second -order sum, once we have taken into account the
modular transformation properties coming from the deriva-
tive operator.
Explicitly, the modular completions of the first-order

Appell-Lerch sums

A1;kðτ; u; vÞ ¼ Uk
X
n∈Z

qknðnþ1ÞVn

1 −Uqn
ð6:3Þ

are the weight-1 Jacobi forms

Â1;kðτ; u; vÞ ¼ A1;kðτ; u; vÞ þR1;kðτ; u; vÞ; ð6:4Þ

where

R1;kðτ; u; vÞ ¼
i
4k

Uk−1=2
X2k−1
m¼0

ϑ11

�
vþm
2k

þ ð2k− 1Þτ
4k

;
τ

2k

�

×R

�
u−

vþm
2k

−
ð2k− 1Þτ

4k
;
τ

2k

�
ð6:5Þ

Rðw; τÞ ¼
X

ν∈Zþ1=2

�
sgnðνÞ − Erf

� ffiffiffiffiffiffiffiffiffi
2πτ2

p �
νþ ℑðwÞ

τ2

���

× ð−1Þν−1=2W−νq−ν
2=2 ð6:6Þ

and τ2 ¼ ℑðτÞ.
Now, it is simple to check that

DA1;kðτ; u; vÞ ¼ ðk − 1ÞA1;kðτ; u; vÞ þ Uk
X
n∈Z

qknðnþ1ÞVn

ð1 − UqnÞ2 ;

ð6:7Þ

where we define

D ¼ 1

2πi
∂
∂u : ð6:8Þ

So, we have for k ¼ 1 the simple relation

A2;1ðτ; u; vÞ ¼ DA1;1ðτ; u; vÞ: ð6:9Þ

Since the modular transform of Â1;k is

Â1;k

�
aτ þ b
cτ þ d

;
u

cτ þ d
;

v
cτ þ d

�

¼ ðcτ þ dÞ exp
�

2πic
cτ þ d

uðv − kuÞ
�
Â1;kðτ; u; vÞ;

ð6:10Þ

we can easily see that there is an extra term in the
transformation of the derivative. Specifically,

DÂ1;k

�
aτ þ b
cτ þ d

;
u

cτ þ d
;

v
cτ þ d

�

¼ ðcτ þ dÞ exp
�

2πic
cτ þ d

uðv − kuÞ
�
DÂ1;kðτ; u; vÞ

þ cðv − 2kuÞ exp
�

2πic
cτ þ d

uðv − kuÞ
�
Â1;kðτ; u; vÞ;

ð6:11Þ

but then it is easy to see that by shifting the derivative
operator we get the following expression, which transforms
as a weight-2 Jacobi form:

�
Dþ ℑðvÞ

τ2
− 2k

ℑðuÞ
τ2

�
Â1;kðτ; u; vÞ: ð6:12Þ

Combining the above results, we see that the modular
completion of A2;1ðτ; u; vÞ is

Â2;1ðτ; u; vÞ ¼
�
Dþ ℑðvÞ

τ2
− 2

ℑðuÞ
τ2

�
Â1;1ðτ; u; vÞ:

ð6:13Þ

Note that this works for the index since for both cases
u ¼ z1, v ¼ z1 þ z2 and u ¼ −z2, v ¼ −z1 − z2 we see that
uðv − uÞ ¼ z1z2. So, the combination

Â2;1ðτ; z1; z1 þ z2Þ − Â2;1ðτ;−z2;−z1 − z2Þ

also transforms as a Jacobi form of weight 2 (with index 1),
i.e., with a factor

ðcτ þ dÞ2 exp
�

2πic
cτ þ d

z1z2

�

under a modular transformation.
If we include the ϑ and η factors, the whole completed

index
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Î ¼ 1

η4ðτÞ
ϑ211ðz1; τÞϑ211ðz2; τÞ

ϑ11ðz1 − z2; τÞϑ11ðz1 þ z2; τÞ
× ðÂ2;1ðτ; z1; z1 þ z2Þ − Â2;1ðτ;−z2;−z1 − z2ÞÞ

ð6:14Þ

transforms as a Jacobi form of weight 1 and index 1.
Now, to analyze the result, we define

R2;1ðτ; u; vÞ ¼ Â2;1ðτ; u; vÞ −A2;1ðτ; u; vÞ

¼ DR1;1ðτ; u; vÞ þ
�
ℑðvÞ
τ2

− 2
ℑðuÞ
τ2

�
× Â1;1ðτ; u; vÞ: ð6:15Þ

A. Holomorphic anomaly

The completed index is not holomorphic, and we can
calculate a holomorphic anomaly equation by taking its τ̄
derivative. Specifically, we can calculate

∂
∂ τ̄ Â2;1ðτ;u;vÞ ¼

∂
∂ τ̄R2;1ðτ;u;vÞ

¼ ∂
∂ τ̄ ðDR1;1ÞþðℑðvÞ−2ℑðuÞÞ

×
∂
∂ τ̄

�
1

τ2
Â1;1ðτ;u;vÞ

�

¼ −i
2τ22

ðℑðvÞ−2ℑðuÞÞÂ1;1ðτ;u;vÞ

þ
�
DþℑðvÞ−2ℑðuÞ

τ2

� ∂
∂ τ̄R1;1: ð6:16Þ

From the definition of R1;1 and noting that

d
dz

ErfðzÞ ¼ 2ffiffiffi
π

p e−z
2

; ð6:17Þ

we find

∂
∂ τ̄R1;1ðτ;u;vÞ ¼

1

8
ffiffiffiffiffiffiffi
2τ2

p eπiu
X1
m¼0

ϑ11

�
vþm
2

þ τ

4
;
τ

2

�X
μ∈Z

exp

�
−
πτ2
2

�
μþ 2ℑðuÞ−ℑðvÞ

τ2

�
2
��

μ−
2ℑðuÞ−ℑðvÞ

τ2

�
ð−1Þμ

×exp

�
−2πi

�
μþ 1

2

��
u−

vþm
2

−
τ

4

��
exp

�
−
πiτ
2

�
μþ 1

2

�
2
�
: ð6:18Þ

Now, note that the factor of μ in the sum can arise from differentiating, with respect to u, the exponential with an exponent
linear in μ. The structure of the sum is also of the form of a theta function. After some manipulation, we find

∂
∂ τ̄R1;1ðτ; u; vÞ ¼

∂
∂u

1

8
ffiffiffiffiffiffiffi
2τ2

p eπiu exp

�
−

π

2τ2

�
2ℑðuÞ − ℑðvÞ − τ2

2

�
2
�

×
X1
m¼0

ϑ11

�
vþm
2

þ τ

4
;
τ

2

�
ϑ11

�
−ℜðuÞ þℜðvÞ

2
þℜðτÞ

4
þm

2
;−

ℜðτÞ
2

�
: ð6:19Þ

Using some theta function identities, we can write the sum overm of the product of ϑ11 functions as products of ϑ00 and
ϑ01. The result is

∂
∂ τ̄R1;1ðτ; u; vÞ ¼

∂
∂u

1

8
ffiffiffiffiffiffiffi
2τ2

p exp

�
−

π

2τ2
ð2ℑðuÞ − ℑðvÞÞ2

�X1
m¼0

ϑ0m

�
v
2
;
τ

2

�
ϑ0m

�
−ℜðuÞ þℜðvÞ

2
;−

ℜðτÞ
2

�
: ð6:20Þ

Now, we can simplify the notation a little by defining z≡ v − 2u, and using variables z and v, we just replace ∂
∂u with

−2 ∂
∂z. The result is

∂
∂ τ̄R1;1ðτ; u; vÞ ¼

∂
∂z

−1
4

ffiffiffiffiffiffiffi
2τ2

p exp

�
−

π

2τ2
ðℑðzÞÞ2

�X1
m¼0

ϑ0m

�
v
2
;
τ

2

�
ϑ0m

�
ℜðzÞ
2

;−
ℜðτÞ
2

�
: ð6:21Þ

The most useful aspect of this notation is when we note that for u ¼ z1 and v ¼ z1 þ z2 ≡ w, and for u ¼ −z2 and
v ¼ −z1 − z2 ¼ −w, we have z ¼ z2 − z1. So, in both cases, we find (differing only in v ¼ w or v ¼ −w)
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�
Dþ ℑðvÞ − 2ℑðuÞ

τ2

� ∂
∂ τ̄R1;1

¼
�
i
π

∂
∂zþ

ℑðzÞ
τ2

� ∂
∂z

−1
4

ffiffiffiffiffiffiffi
2τ2

p exp

�
−

π

2τ2
ðℑðzÞÞ2

�

×
X1
m¼0

ϑ0m

��w
2

;
τ

2

�
ϑ0m

�
ℜðzÞ
2

;−
ℜðτÞ
2

�
; ð6:22Þ

but since ϑ0mð−z; τÞ ¼ ϑ0mðz; τÞ, we get exactly the same
expression in both cases. This means that when we
calculate the τ̄ derivative of the completed index (6.14)
the terms arising from the τ̄ derivative of R1;1 in (6.16)
cancel. So, we finally get the result, which is indicative of a
recursion relation for the holomorphic anomaly:

∂
∂ τ̄ Îðτ; z1; z2Þ

¼ −iðz2 − z1Þ
2τ22

1

η4ðτÞ
ϑ211ðz1; τÞϑ211ðz2; τÞ

ϑ11ðz1 − z2; τÞϑ11ðz1 þ z2; τÞ
× ðÂ1;1ðτ; z1; z1 þ z2Þ − Â1;1ðτ;−z2;−z1 − z2ÞÞ:

ð6:23Þ

B. Modular and elliptic transformations

If we define

Φðτ; z1; z2Þ ¼ Â2;1ðτ; z1; z1þ z2Þ− Â2;1ðτ;−z2;−z1 − z2Þ;
ð6:24Þ

then we find the following transformation properties,
noting that both Â terms transform in the same way under
these transformations:

Φðτ þ 1; z1; z2Þ ¼ Φðτ; z1; z2Þ;

Φ
�
−
1

τ
;
z1
τ
;
z2
τ

�
¼ τ2e

2πi
τ z1z2Φðτ; z1; z2Þ; ð6:25Þ

Φðτ; z1 þ 1; z2Þ ¼ Φðτ; z1; z2Þ;
Φðτ; z1 þ τ; z2Þ ¼ e−2πiz2Φðτ; z1; z2Þ; ð6:26Þ

Φðτ; z1; z2 þ 1Þ ¼ Φðτ; z1; z2Þ;
Φðτ; z1; z2 þ τÞ ¼ e−2πiz1Φðτ; z1; z2Þ: ð6:27Þ

If we also include the theta and eta functions, the index
transforms as

Îðτ þ 1; z1; z2Þ ¼ e
πi
6 Îðτ; z1; z2Þ;

Î
�
−
1

τ
;
z1
τ
;
z2
τ

�
¼ −iτe2πi

τ z1z2 Îðτ; z1; z2Þ; ð6:28Þ

Îðτ; z1 þ 1; z2Þ ¼ Îðτ; z1; z2Þ;
Îðτ; z1 þ τ; z2Þ ¼ e−2πiz2 Îðτ; z1; z2Þ; ð6:29Þ

Îðτ; z1; z2 þ 1Þ ¼ Îðτ; z1; z2Þ;
Îðτ; z1; z2 þ τÞ ¼ e−2πiz1 Îðτ; z1; z2Þ: ð6:30Þ

C. Wall-crossing

The Appell-Lerch sum of order 2 is associated to
meromorphic Jacobi forms of weight 2. It is shown in
Ref. [5] that any meromorphic Jacobi form φmðτ; zÞ with
double poles at z ¼ zs ¼ ατ þ β, α; β ∈ S ⊂ Q2 has a
decomposition

φmðτ; zÞ ¼ φF
mðτ; zÞ þ φP

mðτ; zÞ: ð6:31Þ

Here,

φF
mðτ; zÞ ¼

X
l∈Z=2mZ

hlðτÞϑm;lðτ; zÞ ð6:32Þ

is a finite part, and

φP
mðτ; zÞ ¼

X
s∈S=Z2

ðDsðτÞAs
1;mðτ; zÞ þ EsðτÞAs

2;mðτ; zÞÞ

ð6:33Þ

is a polar part. Here, DsðτÞ and EsðτÞ are residue functions
defined by

e2πimαzsφðτ;zsþϵÞ¼ EsðτÞ
ð2πiϵÞ2þ

DsðτÞ−2mαEsðτÞ
2πiϵ

þOð1Þ;

ð6:34Þ

while As
1;mðτ; zÞ and As

2;mðτ; zÞ are universal Appell-Lerch
sums [5] of order 1 and 2. In our analysis, we saw
multivariable order 1 and 2 Appell-Lerch sums. In the
single variable case, these corresponding to taking s ¼ 0
above and are defined by

A1;mðτ; zÞ ¼ −
1

2

X
n∈Z

qmn2x2mn 1þ xqn

1 − xqn
; ð6:35Þ

A2;mðτ; zÞ ¼
X
n∈Z

qmn2x2mnþ1

ð1 − xqnÞ2 : ð6:36Þ

In the context of black hole microstate counting, the
degeneracy of four-dimensional N ¼ 4 quarter-BPS dyonic
black holes with a set of three fixed charges ðm; n; lÞ is given
by Fourier coefficients of the partition function, that is a
meromorphic Siegel modular form of weight −10 [66–68],
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Zdyon ¼
1

Φ10ðτ; z; σÞ
¼

X∞
m¼−1

φmðτ; zÞym: ð6:37Þ

Here, Φ10ðτ; z; σÞ is the Igusa cusp form of weight 10, and
φmðτ; zÞ is a meromorphic Jacobi-form of weight 2 and
index m. According to the above decomposition theorem
(6.31) of meromorphic Jacobi forms, φmðτ; zÞ in (6.37) can
be decomposed as

φmðτ; zÞ ¼ φF
mðτ; zÞ þ

p24ðmþ 1Þ
ΔðτÞ A2;mðτ; zÞ: ð6:38Þ

Here, the first term φF
mðτ; zÞ is a finite part without a pole and

counts the single-centered black holes, while the second is a
polar part with double poles and counts the multicentered
black holes that decay into its single-centered constituents
upon wall-crossing phenomena [5]. In fact, the Appell-Lerch
sum of order 2 is intimately related to an occurrence of wall
crossing due to its polar structure. To see this, it is useful to
introduce an operation of averaging the residues at poles
z ¼ zs ¼ αþ βτ,

AvðmÞ½fðxÞ� ≔
X
λ∈Z

qmλ2x2mλfðqλxÞ: ð6:39Þ

This averaging operator constructs a Jacobi form of index m
out of an arbitrary function fðxÞ. Making use of the
averaging operator, one can express the Appell-Lerch sum
of order 2 as

AvðmÞ
�

x
ð1 − xÞ2

�
¼ A2;m: ð6:40Þ

The function fðxÞ has an expansion,

x
ð1 − xÞ2 ¼ xþ 2x2 þ 3x3 þ � � � ; ð6:41Þ

in the range jxj < 1, but it does not for jxj > 1. This implies
wall crossing because different expansions of the meromor-
phic Jacobi form for jxj < 1 and jxj > 1 give different
degeneracies as its coefficients. Correspondingly, we have

A2;m¼
�X

n≥0

X
l≥0

�−
X
n<0

X
l≤0

�
�
lqmn2þlnx2mnþl ð6:42Þ

for jqj < jxj < 1. Here,
P

l
� is the sum for the term l ¼ 0

with multiplicity 1
2
.

These quarter-BPS black holes can be realized as a
configuration of M2-M5 bound states in M theory on
K3 × T2 [5]. Let T2 be a product of two circles S1α × S1β.
Let C1 be a homology 2-cycle of T2 and C2 and C3 be two
2-cycles in K3 which have intersection number

Z
K3×T2

C1 ∧ C2 ∧ C3 ¼ 1: ð6:43Þ

Let fDag be 4-cycles dual to fCag, i.e.,Da ∩ Cb ¼ δba. We
consider the M2-M5 bound states with w units of momen-
tum along M circle S10 where ~K units of M5-brane charge
wrap D1 × S10, Q1 units of M5-brane charge wrap D2 × S10,
Q5 units of M5-brane charge wrap D3 × S10, and ~n units of
M2-brane charge wrap T2. Then,

m ¼ Q1Q5; n ¼ w ~K; l ¼ ~n ~K ð6:44Þ

can be identified with the charges of the quarter-BPS dyonic
black hole states, and the number of BPS bound states of the
brane configuration can be viewed as the degeneracy of the
black holes. When the M5-brane charges ~K, Q1, and Q5 are
fixed, the charges ðm; n; lÞ of the black hole are determined
by the momentum w and the M2-brane charge ~n, which
would be specified by the quantum numbers of the deriva-
tion d ¼ −L0 and those of Cartan elements of the Lie
superalgebra sg, respectively. Hence, under certain circum-
stances, our index would have an interpretation in terms of
black hole microstate counting. An appearance of the
second-order multivariable Appell-Lerch sum A2;m would
suggest that such multicentered black holes may decay into
single-centered black holes [69–72].
From the perspective of the M2-M5 system, it is

expected that wall crossing occurs due to the configuration
of stretched M2-branes so that the moduli space of the
M2-M5 system may develop a new branch at a particular
critical value of the C field on the M5-branes.

VII. DISCUSSION

We have described BPS indices for supergroup WZW
models which we have argued count the degeneracies of
BPS states of the intersecting M2-M5 system considered in
Ref. [1]. The BPS states are specified by the highest weight
modules of the affine Lie superalgebra in such a way that
the number of stretched M2-branes is equal to the degree
of atypicality. In addition, the momenta along a wrapped
circle are given by the Virasoro modes that amount to the
derivation, and the M2-brane charges under the C fields are
given by the Cartan elements of the finite Lie superalgebra.
When all these M2-branes are sandwiched between the
M5-branes, in which case the BPS states are the modules
with maximal atypicality, the indices can be evaluated
using the Kac-Wakimoto character formula [2,3]. Quite
remarkably, they are written in terms of the q-series known
as Ramanujan’s mock theta functions [55–57]. Our result is
an encounter of the mock Jacobi forms in the BPS indices
of the M strings, which are defined in the supergroupWZW
models in the same manner as the equivariant elliptic genus
studied in Refs. [40,73–76]. The indices have a structure
which suggests there is wall crossing in the BPS state

TADASHI OKAZAKI and DOUGLAS J. SMITH PHYSICAL REVIEW D 96, 026017 (2017)

026017-18



counting of the M2-M5 system, related to universal features
of the Appell-Lerch sums. We have argued that the mock
modularity of the supercharacters of affine Lie super-
algebras reflects the nonholomorphic atypical sector of
the Hilbert space of the supergroup WZW models. To
obtain the nonholomorphic modular parts of the torus
partition function of supergroup WZW models, we have
invoked Zwegers’ method [4], closely following the dis-
cussion in Ref. [5] and particularly Ref. [6].
There are many future directions to consider. Clearly,

it is desirable to extend our explicit evaluation of the indices
for PSLð2j2Þk¼1 to other cases. The indices reduce to a
specialization of the supercharacters of integrable highest
weight modules over affine Lie superalgebras. However,
at present, explicit calculation of supercharacters is only

available for bglðNj1Þ and bslðNj1Þ in Ref. [2], fordpslð2j2Þ in
Ref. [3], for dospð3j2Þ in Ref. [58], and for some general
basic Lie algebrascsg in Ref. [59]. The case ofmost relevance
for our application is bglðNjNÞ, which arises in the case
of N M2-branes between the M5-branes. Understanding the
dependence of the spectrum on N is an obvious issue, and
perhaps some aspects can be studied even without the
complete explicit expression for the supercharacter.
Another interesting question is whether our result can be

described using a quantum mechanics description. Here,
there are two possibilities, we could reduce the 2D WZW
model on a circle, or instead the QuantumMechanics (QM)
description could arise using the interval between the M5-
branes as the Euclidean time. In the latter case, the QM
description would arise in the limit opposite of that we
consider, in which the volume of the Riemann surface Σ is
taken to be very small compared to the length of the interval
separating the M5-brane from the M50-brane. We note that
recently an intriguing connection between Chern-Simons
with boundary and WZWmodels, and a specific QM model
in a large-N limit, has been given by Dorey et al. [77,78]. In
particular, it was shown that the partition function of the
SUðpÞ WZW model could be reproduced exactly from a
QM action with an SUðpÞ symmetry coupled to an SUðNÞ
gauge field at large N. It would be interesting to explore
generalizations of this QM system to include supersymmetry
or supergroup symmetry, with the hope of describing
supersymmetric or supergroup WZW models. Of course,
if such generalizations could include models related to M-
branes, we would hope that such QM systems could be
independently derived from the brane configurations or
some dual configurations. We are currently exploring such
possibilities.
Going beyond the M-brane configurations considered

in Ref. [1], we could consider configurations with M2-
branes on both sides of an M5-brane and more than one
M5- and M50-brane. In the case of parallel M5-branes, the
index has been calculated [40] using various techniques
including topological strings. The type-IIB description of

such systems in flat space has been considered by Niarchos
[28] by the addition of D5-branes to the ABJM configu-
ration. We have commented on the description with both
M5- and M50-branes, including either D5- and D50-branes
or NS5- and NS50-branes in type IIB. We expect this will
lead to further understanding of the M2-M5 system, with
or without the topological twisting. Certainly, as we
discussed, we expect this to lead to an understanding of
the detailed coupling between ABJM models describing
M2-branes on either side of an M5-brane. In the type-IIB
configuration, this can be studied in terms of open strings
connecting the D3-branes, and recent works [41,79] on the
supersymmetric boundary conditions in three-dimensional
N ¼ 4 gauge theories will play a key role in giving the
description of these brane tiling models as two-dimensional
gauge theories. In the case of supergroupWZWmodels, we
expect that this would give a specific model based on
GLðNjNÞ ×GLðMjMÞ. It may also be possible to extend
this analysis in type IIB to include generalizations of the
ABJM model, such as those based on the ABJ theory or
with orthogonal and symplectic gauge groups [38,39,80].
Although it is not clear how to relate all these cases to M-
brane configurations, we would expect some (but not all) to
correspond to supergroup WZW models.
The Appell-Lerch sums, which we have found in the

indices, are known to play an important role in mathematics
and physics. In particular, they appear as the Fourier
coefficients of the generating functions in various counting
problems. We expect that the appearance of these sums
from M-brane constructions will lead to a more unified
formalism, relating different aspects of the Appell-Lerch
sums. To seek gauge theoretical descriptions, we could start
from the world volume theory of M5-branes wrapping a 4-
manifold to obtain four-dimensional twisted N ¼ 4 gauge
theories [81,82]. In Ref. [83], the generating function of
topological invariants of the moduli space of vector bundles
over 4-manifolds was evaluated as the partition function of
four-dimensional twisted N ¼ 4 gauge theories, which is
expressed in terms of multivariable Appell-Lerch sums.
Also, in the weak string coupling region, one could
calculate indices in the world volume theory of branes
as the generating functions of certain topological invariants.
In Ref. [84], the generating functions of Gromov-Witten
invariants of elliptic orbifolds are given by multivariable
Appell-Lerch sums. In the strong string coupling region,
the brane system would involve the gravitational interac-
tion, and the indices would count the microstates of the
black holes. As we have seen, the partition functions of
the multicentered black holes are expressed in terms of the
Appell-Lerch sums [5]. We hope to report on progress from
these viewpoints in subsequent works.
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APPENDIX: MODULAR FORMS

The Dedekind eta function

ηðτÞ ¼ q
1
24

Y∞
n¼1

ð1 − qnÞ ðA1Þ

satisfies the modular transformation properties

η

�
−
1

τ

�
¼ ð−iτÞ12ηðτÞ; ηðτ þ 1Þ ¼ e

πi
12ηðτÞ: ðA2Þ

The four Jacobi theta functions are defined by [85]

ϑ00ðτ; zÞ ¼ ϑðτ; zÞ ¼
X
n∈Z

e2πinzq
n2
2

¼
Y∞
n¼1

ð1 − qnÞð1þ e2πizqn−
1
2Þð1þ e−2πizqn−

1
2Þ;

ðA3Þ

ϑ01ðτ; zÞ ¼ ϑ00

�
τ; zþ 1

2

�

¼
Y∞
n¼1

ð1 − qnÞð1 − e2πizqn−
1
2Þð1 − e−2πizqn−

1
2Þ;

ðA4Þ

ϑ10ðτ; zÞ ¼ e
πiτ
4 eπizϑ00

�
τ; zþ τ

2

�

¼ e
πiτ
4 e−πiz

Y∞
n¼1

ð1 − qnÞð1þ e2πizqn−1Þ

× ð1þ e−2πizqnÞ; ðA5Þ

ϑ11ðτ; zÞ ¼ ie
πiτ
4 eπizϑ00

�
τ; zþ τ

2
þ 1

2

�

¼ e
πiτ
4 e−πiðzþ1

2
Þ Y∞
n¼1

ð1 − qnÞð1 − e2πizqn−1Þ

× ð1 − e−2πizqnÞ: ðA6Þ

We have the transformation laws

ϑ00

�
−
1

τ
;
z
τ

�
¼ ð−iτÞ12eπiz2

τ ϑ00ðτ; zÞ;

ϑ01

�
−
1

τ
;
z
τ

�
¼ ð−iτÞ12eπiz2

τ ϑ10ðτ; zÞ; ðA7Þ

ϑ10

�
−
1

τ
;
z
τ

�
¼ ð−iτÞ12eπiz2

τ ϑ01ðτ; zÞ;

ϑ11

�
−
1

τ
;
z
τ

�
¼ ðiτÞ12eπiz2

τ ϑ11ðτ; zÞ; ðA8Þ

and

ϑ00ðτ þ 1; zÞ ¼ ϑ01ðτ; zÞ; ϑ01ðτ þ 1; zÞ ¼ ϑ00ðτ; zÞ;
ðA9Þ

ϑ10ðτþ1;zÞ¼e
πi
4ϑ10ðτ;zÞ; ϑ11ðτþ1;zÞ¼e

πi
4ϑ11ðτ;zÞ:

ðA10Þ
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