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Abstract

It is well established in the literature that certain disease-associated gene 

signatures can be identified as a source for predicting the classification of samples or 

cell lines into diagnostic groups – for example, healthy and diseased. Using standard 

techniques for the selection of significant genes may lead to many highly correlated 

genes to be chosen, which may be an issue if we are limited in the number of genes we 

can select. This article therefore aims to investigate methods for selecting genes with the

application of a correlation threshold. The methods are applied to two high-dimensional 

microarray datasets, one to aid the prediction of the presence or absence of Irritable 

Bowel Syndrome, and one to predict whether the oestrogen-receptor class of a given 

breast cancer cell line is positive or negative. Our results suggest that the effectiveness 

of the correlation threshold as a gene selection parameter depends on the particular 

microarray dataset and classification problem. While the correlation threshold may be 

beneficial in some specific scenarios where the number of required genes is restrictively 

small, it may also have no or even detrimental effect on the classification accuracy. 
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Introduction

Microarray experiments have emerged to play an increasingly important role in 

the world of medical science. They have been used as an aid for the classification of 

tumours (Golub et al., 1999), the prediction of possible response to therapy and 

treatments (Tusher et al., 2001) and the prediction of the presence or absence of many 

particular diseases, including breast cancer (van’t Veer et al., 2002). Microarrays 

measure the mRNA expression level, known as the gene expression level, for thousands

of genes simultaneously (Quackenbush, 2006). The pre-regularised gene expression 

level of a particular gene in a particular cell indicates how much that particular gene is 

used in order to carry out the functions of the cell. The higher the gene expression, the 

more the corresponding gene proteins are used within the cell. 

A typical microarray dataset consists of n subjects, which constitute the sample. 

Each subject has a pre-regularised measure of gene expression for each of the p genes,

each gene constituting a parameter. The sample sizes, n, of gene expression microarray

datasets are small compared to the number of parameters, p, that is, we have n<<p, and

so standard statistical techniques should be used carefully. Measuring the gene 

expression value for many genes is costly. Therefore, for both financial reasons and 

computational efficiency, it would be invaluable to know a small handful of particularly 

significant genes, known as molecular biomarkers, for which the gene expression values

could be used as predictors for the classification of future samples into their diagnostic 

groups. Then, only the expression values of these few genes need to be found in future 

subjects in order to make a prediction about the presence or absence of a particular 

disease. This will be considerably cheaper and more efficient than finding the whole 

genome expression values of a subject or biological sample. 



An example of comparing the expression values of a more informative gene with 

one which is not is shown in Figure 1, which depicts the gene expression values of two 

particular genes from a full microarray analysis dataset comparing 34 Irritable Bowel 

Syndrome (IBS) patients and 24 healthy subjects. This dataset is one of those used 

throughout the article and is introduced in full later on. We can see that, on the whole, 

the more informative gene has lower expression values for the diseased group than the 

healthy group. In comparison, the uninformative gene has more overlapping expression 

value ranges for the two groups, so knowing the expression value of this gene for a 

further subject would give you little indication of the classification group.

Figure 1: Comparing the plots of the expression values for a potentially informative gene 
and an uninformative gene, both taken from a microarray analysis dataset for IBS. 

Many methods of gene selection typically involve ranking the genes with regard 

to a certain test statistic (Chen, 2005). A higher test statistic value for a particular gene 

typically corresponds to a gene being seen as more important for differentiating between

two or more distinct groups – for example, healthy and diseased. If such a measure can 



be found, then ordering the genes with regard to decreasing test statistic value gives an 

order of importance. The top k genes of this ranking can then be chosen for use in 

classification, which is the prediction of the diagnostic category of a tissue sample from 

its gene expression values given the availability of similar data from tissues in identified 

categories (Yeung and Bumgarner, 2003). However, as mentioned by Yeung and 

Bumgarner (2003), and also Jaeger et al. (2003), there are problems with simply 

selecting the top k genes according to the ranking of a certain test statistic. Specifically, 

many of the genes selected will be highly correlated, and the information that can be 

obtained from the expression values of highly correlated genes may be very similar.

One explanation for high correlations between certain genes is that the genes all 

belong to one particular biological pathway (Oti and Brunner, 2007). A biological pathway

is a series of actions among molecules in a cell that leads to a certain product or a 

change in the cell (National Human Genome Research Institute, 2016). Gene regulation 

pathways control the expression levels of certain sets of genes. Therefore, the gene 

expression values of many of the genes affected by a single pathway may change in a 

similar fashion. As a consequence, in order to classify the data into diagnostic groups, 

we may only need the expression values of one or two genes from a particular pathway 

to gain a similar amount of information that would be gained from having expression 

values for all the genes.

Additionally, if there is a limit on the number of genes which we can select, 

maybe due to financial cost or computational necessity, then we may not be selecting 

any gene from some highly influential and informative group of gene pathways. Although

selecting some genes from further down the ranking list would result in genes of a lower 

test statistic being chosen, they may be more beneficial in combination with some of the 

genes that had already been chosen from near the top of the list. We therefore consider 

applying a correlation threshold to the gene selection process. The motivation for doing 



so is to remove some highly correlated, and thus possibly redundant, genes from being 

included when implementing the classifier.

Microarray data and pre-processing

We will be investigating the importance of the correlation threshold, and its effect 

on classification accuracy, using two microarray datasets. The concept of the correlation 

threshold itself will be explained in later sections.

The first dataset is provided by Janssen Pharmaceutica and consists of gene 

expression values for each of 21,212 genes for each of 34 diseased IBS patients and 24

healthy controls. IBS is a prevalent disorder affecting between 10% and 20% of people 

in the Western world (Aerssens et al., 2008). It is characterised by recurrent abdominal 

pain and an increased frequency to need to empty the bowels. All patients fulfilled the 

Rome II criteria for IBS diagnosis (Thompson et al., 1999). By using standard, large-size,

biopsy forceps, two sigmoid colon mucosal biopsy specimens, 10 cm apart, were 

collected from each participant using Affymetrix human U133 Plus 2.0 genechips 

(Aerssens et al., 2008). Presence/absence calls from negative probes were used to 

determine whether expression of a gene in a sample exceeded background expression 

(Warren et al., 2007). The microarray data as considered herein are log2(absolute 

expression) values which were corrected for a batch effect through an appropriate linear 

model. Details on the pre-processing which resulted in a fully regularised and normalised

set of microarray gene expression readings are given in Aerssens et al. (2008). During 

this process, all personally identifiable information was stripped from the subjects. The 

dataset is available in both raw and filtered form from Aerssens (2007).

The second dataset is a set of microarray data for breast cancer patients, taken 

from Gorban and Zinovyev (2006).  Affymetrix human U133a genechips were used to 

obtain data for 17,816 genes for each of 209 positive oestrogen receptor class (ER 



positive) and 77 negative oestrogen receptor class (ER negative) lymph node breast 

cancer patients. The resulting expressions were log2 transformed and normalised by 

scaling to a target probe set intensity. The process is fully described in Wang et al. 

(2005). Again, all personally identifiable information was stripped from the subjects.

Filtering techniques

It has been shown for some time that, in order to try to visualise a dataset of 

relatively high dimension, one can apply Principal Component Analysis (PCA) in order to 

identify directions of particular importance and high variance (see, for example, Wold et 

al. (1987)). However, PCA is not particularly useful as an initial step for processing 

microarray datasets since, as explained by Cumming and Wooff (2007), all the original 

variables are still required. It is for this reason that they discussed the idea of Principal 

Variables to reduce the dimension of the dataset instead.  We intend to reduce the 

dimension of the datasets by explicit feature selection, that is, by selecting a few 

significant genes for which the expression values are particularly informative for 

classifying future cells into their corresponding diagnostic groups.

A common method of selecting significant genes is to rank each gene in order 

according to a common test statistic. We define the discriminatory ability of a gene as 

maximising some distance measure between the two groups’ mean expression values 

for that gene. A common assumption for this type of classification is homoscedastic 

Gaussian group densities, as explained in the next section. Under this assumption, the 

null hypothesis states that the Mahalanobis distance, a standardised distance measure 

which places lower weightings on directions of higher variance, between the mean gene 

expression values of the two groups is equal to zero, and that the set of all these 

Mahalanobis distances, one for each gene, will be proportional to a common t-

distribution. The proportionality constant will depend only on the classification group 



sizes, which will be the same for each gene tested as long as there is no missing data. 

Therefore, a greater Mahalanobis distance between the mean gene expression values of

the two groups for a particular gene will result in a larger assigned corresponding t-test 

statistic, T, for that gene, and thus a lower p-value for the corresponding hypothesis test. 

A lower p-value implies that, under the assumption of the null hypothesis, the spread of 

gene expressions for that particular gene, with respect to the two groups, would be less 

likely to occur by chance. Therefore, a smaller p-value gives more evidence to reject the 

null hypothesis that a gene does not distinguish between the two groups.

The number of genes to select is a question of high importance. Usually a low 

budget of genes is preferential or necessary because of computational efficiency and the

financial cost of processing a single gene expression. This question therefore leads the 

problem into the realms of decision-making, where the utility of the cost of finding the 

expression value of each additional gene has to be incorporated into a decision function 

alongside the potential benefits each additional gene may yield in terms of accurately 

predicting the correct group to which a future subject belongs.

Classification techniques

Once genes have been selected it is necessary to have a classifier which can 

take the expression values for the selected genes as inputs, and return a response 

indicating the presence or absence of the particular disease. There exist many such 

classifiers. Dudoit et al. (2002) explored many of these, including Fisher Linear 

Discriminant Analysis, Maximum Likelihood Discriminant rules, Nearest-Neighbour 

Classifiers and Classification trees, while looking to classify tumours using gene 

expression microarray data. Discriminant Analysis, and in particular Diagonal Linear 

Discriminant Analysis (DLDA), which we will be using, are reviewed below.



Discriminant analysis

Discriminant analysis is a statistical technique, first proposed by Fisher (1936, 

1938), which allows the differences between two or more groups of objects to be studied

with respect to several variables simultaneously (Klecka, 1980, 7-9), and thus define a 

function of these variables that attempts to distinguish between the groups. The idea is 

then to use this function to classify future unidentified individuals to exactly one group. 

We summarise the explanation of the Bayes’ rule approach to discriminant analysis as 

given by McLachlan (1992, 4-10). Let  be our prior probabilities that a sample 

belongs to group i. Let f i ( x ) be the group i probability density function. The group 

density functions are unlikely to be known and hence have to be estimated from the data

using Bayes’ rule.

Let  represent the whole input space. Let 
pij   be the probability that an 

individual belonging to group j is misclassified as belonging to group i. In explicit terms, 

one has

where  is the subspace of the whole input space that is classified into region i, and:

Let c ij  be the associated cost of misclassifying an individual belonging to group j to 

group i. For a particular classifier, Bayes’ discriminant rule selects the group with 

minimum expected cost of misclassification. That is, for a future sample the selected 

group is



where G is the set of possible groups. Bayes’ discriminant analysis aims to select that 

classifier which minimises the overall misclassification cost (McLachlan, 1992, 9). Having

decided on this classifier, every combination of inputs now has a predicted group. We 

can split the input space up into sections for which the inputs lead to the same predicted 

group. The boundaries between these sections are called decision boundaries, as they 

are where we will change our decision about the predicted group of a point depending 

on which side of the boundary it is. A linear boundary is one which can be described by a

linear function of the inputs, and a quadratic boundary is one which can be described by 

a quadratic function of the inputs.

Diagonal Linear Discriminant Analysis

Let us assume that each group population follows a multivariate normal 

distribution, which results in the decision boundaries being, at most, quadratic. If we 

assume homoscedasticity between the group populations as well, that is we assume all 

groups have a common covariance matrix:

it turns out that the decision boundaries are then linear (Hand, 1997, 31-32).

Diagonal discriminant analysis assumes that each group has a diagonal 

covariance matrix, implying independence between the parameters, or in our case, the 

genes. While often unrealistic, under this approach the number of parameters that need 

estimating for each group decreases considerably, namely, from order p2 to p. 

Finally, DLDA involves making both these assumptions at once, that is, we 

assume we have a common diagonal covariance matrix. In the present article, we will 



use DLDA as our classifier for comparison purposes because of its speed and efficiency. 

As explained above, using more complicated forms of discriminant analysis requires 

estimating many more parameters and adds variance. Additional experiments have also 

shown that such techniques do not necessarily lead to an increased accuracy of 

classification for microarray experiments (Barker, 2011).

Validation

Once a classifier has been chosen, it is necessary to check the validity of the 

classifier to see how accurately the classifier may predict future subjects. If we assumed 

the accuracy of a classifier to be how well it predicted the response of the exact same 

data items used to build it, we run the risk that the model will very much have been fitted 

to perfectly predict the original data. This is especially a problem in high-dimensional 

situations, such as microarrays, when having p>>n variables makes fitting n 

observations trivial. This would not, however, help us to predict the group of further 

cases nor reflect the accuracy of doing so, and is known as overfitting. 

In order to reduce the bias of the accuracy rate, we split the data into a training 

set and a test set. The training set is used to select significant genes and then build a 

classifier which only uses the gene expression values of these significant genes. The 

test set is then used to test the classifier by working out the proportion of the responses 

of data items in the test set which are correctly predicted by the classifier, which gives us

an accuracy rate. The whole process is repeated many times so that lots of different 

combinations of training and test sets are considered, and the results are averaged to 

obtain an average accuracy rate. Throughout the present article a training set comprising

of 75% of the data will be used for feature selection and classification, whilst the 

remaining 25% will be used to test the classifier to obtain a proportion of correctly 

predicted cases. Our experiments involved repeating this procedure for 3000 different 



randomly sampled training and test sets, and then averaging the resulting accuracies 

obtained over all of them.

All investigations carried out in this article, and the figures presented in it, were 

done in the computer program R-3-0 (R core team, 2013) with the inclusion of packages 

‘MASS’ and ‘supclust’. All R code is available from the first author, on request.

Correlation threshold

The main aim of the present article is to analyse the effect of the correlation 

threshold on the gene selection procedure and classification accuracies obtained. 

Application of the correlation threshold fits into the gene selection procedure as follows. 

We still place the genes in rank order, based on the value of the t-statistic for each one, 

and select a set of k genes from the list. However, instead of simply selecting the top k 

genes, each gene is considered in rank order, until we have selected k genes, and is 

selected only if it does not have a correlation higher than a certain threshold, b, with a 

gene of higher ranking. The motive behind the incorporation of a correlation threshold is 

to exclude genes from being selected if the information they provide is similar to that 

given by a gene that has already been selected. A gene will be less likely to provide 

additional classification information if it has a high correlation with a gene already 

selected.

Application of methods to the IBS dataset

The results of repeatedly constructing a DLDA classifier using the top k genes 

from the t-statistic rank list, for the IBS microarray data, for each of 3000 different 

combinations of training and test sets, for five different values of k, are shown in the top 

line of Table 1. We can see that increasing the number of genes within this small range 

only improves the accuracy a little, and in fact, although the differences are not huge, 



k=30 seems to work a little better than k=40 in this example. The second line of Table 1 

shows the results of the same classification procedure, but using a correlation threshold 

of b=0.8. Although it may be observed that the individual change of correlation threshold 

from b=1, that is no correlation threshold, to b=0.8 seems to have slightly lowered the 

accuracies obtained from the classifier, it is worth noting that the local maximum for 

b=0.8 is obtained for a smaller number of genes as compared to b=1. A possible 

explanation is that we may expect correlated genes to be representing the same (or 

similar) biological pathways, so that removing some correlated genes may result in us 

requiring less genes to represent many pathways.

K 10 15 20 30 40

b=1 prediction accuracy (%) 69.05 69.86 70.32 70.04 68.71

b=0.8 prediction accuracy (%) 68.36 68.90 68.78 68.41 68.58

Table 1: A comparison of the average prediction accuracies achieved when selecting 
different numbers of genes, k, to include in the application of a DLDA classifier on the 
IBS dataset, with correlation threshold values of b=1, that is, no correlation threshold, 
and b=0.8.

The results of varying the correlation threshold, b, and number of genes, k, on the DLDA 

average classification accuracy of the IBS dataset, are presented in Figure 2. We can 

observe that, in this example, using b=1, that is, in effect no correlation threshold, seems

to give the most accurate classifications. However, it is once again noted that lowering 

the correlation threshold seems to move the maximum of the accuracy curves towards 

the left. 



Figure 2: A comparison of the average prediction accuracies achieved for different 
numbers of selected genes and correlation threshold values when applying DLDA on the
IBS dataset. (The displayed accuracies are average values over the accuracies obtained
from the 3000 test sets).

Given these results it would be interesting to know how many genes are being 

removed from the original list ranking by different correlation threshold values. In Table 2,

we present the number of genes removed from the full ranking when k=10 and k=20, for 

each correlation threshold, b, of 0.6, 0.7, 0.8, 0.9 and 1. This analysis has been done 

using the full sample dataset. We can see that the number of genes removed 

dramatically increases for b=0.6.

Correlation threshold, b 1 0.9 0.8 0.7 0.6

Genes removed for k=10 0 3 3 8 17

Genes removed for k=20 0 6 6 15 66

Table 2: A comparison of the number of genes removed from the full gene ranking of the 
IBS dataset for different correlation thresholds and numbers of genes.



The Affymetrix identifiers of the top genes that we obtained by using these 

methods on the whole IBS dataset were as follows: 201762_s_at, 211368_s_at, 

1552701_a_at, 211367_s_at, 211366_x_at, 225809_at, 224523_s_at, 229369_at, 

1552703_s_at, 222233_s_at, 242826_at, 203696_s_at, 204687_at, 226622_at, 

239376_at, 212034_s_at, 223655_at. Many of these genes are the same as those found

in Aerssens et al. (2008).

Application of methods to the breast cancer dataset

We present, in Figure 3, the results of varying the correlation threshold, b, and 

number of genes, k, on the DLDA average classification accuracy of the breast cancer 

dataset. We can see that for smaller numbers of genes a suitable correlation threshold 

seems to have a positive effect, since lower correlation thresholds seem to yield slightly 

higher accuracies. As the number of genes increases, it would appear that a correlation 

threshold is not beneficial since a threshold value of b=0.6 yields lower accuracies than 

the other correlation threshold values. These qualitative statements can be supported by

considering the standard errors of the accuracies, for which we refer to Einbeck et al. 

(2015). We additionally present, in Figure 4, accuracy curves for the IBS and the breast 

cancer data within one plot. One observes that any differences in prediction accuracy 

which can be achieved by either changing the number of included genes or the 

correlation threshold are rather marginal when compared to differences in prediction 

errors between different datasets.

The Affymetrix identifiers of the top genes obtained by using these methods on 

the whole breast cancer dataset are as follows: 205225_at, 209603_at, 209604_s_at, 

212956_at, 215867_x_at, 209173_at, 209602_s_at, 214164_x_at, 204508_s_at, 



203963_at, 205186_at, 202088_at, 203929_s_at, 215304_at, 200670_at, 218976_at, 

205009_at, 218195_at, 212195_at, 218211_s_at. 

Figure 3: A comparison of the average prediction accuracies achieved for different 
numbers of selected genes and correlation threshold values when applying a DLDA 
classifier on the breast cancer dataset.



Figure 4: A comparison of the average prediction accuracies achieved for the IBS and 
the breast cancer (ER) data.
 

Conclusion and further research

We have tested the idea of applying a correlation threshold to the feature 

selection process of microarray data classification on two microarray datasets. For the 

IBS data, it seemed that the effect of including a correlation threshold was to decrease 

the accuracy of the classifier. This may tend to suggest that, although incorporating a 

correlation threshold did result in some correlated genes being removed, doing so was 

not beneficial. For the breast cancer data, the correlation threshold had a much more 

positive effect when the number of genes required was small. These results together 

suggest that the most beneficial correlation threshold is dependent on the particular 

microarray data analysis, and that applying a correlation threshold at all may only be 

worth considering if the number of genes required is restrictively small.



It is perhaps not that surprising that the correlation threshold may only be 

beneficial for smaller numbers of genes, since it is then that filling up one of the few 

available genes with a possibly redundant gene will be much more costly. The results 

seem to show, however, that even though highly correlated genes have been removed in

both cases, the differences in the resulting accuracies are not particularly large, even 

though in some cases significant.

For a particular microarray analysis experiment, it may be that the optimal 

correlation threshold, b, needs estimating from the data. This may be a relatively 

straightforward task for a fixed number of genes, k. However, if k also needs optimising 

with respect to accuracy, inclusive of a decision-theoretic penalty for increasing the 

number of genes, then the optimisation procedure may become rather complex.

Previous research has looked into similar concepts. However, in general, the 

accuracy curves presented in this article are smoother and have better identifiable 

maxima compared to those in the literature (Jaeger et al., 2003). Jaeger et al. (2003) 

mention the idea of a threshold which removed genes from the ranking list if they 

correlated with a gene already selected. The difference with the correlation threshold 

considered within the present article is that genes are removed if they correlate with a 

gene of lower p-value, or higher test statistic, regardless of whether the gene was 

selected itself or not. As an example, suppose that we have genes A, B and C ranked in 

alphabetical order. Mathematically speaking, if gene C has a high correlation with gene 

B, and gene B has a high correlation with gene A, it does not necessarily follow that 

gene C has such a high correlation with gene A. However, under the method proposed 

herein, gene C would still not be selected since it had a high correlation with gene B, 

regardless of the fact that gene B was not actually chosen itself. By the nature of the 

biological application of microarray data, this is unlikely for the genes which are highly 

ranked in the ranking order due to the spread of expression values between the two 



groups which must occur for this to happen. However, even if such a case should occur, 

it is possible that, by the connection of correlations to an intermediary gene, the two 

genes are still from the same pathway, and thus maybe both should still not be chosen. 

A further option, which is considered in some pathway analysis techniques (see 

for example, Jaeger et al. (2003)), is to include only the most intermediary gene, for 

example, in the scenario above, gene B, which correlates with both of the others, 

assuming this to be most representative of that particular pathway. Yeung and 

Bumgarner (2003) considered a similar notion of a correlation threshold in connection 

with a shrinkage threshold for removing genes to increase the feature stability. 

Alternatives to selecting only the most significant individual genes have also been

considered in past papers, including Hotelling’s two-sample T²-statistic for groups of 

multiple variables (see, for example, Xiong et al. (2002)). It is not possible, due to 

computational limitations or efficiency, to test every possible collection of genes in this 

way and obtain a test statistic for each one. However, the multiple variable test statistic 

can be useful when it is necessary to decide between several sets of high-ranking 

genes. An alternative approach for a problem involving just two classification groups is 

the ‘Top Scoring Pair’ approach, as used by Edelman et al. (2009) and Zhao et al. 

(2010), which considers the relative difference of gene expression values between all 

possible pairs of genes so as to pick various pairs of genes for which the relative 

difference between their two gene expression values is predictive of correct group 

classification. This idea has recently (Yang and Naiman, 2014) been extended to top 

scoring sets of k genes for k-class problems. It is hoped that the ideas considered in this 

article for removing highly correlated individual genes may be extended to these more 

recent methodologies in order to eliminate highly correlated and redundant pairs or sets 

of genes from the building of a classifier.



In conclusion, we have shown that very good classification rates can be achieved

in certain applications through the use of some standard methods of gene selection. We 

have also seen that the application of a correlation threshold will often lead to a 

decrease of the classification accuracy. However, when the required number of genes is 

restrictively small, (which may be the case due to financial or computational reasons), 

we did observe situations in which the application of a threshold b<1 turned out to be 

beneficial.
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