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aDepartament de F́ısica Quàntica i Astrof́ısica & Institut de Ciències del Cosmos (ICC),

Universitat de Barcelona,

Mart́ı i Franquès 1, 08028 Barcelona, Spain
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1 Introduction

The low-energy worldvolume dynamics of a collection of Nc Dp-branes in flat space is de-

scribed by maximally supersymmetric Yang-Mills theory (SYM) in d = p+ 1 dimensions

with gauge group SU(Nc). The moduli space of this theory (with 2 ≤ p ≤ 7) is a Coulomb

branch parametrized by the expectation values of the scalar fields in the adjoint repre-

sentation of the gauge group. In the D-brane realization the origin of this moduli space

corresponds to the situation in which all the branes are coincident, and it can be described

holographically by a gravitational solution with a single throat. In contrast, a generic point

on the moduli space corresponds to non-coincident branes and is holographically modelled

by a geometry with multiple throats [1].

If the above SYM theory is coupled to matter in the fundamental representation

in a supersymmetry-preserving way, then the resulting theory possesses a Higgs branch

parametrized by mesonic-like operators. We will refer to the fundamental matter as ‘fla-

vor’ and, although it includes both bosonic and fermionic degrees of freedom, also as

‘quarks’. In the D-brane realization, the flavor degrees of freedom can be added by con-

sidering an appropriate intersection of the original Nc ‘color’ branes and a collection of
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Nf ‘flavor’ D(p+4)-branes [2]. The two cases of interest for us will be the D2-D6 and the

D3-D7 systems, respectively dual to three- and four-dimensional SYM theory with quarks.

The Higgs branch is then described by a situation in which some of the color branes have

dissolved inside the flavor branes. From the viewpoint of the flavor branes, the dissolved

color branes are described by an instantonic configuration of the non-Abelian gauge field

living on their worldvolume [3, 4].

The holographic description of the Higgs branch has been studied in the so-called

“probe approximation”. Early work includes [5, 6]; ref. [7] will be particularly useful to us.

In this approximation the backreaction on the spacetime metric and the other supergravity

fields of the flavor branes and the instanton is neglected. This is justified if the large-Nc

limit is taken à la ’t Hooft, i.e. with Nf fixed so that Nf/Nc → 0.1 In the gauge theory this

corresponds to a “quenched” approximation in which the effect of the quarks on the dynam-

ics of the gluons and the adjoint matter is ignored. In this approximation the most dramatic

property of the Higgs branch, namely the change of the effective rank of the gauge group as

a function of the energy scale, is not visible. The purpose of this paper is to construct the

holographic description of the Higgs branch in the unquenched case, namely to include the

backreaction of the flavor branes and the instanton. In particular, this means that we are

taking the large-Nc limit à la Veneziano, i.e. keeping Nf/Nc non-zero. As we will see, in our

solutions the Higgsing of the gauge group results in a cascading-like solution in which the

effective number of color branes varies as a function of the holographic radial coordinate.

The starting point for our construction will be the N = 1 supersymmetric solu-

tions found in [8] and [9]. These provide the holographic description of three- and four-

dimensional SYM theories with flavor, and of some quiver-like generalizations thereof, at

the origin of their moduli spaces. In the setups of [8, 9] each of the Nf individual flavor

branes wraps a different cycle of the internal geometry. The branes are smeared or dis-

tributed around the internal manifold by the action of a (subset of) its symmetry group.

The number of branes Nf is taken to be large so that the distribution can be considered

continuous on scales relevant to the supergravity description, but in such a way that the

distance between branes is still large compared to the string scale. In this way the action

for the entire set of flavor branes consists simply of Nf copies of the Abelian action for a

single brane. In other words, the flavor group is effectively Nf copies of U(1). The smearing

procedure (see [10] for a review) vastly simplifies the construction at the technical level,

since it reduces the equations of motion to a set of ordinary differential equations.

In order for the gauge theory to possess a Higgs branch, however, we must have a non-

Abelian flavor group U(nf).
2 To describe this on the gravity side we will consider Nf/nf

stacks of flavor branes with nf coincident branes each, instead of Nf individual branes. In

this way the effective action for the flavor branes becomes Nf/nf copies of the non-Abelian

action for nf overlapping D-branes. Each stack of flavor branes will carry a U(nf) instanton

solution on its worldvolume, and the branes+instanton system will then be smeared over

the internal geometry.

1This is true in an energy region whose size grows as Nf/Nc → 0. However, for arbitrarily small but

fixed Nf/Nc, there is typically an energy scale at which the probe approximation breaks down.
2See however [11] for an “Abelian Higgs branch” in the presence of a chemical potential.
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In section 2 we focus on three-dimensional gauge theories. This part of the paper

discusses the holographic description of the Higgs branch of supersymmetric flavored Yang-

Mills, Chern-Simons-Matter and quiver type theories. In this case most of the solutions

are completely analytic and can be written in closed form. We discuss both massless and

massive quarks and comment on the implementation of our ideas for ABJM-type theories.

Section 3 discusses flavored Yang-Mills and Klebanov-Witten quiver gauge theories in

four dimensions. In this case we focus on massless quarks only. This section builds on the

intuition developed in section 2 and requires the use of some numerics in order to construct

the solutions.

In section 4 we summarize our results.

2 Three-dimensional gauge theories

The starting point for constructing the gravity dual of the Higgs branches of N = 1 su-

persymmetric three-dimensional gauge theories with fundamental matter are the solutions

found in [8]. These provide the holographic description of these theories at the origin of

their moduli spaces. The six-dimensional internal geometries of the solutions are nearly

Kähler manifolds (NK). If the NK manifold is taken to be a six-sphere then the dual gauge

theory is SYM theory. Otherwise the gauge theory is a quiver-like theory.

The NK property implies the existence of a real two-form J , and a complex three-form

Ω, both globally-defined and verifying the differential conditions

dJ = 3 Im Ω , dRe Ω = 2 J ∧ J , (2.1)

and the wedgings

J ∧ Ω = 0 ,
1

3
J ∧ J ∧ J =

i

4
Ω ∧ Ω . (2.2)

For later convenience we choose the orientation to be such that

J ∧ J ∧ J = −6ω6 , (2.3)

with ω6 the volume form. The forms J and Ω will play an important role in our construc-

tion.

On the gravity side, the flavor degrees of freedom are represented by sets of D6-branes

in the geometry sourced by the color D2-branes. The flavor branes come in stacks of nf

branes each, so we will start with the non-Abelian action for nf coincident D6-branes.

Although we adopt the symmetrized-trace prescription [12], the result would be the same

with other prescriptions since we will only consider supersymmetric configurations. The

Dirac-Born-Infeld (DBI) part of the action in string frame takes the form

SDBI = −TD6

∫
d7ξ e−Φ Str

[√
−det (g7 + (2πα′)F )

]
, (2.4)

where g7 is the induced metric on the branes. In principle F is a U(nf) valued gauge field

strength, but we will only turn on its SU(nf) components.
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The action (2.4) is an extremely complicated non-linear action for the gauge field.

Fortunately, configurations that are selfdual (SD) or anti-selfdual (ASD) with respect to

the appropriate metric minimize the action and therefore solve the equation of motion.

Furthermore, preservation of supersymmetry selects either the SD or the ASD solution.

Although we will be interested in SD configurations, for completeness we will present some

of the formulas below for both cases.

We will restrict ourselves to configurations in which the non-Abelian field strength is

supported on the four-dimensional space inside the D6-branes that is orthogonal to the D2-

branes, since such configurations carry the same type of D2-brane charge as the undissolved

D2-branes. In this case, and assuming the (A)SD condition, it is easy to see that the de-

terminant in the DBI action becomes a perfect square. As a consequence, the symmetrized

trace reduces to a normal trace over gauge indices and the action can be written as

SDBI = −TD6

∫
d7ξ e−Φ

√
−det g7 tr

(
I +

(2πα′)2

4
F 2

)

= −TD6

∫
e−Φ tr

(
∗7I +

(2πα′)2

2
e012 ∧ F ∧ ∗4F

)
, (2.5)

where e012 are vielbein along the (Minkowski) directions common to both the D2- and the

D6-branes and ∗4 is taken with respect to the remaining directions. We thus see that, for

(A)SD configurations, all corrections to the Yang-Mills term contained in the DBI action

vanish exactly.

We will smear Nf/nf of these stacks along the directions transverse to the color D2-

branes in the same way as in ref. [8]. Note that we are distributing stacks of nf overlapping

flavor branes with a non-zero gauge field on them, and that the total number of D6-branes

is Nf. The DBI action for the supersymmetric distribution of branes reads

SDBI = −TD6

∫
e−Φ tr (K + I) ∧ Ξ , (2.6)

where

I = σ
(2πα′)2

2
e012 ∧ F ∧ F , σ2 = 1 , (2.7)

and K and Ξ the usual calibration and smearing forms [8], whose explicit expressions are

given below in (2.24) and (2.20), respectively. We have already used (anti)selfduality, the

sign σ being +1 for SD configurations and −1 for ASD configurations.

The full D6-brane action is the sum of the DBI part plus the Wess-Zumino (WZ) term,

which after smearing takes the form

SWZ =TD6

∫
tr

[
C7 −

(
2πα′

)
C5 ∧ F +

(2πα′)2

2
C3 ∧ F ∧ F −

(2πα′)3

6
C1 ∧ F ∧ F ∧ F

]
∧Ξ .

(2.8)

We see that a non-zero F induces several sources for the various Ramond-Ramond (RR)

supergravity potentials. This leads to modifications of the Bianchi identities for their field

strengths and, consequently, to modifications of the very definitions of these field strengths
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in terms of the potentials; for a detailed discussion see e.g. appendix A of [13]. Taking these

modifications into consideration and choosing to work with F2 and F4 as independent fields,

the equations of motion for the supergravity RR fields are

d ∗ F4 +H ∧ F4 − κ2TD6

(
2πα′

)2
tr (F ∧ F ) ∧ Ξ = 0 ,

d ∗ F2 +H ∧ ∗F4 +
κ2TD6

3

(
2πα′

)3
tr (F ∧ F ∧ F ) ∧ Ξ = 0 , (2.9)

whereas the Bianchi identities read

dF2 = −2κ2TD6 Ξ tr I = −2κ2TD6 nf Ξ , dF4 = H ∧ F2 . (2.10)

If we were considering an Abelian gauge field then the last equation would include a term

proportional to F ∧ Ξ that is here identically zero because SU(nf) matrices are traceless.

We see from the equation of motion for F4 that tr (F ∧ F ) acts as a source for this field,

consistent with the fact that an instanton density on the D6-branes corresponds to D2-

brane charge dissolved on the D6-branes. This term therefore encodes the Higgsing of the

gauge group and it will allow for its effective rank, as measured by the flux of F4, to run

with the holographic coordinate.

The Neveu-Schwarz (NS) three-form H only couples to the Abelian part of the branes’

action, so its equation is unmodified with respect to the one considered in [8]. Therefore,

as in that reference, we will set the NS form to zero, which solves identically its equation

of motion, and ignore it hereafter.

In contrast, the DBI action sources the other NS fields, namely the metric and the

dilaton, so it modifies their equations of motion. The equation for the dilaton is

R ∗ 1 + 4d ∗ dΦ− 4dΦ ∧ ∗dΦ− κ2 TD6 e
Φ tr (K + I) ∧ Ξ = 0 , (2.11)

whereas the Einstein’s equations in the string frame take the form

RMN + 2∇M∇NΦ = T IIA
MN + T sources

MN + T inst
MN , (2.12)

The explicit expressions for the stress tensors sourced by supergravity fields, T IIA
MN , and by

the flavor branes T sources
MN , can be found in [8]. The contribution from the gauge field, T inst

MN ,

can be computed by taking into account that it only couples to the Minkowski part of the

metric through its determinant e012, as seen in (2.7). This is in accordance with the results

of [14], where it was shown that the energy-momentum tensor of (A)SD fields vanishes in

non-linear electrodynamics, corresponding to the fact that the action can be reduced to

F ∧ F , which is clearly topological.

In the form written in (2.12), where the Ricci scalar has been eliminated using the dila-

ton equation of motion, this means that the transverse directions just pick a contribution

T inst
mn ∗ 1 = gmn

κ2 TD6

2
eΦ tr I ∧ Ξ , (2.13)

with m,n running along the radial and internal directions. Similarly for the Minkowski

components we find:

T inst
µν ∗ 1 = −gµν

κ2 TD6

2
eΦ tr I ∧ Ξ . (2.14)
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This completes the set of equations to be solved for (A)SD configurations of the gauge field

on the flavor branes.

In order to solve the equations above we will first write an appropriate ansatz. Re-

garding the RR forms, we proceed by noting that the only modification with respect to the

situation with no instanton3 is the instanton source for the four-form in the first equation

in (2.9). Given that we expect this to encode color charge that will run with energy due

to the Higgsing, we take the ansatz

F2 = Qf(r) J ,

F6 = ∗F4 =
Qc(r)

6
J ∧ J ∧ J , (2.15)

where we allow the effective number of D2-branes, proportional to Qc(r), to depend on the

radial coordinate. Qf(r) is a constant if the quarks are massless but it becomes r-dependent

for massive quarks, so in general we parametrize it as

Qf(r) = Qf p(r) , (2.16)

with Qf a constant. The function p(r) = 1 for massless quarks, whereas for massive quarks

p(r) is a monotonically increasing function of r with p(rm) = 0 and p(∞) = 1. The position

rm > 0 at which p(r) vanishes is the minimum distance between the D6-branes and the

D2-branes and it is related to the quark mass through

mq =
rm

2π`2s
. (2.17)

The total D6-brane charge Qf, which is proportional to the number of flavors in the gauge

theory, is given by

Qf =
(2π`s)gs
V2

Nf =
2π`2s
V2

λ
Nf

Nc
, (2.18)

where the dimensionless volume V2 =
∫
J and λ is the ’t Hooft’s coupling λ, which in three

dimensions has dimensions of mass. This charge sets the energy scale below which the

flavor degrees of freedom start to dominate the dynamics [8],

Uflavor ∼
Qf

`2s
∼ λ Nf

Nc
. (2.19)

The fact that the globally-defined two-form J is non-closed is crucial to solve the

Bianchi identity for F2 in (2.10). The exterior derivative of J , eq. (2.1), fixes the smearing

form to be

Ξ = − Qf

2κ2TD6 nf

[
p′ dr ∧ J + 3 p Im Ω

]
, (2.20)

where ′ denotes differentiation with respect to r.

In order to solve the equation of motion for F4 we now need an ansatz for the instanton

density. Since we wish to construct the corresponding backreaction within the same ansatz

3Note that F ∧F ∧F ∧Ξ vanishes identically since neither F nor Ξ have components along the Minkowski

directions.
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as in [8], the instanton density must not break any of the symmetries assumed in that

reference. For this to be true the instanton density must be expressible in terms of the

invariant forms of the original solution and it must therefore take the form

tr (F ∧ F ) ∧ Ξ = Ψ(r) dr ∧ Re Ω ∧ Ξ , (2.21)

where Ψ(r) is a function with dimensions of mass that we will solve for below. The equation

of motion for the four-form fixes the (derivative of the) D2-brane charge density to be

Q′c(r) =
6Qf(r)

nf

(
2πα′

)2
Ψ(r) . (2.22)

We thus see that Ψ(r) directly encodes the running color charge. In particular, if Ψ = 0

then the charge is just a constant and we recover the solutions of [8].

Since by assumption the instanton density (2.21) breaks no symmetries of the original

background we can use the same metric and dilaton ansatz as in the original solutions,

ds2
s = h−

1
2 dx2

1,2 + h
1
2 e2χ

[
dr2 + r2 ds2

6 (NK)
]
,

eΦ = h
1
4 e3χ , (2.23)

where ds2
6 (NK) is the the metric of a nearly Kähler manifold normalized to have a Ricci

scalar R6 = 30. The functions h and χ depend only on the radial coordinate r and were

determined in [8] by solving two first-order BPS equations. In terms of these functions the

calibration form that enters the DBI action takes the form

K = h
1
4 e4χ d3x ∧

(
r3 dr ∧ Re Ω +

1

2
r4 J ∧ J

)
. (2.24)

Using the ansatz above it is possible to check that, provided we consider SD config-

urations, corresponding to σ = +1 in (2.7), the only modification of the first-order BPS

equations of [8] is the replacement Qc → Qc(r), so they read

χ′ =
Qf(r)

r2
e2χ ,

h′ = −Qc(r)

r6
e−2χ − 3Qf(r)

r2
e2χ h . (2.25)

It is also easy to see that, with the sign choice σ = +1, there is an exact cancellation

between the instanton contribution to the DBI action (2.6) and the second term in the WZ

action (2.8),4 as required by the no-force condition for supersymmetric configurations of

branes.

Since the equation for the function χ does not depend on the D2 charge, its solution

is unmodified and reads

e−2χ(r) = 1 + 2

∫ ∞
r

Qf (z)
dz

z2
, (2.26)

4Note that, with the convenient choice (2.3), C3 = e−Φ e012 for F4 = dC3 = ∗F6.
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where we have fixed an integration constant by rescaling the radial and Minkowski coordi-

nates. In contrast, the warp factor is determined by the color charge distribution through

h(r) = e−3χ(r)

∫ ∞
r

Qc(y) eχ(y)

y6
dy , (2.27)

where we have again fixed an integration constant by taking the D2-brane decoupling limit.

For constant Qc = Qc the integral reduces to the one obtained in [8].

The only remaining task is to compute the instanton density Ψ(r) associated to a self-

dual field strength. Selfduality is a metric-dependent property, so the particular equations

governing it are specific to each of the NK manifolds that we will consider in the next

subsections.

2.1 Super Yang-Mills theory

2.1.1 Massless quarks

In this case the internal geometry is a six-dimensional sphere, whose metric can be written

as

dΩ2
6 = dθ2 + sin2 θ dΩ2

3 + cos2 θ dΩ2
2 , (2.28)

with dΩ2
n the metric of Sn. For massless quarks the D6-branes wrap equatorial three-

spheres such as the one sitting at θ = π/2. The induced metric on any stack of branes is

therefore

ds2
7 = h−

1
2 dx2

1,2 + h
1
2 e2χ

(
dr2 + r2 dΩ2

3

)
= h−

1
2 dx2

1,2 + h
1
2 e2χ dz2

4 , (2.29)

where dz2
4 is the metric of R4. The instanton will be defined in this Euclidean space. Since

the self-duality equations are conformally invariant, we can ignore the warp factor h and

the function χ.

Our final goal is to construct SU(nf) instantons whose instanton density is spherically

symmetric so that symmetries are preserved. Since this can be done using SU(2) instantons

as building blocks, we will consider first this case in detail and then show how to generalize

it.

Let us write the metric of the three-sphere as

dΩ2
3 = ω2

1 + ω2
2 + ω2

3 , (2.30)

with ωi left-invariant forms satisfying

dωi = εijk ωj ∧ ωk . (2.31)

We then take the following SU(2) gauge potential5

A = a1(r)ω1 ⊗ τ1 + a2(r)ω2 ⊗ τ2 + a3(r)ω3 ⊗ τ3 , (2.32)

5A possible term ar(r) dr ⊗ I is pure gauge since it does not contribute to F .
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where τ i are Hermitian generators obeying[
τ i, τ j

]
= iεijkτ

k , tr
(
τ iτ j

)
= δij/2 . (2.33)

Note that the functions ai are dimensionless. The gauge potential is of course gauge-

dependent, and we are choosing to lock the gauge index with the index of the SU(2)

left-invariant forms. With this we compute the field strength

F = dA+ i A ∧A
=
[
a′1 dr ∧ ω1 + (2a1 − a2a3)ω2 ∧ ω3

]
⊗ τ1 + · · · , (2.34)

where the dots stand for cyclic permutations of the indices 1, 2, 3. The gauge-invariant

instanton density is then given by

tr (F ∧ F ) =
d

dr

[ (
a2

1 + a2
2 + a2

3

)
− a1a2a3

]
dr ∧ ω1 ∧ ω2 ∧ ω3 . (2.35)

Requiring that F be (A)SD with respect to the flat metric on R4,

F = σ ∗4 F , σ2 = 1 , (2.36)

yields the equation

a′1 =
σ

r
(2a1 − a2 a3) (2.37)

and its two cyclic permutations. The sign σ is the same that appears in (2.7). Notice

that the non-linear terms are present because of the non-Abelian nature of the instanton

and are crucial to obtain a regular solution. Given the rotational symmetry on S3 of our

problem, it is consistent to take all components to be equal,

a1 = a2 = a3 = a , (2.38)

in which case the solution is

a =
2 r2σ

r2σ + Λ2
. (2.39)

The only free parameter is the integration constant Λ, which has dimensions of length. On

the gravity side Λ is the size of the instanton, whereas on the gauge theory side it corre-

sponds to the vacuum expectation value (VEV) of one of the (s)quark bilinear operators

that parametrize the Higgs branch [5]:

v =
Λ

2π`2s
. (2.40)

We will come back to this operator at the end of this section. For the moment it suffices

to note that the gauge group is spontaneously broken at the energy scale set by v.

As we already mentioned, the supersymmetric solution has a selfdual field strength so

we will take σ = +1 henceforth. Furthermore, the instanton number is

k =
1

8π2

∫
tr (F ∧ F ) = 12 Λ4

∫ ∞
0

r3

(r2 + Λ2)4 dr = 1 . (2.41)
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This solution can be constructed on each stack of branes and then smeared together with

them to match (2.21). The agreement is ensured by the fact that Re Ω is a calibration

form for supersymmetric branes on NK manifolds [15, 16]. In other words, the pullback of

Re Ω together with the radial direction is the space in which we construct the instanton, so

smearing it will give precisely (2.21). For the six-sphere, the pullback of Re Ω is the volume

of the three-sphere wrapped by the D6-branes, as can be checked using the explicit form of

the NK structure given in [8]. As a consequence, comparing with (2.35) we get that Ψ(r)

is related to the instanton potentials through

Ψ(r) =
d

dr

[(
a2

1 + a2
2 + a2

3

)
− a1 a2 a3

]
=

d

dr

[
3 a2 − a3

]
. (2.42)

The fact that the solution above has instanton number 1 is not surprising given that we

have required that the instanton density tr (F ∧ F ) be spherically symmetric. More general

SU(2) instanton configurations with k > 1 break this symmetry. Intuitively, one can think

of these configurations as built out of k individual instantons centered at different points,

which is why they break rotational symmetry. These configurations should certainly give

rise to interesting supergravity solutions upon backreaction, but such solutions are outside

the scope of our ansatz. See appendix A, however, for an approximate solution of this type.

As we will now see, the limitation k = 1 is not present for SU(nf) instantons. In

this case spherically symmetric configurations can be constructed by embedding the SU(2)

solution above into SU(nf). The different values of k result from the different ways in

which SU(2) can be embedded into SU(nf) (see [17] for a review of this procedure). A

trivial example consists of embedding the SU(2) solution as a 2 × 2 diagonal block of the

nf × nf matrix, setting to zero the rest of the components of the SU(nf) matrix. Less

trivially, one can embed several SU(2) solutions as various 2 × 2 diagonal blocks inside

the SU(nf) matrix. More generally, one may choose different irreducible representations of

SU(2) with spins jn and use them to embed several SU(2) instantons as (2jn+1)×(2jn+1)

diagonal blocks inside the SU(nf) matrix. The only condition is that the combined size of

these matrices fit inside an SU(nf) matrix, namely that∑
n

(2jn + 1) ≤ nf . (2.43)

Note that each of the SU(2) instantons that we are using as a building block can have

a different size Λn. Thus, for each of these instantons the gauge potential is still given

by (2.32) and (2.39) with Λ replaced by Λn. In contrast, since for different representations

the generators τ i are normalized differently, one finds that the instanton charge of each of

this building blocks is

kn =
2

3
jn (jn + 1) (2jn + 1) . (2.44)

The factor jn(jn + 1) comes form the quadratic Casimir, while (2jn + 1) is the dimension

of the representation. We thus arrive at the final conclusion that the total charge and the

total instanton density are given by

k =
∑
n

kn , Ψ(r) =
∑
n

knΨn(r) , (2.45)
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with Ψn(r) the instanton density of a k = 1 SU(2) instanton of size Λn. The fact that differ-

ent building blocks can have different sizes is dual on the gauge theory to the statement that

different operators can acquire different VEVs, thus breaking the gauge group at different

scales vn. In most of what follows we will focus on the case of a single irreducible repre-

sentation of SU(2), namely on the case in which the sums above consist of only one term.

We now have all the ingredients to construct the running color charge. For an irre-

ducible representation the density is simply

Ψ(r) = k
d

dr

[(
a2

1 + a2
2 + a2

3

)
− a1a2a3

]
= k

d

dr

[
3 a2 − a3

]
, (2.46)

where in the last equation we have used rotational symmetry along the cycle wrapped by

each stack of branes. Moreover, for massless quarks Qf is just a constant given by (2.18),

so replacing (2.46) in (2.22), using (2.39) and integrating we obtain

Qc(r) = qc +
6Qf k (2πα′)2

nf
a2 (3− a)

= qc +
24Qf k (2πα′)2 r4

(
r2 + 3Λ2

)
nf (r2 + Λ2)3 . (2.47)

The integration constant qc is physically the number of color branes that have not dissolved

inside the flavor branes. The function Qc(r)− qc is the integrated color charge carried by

the instanton. In figure 1 we plot this function for SU(nf) instantons built with two SU(2)

instantons with k1 = k2 = 1 and sizes such that Λ2/Λ1 = 1 and Λ2/Λ1 = 20. Starting at

large r, we see that in the first case the decrease in the gauge group takes place at a single

scale Λ1 = Λ2. In contrast, in the second example a partial breaking occurs at each of

the two different scales Λ2 and Λ1, in between which the rank of the gauge group remains

approximately constant.

We can now solve for the functions in the metric. Since for massless quarks Qf is a

constant, eq. (2.26) can be simply integrated with the result

e−2χ(r) = 1 +
2Qf

r
. (2.48)

The warp factor h can also be integrated in closed form, but the result is lengthy and not

very illuminating. Its leading terms in the UV and IR can be inferred from the large- and

small-r behavior of the color charge. In the UV, when r →∞, the leading term is

h =
Qc

5 r5
+ · · · , (2.49)

with

Qc = qc +
24Qf k (2πα′)2

nf
. (2.50)

This is the expected behavior for a configuration with total D2-charge Qc, and we see that

the second term on the right hand side is the contribution from the smeared instantons.

The quantization condition for the color charge is

Qc =
(2π`s)

5gs
V6

Nc =
(2π)5`6s
V6

λ . (2.51)
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nf [Qc(r)−qc]
24Qf (2πα′)2

r/Λ1

Figure 1. Integrated D2-brane charge densities carried by SU(nf) instantons built with two SU(2)

instantons with k1 = k2 = 1 and sizes such that Λ2/Λ1 = 1 (continuous, blue curve) and Λ2/Λ1 = 20

(dashed, red curve).

This, together with (2.18) and the relation between the volumes 12V6 = V2V3, with V3 the

volume of the three-cycle wrapped by each stack of branes (in this case V3 = 2π2 for a

three-sphere), means that we may rewrite eq. (2.50) as

Nc = nc +
kNf

nf
, (2.52)

where nc is the number of color branes that are not dissolved inside the flavor branes and

kNf/nf is the number of color branes carried by the instantons. This is exactly the expected

result, since we have Nf/nf stacks of flavor branes and each of them carries an instanton

with k units of charge.

We now turn to the IR behavior of the warp factor. The r → 0 limit of the color

charge is Qc → qc. If qc 6= 0 then the leading term in the warp factor is

h =
4 qcQf

9 r6
+ · · · . (2.53)

This is the same behavior as in [8] except for the replacement of the total color charge Qc

by the IR charge qc. This is expected, since the charge carried by the instanton decouples

in the far IR. In the gauge theory, this is exactly the physics of Higgsing: the gauge group

is spontaneously broken, so its effective rank decreases with the energy scale. If qc 6= 0

then the breaking is only partial and the unbroken gauge group in the far IR is SU(nc). In

this case the theory flows to a fixed point and the IR geometry is AdS4 × S6 with a radius

and a constant dilaton given by those of [8] with the replacement Nc → nc:

L(nc) =
4π`s

3
√

3

(
V2

V6

) 1
4
(
nc

Nf

) 1
4

,

eΦ(nc) =
1

gs

1

2
√

3

(
V 5

2

V6

) 1
4

(
nc

N5
f

) 1
4

. (2.54)
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10
-4

10
0

10
4

Φ

r/Qf

Figure 2. Dilaton as a function of the radial position, which is dual to the gauge theory energy

scale. The values of Qc and Qf are the same for all the curves so that the asymptotic behaviors coin-

cide. In contrast, the ratio Qf/Λ decreases from top to bottom. Specifically, the curves correspond

to the ratios 103 (blue, full line), 100 (red, dashed line) and 10−3 (green, dotted line) respectively.

If qc = 0 then the leading IR behavior of the warp factor is

h =
288 k (2πα′)2Q2

f

nf Λ4 r2
+ · · · . (2.55)

The corresponding solution is singular in the IR both in Einstein and string frames.

The Renormalization Group (RG) flows described by the solutions that we have just

discussed fall into different qualitative classes depending on the hierarchies between several

energy scales (for this discussion we assume that qc 6= 0). Consider first a single irreducible

representation of SU(2). In this case the solution is completely characterized by v and

Uflavor, which control the scale at which the Higgsing takes place and the scale at which the

dynamics becomes approximately conformal, respectively. If v � Uflavor then, starting at

high energies, the RG flow first transitions at the scale v from a SYM theory with Nc colors

to a SYM theory with nc colors. At a lower scale Uflavor the flow then enters a conformal

region. This situation is illustrated by the green, dotted curve in figure 2, which shows the

dilaton profile for this case. We see that at large r there is first a transition between two

curves with the same slopes, whereas at a smaller r the dilaton becomes constant with a

value Φ(nc), as appropriate to the AdS4 solution with radius L(nc).

If instead Uflavor � v then the RG flow first transitions at the scale Uflavor from SYM

with Nc colors to a conformal theory described by the AdS4 geometry with radius L(Nc)

and a constant dilaton Φ(Nc). At the lower scale v the Higgsing takes place and the theory

evolves to a new conformal theory with smaller values of the radius and dilaton L(nc) and

Φ(nc), respectively. This is illustrated by the continuous, blue curve in figure 2.

Finally, if v ∼ Uflavor, then there is a unique transition in which the effective number of

colors gets reduced at the same time that the dynamics becomes approximately conformal.

This is illustrated by the dashed, red curve figure 2.
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Consider now the solution associated to a general SU(nf) instanton built with several

SU(2) instantons with sizes Λn. For simplicity assume that all the corresponding scales

vn, as well as Uflavor, are hierarchically separated from one another. Then at each scale

vn > Uflavor the theory transitions between two SYM theories with different numbers of

colors. In contrast, at each vn < Uflavor the theory transitions between two approximately

conformal theories dual to two AdS4 solutions with different radii and dilatons. Therefore

the RG flow exhibits quasi-conformal behavior, also known as “walking dynamics”, in all

the regions in between the scales vn < Uflavor. The size of each walking region is the

difference between the two corresponding vn’s.

We finally come back to the gauge theory operator dual to the instanton field. Upon

dimensional reduction along the compact directions, the components of this field give rise

to scalar fields in the non-compact part of the geometry transforming in a specific rep-

resentation of SU(nf). These scalar fields are then dual to scalar operators in the gauge

theory transforming in the same representation of the global SU(nf) flavor symmetry of

the gauge theory. In the case of the AdS4 IR fixed point at the very end of the flow, these

scalar operators have dimension ∆ = 13/3 and the scalar fields in AdS4 correspond to

turning on a source for the operators in the gauge theory.6 The simplest way to see this is

to change to the AdS-adapted radial coordinate ρ2 = r3/Qf, so that the leading term for

the gauge potential scales as O
(
ρ4/3

)
, giving ∆ − 3 = 4/3.7 Only quadratic (or higher)

combinations of these operators backreact on the dilaton and the warp factor, since these

are only sensitive to SU(nf) gauge singlets.

Determining the dimensions of the scalar operators in the UV is more subtle, since

the dual gauge theory is not a CFT and consequently the geometry is not asymptotically

AdS. However, this can be done by writing the solution in the so-called conformal frame

and using the results from [18]. The outcome is as follows. The masses of the scalar

fields fall in the region in which two quantizations are possible. In the so-called alternative

quantization, the dual operators have dimension 1, as one would expect at weak coupling

for an squark-bilinear operator, and the flow is triggered by a vacuum expectation value

(VEV), as one would expect for a state on the Higgs branch.

2.1.2 Massive quarks

We will now consider the case of massive quarks. On the gravity side this is described by

the fact that the D6-branes are now embedded non-trivially in the geometry sourced by

the D2-branes. Specifically, the S3 inside the S6 wrapped by the D6-branes is no longer

a constant equatorial sphere but becomes r-dependent. Writing the metric on the S6 as

in (2.28), the S3 wrapped by the D6-branes is specified by a function θ(r). The induced

metric then takes the form:

ds2
7 = h−

1
2 dx2

1,2 + h
1
2 e2χ

[ (
1 + r2θ′2

)
dr2 + r2 sin2 θ dΩ2

3

]
. (2.56)

6There are also sources for operators of dimensions 6 and 11/3 that are present even in the absence of

the instanton [8].
7Note that the flow cannot approach an IR fixed point with a non-zero vaccuum expectation value.

Physically, this would lead to a breaking of the IR conformal symmetry. Mathematically, it would lead to

a divergent term as ρ→ 0 of the form ρ−∆.
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Crucially, the instanton field does not modify the equation for the embedding function θ(r)

since, as we already mentioned, the stress energy tensor sourced by (A)SD fields vanishes.

Thus we have as in [8] that a BPS embedding satisfies

cos θ =
rm
r
. (2.57)

The radial position rm is related to the quark mass through (2.17). In the four-dimensional

metric inside the squared brackets in (2.56), which is no longer R4, the modified equation

for (anti)selfduality reads:

a′ =
σ

r

(
1 + r2θ′2

)1/2
sin θ

a (2− a) , (2.58)

where we have already assumed that all three components of the gauge potential are equal,

as in (2.38). Using the embedding (2.57) this can be integrated straightforwardly with the

result

a =
2
(
r2 − r2

m

)σ
(r2 − r2

m)σ + Λ2
. (2.59)

From this point onwards we will restrict ourselves again to the selfdual case, σ = +1.

A non-vanishing mass for the quarks translates into a dependence of the flavor charge

on the radial position as in (2.16). If all the quarks have the same mass then p(r) is related

to the embedding function through [8]

p(r) = sin4 θ(r) =

[
1−

(rm
r

)2
]2

Θ (r − rm) . (2.60)

Inserting this in (2.22) we get the running color charge, which can be integrated analytically.

The result is qualitatively the same as that for massless quarks, although the precise form is

more complicated due to the dependence of Qf(r) on the radial coordinate. Notice that at

r = rm the charge due to the instantons vanishes and we are left with Qc = qc for r < rm.

The running color charge is continuous and differentiable (in fact C3). This ensures

that the solution for the metric functions is C2 and reads

e−2χ =

 1 + 16
15

Qf
rm

if r < rm

1 + 2Qf
r

[
1− 2

3

(
rm
r

)2
+ 1

5

(
rm
r

)4]
if r ≥ rm

h =

 h0 +
(

1 + 16
15

Qf
rm

)
qc

5 r5 if r < rm

e−3χ
∫∞
r
Qc(y)
y6 eχdy if r ≥ rm ,

(2.61)

with the constant h0 fixed by continuity.

As in the case of massless quarks, the solutions fall into several qualitative classes

depending on the energy scales involved. For simplicity let us discuss here only the case

of a single irreducible representation of SU(2). This solution is characterized by three

physical scales. The scale Uflavor (equivalently, Qf) at which the quarks start to dominate

the dynamics, the scale mq (equivalently, rm) at which the quarks decouple from the
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dynamics, and the scale v (equivalently, Λ) at which the Higgsing of the gauge group takes

place. Depending on the hierarchy between these scales the physics is as follows. For this

discussion we will assume that all the scales are well separated. If some of them coincide

then some of the transitions below take place simultaneously.

Suppose first that mq � v � Uflavor. In this case the theory starts as SYM with Nc

colors in the far UV, it then enters the conformal region at Uflavor, it subsequently undergoes

the Higgsing at v and the consequent transition between two AdS spaces, and finally at

the scale mq the quarks decouple. If qc 6= 0 then at this point the theory enters again a

pure SYM phase (i.e. with no flavors) with nc colors described by a D2-brane geometry.

If instead qc = 0 then the gauge group is completely Higgsed and there are no degrees of

freedom below mq, i.e. the theory is gapped. The geometry for r < rm is simply flat space

and all the fluxes vanish.

Suppose now that mq � Uflavor � v. In this case the first transition is the Higgsing

of the gauge group from SYM with Nc colors to SYM with nc colors, and it takes place

at the scale v. The theory then enters the conformal phase at Uflavor and finally at mq the

quarks decouple. At this point the physics is as in the previous paragraph.

Finally, if Uflavor � mq � v, then the first transition at v is again between two SYM

theories, and at the second transition at the scale mq the quarks decouple. Therefore the

theory never enters a conformal regime. Below the scale mq the physics is again as in the

two previous cases.

2.2 Chern-Simons-matter theory

Given that the AdS geometry describing the IR fixed point in the absence of the instanton

is a solution by itself [8], we may detach it from the D2-brane part of the geometry and

construct the following flows between two fixed points:

e−2χ =
2Qf

r
, (2.62)

h =
k (2πα′)2Q2

f

18nf

{
8nf qc

k (2πα′)2Qf r6
+

5184

r2Λ4
+

432

Λ2 (r2 + Λ2)2 +
1836

Λ4 (r2 + Λ2)

− 1755
√

2

r3/2Λ9/2

[
π + arcoth

(
r + Λ√

2rΛ

)
+ arctan

(
1−

√
2r

Λ

)
+ arctan

(
1 +

√
2r

Λ

)]}
.

This solution interpolates between two AdS geometries with radii related through

LUV

LIR

=
L(Nc)

L(nc)
=

(
1 +

kNf

nf nc

)1/4

> 1 , (2.63)

as corresponds to a change in the rank of the gauge group from Nc = nc +kNf/nf to nc. As

explained in [8], the dual field theory in the UV is a Chern-Simons-Matter (CSM) theory

resulting from a relevant deformation of a SYM theory. This deformation generates an RG

flow along which the YM coupling decouples and a CS term is generated dynamically. Since

here we are just Higgsing the CSM theory we conclude that the IR AdS geometry is also

dual to a CSM theory. Note also that an AdS geometry cannot be dual to three-dimensional

SYM since the latter is not conformal.
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As in the previous section, in the UV the masses of the scalar fields arising from the

dimensional reduction of the instanton fall in the region in which two quantizations are

possible. In the alternative quantization, the flow is triggered in the UV conformal theory

purely by the VEV of a dimension ∆UV = 4/3 operator that induces the Higgsing. The IR

fixed point is reached through sources for operators of dimensions ∆IR = 13/3, 6. The first

one is the operator dual to the instanton, whereas the second one is an additional operator

that gets sourced along the flow.

2.3 Quiver-like theories

According to the results in [8] there is a solution preserving N = 1 for every NK internal

manifold. If the internal manifold is not the six-sphere, then the dual gauge model is

presumably a quiver-like theory. Leaving aside the six-sphere, only three other regular

examples are known: the product S3 × S3, the complex projective space CP3 and the flag

manifold F (1, 2) ' SU(3)/U(1)2. We will only discuss the construction of the Higgs branch

in the first two geometries, since the third case is rather similar to the second one and we

do not expect new features to arise.

2.3.1 S3 × S3 internal geometry

The NK metric of S3 × S3, written in terms of two sets of left-invariant forms ρi and ηi,

normalized as above, reads

ds2
6 =

4

9

3∑
i=1

(
ρ2
i + η2

i − ρi ηi
)
. (2.64)

There are only two inequivalent choices for BPS-embedded D6-branes. Either they wrap

one of the two three-spheres, in which case

ρi = 0, ηi = ωi or ηi = 0, ρi = ωi , (2.65)

or they wrap a diagonal combination of the two three-spheres, so that

ρi = ηi = ωi . (2.66)

In either case the induced metric on the D6-branes is

ds2
7 = h−

1
2 dx2

1,2 + h
1
2 e2χ

(
dr2 +

4

9
r2 dΩ2

3

)
. (2.67)

We have to construct an (anti)selfdual solution with respect to the metric in parenthesis,

which is not simply flat space but a cone.8 The very same ansatz (2.32) for the gauge

potential can be adopted, and requiring (anti)selfduality leads to the following equation

a′ =
3σ

2 r
a (2− a) , (2.68)

8Note, however, that the full induced metric is non-singular but AdS4×S3 in the IR, since the spacetime

metric is AdS4 × S3 × S3 [8].
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where we have already assumed that all three components of the gauge potential are equal,

as in (2.38). The regular solution is

a =
2 r3σ

r3σ + Λ3
, (2.69)

which is very similar to the one in flat space but with a different power of the radial

coordinate. Supersymmetry requires again σ = +1. On the other hand, using an explicit

construction of the NK structure, it can be seen that

Re Ω|D6 =

(
2

3

)3

ω1 ∧ ω2 ∧ ω3 . (2.70)

Comparing with (2.21) and (2.35) gives

Ψ = k

(
3

2

)3 d

dr

[
3a2 − a3

]
=

243 k r5 Λ6

(r3 + Λ3)4 , (2.71)

from which it is straightforward to get the running color charge. The instanton number,

obtained by integrating the instanton density over the cone, is still k.

It is also possible to solve for the warp factor according to (2.27). The structure of

the solution is very similar to that for the six-sphere. The UV geometry is again that of

nc + kNf/nf D2-branes. The IR is AdS if qc 6= 0 or a singular geometry with h ∼ r−3/2 as

r → 0 if qc = 0. In the first case the IR deformation due to the instanton corresponds now to

an operator of dimension ∆ = 5, since the instanton field (2.71) scales with a different power

of the radial coordinate compared to the previous section. If qc 6= 0 and v < Uflavor then

there is an energy range where the model is quasi-conformal. The D2-brane region in the

UV can also be decoupled from the geometry to obtain a flow between two CFTs due purely

to Higgsing with a VEV of a dimension ∆ = 2 operator (in the alternative quantization).

2.3.2 CP3 internal geometry

We can also consider the complex projective space CP3 as a nearly NK manifold, whose

metric is squashed with respect to the Fubini-Study one. In this case the BPS branes wrap

a squashed RP3 ' S3/Z2 whose metric, after some manipulations as seen in [19], reads

ds2
3 =

1

2

(
dθ2 + sin2 θ dϕ2

)
+

1

4

(
dψ̂ + cos θ dϕ

)2
, (2.72)

with the ranges 0 ≤ θ < π, 0 ≤ ϕ < 2π and 0 ≤ ψ̂ < 2π. In particular, the range of ψ̂

is not the one for a sphere. This RP3 is related to the one considered in the unquenched

embeddings of [20–22] but squashed due to the backreaction of the smeared flavors. The

smearing also reduces the supersymmetry to N = 1.

In terms of left-invariant forms, the induced metric on the D6-branes is thus

ds2
7 = h−

1
2 dx2

1,2 + h
1
2 e2χ

[
dr2 + r2

(
2
(
ω2

1 + ω2
2

)
+ ω2

3

) ]
. (2.73)

– 18 –



J
H
E
P
1
1
(
2
0
1
6
)
0
2
1

Notice the squashing of the third direction with respect to the others, inherited from the

squashing of the RP3 inside CP3. Once again, the ansatz (2.32) is suited for constructing

selfdual solutions. The relevant set of equations is now

a′1 =
σ

r
(2a1 − a2 a3) ,

a′2 =
σ

r
(2a2 − a3 a1) , (2.74)

a′3 =
σ

2 r
(2a3 − a1 a2) .

The main new feature is that, due to the squashing, which breaks part of the rotational

symmetry, we can set a1 = a2 but a3 6= a1. These feature will also appear when we consider

four-dimensional gauge theories in the next section.

The equations (2.74) cannot be integrated in closed form, but it is possible to find a

regular expansion around the IR,

a1 = c1

[
r2 − c3 r

3 +
c2

3

2
r4 +O

(
r5
)]

,

a3 = c3 r −
c2

1

6
r4 +O

(
r5
)
, (2.75)

and a normalizable solution around the UV,

a1 = 2− cUV r
δ +

32 +
√

17

76
c2

UV r
2δ +O

(
r3δ
)
,

a3 = 2− 1

4

(√
17− 1

)
cUV r

δ +
1 + 3

√
17

38
c2

UV r
2δ +O

(
r3δ
)
, (2.76)

where

δ =
(

1−
√

17
)
/2 < 0 . (2.77)

Numerical integration determines the IR constants c1, c3 in terms of the UV constant cUV as

(cUV)1/δ ' 0.420884 c3 ' 0.323277 c
1/2
1 . (2.78)

Note that the functional form of these relations is fixed by dimensional analysis, with the

numerical integration fixing only the coefficients. The full solution, which is shown in fig-

ure 3, is therefore determined in terms of a single parameter with dimensions of length,

c
−1/δ
UV , which plays the role of the size of the instanton.

From the NK structure we can read Re Ω|D6 = 2ω1∧ω2∧ω3, and from this the running

charge and the warp factor. The number of D2-branes induced by the instanton is kNf/2nf ,

consistently with the fact that due to the orbifolding (as reflected in the range of ψ̂) the

instanton number is k/2. For this quiver, and due to the squashing that breaks rotational

symmetry, different components of the gauge potential contain different powers of the radial

coordinate and therefore are dual to operators of different dimensions. Specifically, in the

IR we have ∆1 = 13/3 for a1 and ∆2 = 11/3 for a3. There is nevertheless a single scale,

corresponding to the size of the instanton, that determines the sources for both operators.

– 19 –



J
H
E
P
1
1
(
2
0
1
6
)
0
2
1

Ψ/c
1/δ
UV

c
1/δ
UV r

Figure 3. Instanton density as a function of the radial position for the CP3 internal geometry.

Given that addition of flavor to the ABJM geometry produces a squashing of the CP3

analogous to the one we have discussed [19], the very same construction of instantons can

be made for ABJM in the presence of backreacting flavor. In the solutions of [19], the

squashing depends on the ratio between the number of flavors and the Chern-Simons (CS)

level and it will appear both in the induced metric and the selfduality equations. As a

consequence, the radial powers of the instanton solution and the dimension of the dual

operator will depend on this ratio. The solutions constructed in this way will correspond

to a flow between ABJM with flavor, which is conformal, and another conformal fixed point

in the IR. The flow is triggered by an operator getting a VEV and the rank of the dual

gauge group is reduced along the flow due to Higgsing.

3 Four-dimensional gauge theories

We now turn our attention to N = 1 four-dimensional gauge theories. For simplicity we

will only consider massless quarks. We will follow [9] with slight differences in conventions

and, as in that reference, work in Einstein frame, as opposed to the previous section where

we worked in string frame. This means that some dilaton factors must be taken into

consideration when comparing the two sections. Otherwise most of the setup is common

between the two cases, so we will give fewer details here.

The basic flavored solution was constructed in [9] and corresponds to the backreaction

of smeared D7-branes in the background of color D3-branes. The gravity solution possesses

a singularity in the UV, which is dual to the presence of a Landau pole in the gauge theory.

In the IR the geometry approaches a spacetime that one may call a “logarithmically-

corrected AdS”. Despite the fact that the metric is AdS up to logarithmic terms, the

geometry is singular.

The five-dimensional internal geometries of the flavored solutions are Sasaki-Einstein

(SE) spaces. Their structure is that of a U(1) fibration over a Kähler-Einstein (KE) base.
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These manifolds are equipped with two real, globally defined forms, a one-form η and a

two-form J (the Kähler form of the base), satisfying the conditions

dη = 2 J , J ∧ J ∧ η = −2ω5 , (3.1)

with ω5 the volume form of the five-dimensional SE manifold.

We consider Nf/nf stacks of D7-branes, each of them consisting of nf overlapping D7-

branes so that the total number of flavor branes is Nf. All the branes wrap the U(1) fiber

generated by η, but each stack wraps a different two-dimensional submanifold of the KE

base. Through the smearing procedure, all these two-dimensional submanifolds are related

to one another by the action of an isometry of the KE base. The DBI action for the smeared

stacks of flavor branes with (A)SD gauge fields on them can be written as in eq. (2.6),

SDBI = −TD7

∫
tr
(
eΦK + I

)
∧ Ξ , (3.2)

where K and Ξ are the usual calibration and smearing forms [9], whose explicit expressions

are given below in (3.8) and (3.11), respectively. The instanton contribution is

I = σ
(2πα′)2

2
e0123 ∧ F ∧ F , σ2 = 1 , (3.3)

with e0123 vielbeins in the Minkowski directions. Notice in particular that the instanton

term does not source the dilaton, in agreement with the fact that it represents dissolved

D3-branes. Analogously the WZ term reads

SWZ = TD7

∫
tr

[
C8 −

(
2πα′

)
C6 ∧ F +

(2πα′)2

2
C4 ∧ F ∧ F −

(2πα′)3

3!
C2 ∧ F ∧ F ∧ F

+
(2πα′)4

4!
C0 F ∧ F ∧ F ∧ F

]
∧ Ξ . (3.4)

This term alters several of the equations of motion and Bianchi identities for the RR forms.

In the case of interest here the only modifications are:

dF1 = −2κ2TD7 Ξ tr I = −2κ2TD7 nf Ξ ,

dF5 = −κ2TD7

(
2πα′

)2
tr (F ∧ F ) ∧ Ξ . (3.5)

Recall that the equation of motion for the five-form is the same as its Bianchi identity, so

again we see that the instanton acts as a source of color charge. Einstein’s equations are

also modified with respect to the ones solved in [9] due to the presence of the instanton,

and since we are working directly in Einstein frame, we have to add the contribution of

the (anti)selfdual Yang-Mills field only along the Minkowski directions

T inst
µν ∗ 1 = −gµν κ2 TD7 tr I ∧ Ξ. (3.6)

Let us now present our ansatz. The SE internal manifold is a U(1) fibration over a KE

base. The backreaction of the D7-branes causes a relative squashing between them [9], so

the metric takes the form

ds2 = h−
1
2 dx2

1,3 + h
1
2 e2f

(
dρ2 + e2g−2fds2

4 + η2
)
, (3.7)
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with ds2
4 the metric of the KE base, η the fiber over it and ρ the holographic radial

coordinate. We recover the SE structure normalized to have curvature R5 = 20 when f = g.

The radial coordinate ρ that we will work with in this section is dimensionless, whereas

the warp factor h has dimensions of (length)4. This is a convenient choice here despite

the fact that it implies the somewhat unusual feature that the Minkowski coordinates have

dimensions of (length)2. In terms of the functions above the calibration form that enters

the DBI action takes the form

K = e2f+2g d4x ∧
(

dρ ∧ η ∧ J +
1

2
e2g−2f J ∧ J

)
. (3.8)

Following the same logic as in the three-dimensional case, the only modification we

expect is a varying number of colors. Therefore we write the RR forms as

F5 = (1 + ∗) Qc(ρ)ω5 ,

F1 = Qf(ρ) η ,
(3.9)

where we have allowed for the number of D3-branes to run with the radial coordinate. As

in the previous section Qf(ρ) = Qf p(ρ), with Qf a constant, p(ρ) = 1 for massless quarks

and p(ρ) a non-constant function of ρ for massive quarks [23]. The total D7-brane charge

is given by

Qf =
1

2πV1
λ
Nf

Nc
=

V3

8πV5
λ
Nf

Nc
, (3.10)

with λ = 2πgsNc the ’t Hooft coupling and V1 =
∫
η. Note that, unlike in the three-

dimensional case, now Qf and the ’t Hooft coupling are dimensionless.

The fact that the globally-defined one-form η is non-closed is crucial to solve the

Bianchi identity for F1 in (3.5). The exterior derivative of η, eq. (3.1), fixes the smearing

form to be given by

Ξ = − Qf

2κ2TD7nf

[
p′ dρ ∧ η + 2p J

]
, (3.11)

where ′ denotes differentiation with respect to ρ. As stated above, we will only consider

the massless case, so henceforth we will set p = 1.

The three-dimensional submanifold wrapped by the calibrated branes has support

along J ∧η inside the SE manifold, suggesting that the instanton density will take the form

tr (F ∧ F ) ∧ Ξ = Ψ(ρ) dρ ∧ J ∧ η ∧ Ξ . (3.12)

The equation of motion for the five-form then relates the running D3-charge to the instanton

density as

Q′c(ρ) =
2Qf

nf

(
2πα′

)2
Ψ(ρ) . (3.13)

Note that, unlike in the D2-D6 case, here not just both the gauge potentials ai but also

the instanton density Ψ(ρ) are dimensionless.

Since the instanton density is related to the non-abelian gauge field exactly as in

eq. (2.46) we have

Qc = qc +
2 k Qf (2πα′)2

nf

[(
a2

1 + a2
2 + a2

3

)
− a1 a2 a3

]
, (3.14)
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with qc the number of D3-branes not dissolved inside the flavor branes. This equation is

analogous to that in the first line of (2.47) except that we have not assumed that all the

ai are equal.

The BPS equations that determine the solution are the same as those in [9] with the

replacement of Qc by Qc:

Φ′ = Qf e
Φ

g′ = e2f−2g

f ′ = 3− 2 e2f−2g − Qf

2
eΦ

h′ = −Qc e
−4g . (3.15)

For massless quarks Qf is a constant and the solution of the first three equations, which

are independent of the color charge, is [9]

eΦ = − 1

Qf ρ
,

e2f = −6ρ (1− 6ρ)−2/3 e2ρ ,

e2g = (1− 6ρ)1/3 e2ρ , (3.16)

where we have already fixed some integration constants. The range of the radial coordinate

is ρ ∈ (−∞, 0). In the UV, corresponding to ρ = 0, there is a singularity, as can be seen

from the fact that the dilaton diverges. In the dual gauge theory this corresponds to the

presence of a Landau pole.

3.1 Super Yang-Mills theory

When the dual gauge theory is SYM the SE manifold is the five-sphere. If in addition the

quarks are massless, then each stack of D7-branes wraps an equatorial three-sphere inside

it. Taking the fiber to be the third direction in S3, the induced metric reads

ds2
8 = h−1/2dx2

1,3 + h1/2 e2f
[
dρ2 + e2g−2f

(
ω2

1 + ω2
2

)
+ ω2

3

]
, (3.17)

with ωi the usual SU(2) left-invariant one-forms.

As above, we begin with the SU(2) instanton and we use it to construct an SU(nf)

instanton. Adopting the same ansatz for the gauge potential as in eq. (2.32) with r replaced

by ρ, (anti)selfduality with respect to the metric inside the squared brackets in (3.17) results

in the following equations:

a′1 = σ (2a1 − a2 a3) ,

a′2 = σ (2a2 − a3 a1) ,

a′3 = σ e2f−2g (2a3 − a1 a2) . (3.18)

In the present conventions, the selfdual configuration solves the equations of motion and is

BPS, so we restrict ourselves to σ = 1. Because of the squashing of the metric we cannot
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take all the ai equal to one another but only a2 = a1, in which case the equations reduce to

a′1 = ξ a1 (2− a3) ,

a′3 = e2f−2g
(
2a3 − a2

1

)
. (3.19)

In the present situation ξ = 1, but we will give some expressions below for generic ξ because

in section 3.2 we will be interested in the values ξ = 3/2 and ξ = 3/4.

We have not been able to solve the equations above analytically, but asymptotic solu-

tions can be found both in the UV and in the IR. In the UV we have

a1 = c1

[
1− ξ (c3 − 2) ρ+

ξ2

2
(c3 − 2)2 ρ2 − ξ

6

[
6c2

1 − 12c3 + (c3 − 2)3ξ2
]
ρ3 +O

(
ρ4
)]

,

a3 = c3 + 3
(
c2

1 − 2c3

)
ρ2 − 4

[
6c3 + c2

1 (−3 + ξ(c3 − 2))
]
ρ3 +O

(
ρ4
)
,

h = h0 −

[
qc +

2 k Qf (2πα′)2

nf

(
c2

3 − c2
1(c3 − 2)

)]
ρ+O(ρ2) , (3.20)

where we have solved for the color charge using (3.14). In order for the solution to have

the same asymptotics as in [9] we will require h0 = 0.

The IR at ρ → −∞ is more complicated. The equations do not admit a simple

expansion in powers of ρ but a double exponential-polynomial expansion is needed:

a1 = c̃1 e
2ξ ρ − ξ

6
c̃1c̃3 e

2ξ ρ

[
3 e2ρ(1− 6ρ)1/3 + (3e)1/3 Γ

(
1

3
,

1

3
− 2ρ

)]
+O

(
e6ρ
)

a3 = c̃3 e
2ρ(1−6ρ)1/3+

c̃2
1

2
e4ξ ρ

[
1−2ξe2(1−2ξ)ρ

(
e2ξ−1 (1−6ρ)

3(2ξ−1)2

)1/3

Γ

(
2

3
,

1−6ρ

3
(2ξ−1)

)]
+O

(
e6ρ
)

h = h̃0 +

(
−1

3e

)2/3 qc

24/3

[
Γ

(
1

3
,−2

3
+ 4ρ

)
− Γ

(
1

3
,−2

3

)]
+ · · · . (3.21)

Notice that the instanton charge, and along with it the number of color branes in the

UV, only depends on the UV asymptotic behavior of these functions, in particular on the

combination

k =
2

3
j (j + 1) (2j + 1) lim

ρ→0

1

4

[
a2

1(2− a3) + a2
3

]
=

1

6
j (j + 1) (2j + 1)

[
c2

1(2− c3) + c2
3

]
, (3.22)

where we have assumed an SU(nf) instanton built out of a single irreducible representation

of SU(2).

We now come back to the case ξ = 1. The full solution must be found numerically

with appropriate boundary conditions. A generic selfdual configuration will depend on two

parameters, for example the values of the UV constants c1, c3. We expect one combination

of them to correspond to the instanton size. We will fix the other combination by requiring

that the instanton density vanish in the UV, i.e. at ρ = 0, since we want the instanton

– 24 –



J
H
E
P
1
1
(
2
0
1
6
)
0
2
1

density to be supported away from the Landau pole. This requirement selects either c1 = 0

or c3 = 2. In the first case the equations can be integrated exactly to

a1 = a2 = 0 ,

a3 = c3 e
2g = c3 (1− 6ρ)1/3 e2ρ . (3.23)

This particular solution is effectively Abelian and does not give rise automatically to a

quantized instanton number so we will not consider it further.9

Instead we will fix c3 = 2, which automatically implies that the instanton charge is

quantized in terms of j. This UV condition has two effects. First, together with the

requirement h0 = 0, it implies that the UV behavior of the warp factor is

h = −Qc ρ+O(ρ2) , (3.24)

with

Qc = qc +
8 k Qf (2πα′)2

nf
. (3.25)

This is the analog of eq. (2.50) and it shows that the charge-k instanton contribution to the

total color charge is the second term on the right hand side. The quantization condition

of the color charge is

Qc =
(2π`s)

4

2π V5
λ , (3.26)

with V5 =
∫
ω5 the volume of the SE manifold. Together with (3.10) and the relation

between volumes 4V5 = V3V1, with V3 the volume of the three-cycle wrapped by each

stack of branes (in this case V3 = 2π2 for a three-sphere), implies that we may rewrite

eq. (3.25) as (2.52), where in this case nc is the number of color D3-branes that are not

dissolved inside the flavor D7-branes and kNf/nf is the number of D3-branes carried by

the instantons. We thus conclude that at the UV one finds simply the expected D3-D7

solution with total color charge given by the sum of the dissolved plus the undissolved

charges, as for the D2-D6 system. Also in parallel with that case, if qc 6= 0 then the IR

solution is the same as in the D3-D7 without instanton but with nc as the effective number

of color branes. This can be seen by expanding the Γ-function in (3.21) for ρ→ −∞:

h =
qc

32/328/3

e−4ρ

(−ρ)2/3
+ · · · . (3.27)

This is precisely the IR behavior of the D3-D7 geometry of [9] with color charge qc. Thus

the solution is singular in the IR, as in that reference. If qc = 0 the IR behavior of the

warp factor is milder,

h = −6c̃2
3Qf ρ+ · · · , (3.28)

but the solution is still singular, as illustrated by the fact that scalar curvature diverges as

ρ→ −∞.

9There is another exact Abelian solution given by a2 = a3 = 0 and a1 = e2ρ that, albeit regular, will

also not be considered further.
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a1,3

ρ

(a) c1 = 0.

a1,3

ρ

(b) c1 = 1.
a1,3

ρ

(c) c1 = 1.4.

a1,3

ρ

(d) c1 = 1.9.

Figure 4. Gauge field potentials a1 = a2 (blue) and a3 (orange) for c3 = 2 and different values of

c1 for the instanton solution in the case of SYM theory.

The second effect of the UV condition c3 = 2 is that it forces a relation between the

integration constants in the IR and it leaves us with a one-parameter family of solutions

labelled by c1. As we will now see, this parameter plays the role of the size of the instanton,

Λ. There is a symmetry c1 → −c1 inherited from the a1 → −a1 symmetry in the equations

of motion, so we will consider only c1 ≥ 0. When c1 = 0 we have that a1 vanishes exactly

and we are back to the Abelian solution (3.23). The values of the IR parameters c̃1, c̃3

and h̃0 are determined as functions of c1. Since c̃1 and c̃3 diverge as c1 → 2− we will

only consider 0 < c1 < 2. We provide the numerically-generated profiles for a1 and a3

in figure 4 for selected values of the constant of integration c1. Similarly, in figure 5 we

provide the radial profiles for the instanton density Ψ(ρ) as determined from eq. (2.46).

Inspection of these plots shows that for low values of c1 the instanton charge is located

closer to the UV than for the cases with c1 ∼ 2. At intermediate values some structure

seems to be present, but this might be an artifact of the radial coordinate used to integrate

the equations of motion. The IR parameters c̃1 and c̃3 as a function of c1 are shown in

figure 6(left). They start with the values c̃1 = 0 and c̃3 = 2 and then grow monotonically

with c1 until c1 = 2 is reached. At this point the IR parameters diverge. In figure 6(right)

we show the parametric dependence of c̃3 as a function of c̃1 ≥ 0 (this range is inherited
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Ψ

ρ

(a) c1 = 0.

Ψ

ρ

(b) c1 = 1.
Ψ

ρ

(c) c1 = 1.4.

Ψ

ρ

(d) c1 = 1.9.

Figure 5. Instanton density Ψ(ρ) for c3 = 2 and different values of c1 for the instanton solution

in the case of SYM theory.

from the a1 → −a1 symmetry we have used above to set c1 > 0). We observe that at large

values of the IR parameters the relationship between the two is approximately linear.

As in the D2-D6 case, we could consider an SU(nf) instanton built out of several

irreducible representations of SU(2) of different dimensions. In this case the total instanton

charge and the total instanton densities would take the form (2.45) (with r replaced by

ρ), where each Ψn(ρ) would be determined by a corresponding value of the UV integration

constant, cn1 . This general solution would give rise to an RG flow that would gradually

transition at the different scales associated to the cn1 from the D3-D7 solution with charges

Qc, Qf in the far UV to either the D3-D7 solution with charges qc, Qf or the solution (3.28)

in the deep IR.

3.2 Klebanov-Witten quiver theory

The so called T1,1 is a SE manifold with a well known dual gauge theory: the Klebanov-

Witten quiver. Its metric, normalized to R5 = 20, which can be written as

ds2
5 =

1

6

2∑
i=1

(
dθ2

i + sin2 θidϕ
2
i

)
+

1

9

(
dψ +

2∑
i=1

cos θidϕi

)2

, (3.29)
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c̃1,3

c1

c̃3

c̃1

Figure 6. (Left) The IR parameters c̃1 (blue) and c̃3 (orange) as a function of the UV parameter

c1 for the instanton solution in the case of SYM theory. (Right) Relationship between the IR

parameters.

with the ranges

0 ≤ θi < π , 0 ≤ ϕi < 2π , 0 ≤ ψ < 4π , (3.30)

describes a U(1) bundle over S2×S2. There are two types of BPS embeddings for D7-branes

in this geometry.

3.2.1 Chiral embedding

We first consider chiral embeddings [24] in which θi and ϕi are constant for either i = 1 or

i = 2. Due to the Z2 symmetry interchanging the spheres the two choices are equivalent.

In terms of left-invariant forms normalized as in eq. (2.31) the induced metric on the

D7-branes is

ds2 = h−1/2dx2
1,3 + h1/2 e2f

(
dρ2 + e2g−2f 2

3

(
ω2

1 + ω2
2

)
+

4

9
ω2

3

)
. (3.31)

Notice that we have again a radial-dependent squashing of the fiber with respect to the

base. The solution for the metric components is as in (3.16). (Anti)selfduality requires the

different gauge-potential components to verify

a′1 =
3σ

2
(2a1 − a2 a3) ,

a′2 =
3σ

2
(2a2 − a3 a1) , (3.32)

a′3 = σ e2f−2g (2a3 − a1 a2) .

The numerical coefficient on the right-hand-side of the equations is different compared to

that for S5. This translates into a difference in the powers of the radial expansions and in

the dimension of the dual operator and the asymptotic expansions (3.20) and (3.21), which

must be read with ξ = 3/2. Repeating the numerical analysis performed for the S5 case

we find no qualitative differences for the quantities plotted in figures 5 and 6.
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3.2.2 Non-chiral embedding

The other type of supersymmetric embeddings are dubbed non-chiral [25] and correspond to

θ1 = θ2 = θ , ϕ1 = ϕ2 = ϕ . (3.33)

The cycle wrapped by the branes is thus

ds2
3 =

1

3

(
dθ2 + sin2 θdϕ2

)
+

1

9
(dψ + 2 cos θdϕ)2

=
1

3

(
dθ2 + sin2 θdϕ2

)
+

4

9

(
dψ̂ + cos θdϕ

)2

=
4

3

(
ω2

1 + ω2
2

)
+

16

9
ω2

3 , (3.34)

where we have defined 2ψ̂ = ψ and as a result we are dealing with a (squashed) RP3 instead

of a sphere, which must be taken into consideration when computing the instanton number.

To construct a self-dual solution we need to solve

a′1 =
3σ

4
(2a1 − a2 a3) ,

a′2 =
3σ

4
(2a2 − a3 a1) , (3.35)

a′3 = σ e2f−2g (2a3 − a1 a2) .

The numerical coefficient on the right-hand-side of the equations is different compared with

those for S5 or the chiral embedding described above. This translates into a difference in

the powers of the radial expansions and in the dimension of the dual operator and the

asymptotic expansions (3.20) and (3.21), which must be read with ξ = 3/4. Repeating

the numerical analysis performed for the S5 case we find no qualitative differences for the

quantities plotted in figures 5 and 6.

4 Discussion

We have constructed the supergravity duals of states on the Higgs branches of three- and

four-dimensional N = 1 supersymmetric gauge theories with flavor. On the gravity side

the system consists of Nc color D2-branes and Nf flavor D6-branes in the three-dimensional

case, and Nc color D3-branes and Nf flavor D7-branes in the four-dimensional case.

The most dramatic effect of the Higgsing on the gauge theory side is that the effective

number of colors decreases with the energy scale from Nc in the UV to nc < Nc in the

IR. On the gravity side the Higgsing is encoded in the dissolution of Nc − nc of the color

branes inside the flavor branes. From the viewpoint of the flavor branes, the dissolved

color branes appear as an instanton configuration of the non-Abelian gauge fields living

on their worldvolume. In order to see the effect of the Higgsing on the gravity side we

have included the backreaction of the instanton on the supergravity fields. The result is a

cascading-like solution in which the effective number of color branes, measured by the flux

of the appropriate Ramond-Ramond form, decreases along the holographic direction.
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Our solutions are supersymmetric as expected from the fact that states on the Higgs

branch preserve the supersymmetries of the gauge theory. In fact, the VEVs of the oper-

ators that parametrize the Higgs branch are exact moduli in the gauge theory. Moreover,

different operators can acquire different VEVs, thus breaking different parts of the gauge

group at different scales. On the gravity side these features are reflected in the fact that

instantons of different sizes can be essentially superposed, and in the fact that these sizes

are arbitrary parameters in our solutions.

The picture that emerges on the gravity side is conceptually very simple. Consider

first the case of massless quarks. If the Higgsing is only partial, i.e. if nc 6= 0, then the

solutions interpolate from the usual backreacted solutions with Nc color branes and Nf

flavor branes in the UV, to the same solution in the IR but with Nc replaced by nc. In

the D2-D6 case the UV solution is the usual D2-brane solution, since the D6-branes give

subleading contributions in this limit, whereas the IR solution is AdS4 [8]. In the D3-D7

case the UV is a singular geometry due to the presence of a Landau pole in the gauge theory,

and the IR geometry is a “logarithmically-corrected” (and singular) AdS5 solution [9]. If

instead the Higgsing is complete and nc = 0, then the UV geometries remain the same

but the IR geometries are completely modified and they turn out to be singular both in

the D2-D6 and in the D3-D7 cases. The flow from the far UV to the deep IR geometries

can either take place through a single transition if a single VEV on the Higgs branch is

turned on, or through several transitions if several VEVs are turned on. On the gravity

side a transition takes place each time that the holographic radial coordinate reaches the

characteristic size of one of the instantons in the solution. In the D2-D6 case this has the

interesting consequence that, for solutions with multiple instantons of appropriate sizes,

there exist several distinct regions in which the geometry is approximately AdS4 separated

from one another by the transitions above. On the gauge theory side this corresponds to

several energy ranges in which the theory exhibits quasi-conformal or “walking” dynamics.

The main modification of the picture above introduced by a non-zero quark mass is

that the flavor branes terminate at a radial position proportional to the quark mass. As

a consequence, if the breaking of the gauge group is only partial then the solution below

the scale set by the quark mass is the usual solution corresponding to nc color branes. If

instead the breaking is complete, then nc = 0 and the solution below the scale set by the

quark mass is simply flat space.
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A An instanton shell

In the bulk of the paper we have considered instanton solutions centered at the origin of

the four-dimensional space transverse to the color branes. One may also consider solutions

in which the instanton center is at an arbitrary point in this space. In the gauge theory

this corresponds to turning on a vacuum expectation value for some of the adjoint scalars.

These type of solutions would still be supersymmetric, but generically they would break

some rotational symmetries and therefore they are not captured by our ansatz. However,

since the instantons are mutually BPS, one may consider a distribution of a large number

of them arranged in such a way that rotational symmetry is preserved if the distribution is

treated as continuous. In this section we will work in this approximation, which of course

is valid only at length scales that are large compared to the inter-instanton distance. For

simplicity, we will assume that the four-dimensional space is R4, as in e.g. the case of

massless quarks in three-dimensional SYM.

It can be seen that a multi-instanton solution for the gauge group SU(2) can be simply

obtained using an ansatz due to ’t Hooft (see also [26]) in which the gauge potential reads

am =
1

2
σmn ∂n log φ , (A.1)

with σmn the 2×2 matrix representation of the Lorentz generators in the four-dimensional

Euclidean space, whose properties can be found elsewhere. A selfdual configuration can be

obtained by solving the Laplace equation for the potential

�φ
φ

= 0 . (A.2)

The single-instanton case corresponds to the solution (in spherical coordinates)

φ = 1 +
Λ2

r2
, (A.3)

while for n instantons centered at the positions ~zi the solution is

φ = 1 +
n∑
i=1

Λ2
i

(~z − ~zi)2 , (A.4)

where ~z are Cartesian coordinates in R4. Notice that when all the instantons are centered

at the same position the solution collapses to that of a single instanton of size Λ2 =
∑

i Λ2
i .

From this potential the instanton density is computed as

tr (FmnF
mn) = −1

2
�� log φ , (A.5)

and its integral, counting the instanton number, gets a contribution from each pole in (A.4).

We can consider a large number of instantons all located at a distance r0 from the origin

and take the continuous limit, restoring in this way the spherical symmetry. The problem is
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thus analogous to computing the electrostatic potential for a charged sphere. The potential

outside the ball is as if all the charge were at the origin, while inside the ball it is constant:

φ =

 1 + Λ2

r2
0

if r ≤ r0

1 + Λ2

r2 if r > r0 .
(A.6)

The resulting instanton density is however not continuous and indeed vanishing for r < r0.

As a consequence, the color charge density (2.22), which is the integral of the instanton

density, is continuous but not differentiable. This is expected since these features occur at

r = r0 and we know that the solution is only trustable at large distances from the shell.

Moreover, the total instanton charge is

k = − 1

16π2

∫
∗4�� log φ =

Λ4
(
3r2

0 + Λ2
)(

r2
0 + Λ2

)3 . (A.7)

The result on the right-hand side is not quantized and, in fact, it is always smaller than 1

if r0 > 0. These features are not surprising given that all the multi-instanton nature of the

solution (A.4) is encoded in the regions near each of the poles, which are discarded here

due to the smearing and the continuous approximation.

The form of the supergravity solution obtained from the backreaction of this instanton

shell is extremely simple. Outside the shell, at r > r0, the solution is exactly the same as

those in the bulk of the paper for an instanton of size Λ. As r → r+
0 the supergravity fields

approach finite values. The solution inside the shell is simply that of the D2-D6 system

with no instanton [8] with charges qc and Qf with the boundary condition that the value

of the fields as r → r−0 agrees with their value as r → r+
0 .
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