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Abstract

The Bayesian treed multivariate Gaussian process (BTMGP) and Bayesian treed Gaussian
process (BTGP) provide straightforward mechanisms for emulating non-stationary multivariate
computer codes that alleviate computational demands by fitting models locally. Here, we show
that the existing BTMGP performs acceptably when the output variables are dependent but
unsatisfactory when they are independent while the BTGP performs contrariwise. We develop
the BTMGP with linear model of coregionalization (LMC) cross-covariance, an extension of
the BTMGP, that gives satisfactory fitting compared to the other two emulators regardless of
whether the output variables are locally dependent. The proposed BTMGP is able to locally
model more complex and realistic cross-covariance functions. The conditional representation
of LMC in combination with the right choice of the prior distributions allow us to improve
the MCMC mixing and invert smaller matrices in the Bayesian inference. We illustrate our
empirical results and the performance of the proposed method through artificial examples, and
one application to the multiphase flow in a full scale regenerator of a carbon capture unit.

Keywords: multivariate Gaussian process, linear model of coregionalization, Bayesian treed
Gaussian process, Markov chain Monte Carlo

1. Introduction

Computer codes have recently gained popularity because they can simulate physical systems
which many times are too costly to be observed in practice. Despite the availability of faster and
parallelized computational resources, it is often too expensive to run such models for all possible
input conditions. To overcome this computational barrier, several methods based on Gaussian
processes (Cressie, 1993) have been proposed to build up surrogate models which can be used
to predict the response surface using only a few observations. To the best of our knowledge, the
first attempt of the statistics community to build a computer surrogate starts with the seminal
papers of Currin et al. (1988) and independently Sacks et al. (1989).

For multivariate output the modeling of the cross-covariance function in the Gaussian process
is crucial for the best representation of the data; see (Gelfand et al., 2010; Cressie and Wickle,
2011) for recent reviews. The separable cross-covariance model (Mardia and Goodall, 1993;
O’Hagan et al., 1999; Oakley and O’Hagan, 2002; Conti and O’Hagan, 2010) has been used as
an easy and computationally fast model to deal with multivariate spatial data and computer
experiments. Two main limitations of the separable model are the symmetric property and the
assumption that the correlation parameters are the same over the input space for each distinct
output. The linear model of coregionalization (LMC) (Grzebyk et al., 1994; Wackernagel, 2003)
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is a more general model of the cross-covariance function which is based on linear transformations
of independent latent processes. Different variations of LMC have been proposed to deal with
the computational difficulties and non-stationarity in the variance (Schmidt and O’Hagan, 2003;
Gelfand et al., 2004). Another approach, based on latent dimensions, to model the cross-
covariance function has been proposed in Apanasovich and Genton (2010). However, most of
the above literature focuses on stationary cross-covariance functions.

To address non-stationary cases Gelfand et al. (2004) proposed a method based on the idea
that varying the coefficients of the latent variables results in varying variance matrix spatially.
However, this can model only a special case of non-stationarity since it does not allow for the
spatial correlation to vary on space. Moreover, the implementation comes with a huge compu-
tational cost. Konomi et al. (2014) developed a multivariate model based on the Bayesian treed
multivariate Gaussian process (BTMGP) with separable cross-covariance function that extends
the Bayesian tree models proposed by (Gramacy and Lee, 2008) to the multivariate output. The
proposed BTMGP with separable cross-covariance leads to low computational cost Bayesian in-
ference in a non-stationary environment. However, the separable cross-covariance is limited
to only model some particular types of dependencies. On the other hand the multiple BTGP
cannot model the dependency between outputs. Both of these methods may have problematic
behavior depending on the application problem. In specific, the traditional univariate BTGP
performs well in the independent scenario but not in the dependent scenario. For instance, the
existing BTMGP performs well in the dependent scenario but not in the independent scenario.

In this paper we extend the BTMGP with separable cross-covariance to that of BTMGP
with LMC cross-covariance. The Bayesian tree can overcome most of the stationary LMC cross-
covariance limitations. Moreover, the use of the Bayesian tree reduces the computational cost
by fitting the multivariate Gaussian process independently in every MCMC iteration. In spite
of these nice features of the Bayesian tree, the trans-dimensional reversible jump pair of moves
in the Bayesian inference become cumbersome since a lot of parameters have to be proposed.
In addition, sampling from the full posterior distribution of the joint LMC is a challenging
task and the MCMC sampler may result in a very slow convergence (Gelfand et al., 2004).
To solve these issues we utilize the conditional representation of LMC and assign a particular
set of prior distributions. We manage to integrate out the parameters associated with the
mean and the variance and reduce the number of parameters proposed in the trans-dimensional
reversible jump moves. Moreover, inference based on the conditional representation of LMC
becomes computationally easier since our method inverts smaller covariance matrices inside
each external node of the Bayesian tree.

Given that the independent and the separable model are special cases of the LMC, one
can expect the performance of the BTMGP with conditional representation of LMC cross-
covariance to give better results in terms of prediction. To show this in practice, the proposed
BTMGP model is compared, in several case studies, to the BTMGP with independent cross-
covariance model, the multiple BTGP proposed by Gramacy and Lee (2008) and the BTMGP
with separable cross-covariance model proposed by Konomi et al. (2014). We perform the
comparison in two artificial examples, and one application in the multiple flow in a full scale
regenerator of carbon capture unit

Compared to BTMGP with separable cross-covariance model, significant improvements are
shown when the spatial variation of the multivariate computer experiment is different for dif-
ferent outputs. This is shown mainly in the first illustration study. The simulation study shows
that the proposed BTMGP is more robust than BTMGP with separable cross-covariance on
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possible deviations from the assumption of dependent output. Moreover, it maintains the good
features of BTMGP with separable cross-covariance when the outputs are dependent. Com-
pared to the multiple BTGP, the proposed model significant improvements are shown when
there is a dependency between outputs and similar results when the dependence assumption is
violated. Significant differences are shown mostly in the second illustration study. Moreover, in
the application we show improvement in the prediction intervals of the multivariate output.

The rest of the paper is organized as follows: In Section 2 we review the LMC, its variations,
and the Bayesian tree. In Section 3 we describe the Bayesian inference and prediction for the
Bayesian tree with coregionalization. In Section 4 we illustrate the BTMGP with LMC cross-
covariance and compare it with BTMGP and multiple BTGP in artificial examples and real
application of multiple flow in a full scale regenerator of carbon capture unit. Conclusions are
presented in Section 5.

2. Model

Let us consider a physical problem with input (or spatial) domain X ⊂ Rkx , where kx is the
dimension of the input (spatial) space. Let η(xi) ∈ Rq denote the q× 1 vector observed output
at input xi, n denote the number of input (spatial) observations, Ỹ = (ηT (x1), . . . ,ηT (xn))T

denote the (nq)× 1 observed output vector and Y = (η(x1), . . . ,η(xn))T denote the N = n× q
observed output matrix.

2.1. Bayesian tree
The Bayesian tree provides a straightforward mechanism for modeling nonstationary data

and can reduce the computational demands by fitting simple models locally. A Bayesian model
averaging (BMA) approach allows for explicit estimation of predictive uncertainty, which can
vary over space. In many applications, fitting a stationary multivariate GP may not be ap-
propriate since the mean, the variance, and the spatial dependency may differ from one input
subregion to the other.

The Bayesian tree (Chipman et al., 1998) partitions the input space in a tree form. Chipman
et al. (1998) uses a linear model, and Gramacy and Lee (2008) uses a Gaussian process inside
of each external node. In the multivariate case Konomi et al. (2014) extended these models to
the multivariate Gaussian process based on the separable cross-covariance function suggested
by Mardia and Goodall (1993) and O’Hagan et al. (1999). Conditional on a treed partition,
the prediction of the BTMGP model is done independently within each subregion. We follow
the same setting to generalize the BTMGP model proposed in Konomi et al. (2014) with LMC
cross-covariance function. In the discussion below we present the likelihood and priors of the
BTMGP.

2.2. Likelihood based on the LMC cross-covariance
We consider the multivariate GP regression model:

η(x) = βTh(x) +w(x) + ε(x), (1)

where h(x) is the m× 1 vector of the basis functions at x, β is the linear regression coefficient
of dimension m× q and ε(x) is the measurement error process (nugget error).

A crucial part of the model is the zero mean multivariate GP w(x) = (w1(x), . . . , wq(x))T ,
which captures dependences both within measurements at a given site and across the sites. The
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cross-covariance matrix function of w(x) is defined as cw(x,x′) = [cov(wr(x),wr′(x′))]
q
r,r′=1.

For any integer n and any collection of input sites X, we denote the multivariate realization
w = (wT (x1), . . . ,wT (xn)) which follows an nq × 1 multivariate normal distribution w ∼
MVN(0,Cw), where Cw is an nq × nq matrix.

In general, the LMC model can be written as w(x) = Av(x), where A is a q×r, with r ≤ q,
non-singular transformation matrix that explains the association among the q output variables,
and v(x) is a vector of r independent, zero mean, unit variance GPs with correlation functions
ρ1(x,x′;λ1), . . . , ρr(x,x′;λr), and hyperparameters λi. The most basic coregionalization model
is the intrinsic specification from Matheron (1982) where A is a q× q full rank matrix and v(x)
are i.i.d. spatial processes. This model is equivalent to the separable cross-covariance model
proposed by Mardia and Goodall (1993).

The correlation function of vj is of particular importance as it defines the smoothness of the
random field. Different choices can be made here. The Matérn and power exponential correla-
tion families are the two more general and popular choices. In the Matérn correlation function

ρj(x,x′;λj) ∝
(∑

k=1:kx
||xk−x′k||/λj,k

)ν/2
Kν

(∑
k=1:kx

||xk−x′k||/λj,k
)

where Kν is a mod-

ified Bessel function of order ν and λj,k is the correlation strength. For the power exponential

family ρj(x,x′;λj) = exp
(
−1

2

∑
k=1:kx

||xk−x′k||ν
λνj,k

)
where ν is a value in the interval (0, 2]. In

any case we define Rj ∈ Rn×n as the correlation matrix generated by X and ρj( · , · ;λx,j).
A special case of the coregionalization model is the conditional representation (Wackernagel,

2003; Gelfand et al., 2004; Banerjee et al., 2004), which is also referred to by (Royle and Berliner,
1999) as a hierarchical modeling approach. The conditional LMC representation is equivalent
with the assumption of lower triangular A in the joint linear model of coregionalization (i.e.,
the Cholesky decomposition of Σ), which usually gives similar results to the more general A
(Gelfand et al., 2004). The conditional model is written as:

η1(x)|θ1 = h̃1(x)Tβ1 +
√
σ2

1v1(x) +
√
g1u1(x),

... (2)

ηq(x)|η1(x), . . . , ηq−1(x),θq = h̃q(x)Tβq + αq|1η1(x) + · · ·+ αq|q−1ηq−1(x) +
√
σ2
qvq(x) +

√
gquq(x),

where θ = (θ1, . . . ,θq) are the parameters of the conditional representation of the corregion-
alization model, h̃j(x) are the basis functions of the linear regression model of the input in
ηj(x), σ2

j is the model variance, and gq is the nugget variance. To facilitate the represen-
tation we denote hj(x)T = [h̃j(x), η1(x), . . . , ηj−1(x)], for j = 1, . . . , q. We also denote by
HT
j = (hj(x1), . . . ,hj(xN )) the basis matrix, by Bj = (βj ,αj) the linear parameter associated

with the hj basis functions, and by mj the total number of basis functions. The basis function
in each of the conditional GPs introduces dependency between the multivariate output data.
If we assume αq|q−1 = · · · = α2|1 = 0 then the above model is equivalent to the independent
multivariate model.

Let Y j = (ηj(x1), . . . , ηj(xN ))T denote the response vector of the jth conditional represen-
tation in Eq. 2, for j = (1, . . . , q). Each likelihood of the conditional representation f(Y j |θj)
has an n× n covariance function and the likelihood of Y is:
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f(Y ;θ) =
q∏

j=1

f(Y j |Y 1, . . . ,Y j−1;θj).

In order to enable agreement between the conditional and marginal specifications, we require
a common covariate (h̃1(x)T = · · · = h̃q(x)T ) and u1(x) = · · · = uq−1(x) = 0. This means that
all but one of the processes are purely spatial without error. In practice when we have numerical
instabilities and for the better fit we can also introduce a nugget effect g similar to Gramacy
and Lee (2012) for every conditional representation, which will give ψ = (λ, g) parameters for
the correlation function.

As it is pointed out in (Gelfand et al., 2004; Banerjee et al., 2004) sampling from the full
conditional of Σ is a challenging task and the MCMC sampler can have a prohibitive slow
convergence. Different strategies have been proposed to overcome the computational difficulties
in the above work. However, most of them still have problems and lead to slow convergence
of the MCMC. These problems have been observed in our examples, especially when we used
reversible jump MCMC moves in the Bayesian tree. Therefore, in the following discussion
we will concentrate only on the conditional representation, where we can further simplify the
computations.

2.3. Priors for BTMGP with LMC cross-covariance
Let us consider a partition {X1, . . . ,XD} of disjoint subregions of the input domain X , such

that X =
⋃D
i=1Xi, that corresponds to a tree structure T with D external nodes. We model

each partition {Xi} with a multivariate GP and likelihood fi(Yi|θi) defined in section 2.2, where
θi = (B̃i,σ

2
i ,λi, gi) denotes the parameters of the LMC conditional representation of the ith

external node. Given the partitions and the parameters, the likelihood has a step function form.
According to the Bayesian framework, we assign a prior distribution on the parameter (T ,θ),

such as:

π(T ,θ) = π(T )
∏

i=1:D

π(θi) = π(T )
∏

i=1:D

∏

j=1:q

π(Bi,j)p(σ2
i,j)p(λi,j)p(gi,j).

where j represents the jth conditional representation. The marginal prior distribution of the
binary tree π(T ) is defined according to the tree generating process suggested by Chipman
et al. (1998). The multivariate GP parameters (Bi,λi, gi,σ

2
i ) are apriori independent between

different partitions and independent of each other within the partitions of the input domain. For
each of the q conditional models in Eq. 2 , we assign independent priors, π(θi) =

∏q
j=1 π(θi,j) =∏D

i=1

∏q
j=1 π(βi,j ,αi,j , σ2

i,j ,λi,j , gi,j). The problem can be seen as q different Gaussian processes,
each of which can be fitted separately.

Standard prior distributions can be considered for the parameters in the model. For sim-
plicity, conjugate prior distributions can be used for the parameters associated with the mean
Bi,j = (βi,j ,αi,j) and variance σ2

i,j . We suggest non-informative priors for correlation hyper-
parameters. The joint prior distribution of Bi,j and σ2

i,j is chosen as p(βi,j ,αi,j , σ2
i,j) ∝ σ−2

i,j

which leads to a marginal posterior distribution of λi in closed form as described by Oakley
and O’Hagan (2002). This is the equivalent of using inverse Wishart with diagonal parameter
matrix for Σ (Banerjee et al., 2004) in the joint representation of the coregionalization model.

In order to ensure positive support for the values of λi,j and gi,j we assign exponential
prior distributions with parameters depending on the problem. The posterior distribution of
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the above parameters can be derived using methods that are similar in computational cost to
the separable model.

3. Bayesian computations

Because the resulting posterior distribution is intractable, we use MCMC methods to carry
out inference. A blockwise MCMC sampler (Gelfand and Smith, 1990) is used to simulate each
component of T |θ,Y and θ|T ,Y from p(T ,θ|Y ).

3.1. MCMC simulation given the tree
For each of the external nodes of the Bayesian tree we independently use the same setting

and follow the same MCMC sampling strategies. For brevity’s sake we will give the posterior
inference steps without specifying the external node.

The conjugate prior for Bj , σ
2
j , which is p(Bj , σ

2
j ) ∝ σ−2

j , when combined with the likelihood
of the jth conditional LMC Gaussian process, leads to further computational simplifications.

The posterior distribution ofBj |Y , σ2
j ,λj , gj ∼ N(HjB̂j , σ

2
j (H

T
j R

−1
j Hj)) and σj |Y ,λj , gj ∼

InvGam
[
N−1

2 ,
(N−mj−2)σ̂2

j

2

]
, where B̂j and σ̂2

j denote the generalized least squares GLS estima-
tors of B and σ2

j correspondingly.
After integrating out Bj and σ2

j from the posterior of λj , gj , σ2
j ,Bj |Y , it can be shown that:

p(λj , gj |Y ) ∝ π(λj)π(gj)|Rj |−
1
2 |HT

j R
−1
j Hj |−

1
2 (σ̂2

j )
N−mj

2 , (3)

where Rj and σ̂2
j depend on λj and gj . The above posterior distribution is intractable and the

inference is carried out with MCMC computational techniques. Integrating over Bj and σ2
j can

improve the mixing of the MCMC (Berger et al., 2001). This is crucial since the MCMC we
applied in our problem is a combination of Metropolis-Hasting within Gibbs sampling (Mueller,
1993; Gelman et al., 2004) which requires a lot of iterations. For more details see Appendix
(A). The computational cost for the conditional model is q times more expensive than for the
separable model. The MCMC update for each θi of different partitions can be done in parallel
which may lead to further reduction of the computational cost.

3.2. MCMC simulation updating the Bayesian tree
The structure of the binary tree of the GP model is updated through a random scan MCMC

sweep that includes as updates the Change, Swap, Rotate, and Grow & Prune operations in-
troduced by Chipman et al. (1998) and Gramacy and Lee (2008). The first three operations
are Metropolis-Hastings updates operating on fixed dimensional spaces, while the last two are
a reversible jump pair of moves (Green, 1995) that performs changes to the dimension of the
parameter space. We perform a random scan MCMC of Change, Grow, Prune,Swap, Rotate
operations with rates 0.4, 0.25, 0.25, 0.05 and 0.05 correspondingly. Although the same types
of operations are used in the LMC and the separable models, they differ in the posterior of the
model and the proposals. Below we give a brief review on the Bayesian tree operations.

The Change operation is a Metropolis-Hastings update whose proposal randomly picks an
internal node and changes the associated splitting rule by drawing a new value uniformly such
that no overlap occurs to the corresponding partitions. The tree structure and the parameters
of the multivariate GP remain fixed, however the likelihood changes since the proposals cause
changes to the limit boundaries of regions below the chosen node. Thus, the acceptance ratio of
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this operation reduces to a likelihood ratio. In the Swap operation, a swap between the splitting
rules of two randomly selected interior parent-child nodes is proposed. The Rotation operation
is a Metropolis-Hastings update with proposals designed according to the left/right rotation
operation in binary trees. This operation is discussed in detail by Gramacy and Lee (2008)
where it is suggested as counterpart of the Swap operation because when Swap is performed on
parent-child (internal) nodes that split on the same variables the Swap operation can present
problematic behavior.

Given that the current state is at the binary tree T , the Grow operation performs as follows.
We randomly select an external node ζi0 that corresponds to a subregion Xi0 with data {Xi0 ,Yi0}
and a multivariate GP model with parameters θi0 = (Bi0 ,λi0 , gi0 ,Σi0). We propose the node
ζi0 to split into two new child nodes ζi1 and ζi2 according to the splitting rule Prule used in the
priors, and we denote the proposed tree as T ′. We consider that nodes ζi1 and ηi2 correspond to
disjoint subregions Xi1 and Xi2 , the union of which is Xi0 , with data {Xj1 ,Yj1} and {Xi2 ,Yi2},
respectively. Let θi1 = (Bi1 ,λi1 , gi1 ,Σi1) and θi2 = (Bi2 ,λi2 , gi2 ,σi2) denote the parameter
vectors of the multivariate GP associated to the new nodes ζi1 and ζi2 . A newly formed child,
let us say ζi1 , is randomly chosen to receive values for (λi1 , gi1) from the parent one such
that (λi1 , gi1) = (λi0 , gi0), while for the other, (λi2 , gi2), we generate values from a proposal
Q(λi2 , gi2). Q(λi2 , gi2) can be the prior distribution of (λi2 , gi2). We generate proposals for
(Bi1 ,Σi1) and (Bi2 ,σi2) from the posterior conditional distributions p(Bi1 ,σi1 |Yi1 ,λi1 , gi1) and
p(Bi2 ,σi2 |Yi2 ,λi2 , gi2). Let G and P ′ denote the set of the growable nodes of T and prunable
nodes of T ′, respectively. The Grow operation is accepted with probability min{1, A} where

A =
1− a(1 + dζi0 )−b

a(1 + dζj0 )−b(1− a(2 + dζj0 )−b)2
|G|
|P ′|

p(λi1 , gi1 |Yi1)p(λi2 , gi2 |Yi2)
p(λi0 , gi0 |Yi0)q(λi2 , gi2)

, (4)

where G and P ′ denote the set of the growable nodes of T and prunable nodes of T ′, respectively.
The Jacobian of the ratio is |J | = 1.

The Prune operation is the reverse analog of the Grown, from tree T ′ to T , and is designed
so that the detailed balanced condition is satisfied. Given the notation above, we randomly
select a parent ζi0 of two external nodes ζi1 , ζi2 and turn it into a terminal node by collapsing
the nodes below it. We randomly select a child node, let us say ζi1 , in order to pass the values
of the parameters (λi0 , gi0) = (λi1 , gi1) and generate (Bi0 ,σi0) from the conditional posterior
p(Bi0 ,σi0 |λi0 , gi0 ,Yi0). The operation is accepted with probability min{1, 1/A}.

Note that here there is no need to propose linear coefficient and variances, Bi or σi, for
the Grow/ Prune operations. This can lead to more acceptable MCMC moves, as discussed
by Godsill (2001), and creates simpler acceptance ratios at relatively low computational cost.
However, Bi and σi can be updated after the operations have been performed, if necessary.

If we used the joint LMC for the cross-covariance instead of the conditional LMC we would
not be able to integrate the parameters β and A. This makes the use of the joint LMC difficult
in practice, where we have to propose all the parameters involved in the model. However, the
difference between the conditional LMC and the separable models is noticeable. The reversible
jump proposed parameters in the conditional LMC are qkx while in the separable model only
kx as explained in Konomi et al. (2014).

3.3. Prediction and sampling
The Bayesian predictive density function η( · )|Y is calculated through Bayesian Model Av-

eraging, which can recover a smooth representation of the prediction, η(x′), around the limits of
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the partitions {Xi}. The proposed method allows the computation of the predictive distribution
of any function of η for every input (or spatial) point.

For computational reasons one may be interested in sampling strategies of the input space
given the proposed model. We give details on a possible extension of well known sequential
sampling design in see Appendix B. However, we avoid a direct use of this extension since it is
out of the scope of this paper.

4. Illustrations

In this section, we conduct a number of simulation studies to illustrate the performance of the
BTMGP with conditional LMC cross-covariance (BTMGPC) which is introduced in this paper
and compare it to BTMGP with independent cross-covariance (BTMGPI), multiple independent
BTGP (Gramacy and Lee, 2008) and the BTMGP with separable cross-covariance (BTMGPS)
(Konomi et al., 2014). For simplicity, we will use these abbreviations throughout this section.
We design the simulation studies so that they involve multivariate output with discontinuities
and localized features. The parameters in the prior distribution of the tree are α = 0.6 and
β = 2 as in Chipman et al. (1998). For simplicity we chose to work with constant mean in each
external leaf (subregion) of the BTMGP.

4.1. 1-input and 3-output simulations
Our first example involves three different simple functions in one-dimensional input space.

The functions are chosen such that different input subregions have functions with different
dependencies. Specifically, we chose synthetic sinusoidal functions as:

f1(x) =

{
sin (πx5 ) + cos (4πx

5 ), x < 10
x/10− 1, otherwise

f2(x) = sin (
πx

5
) +

1
3

cos(πx),

f3(x) =

{
exp

{
sin (πx5 ) + cos (4πx

5 )
}
, x < 10

1, otherwise
.

The first function is used by Gramacy and Lee (2008) and the two others are variational
forms of this function. In the first half input interval (x ∈ [0, 10]) the three functions have similar
spatial variation, while in the second half interval the second function has a completely different
spatial variation. From the modeling point of view, the separable model is not appropriate
for the second half input interval. The simulation study which follows will show this lack of
agreement. We assume that the data have a small independent nugget error with variance 0.04
to ensure that the results of the joint LMC and the conditional LMC are similar.

We follow the Bayesian inference described in Section 3 to sample from the posterior of
θ = (T ,σ,B,λ, g). The priors of λ and g are chosen independently as described in Section
2.3. A mixture of gammas priors for each spatial correlation parameter λ is a good choice
when we deal with the Bayesian tree and the reversible jump moves (Gramacy and Lee, 2008).
Specifically, we chose: π(λ) = [G(λ|αG = 1, βG = 20) + G(λ|αG = 10, βG = 10)]/2. An
exponential distribution with mean 10−4 is chosen as a prior for g. The use of the RJ-MCMC
in the Bayesian tree is relatively easy because only three spatial correlation parameters are
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proposed from the prior and the Grow operation is done in a one-dimensional input. The
algorithm is not very sensitive to the nugget proposed variances.

We train BTMGPC for n = 25, and 30 observations using Latin hypercube samples (LHS)
and compare it to the BTMGPI, BTGP and BTMGPS. The LHS of size n is drawn as follows:
the domain is partitioned into n disjoint and equally spaced intervals and from each of those
intervals a value is drawn randomly, and they are randomly permuted if the domain has dimen-
sion bigger than 1. The real functions and the computed predicted mean functions with the
90% confidence interval for sample sizes 30 and different methods are shown in Fig. 1. We show
the predicted mean functions and the 90% confidence intervals, using (b) BTMGPI,(c) BTGP,
(d) BTMGPS, and (e) the proposed BTMGPC.

Most of the differences between BTMGPC and BTMGPI are observed in the first half in-
put interval [0, 10] where the dependences and the variation of the three functions are similar.
This means that the conditional LMC cross-covariance is able to borrow information in this
subregion, while in the other half it is not. The use of the conditional LMC in the BTMGP
improved the prediction results in all three different functions. Instead, most of the differences
between BTMGPC and BTMGPS are observed in the second half input interval [10, 20], where
the dependences and the variation of the three different functions are noticeably different. The
independent error is captured as a part of systematic function deviation. In the fist half input
interval [0, 10] we observe more similarities. The BTMGPC gives similar predictions to BT-
MGPS for the first and third output function (f1 and f3) in the overall input region. However,
better predictions for the second function in the second half are observed. Overall the BTMGPC
gives better predictions.

The differences of the BTMGPC in comparison with BTGP vary depending on the function.
For the first and third functions (f1 and f3) the BTMGP seems to give better results. However,
for the smooth function f2 we observe that BTGP gives better predictions. This is supported
from the fact that, when using the BTGP we compute separately and independently for each
variable a BTGP. When the function is smooth the results of the BTGP are similar to those
of the GP model. However, when we use BTMGP we partition the input space regardless the
output. The same noticeable differences are also true when we compare BTGP with BTMGPS.

The mean square errors (MSPEs) and presented in Table 1. For each model and function
the MSPE is calculated as the mean square of the real value minus the prediction mean. As
in Fig. 1, we compare the results of BTMGP with different cross-covariances and the multiple
BTGP. As with the figure we conclude that the conditional LMC in the BTMGP improved the
prediction results in two different sample sizes. BTMGPC seems to be closer to the BTMGPS
when the functions have similar variability and closer to BTMGPI when functions have different
variability. For the first (f1) and third function (f3) the MSPE of BTMGPC is similar to the
MSPE of BTMGPS while for the second function (f2) the BTMGPC improves the prediction.
Moreover, BTMGPC have smaller MSPE compare to BTGP for the two functions with dis-
continuity (f1 and f3). However, the MSPE of the continuous function (f2) is smaller when we
use BTMGP. This a logical conclusion, since the BTMGP split functions without making any
exception. The BTMGPC improved the overall prediction while maintaining computational
complexity similar to that of BTMGPI.

Summarizing, the proposed method is more flexible than BTMGP when the multivariate
outputs are not dependent while outperform the BTGP when the outputs are dependent.
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Figure 1: The real and the mean prediction using BMA (solid line) and the 90% confidence interval (CI) of the
mean (shaded areas) of the three different functions four different cross-covarainces in Bayesian treed models.
For all the plots the black, red and blue lines and shaded area represent the first, second and third equation
respectively. In specific : (a) exact functions, (b) BMA result and the 90% CI using the BTMGPI, (c) BMA
result and the 90% CI using the BTGP, (d) BMA result and the 90% CI using the BTMGPS, and (e) BMA
results for nd the 90% CI using the proposed BTMGPC.

4.2. 2-input and 2-output simulations
Our second example involves a two-dimensional input space x ∈ [−2, 6]2 and two-dimensional

output functions problem which have been used in Konomi et al. (2014):

f1(x) = x1 exp (−x2
1 − x2

2) + ε1,

and
f2(x) =

√
|x1| exp (−x2

1 − x2
2) + ε2,

10



Table 1: MSPE of three different functions for different covariance model (conditional LMC, independent and
separable model) in the BTMGP and different sample size.

Sample size
Model Function n = 25 n = 30

BTMGPI
f1 0.0374 0.0190
f2 0.1998 0.1164
f3 0.0503 0.0424

BTGP
f1 0.0408 0.0191
f2 0.1028 0.0758
f3 0.0491 0.0422

BTMGPS
f1 0.0323 0.0166
f2 0.1432 0.1363
f3 0.0445 0.0381

BTMGPC
f1 0.0332 0.0168
f2 0.1128 0.0793
f3 0.0455 0.0381

where ε1 ≡ ε2 ∼ N(0, σ = 0.001). Both functions have localized features in the box [−2, 2] ×
[−2, 2], while they are practically zero everywhere else. In subregion [−2, 0] × [−2, 2] the two
output functions have negative correlation while for input subregion [0, 2] × [−2, 2] the two
output functions have positive correlation. Moreover, both functions have similar variation over
space. We utilize Latin hypercube samples (LHS) with two independent Beta(αB, βB; min =
−2,max = 6) distributions and parameters αB = 1.5 and βB = 2.5, which give higher probability
density inside the box [−2, 2]× [−2, 2].

We train our model for n = 65, 75, and 85 observations by sampling the posterior of θ =
(T ,σ,B,λ, g) following the MCMC procedure described in Sec. 3. Given an MCMC sample
drawn, we made predictions by using BMA on a grid of 120× 120. The MSPEs for the different
Bayesian tree models and functions are calculated as it is described in the first simulation
study and are reported in Table 2. Namely we use BTMGPS, BTGP and BTMGPC models as
described above. Similar MSPEs are observed for both BTMGPS and BTMGPC models. The
separable model is good enough to model the data. The values of λi in each MCMC iteration
are very similar for all the conditional representations of the LMC. This is supported by the
fact that the variations of the two output functions over the input space are similar. Instead the
BTGP gives different results in the first function and second function. The first function (f1)
seems to be slightly better predicted using BTGP while the second function (f2) is predicted
better using BTMGP. Overall, modeling the dependence in the output helped us to predict the
functions more accurately. For visualization purposes we also give the BMA response surface
for both functions computed with BTMGPS and BTMGPC Fig. 2.

To better demonstrate the prediction difference and similarities of the two types of cross-
covariances in BTMGP, we compute the prediction mean densities of (η1(x1) and η2(x1)) for
sample size n = 85 in three input values x1 = {(−1, 0.5), (−1.5, 1.5), (−0.25, 2.25)}. Histograms
for the different equations and BTMGP models are constructed in Fig. 3 using the last 15, 000
MCMC samples. Each column corresponds to the same input point and each row corresponds to
different BTMGP models and output functions. The red star in each histogram represents the
true value. We can see that both methods appear to have similar accuracy, agreeing with the
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Figure 2: The BMA mean prediction using the separable model and the LMC cross-covariance in the Bayesian
tree.

general results of the MSPEs presented in Table 2. However, this accuracy does not necessarily
translate to the same posterior distributions. In some areas the BTMGPS model gives the
narrowest prediction distribution, in others the BTMGPC. From these prediction distributions
and others which we construct, there is not a clear answer as to which model produce the
narrowest and less-biased prediction distributions in this case.

The predicted probability distributions are non-normal and non-symmetric, e.g. Fig. 3 shows
non-symmetric prediction distributions. The BTMGP with both cross-covariance functions is
eligible to model a non-normal random field despite the assumption of normality for each distinct
MCMC iteration. Given the MGP parameters, the BTMGP can model a mixture of normal pre-
dicted probability distributions. When the data are sparse, such that the Bayesian tree cannot
contribute on the non-stationary and normal model assumptions, the nugget effect will main-
tain the good statistical properties for the emulator. Finally, we evaluated the joint probability
density of the prediction by drawing 15, 000 samples from the posterior and then building a
two-dimensional kernel density estimator. For x1 = (−1.5, 1.5) the two dimensional probability
density for the mean is shown in 4. Both models give dependent prediction distribution for the
multivariate output. Notice also that the posterior’s densities are very narrow.

Summarizing, this example we show that for dependent outputs the proposed BTMGPC
outperforms the BTGP and gives relatively better results than the BTMGPS.

4.3. Carbon capture regenerator unit
A typical carbon capture unit consists of two devices: the adsorber and the regenerator.

A sorbent medium capable of reversibly reacting with carbon dioxide (CO2) is looped through
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Table 2: MSPE of the two functions for different sample size using three different models (BTMGPS, BTGP and
BTMGPC).

Sample size
Model Function n = 65 n = 75 n = 85

BTMGPS
f1 0.0033 0.0024 0.0014
f2 0.0043 0.0036 0.0027

BTGP
f1 0.0028 0.0023 0.0014
f2 0.0079 0.0059 0.0046

BTMGPC
f1 0.0029 0.0023 0.0014
f2 0.0043 0.0036 0.0024
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Figure 3: The prediction distribution using the separable and the LMC at three different inputs: the first column
corresponds to x = (−1, 0.5), the second to x = (−1.5, 1.5), and the third to x = (−0.25, 2.25). Each row depicts
the estimated PDF of prediction distribution for a particular function and BTMGP cross-covariance.
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Figure 4: Two dimensional contour plot of the prediction distribution for x1 = (−1.5, 1.5) using (a) the separable
cross-covariance and (b) the LMC cross-covariance. The red stars denote the real values.

the two devices. In the adsorber, fresh sorbent medium reacts and traps the CO2 from the
exhaust flue gas. The depleted sorbent is then transferred to the regenerator, where the reverse
chemical reaction releases the carbon dioxide back into the gaseous phase. The CO2 released in
the regenerator is liquefied for sequestration and the regenerated sorbents are recycled back to
the adsorber.

The bulk of the energy penalty is associated with the regenerator (MacDowell et al., 2010)
and therefore efforts to increase capture plant efficiency should begin with optimizing the re-
generator performance. Regenerator efficiency is maximized if the solid fraction throughout the
regenerator is homogeneous and close to the optimal value. Clustering behavior can result in
significant reduction of the overall chemical kinetics of gas-solid fluidized bed reactors (Hol-
loway and Sundaresan, 2012). Cluster formation results in segregation of the reacting particles
and gas, which is detrimental to regenerator efficiency. We are interested in investigating the
dependence of sorbent distribution on two operating conditions: the particle diameter dp (ex-
pressed in micro meters, µm), and the superficial gas velocity vg scaled by the minimum particle
fluidization velocity umf , which we denote by K.
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Figure 5: Input of the observed data (blue dot) and the input of cross-validation data (red stars).

For our purposes, six bins of the empirical solid fraction distribution are considered suf-
ficient enough to distinguish between the dilute, intermediate, and dense region in the flow.
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The full solid fraction range of 0.0 to 0.6 is subdivided into six bins of fixed length, given by
[0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.4], (0.4, 0.5], and (0.5, 0.6]. The frequency distribution of the
number of cells (i.e., regenerator bed volume) lying in each bin is calculated as the response.

The above problem can be summarized as two input parameters with six responses. Konomi
et al. (2014) developed a model based on the BTMGPS to predict and investigate this data.
Here, we utilize these data to compare the existing BTMGPI and BTMGPS with BTMGPC
model. To better investigate the performance of the different forms of cross-covariance functions
inside the Bayesian tree we sample the computer code 4 more times as it is shown in Fig. 5 and
compute the six bin empirical solid fraction distribution. The new observations have different
degrees of distance from the previous observations in order to better see the efficiency of the
model. These values will serve as cross-validation to our application and as a comparison of
different BTMGP models.

particle diameter in µm

sc
al

ed
 g

as
 v

el
oc

ity

prediction of π
1

 

 

200 300 400 500

2

4

6

8

10

0.1

0.2

0.3

0.4

(a)

particle diameter in µm

sc
al

ed
 g

as
 v

el
oc

ity

prediction of π
2

 

 

200 300 400 500

2

4

6

8

10

0.05

0.1

0.15

0.2

(b)

particle diameter in µm

sc
al

ed
 g

as
 v

el
oc

ity

prediction of π
3

 

 

200 300 400 500

2

4

6

8

10

0.1

0.2

0.3

(c)

particle diameter in µm

sc
al

ed
 g

as
 v

el
oc

ity

prediction of π
4

 

 

200 300 400 500

2

4

6

8

10

0.1

0.2

0.3

0.4

(d)

particle diameter in µm

sc
al

ed
 g

as
 v

el
oc

ity

prediction of π
5

 

 

200 300 400 500

2

4

6

8

10

0.2

0.4

0.6

(e)

particle diameter in µm

sc
al

ed
 g

as
 v

el
oc

ity

prediction of π
6

 

 

200 300 400 500

2

4

6

8

10

0.2

0.4

0.6

0.8

(f)

Figure 6: BMA prediction surface of the six different probabilities using BTMGP with conditional LMC cross-
covariance.

The Grow operation in the case of BTMGPC and BTMGPI becomes extremely cumbersome
in comparison to the BTMGPS. This is because we have to propose 12 new parameters from
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the prior specification in comparison with only 2 of the separable model. This makes the mixing
slow and not very efficient in these type of problems. However, after running the algorithm
for 25, 000 MCMC iterations we observe satisfactory results. The posterior and the predictions
of the BTMGP with different cross-covariances are mostly similar. However, predictions show
improvements when we use BTMGPC.

Fig. 6 shows the prediction surface of the six different probabilities πi in a grid of (70× 70)
using BMA in the BTMGPC. Operating conditions lying in the upper-right corner are not of
interest and therefore no simulations were performed for those values. If good regeneration
is expected for an intermediate solid fraction range of, say, 0.3 to 0.4, the area of interest
would be regions where π4 is large. From Figure 6(d), the region where π4 is large is given by
dp ∈ (150 µm, 250 µm) and scaled gas velocity vg/umf ∈ (4.0, 8.0). These results are similar to
the results driven from the BTMGPS which are presented in (Konomi et al., 2014).

To better evaluate the prediction abilities of the different models a cross-validation analysis
should be considered. We compute and compare the predicted solid fraction distribution of
four input values using BTMGPS and BTMGPC with the solid fraction distribution computed
directly from the computer code runs which are shown in the first column of Fig. 7. The closest
the predictions are the better the model. The second and the third column of Fig. 7 shows
the mean prediction solid fraction distribution and their 95% confidence interval, of the four
observed computer experments, computed by the two differnt cros-covariance in the BTMGP.
Each row reprent one of the four differnt combination of different combinations of particle
diameter dp and scaled gas velocity K where we have observations. The second column shows
the mean prediction solid fraction distribution and their 95% confidence interval computed
by BTMGPS. The third shows the mean prediction solid fraction distribution and their 95%
confidence interval computed by BTMGPC.

In general the BTMGPC gives better predictions for the four distributions. For example,
in the first, second and third row the prediction probability of π5 and π6 using LMC is closer
to the real value of the computer code. Only in the case of input dp = 334 and K = 2.29 does
the BTMGP with separable cross-covariance give predictions closer to the real computer code.
Despite these differences, the two models give approximately similar results. Cross-validation
values close to observations give smaller confidence intervals. Also, probabilities close to 0 or 1
give also small confidence intervals. For example, the point (154, 1.36), gives smaller prediction
confidence intervals than all the other the rest cross-validation points. The LMC model in the
BTMGP is a relatively better but we should usually account for the computational complexity
these model is introducing.

Note: The prediction differences in this application appear to be minor due to the depen-
dencies between the outputs. This application is closer in spirit to the 2-input and 2-output
simulation study.

5. Concluding remarks and extensions

We developed a Bayesian treed multivariate Gaussian process (BTMGP) based on the linear
model of coregionalization (LMC). The conditional representation of the LMC cross-covariance
simplifies the form of the inverse and determinant of the covariance matrix involved in the
MCMC updates. Moreover, the Grow and Prune operations of the Bayesian tree are facilitated
in the conditional LMC cross-covariance by integrating out the linear model parameters and the
variance. Only the parameters of the correlation function need to be updated in each MCMC
iteration for prediction purposes.
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Figure 7: Prediction probabilities and their 95% confidence intervals using different models for four different
combinations of particle diameter dp and scaled gas velocity K. First column gives the probabilities as they are
computed form the computer code, second column gives the prediction probabilities and their 95% confidence
intervals using BTMGPS and the third column gives the prediction probabilities and their 95% confidence intervals
using BTMGPC.

The proposed BTMGP with conditional LMC cross-covariance (BTMGPC) is compared to
the BTMGP with independent cross-covariance (BTMGPI), multiple BTGP (Gramacy and Lee,
2008) and the newly developed BTMGP with separable cross-covariance (BTMGPS) (Konomi
et al., 2014). These comparisons allow us to see in practice the strength and the weakness
of each model. The prediction results of BTMGPC are similar to those of BTMGPS when
dependence between different dimensions of the output is present (second simulation study),
but more robust when the output functions are independent to each other (first simulation
study). In comparison with the BTGP the proposed model shows better results when there is
a dependency between outputs and similar when the dependence assumption is violated.

In cases where the number of the input/output variables is large, the Grow and Prune
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operation may not perform well in BTMGP with LMC. This is mainly because the reversible
jump MCMC involves moves between states with large differences in dimensionality, and thus
it may present high rejection rates. To address this issue, more sophisticated variations of the
Reversible Jump MCMC may be used, such as those in Brooks et al. (2003); Karagiannis and
Andrieu (2013). The examples presented in the paper provide encouraging results for further
work. Finally, Konomi et al. (2013) can be used to simplify the computations when dealing with
huge amount of datasets or link the cross-covariance for different tree subregions. However, we
leave these type of extensions for future work.
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Appendix A. Metropolis within Gibbs sampler for (λj, gj) in a partition

Let us denote ψj = (λj , gj) = (λj,1, . . . , λj,kx , gj), the joint vector of the parameters of
the correlation function, where ψj ∈ (0,∞)kx+1, for j = 1, . . . , q. To sample from the pos-
terior distribution p(ψj |Yj), we apply a Metropolis within Gibbs as in (Mueller, 1993), that
performs recursively Metropolis-Hastings updates in a component-wise manner. At time t,
let ψ(t)

j,k be the k-th component of ψ(t)
j = (ψt+1

j,1 , . . . , ψ
t+1
j,k−1, ψ

t
j,k, . . . , ψ

t
j,(kx+1)) and ψ(t)

j,(−k) =

(ψt+1
j,1 , . . . , ψ

t+1
j,k−1, ψ

t
j,k+1, . . . , ψ

t
j,(kx+1)). Given that at time t, the chain is at state ψ(t)

j , the
algorithm works as follows.

For k = 1, . . . , (kx + 1):

1. Generate ψ∗j,k ∼ qk(ψj,k|ψ(t)
j,k) ≡ logN(ψj,k|ψ(t)

j,k, s) where logN is the log-Normal distribu-
tion and s ∈ (0,∞) is a user defined scaling parameter.

2. Compute:

rj =
p(ψ∗j,k|Yj ,ψ

(t)
j,(−k))qk(ψ

(t)
j,k|ψ∗j,k)

p(ψ(t)
j,k|Yj ,ψ

(t)
j,(−k))qk(ψ

∗
j,k|ψ

(t)
j.k)

=
p(ψ∗j,k|Yj ,ψ

(t)
j,(−k))ψ

∗
j,k

p(ψ(t)
j,k|Yj ,ψ

(t)
j,(−k))ψ

(t)
j,k

. (A.1)

For ψj,k = λj,k the posterior p(ψj,k|Yj ,ψ(t)
j,(−k)) = p(λj,k|Yj , g(t)

j ) and for ψj,(kx+1) = gj the

posterior p(ψj,(kx+1)|Yj ,ψ(t)
j,(−(kx+1))) = p(gj |Yj ,λ(t+1)

j ).

3. Set ψ(t+1)
j,k = ψ∗j,k with probability min (1, rj) and ψ

(t+1)
j,k = ψ

(t)
j,k with the remaining prob-

ability.

In this algorithm, the MH step is performed only once at each iteration. Chen and Schmeiser
(1998) note that multiple MH steps are not necessary. A precise approximation of the conditional
probability does not necessary lead to a better approximation of the join distribution, and a
single step may be beneficial for the speed of the sampler.
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Appendix B. Active Learning for BTMGP with conditional LMC cross-covariance

The sequential experimental update of the subset, usually called active learning, is proven
to be a good choice to find the best possible subset. Two main approaches of active learning
are: Active Learning MacKay (ALM) and Active Learning Chon (ALC). A detail description
of these techniques for the univariate case can be found in Seo et al. (2000) and Gramacy and
Lee (2009). Here we give a brief description on how we can be extend the ALC to the BTMGP
with conditional LMC cross-covariance.

The ALC approach sequentially selects a subset of data by maximizing the expected reduc-
tion in mean square error:

∆σ̃2(x̃) =
∫

X
∆σ̂2

x̃(z)p(z)dz =
∫

X
(σ̂2(z)− σ̂2

x̃(z))p(z)dz. (B.1)

where ∆σ̂2
x̃(x) is the reduction of variance of the output in location z when we add an observation

in location x̃ which will make the total observation XN+1 = [XN , x̃]. Also, p(z) is the input
variable density function which can be considered as a prior of the input space (a generalized
Beta or truncated Normal distribution is usually a good choice in practice), σ2(z) is the variance
mean of output in location z without observing the output in location x̃ and σ̂2

x̃(z) is the variance
mean at location z when we have an observation at location x̃. The variance mean is the mean
of each conditional representation of the LMC. Because of the independence assumption of the
Bayesian tree, if z and x̃ belong in two different external nodes, we take ∆σ̂x̃(z) = 0.

The above integral is usually analytically intractable and as such we compute it numerically
by choosing a predetermine subset of gridded input data X. For each of the jth conditional
representations of the LMC we can write:

σ̂2
j (z) = tr

{
(rj,N (z, z)− rTj (XN , z)R−1

j,Nrj,N (z, z))σ2
j

}
+ τ2

j (z), (B.2)

σ̂2
j,x̃(z)) = tr

{
(rj(z, z)− rTj (XN+1, z)R−1

j,(N+1)rj(XN+1, z))σ2
j

}
+ τ2

j,x̃(z). (B.3)

where

τ2
j = (α̂j|1)2σ̂2

1(z) + · · ·+ (α̂j|j−1)2σ̂2
j−1(z)

+ α̂j|1α̂j|2 cov(η1(x′), η2(z)|XN ) + · · ·+ α̂j|(j−2)α̂j|(j−1) cov(η(j−2)(z), η(j−1)(z)|XN )

and

τ2
j,x̃ = (α̂j|1)2σ̂2

1,x̃(z) + · · ·+ (α̂j|j−1)2σ̂2
j−1,x̃(z)

+ α̂j|1α̂j|2 cov(η1(z), η2(z)|XN+1) + · · ·+ α̂j|(j−2)α̂j|(j−1) cov(η(j−2)(z), η(j−1)(z)|XN+1).

The covariance terms of cov(η(j−2)(z), η(j−1)(z)|X) can be computed through the variance and
the coefficient α̂(j−1)|(j−2), e.g. cov(η(2)(z), η(1)(z)|X) = α̂2|1(rj(z, z)−rTj (X, z)R−1

j rj(X, z)).
We can express all the terms in Eq. B.2 and Eq. B.3 as a spatial variance. For each of these
differences of the spatial variance we can utilize the matrix inversion in low cost proposed by
Gramacy and Lee (2009). We follow the same setting to invert (N + 1) × (N + 1) covariance
matrices in terms of N ×N covariance matrices. More details on how to improve sampling with
ALC are given in Gramacy and Lee (2009).
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