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Equilibrium of fluid membranes endowed with orientational order
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Minimization of the low-temperature elastic free-energy functional of orientationlly ordered membranes
involves independent variation of the membrane-shape, while keeping the orientational order on it (its texture)
fixed. We propose an operational, coordinate-independent method for implementing such a variation. Using the
Nelson-Peliti formulation of elasticity that emphasizes the interplay between geometry, topology, and thermal
fluctuations of orientationally ordered membranes, we minimize the elastic free energy to obtain equations
governing their equilibrium shape, together with associated free boundary conditions. Our results are essential
for understanding and predicting equilibrium shapes as well as textures of membranes and vesicles; particularly
under conditions in which shape deformations are large.
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I. INTRODUCTION

Soft matter systems abound with lamellar fluids having
in-plane orientational order. Nematic films, membranes, and
vesicles with vector order, and cytoskeletal assemblies in
cells belong to this category. The discovery of liquid crys-
talline smectic Lβ ′ phase of phospholipid membranes [1],
and the feasibility of obtaining almost isolated, deformable
membranes by hyperswelling it [2], motivated the exploration
of the interplay between elasticity, topological defects, and
thermal fluctuations in isolated fluid membranes with in-plane
orientational order.

The remarkable interplay between the shape of a surface
and frustration of the orientational order on it is familiar—a
hairy ball cannot be combed flat without creating at least one
hair-whorl or cowlick; a single vortex, or vortices, with total
index 2 in the orientational order. The elegant spin-connection
formulation of membrane elasticity by Nelson and Peliti
[3] is particularly suited to the study of this interplay. It
establishes that Gaussian curvature of membranes acts as
a source of vortices—also known as disclinations—in the
orientational order. Conversely, disclinations tend to bend
flat, deformable membranes. These reciprocal effects help to
mitigate the overall stress from bending of membranes, and
that from deformations in the orientational order. Positive and
negative disclinations of equal strength prefer locally positive
(sphere-like) and negative (saddle-like) Gaussian curvatures,
respectively, leading to asymmetry in their energies [4–6].

The interplay between shape and topological defects has
been demonstrated in nematic and smectic vesicles [7]. Using
colloidal, fluid membranes of finite lateral extent (i.e., with
an edge or a boundary) [8], new methods for tuning the
assembly and morphology of chiral molecules via control of
interfacial tension [9], and edge tension [10] have now been
developed. By photopatterning temperature-responsive poly-
mer gel films, self-actuating materials that transform shape
have been designed [11]. There has been recent theoretical
work on obtaining cuboidal shapes using vesicles with tetratic
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order [12]. In this context the problem of equilibrium shapes of
membranes with free boundaries, addressed in this paper, gains
special importance. We minimize the total, low-temperature
free energy of orientationally ordered membranes with respect
to variations in membrane-shape to obtain the covariant “shape
equation”, together with free boundary conditions.

Our results are as follows. We give a precise, coordinate-
independent, operational procedure for varying the membrane
shape, while keeping the orientational order on it fixed
(Fig. 1). We minimize the Nelson-Peliti elastic free energy
Eq. (6) to obtain the first shape variation Eq. (35) that
leads to the full shape Eq. (38) together with free boundary
conditions Eq. (41). We derive the shape equation by using
two different approaches. For the sake of simplicity, we do
not treat anisotropic shape-order couplings that are specific
to vector [13] and nematic [14] order in this paper. We
obtain the exact solution of the coupled, nonlinear partial
differential equations of equilibrium Eqs. (13) and (38) for a
right-helicoidal membrane to obtain the texture of orientational
order on it, Eq. (61). Our solution has experimentally testable
consequences for the energetics of dispirations (topological
defects in smectic-C* liquid crystals) [15]. Minimization of
the elastic free energy Eq. (6) has been attempted earlier
[16] within the conformal gauge. We point out the root
cause of the erroneous results of Ref. [16]. We show that
for membrane-configurations with nonzero mean curvature,
our result leads to experimental consequences that are very
different from those of Ref. [16].

This paper is organized as follows. Section II is a brief
review of the Nelson-Peliti formulation. In Sec. III, we discuss
the generalization of Lie dragging, which gives a purely
geometric procedure for varying the membrane-shape without
affecting the orientational order on it. In Sec. IV, we derive the
shape equation from two different approaches. In Sec. IV A,
we use the direct approach, which also yields free boundary
conditions, whereas in Sec. IV B, we use the Coulomb gas
version [4] of the Nelson-Peliti elastic free-energy to recover
the result of Sec. IV A. This shows that our result is not
dependent on the particular choice of gauge made in the
direct method of Sec. IV A. In Sec. IV C we obtain the texture
of orientational order on a helicoidal membrane by solving
the equations of equilibrium (the compatibility condition as
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FIG. 1. Lie dragging the orientational order: Circular curves on
the spherical, polar cap (the reference surface M) at the bottom are
streamlines (integral curves) of the m̂ field that rotates through 2π

upon traversing a closed loop enclosing the singular point; they
correspond to a +1 disclination situated at the pole. The shape of
M is varied (by an infinitesimal amount) to the saddle at the top
(M ′). The lightly shaded frustums of cones sandwiched between the
surfaces have their apex at the center of M , so that the cones form
loci of normals to streamlines on M . The streamlines on M ′ (which
also correspond to a +1 disclination) are obtained by dragging the
streamlines on M along the cones to the saddle. This ensures that
there is no variation in the orientational order while implementing
shape variation; the streamlines, and therefore the orientational order
on the saddle is the same as that on the spherical cap.

well as the shape equation) exactly. We briefly discuss the
experimental significance of this solution. In Sec. V we
compare and contrast the shape Eq. (63) of Ref. [16] with
our result Eq. (38), and we discuss experimental implications
of these strikingly different results.

II. ELASTICITY OF FLUID MEMBRANES

A. Membranes without orientational order

In this section we briefly describe the well-known contribu-
tions to the free energy that are common to all fluid membranes,
regardless of orientational order. The Helfrich free energy [17]
of a deformable fluid membrane is

FH =
∫ [

κ

2
(H − H0)2 + κG K

]
dS, (1)

where H is the mean curvature, H0 is the spontaneous
curvature, K is the Gaussian curvature, κ, κG are elastic
constants, and the integral is over the surface of the deformed
membrane [18,19]. The spontaneous curvature H0 = 0 for
membranes with up-down symmetry. Gaussian curvature K

is a total divergence. It does not contribute to the equations
of equilibrium (the Euler-Lagrange equations) but contributes
only to the boundary conditions.

The contribution to the total free energy from the surface
tension σ of the membrane is

Fs = σ

∫
dS, (2)

with σ � 0 for stability. The case σ > 0 is particularly
important for tense fluid membranes [20].

For membranes with a boundary we have to include the
edge free-energy,

Fe = γ

∮
dl, (3)

where γ is the coefficient of line tension, and the integral is
over the boundary of the membrane.

There is a symmetry-allowed, anisotropic contribution to
line tension that arises from the fact that the orientational
order can prefer to have a particular orientation with respect
to the outward normal to the membrane boundary. The
nature of this contribution depends upon the symmetry of the
orientational order (nematic or vector) [21,22]. Modifications
to free boundary conditions due to anisotropic line tension will
be discussed elsewhere [23].

For

F = FH + Fs + Fe, (4)

the Euler-Lagrange equations together with free boundary
conditions are known [24], and will be used in Sec. IV A
to write the full shape equation, as well as the free boundary
conditions.

B. Membranes with orientational order: The
Nelson-Peliti formulation

In this section we consider the energetics of membranes
with orientation order, and establish the notions and notation
essential for what follows. The simplest continuum model
with orientational order, the continuum xy model, has the
low-temperature elastic free energy [25],

Fxy = ks

2

∫
(∂θ )2dxdy, (5)

where ks is the spin-wave stiffness, the unit xy spin vector
m̂ = (cos θ, sin θ ), and ∂ = (∂x,∂y) is the usual (flat space)
gradient operator. We wish to generalize the flat-space xy

model described above to spins on a deformable surface.
The generalization of Eq. (5) to spins on a deformable

surface involves defining θ , as well as the appropriate
“covariant derivative of θ”, on a curved membrane. To define
θ we set up a local, orthonormal frame êi(σ ), i = {1,2}, in the
tangent plane of the membrane, where σ = σμ and μ = {1,2}
are internal coordinates on the membrane surface parametrized
via the three-dimensional position vector R(σ ). Thus, m̂(σ ) =
( cos θ (σ ), sin θ (σ )) in the local Cartesian frame. The tangent
vectors in the internal-coordinate basis are tμ(σ ) = ∂μ R(σ ) =
∂ R(σ )/∂σμ. We reserve Greek letters for the indices of
quantities represented in the coordinate (t) basis, and Latin
letters for those represented in the Cartesian (ê) basis. The ê
basis is local; there is an O(2) freedom in its choice—the tip
of ê1(σ ) can be placed at any point on the unit circle centered
at σ and lying in the local tangent plane.

For deformable membranes the square-gradient elastic free
energy Eq. (5) takes the form [3]

Fθ = KA

2

∫
(Dθ )2dS = KA

2

∫
(∂θ − A)2dS, (6)
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where we have introduced the notation Dθ = (∂θ − A), the
“vector potential” A is a local gauge field that corrects ∂θ so
as to compensate for membrane curvature, and the integral
is over the deformed membrane surface. A is called the spin
connection. The elastic free energy Eq. (6) is invariant under
the local gauge transformation,

θ → θ + η, A → A + ∂η. (7)

The components

Aμ = 1
2 εij (êi · ∂μ êj ), (8)

where εij is the totally antisymmetric unit symbol
with ε12 = 1.

The geometry of the membrane (represented by the Gaus-
sian curvature K) and the topology of the θ field on it
(represented by the disclination density S , see below) are
connected through [3]

∇ × ∂θ = S n̂, and

∇ × A = K n̂, (9)

where ∇ represents the covariant gradient operator, and
n̂ = (t1 × t2)/|t1 × t2| is the unit normal to the membrane.
The disclination density

S (σ ) = 2π√
g

∑
m

qm δ(2)(σ − σ̃ m), (10)

with discrete disclination charges qm located at σ̃ m. In Eq. (10)
above, g is the determinant of the metric tensor gμν = tμ · tν ,
and δ(2)(σ − σ̃ m) is the two-dimensional Dirac δ. The Gaussian
curvature K = Det [Kν

μ] is the determinant of the curvature
tensor Kμν = n̂ · ∂μ tν . The importance of the relations Eqs. (9)
is brought out by the compatibility condition discussed in
Sec. II C below.

C. Equilibrium of membranes

1. The compatibility condition

We now consider the equation of equilibrium for Fθ

obtained by varying θ while keeping the membrane shape
fixed [4]:

δFθ

δθ
= −KA ∇ · Dθ = 0. (11)

The Airy stress function χ defined by

Dμθ = γ μν∂νχ (12)

identically satisfies δFθ/δθ = 0, where the covariant version
of the unit antisymmetric tensor γ μν = εμν/

√
g. However, χ

has to obey the condition

∇2χ = K − S , (13)

which ensures compatibility between the shape of the mem-
brane and topology of the orientational order embedded in
it.

The variational problem of minimizing Fθ also yields the
free boundary condition for membranes with a boundary,

n
μ

(b)γμν∂
νχ = 0, (14)

where n̂(b) is the unit outward normal to the boundary.

2. The shape equation: Small deformations

In the Monge gauge, the membrane is parametrized in
terms of a “height field” f (x,y) in Cartesian coordinates,
and the approximate expressions (small deformations) for
mean, and Gaussian curvatures are H � (1/2)∇2f and K �
εij εkl(∂i∂kf )(∂j ∂lf ), respectively, where the Laplacian opera-
tor ∇2 = ∂2

x + ∂2
y . Within this approximation the minimization

of FH + Fθ with respect to the height field f gives [4]

κ̃

KA

∇4f = (
∂2
yχ

)(
∂2
xf

) + (
∂2
xχ

)(
∂2
yf

) − 2(∂x∂yχ )(∂x∂yf ),

(15)

where κ̃ = κ/4. This equation, called the “nonlinear, hexatic
von Kármán equation” is valid for small deformations of
the membrane shape. In deriving this equation it is assumed
that the membrane-shape can be varied without affecting the
orientational order on it.

The compatibility condition Eq. (13) and the shape Eq. (15)
constitute the coupled, nonlinear partial differential equations
of equilibrium.

III. INDEPENDENT VARIATION OF SHAPE: LIE
DRAGGING

To vary the shape R(σ ) of the membrane while keeping the
θ field fixed, we set

δR = tμ δR
μ

‖ + n̂ δR⊥, (16)

where δR‖ and δR⊥ are, respectively, the variations in the
tangent plane of the membrane, and along its normal. In
carrying out shape variation δR⊥, we need to ensure that
δθ = 0 for arbitrary, nonzero δR⊥. It is not obvious how
the membrane shape can be varied without affecting the
orientational order on it. Earlier work on shape variation of
membranes [4,16] implicitly assumes that such a variation
can be carried out, without pointing out how it is to be
implemented. In what follows we propose a coordinate-
independent (purely geometric), operational procedure for
effectuating independent shape variation by generalizing the
concept of Lie dragging [26] to vector fields (Fig. 1).

Let us consider the reference configuration M of a mem-
brane whose shape we wish to vary by an infinitesimal amount
to the target configuration M ′. The m̂ field on M can be
represented by streamlines, also called integral curves, defined
so that the unit tangent at any point on the integral curve
gives m̂ at that point. Consider two nearby points, R(σ ) and
R(σ + dσ ), which are connected by m̂ on its integral curve
in the reference membrane M . Upon shape variation to a
configuration M ′ along the normal to M ,

R′(σ ) = R(σ ) + n̂(σ ) δR⊥(σ ), (17)

and

R′(σ + dσ ) = R(σ + dσ ) + n̂(σ + dσ ) δR⊥(σ + dσ ).

(18)

For sufficiently small shape variations δR⊥, the normals of
points on the integral curve do not intersect; they are said to
form a congruence. The vector m̂′ connecting the points R′(σ )
and R′(σ + dσ ) on M ′ is the Lie dragged version of m̂ on
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M . Lie dragging all the integral curves on M in this manner
transfers the entire m̂ field to the varied surface M ′.

In Fig. 1 we illustrate the idea of keeping the orientational
order on the membrane fixed, despite variation in membrane-
shape. We use a particularly simple example that nevertheless
emphasizes the fact that fields with disclinations can also be
Lie dragged without any ambiguity by excising the singular,
disclination points from M .

IV. THE SHAPE EQUATION: LARGE DEFORMATION

In this section we derive the shape equation for large
deformations by two methods. The first method directly
uses the free energy Eq. (6) with a particular choice of
gauge, whereas the second method uses the Coulomb gas
representation of Eq. (6) (see below). Derivation of the shape
equation by the second method is necessary to show that the
result obtained via the direct method does not depend on the
particular choice of gauge made in the first method. These two
methods are complementary—apart from the shape equation,
the first method also gives free boundary conditions, which the
second method cannot.

A. Shape variation I: Direct method

To obtain the first variation of Eq. (6) with respect to shape
we first write it in its full, covariant form:

Fθ = KA

2

∫
(∂μθ − Aμ)gμν(∂νθ − Aν)

√
gdσ 1dσ 2. (19)

The shape variations of gμν and
√

g are well-known [see
Eqs. (33) and (34) below]. Thus, we need to evaluate

δAμ = 1
2 εij δ(êi · ∂μ êj ). (20)

To this end, we first obtain δek in the t and ê bases. A
comparison of the results of the variation, followed by a
judicious choice of gauge leads to the shape variation.

The Cartesian basis êi can be expanded in the basis of local
tangent vectors tμ = ∂μ R, so that

êi = E
μ

i tμ, (21)

where components of E
μ

i form a 2 × 2 invertible matrix,
called the vierbein (“four legs” in German). Using the known
result for the variation of tangent vectors,

δ tμ = δU ν
μ tν + δVμ n̂, (22)

with

δU ν
μ = ∇μδRν

‖ − K ν
μ δR⊥, and (23)

δVμ = Kμν δRν
‖ + ∇μδR⊥, (24)

where the curvature tensor Kμν = n̂ · ∂μ tν , we get

δek = (
δE

μ

k + E ν
k δU μ

ν

)
tμ + E

μ

k δVμ n̂ (25)

in the t basis.
The variation δek has the form

δek(σ ) = ε l
k êl(σ ) δ‖(σ ) + n̂(σ ) δ⊥k(σ ) (26)

in the ê basis, where δ‖,⊥k(σ ) are small variations. The
term ε l

k êl(σ ) δ‖(σ ) corresponds to infinitesimal, anticlockwise

rotation of the ê basis and reflects the local O(2) gauge
freedom.

Next, we fix the gauge by setting δ‖(σ ) = 0. One way of
ensuring this is by excising all disclination points from the
membrane and positing ê1(σ ) ‖ m̂(σ ) on local, overlapping
patches covering the reference surface M , thus securing
θ (σ ) = 0 locally. The integral curves of ê1 on M are then
identical to those of m̂, and implementing the variation δek

amounts to Lie dragging the m̂ field from M to M ′ [see Eq. (26)
above in conjunction with Eqs. (17) and (18)]. With this choice
of gauge, a comparison of the expressions for δek in the two
bases, Eqs. (25) and (26), gives

δE
μ

k = −E ν
k δU μ

ν , and δek = E
μ

k δVμn̂. (27)

Using the standard definitions,

Kμν = n̂ · ∂μ tν ; ∂μn̂ = −Kμν tν, (28)

and substituting for δek from Eq. (27), we get

δAμ = εijE α
i δVα E

σ

j Kσμ, (29)

which we simplify below.
To derive the shape variation (δFθ/δR⊥) we first exploit

the orthonormality of the ê basis, which gives the relation
EαiE σ

i = gασ for the vierbein. This in turn implies that

εijE α
i E

σ

j = εασ

√
g

= γ ασ , (30)

which is the contravariant version of the unit antisymmetric
symbol. Equation (30) above can be inferred by noticing that(

εijE α
i E

σ

j

) (
εklE

μ

k E ν
l

) = gαμgσν − gανgσμ. (31)

Next, we use Eqs. (24) and (30) to simplify Eq. (29), and we
get

δAμ = γ ασKσμ (∇α δR⊥ + Kαν δRν
‖ ), (32)

which expresses δ A solely in terms of the internal coordinates
of the membrane. Finally, we use the known variations

δgμν = ∇μδR‖ ν + ∇νδR‖ μ − 2Kμν δR⊥, (33)

and

δ
√

g = √
g ∇μδR

μ

‖ − 2H
√

g δR⊥, (34)

together with the definition of the Airy stress function (12) to
obtain

δFθ

δR⊥
= KA (Kμν�μν + H �), (35)

where H = (1/2)Kμ
μ is the mean curvature, and we have

defined

�μν = ∇μ∇νχ − (∇μχ )(∇νχ ), (36)

� = (∇χ )2 − 2 ∇2χ. (37)

In writing Eq. (35), the term KA(γμν∂
νχ )(γ αβ∇αK

μ

β ) ob-
tained in performing the variation has been discarded, assum-
ing nonsingular parametrization of membrane patches, so that
γ αβ∇αK

μ

β = 0.
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A natural question that arises at this stage is whether the
result Eq. (35) depends upon the particular choice of gauge
δ‖(σ ) = 0. In Sec. IV B we derive Eq. (35) starting from
the Coulomb gas model of the elastic free energy Fθ . This
calculation does not involve fixing the gauge, and recovers
the result Eq. (35), thus demonstrating that Eq. (35) does not
depend on the choice of gauge.

As stated in Sec. II A, the Euler-Lagrange equations
together with free boundary conditions forF = FH + Fs + Fe

are known [24]. For the sake of completeness and convenience,
we explicitly write the full shape equation for the total free
energy F = F + Fθ ,

δFθ

δR⊥
+ δF

δR⊥
= 0, (38)

where the first term is given by Eq. (35) and where

δF
δR⊥

= κ

2
[∇2H + 2(H − H0)(H 2 − K + HH0)] − 2σH.

(39)
We note that the shape Eq. (38) simplifies considerably for
minimal surfaces (those with mean curvature H = 0). To the
lowest order, and for spontaneous curvature H0 = 0, Eq. (38)
reduces to the von Kármán Eq. (15) of Sec. II C 2. The
compatibility condition Eq. (13) and the shape Eq. (38) form
the pair of coupled, nonlinear partial differential equations of
bulk equilibrium.

To obtain the contribution of Fθ to free boundary conditions
resulting from shape variation, we follow the methods of
Ref. [24]. A distinctive feature of this variational problem is
that the boundary conditions are prescribed on a curve that is
initially unspecified, and the shape of bounding curve itself has
to be deduced in solving the problem. Describing the boundary
curve in the arc-length parametrization R(s), and using the unit
triad (also called the Darboux frame) comprising the unit tan-
gent to the boundary t̂ (b)(s) = d R(s)/ds, the surface normal
at the boundary n̂(s), and the outward normal to the boundary
n̂(b)(s) = t̂ (b)(s) × n̂(s), we employ the following notation:

∇‖ = t
μ

(b)∇μ, ∇⊥ = n
μ

(b)∇μ, K‖ = t
μ

(b) t
ν

(b) Kμν,

K⊥ = n
μ

(b) n
ν

(b) Kμν, and K‖⊥ = t
μ

(b),n
ν

(b) Kμν. (40)

The free boundary conditions from shape variation of the
total free energy F = F + Fθ , corresponding, respectively,
to variations along n̂(b), n̂, and t̂ (b), are

KA[(∇χ )2 + (∇‖χ )2] + n̂(b) · (δF/δR)|∂M = 0,

KA (∇⊥χ ) K‖ + n̂ · (δF/δR)|∂M = 0, and

t̂ (b) · (δF/δR)|∂M = 0, (41)

where the boundary contributions from the variation of F are
[24]

n̂(b) · δF
δR

∣∣∣∣
∂M

= κ(H − H0)2 + 2(κGK + γ kg + σ ),

n̂ · δF
δR

∣∣∣∣
∂M

= κ

2
∇⊥H − κG∇‖K‖⊥ + γK‖, and

t̂ (b) · δF
δR

∣∣∣∣
∂M

= κ

2
H + κG K‖. (42)

In the first of Eqs. (42), kg is the geodesic curvature of the
bounding curve. Note that in Eq. (41), γμν∇νχ = Dμθ . Thus,
Eqs. (14) and (41) constitute the full set of free boundary
conditions. For minimal surfaces, the boundary conditions
simplify considerably.

B. Shape variation II: Coulomb-gas model

In this section we obtain the shape equation by using the
Coulomb-gas representation of Fθ [see Eq. (50) below], as in
Ref. [16]. This has twofold advantages: we can (i) check that
the result of Sec. IV A is independent of the particular choice
of gauge δ‖(σ ) = 0, and (ii) directly compare our result with
that of Ref. [16]. Reference [16] uses the conformal gauge,
with the restriction that the disclination density S = 0. We
do not confine ourselves to the restriction S = 0, and use
a general gauge. It is instructive to derive the Coulomb gas
representation Eq. (50), particularly because some concepts
and relations that appear as intermediate steps in deriving it
are useful in obtaining the final result.

The compatibility condition Eq. (13),

∇2 χ (σ ) = K(σ ) − S (σ ) = ρ(σ ), (43)

is the Poisson equation in two-dimensions, with ρ(σ ) as the
source. To solve for χ (σ ), we define the Green’s function for
an unbounded membrane of infinite extent by

∇2
σ G(σ ,σ ′) = δ(2)(σ ,σ ′)√

g(σ ′)
, (44)

where ∇2
σ is the Laplacian operator in the metric gμν(σ ), and

δ(2)(σ ,σ ′) is the two-dimensional Dirac δ. The solution,

χ (σ ) =
∫

G(σ ,σ ′)ρ(σ ′)
√

g(σ ′)d2σ ′, (45)

implies that

∇μχ (σ ) =
∫

[∇μG(σ ,σ ′)]ρ(σ ′)
√

g(σ ′)d2σ ′, (46)

where ∇μ refers to the gradient operator in unprimed coor-
dinates. Recalling the definition Eq. (12) for the Airy stress
function χ , and using the explicit form of the square-gradient
elasticity Eq. (19), we get

Fθ = KA

2

∫
(∇μχ )(∇μχ )

√
gd2σ. (47)

Substituting the expression for ∇μχ from Eq. (46), integrating
over d2σ by parts, and ignoring the boundary term (on the
grounds that the Green’s function is here defined for an
unbounded, infinite membrane), we get

Fθ = −KA

2

∫∫
ρ(σ ′) G (σ ′,σ ′′) ρ(σ ′′)dS ′dS ′′, (48)

where dS ′ = √
g(σ ′)d2σ ′,dS ′′ = √

g(σ ′′)d2σ ′′ are area ele-
ments, and

G (σ ′,σ ′′) =
∫

G(σ ,σ ′) ∇2
σ G(σ ,σ ′′)

√
g(σ )d2σ. (49)

Using the defining relation Eq. (44) for the Green’s function,
and integrating Eq. (48) over d2σ ′′, we get the Coulomb-gas
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model [4],

Fθ = −KA

2

∫∫
ρ(σ ) G(σ ,σ ′) ρ(σ ′)dSdS ′, (50)

where ρ(σ ) = K(σ ) − S (σ ).
It is convenient to use the abbreviated notation ρ(σ ) =

ρ, ρ(σ ′) = ρ ′, g(σ ) = g, g(σ ′) = g′ and G(σ ,σ ′) = G. The
shape variation is

δFθ = −KA

∫∫
ρ ′[Gδ(ρ

√
g) + (δG) ρ

√
g]d2σ

√
g′ d2σ ′

= (
δF

(1)
θ + δF

(2)
θ

)
, (51)

where the second line retains the ordering of terms in the first
line.

To calculate δF
(1)
θ of Eq. (51) we need the variation δρ =

δK − δS . We note that in evaluating δS , the disclination
density is to be interpreted in a coarse-grained sense, so that
S is, formally, the disclination density corresponding to a
continuous distribution of disclinations. It is straightforward
to obtain

δS = 2HS δR⊥. (52)

To evaluate δK we use the Gauss-Codazzi relation,

KμαKα
ν = 2HKμν − Kgμν, (53)

which leads to

δK = 2H ∇2δR⊥ − Kμν∇ν∇μδR⊥ + 2HK δR⊥. (54)

Using δ
√

g = −2H
√

g δR⊥ Eq. (34) for the normal variation,
it is straightforward to simplify δ(ρ

√
g). Integrating δF

(1)
θ by

parts, ignoring boundary contributions, and using Eq. (45) to
cast the result in terms of the stress function χ , we have

δF
(1)
θ = KA

∫
(Kμν∇ν∇μχ − 2H∇2χ ) δR⊥ dS. (55)

It is noteworthy that terms involving S cancel off in the
calculation of δF

(1)
θ .

The evaluation of δF
(2)
θ is more involved. First, we vary

Eq. (44) to get

δ∇2G(σ ,σ ′) = −δ(2)(σ,σ ′)
2g(σ ′)

δ
√

g(σ ′), (56)

where

∇2G = (1/
√

g) ∂μ(
√

g gμν ∂νG) (57)

is the explicit form of the Laplacian. Next, we use the relations
δgμν = 2Kμν√g δR⊥ and δ

√
g = −2H

√
g δR⊥ for normal

variations [see Eqs. (33) and (34)], to obtain

∇2δG = 1√
g

∂μ[
√

g (Hgμν − Kμν)(∂νG)δR⊥]. (58)

Equation (58) above implies that

∇μδG = (Hgμν − Kμν)(∂νG) δR⊥, (59)

apart from the curl of a well-behaved vector field. Finally,
using Eq. (59) in conjunction with the compatibility condition

Eq. (43), its solution Eq. (45), and integrating by parts, we get

δF
(2)
θ = KA

∫
[H (∇χ )2 − (∇μχ )Kν

μ(∇νχ )]δR⊥
√

gdS.

(60)
Adding up the contributions δF

(1)
θ and δF

(2)
θ , we recover the

result Eq. (35) of Sec. IV A.

C. Solution for a helicoid

The coupled equations of bulk equilibrium, Eqs. (13)
and (38), can be solved for the texture on a right-helicoidal
membrane (the shape of the membrane is prescribed to be a
right-helicoid). For a right-helicoid of pitch p, parametrized by
the position vector R = (ρ cos φ, ρ sin φ, p̃ φ), where ρ and φ

are internal coordinates, p̃ = p/(2π ); the components of the
metric tensor are gρρ = 1, gρφ = gφρ = 0, gφφ = ρ2 + p̃2, the
determinant of the metric g = ρ2 + p̃2, the curvature tensor
has components Kρρ =Kφφ = 0, Kρφ =Kφρ = −p̃/

√
g, the

mean curvature H = 0 (the helicoid is a minimal surface),
the Gaussian curvature K = −p̃2/g2, and the components
of spin-connection are (Aρ,Aφ) = (0, − ρ/

√
g). Using these

geometrical attributes of a helicoid we find that the solution is

χ = α

2π
ln(ρ +

√
ρ2 + p̃2) − 1

2
ln(ρ2 + p̃2) + β

=⇒ θ = α φ + β, (61)

where α, β are arbitrary constants. We emphasize that the so-
lution obtained above is an exact solution to the compatibility
condition as well as the shape equation. It has been obtained
by assuming that the membrane is free of disclinations. In a
previous publication that extends the Nelson-Peliti formulation
to smectic liquid crystals with in-plane orientational order
[15], we have used this solution to demonstrate dispiration
asymmetry in chiral smectic-C* liquid crystals. Dispirations
with indices of the same magnitude but opposite signs have
disparate energies—a result that is amenable to experimental
tests.

V. DISCUSSION

In this section we first briefly consider the nature of the
equations of equilibrium for membranes with orientational
order. This is followed by an appraisal of the results of
Ref. [16]. Finally, we discuss experimental situations where
our results would lead to vastly different results from those of
Ref. [16].

The coupled, nonlinear partial differential equations of
equilibrium, Eqs. (13) and (38), are covariant, fluid-membrane
analogues of the Föppl-von Kármán equations for large deflec-
tions of thin plates [27] modified to account for topological
defects [28]. As is the case for thin-plate equations, “These
equations are very complicated, and cannot be solved exactly,
even in very simple cases” [27].

Our result Eq. (35) on the shape variation of Fθ is at variance
with that of Ref. [16]. Using the Coulomb-gas model, the
shape variation in this reference is done within conformal
gauge, whereas the Coulomb-gas calculation of Sec. IV B is
done in a general gauge. The result of Ref. [16], cast in our
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notation, is

δFθ

δR⊥
= −2KA HK, (62)

as against our result Eq. (35). The full shape equation of
Ref. [16] is

KA KH + σ H = 0, (63)

which, for nonzero H , implies that KA K + σ = 0. The free
energy Fθ couples gradients in the θ field to shape through the
spin connection A. The most prominent difference between
Eqs. (35) and (62) is that whereas Eq. (35) reflects this
shape-order coupling via terms involving the stress function
χ , Eq. (62) implies that the θ field is completely decoupled
from the membrane-shape. In what follows we address the
reason behind the discrepancy between our results and those
of Ref. [16], before turning to their experimental implications.

To carry out the shape variation of a fluid membrane (with,
or without orientational order), it is essential that the membrane
surface be embedded in three-dimensional Euclidean space
R3. The fundamental theorem of surfaces [29,30] states that a
surface embedded in R3 exists, and is uniquely specified (up to
a Euclidean motion), if it has a first fundamental form (metric
tensor), and a second fundamental form (curvature tensor) that
satisfies Gauss-Codazzi equations. Merely specifying intrinsic
properties of a surface such as the metric, and therefore the
intrinsic curvature K , does not embed the surface in R3.

In Ref. [16], it is assumed that the membrane is free
of disclinations. The elastic free energy Fθ is written in
conformal coordinates u = (u1,u2) by using the standard
formula K = −[1/(2w)] ∂2

u ln w for the Gaussian curvature,
where w is the conformal weight, and ∂2

u is the Euclidean
Laplacian. It is then assumed that all the geometrical structure
of the interface (membrane) is embodied in the conformal
weight w(u). We note that given the conformal metric alone,
without specifying an associated extrinsic curvature tensor Kij

that satisfies Gauss-Codazzi equations, there is no notion of a
unit normal n̂ to the surface. Therefore the interface considered
in Ref. [16] is not embedded in R3. In Ref. [16], the shape
variation of Fθ is then carried out by using δw = −2Hw δR⊥
by analogy with the standard result δ

√
g = −2H

√
g δR⊥ for

an embedded surface, followed by the use of Green’s identities.
Using a simple example, we now show that this procedure is
inconsistent, and leads to absurd results. Let us consider the
“shape variation” of the conformal metric tensor. In conformal
coordinates gij = w δij , thus δgij = δw δij = −2Hwδij δR⊥,
whereas the known normal variation for an embedded surface
is δgμν = −2Kμν δR⊥, Eq. (33). The calculation of Ref. [16]
therefore accounts merely for the variation of the area element
alone, culminating in the erroneous result Eq. (62).

We note that Ref. [16] ignores the term proportional to (H −
H0)2 in the elastic free energy Eq. (1). For membranes with
up-down symmetry, such as symmetric bilayer membranes,
H0 = 0. However, even for symmetric bilayer membranes
the term proportional to H 2 cannot be ignored; it is of the
same order in the number of derivatives as K and is not
explicitly forbidden by symmetry considerations. Moreover,
even if the coefficient κ of the H 2 term is taken to be zero to
begin with, thermal fluctuations generate a nonzero κ of order
kBT [31]. For typical lipid membranes κ is on the order of

10 kBT [32]. Ignoring the mean curvature squared term in the
elastic free energy is therefore physically unacceptable. The
class of nonminimal, hyperbolic interfaces with K = −σ/KA

proposed as equilibrium shapes in Ref. [16] do not satisfy the
full shape Eq. (38). Even after including the shape variation of
the H 2 term, the result of Ref. [16] does not, to the lowest
order, reduce to the approximate (noncovariant) nonlinear,
hexatic von Kármán Eq. (15) of Ref. [4]. This further confirms
that the result Eq. (62) for the shape variation of Fθ is
erroneous.

As mentioned in Sec. IV A, the shape equation as well as the
free boundary conditions simplify considerably for minimal
surfaces. Analytical results such as those of Ref. [14] for
defects in nematic membranes either assume that κ = 0, or
treat minimal surfaces (the helicoid of Sec. IV C). Because of
the complex nature of these equations, most problems dealing
with the equilibrium shape and texture of membranes have
to be addressed by using either numerical methods (including
simulations) or variational ansätze.

We now discuss the experimental implications of the
results of [16] as against those of our results. Disclination
induced buckling is one of the most important predictions of
the Nelson-Peliti formulation. Below certain critical values
of κ/KA, the approximate von Kármán Eq. (15) predicts
disclination-induced buckling of a planar membrane into a
cone (for a +1 disclination), and a saddle (for a −1 disclination)
[4,5]. The predicted shapes of the cone as well as the saddle
have a nonzero mean curvature. These buckled shapes cannot
be obtained by using the shape equation of Ref. [16] because
mean curvature drops out of the shape equation, Eq. (63),
whereas the shape Eq. (38), solved numerically in conjunction
with the compatibility condition Eq. (13), would directly give
the numerically exact shape of the membrane and its texture for
given κ/KA. Experimentally, the buckling of spherical nematic
vesicles into “rounded tetrahedra” has been observed and has
been compared with results obtained by energy minimization
using simulated annealing Monte Carlo method [7]. The
equations of equilibrium obtained by us have experimentally
testable consequences not only in the field of fluid membranes
but also for smectic liquid crystals with in-plane orientational
order [15]. In this reference we have used the solution for a
helicoid obtained in Sec. IV C to predict dispiration asymmetry
in smectic-C* liquid crystals.

VI. SUMMARY AND CONCLUSIONS

Elastic free-energy of membranes endowed with orienta-
tional order depends on the shape of the membrane as well
as the orientational order. The Nelson-Peliti formulation [3]
of membrane elasticity used in this paper emphasizes the
interplay between the shape of the membrane and the topology
of the orientational-order field on it.

Minimization of the membrane free energy involves inde-
pendent variation of the orientational order while keeping the
membrane shape unchanged, and vice versa. Whereas it is
straightforward to vary the orientational order on a membrane
with a fixed shape, it is not obvious how membrane-shape can
be varied for a fixed configuration of the orientational-order
field. In this paper, we have proposed a purely geometrical
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method for carrying out such shape-variation via a generaliza-
tion of the Lie-dragging procedure.

Using two different methods, we have minimized the
Nelson-Peliti elastic free-energy with respect to membrane-
shape to obtain the covariant shape equation. The first method
is direct and involves a particular choice of gauge. We have
shown that this choice of gauge is consistent with Lie dragging.
In addition to the equation of bulk equilibrium (the shape
equation), the direct method also leads to free boundary con-
ditions (for membranes with an edge, or a boundary) derived
in this paper. The second method employs the Coulomb-gas
version of the Nelson-Peliti elasticity [4] and establishes that
the shape equation obtained through the direct method does not
depend on the particular choice of gauge. The shape equation
derived by us, together with the compatibility condition (that
replaces the Euler-Lagrange equation corresponding to the
minimization of the orientational-order field) form the set of
coupled, nonlinear differential equations of bulk equilibrium.
Our results on the shape equation, together with associated
free boundary conditions are new. These are essential for
understanding equilibrium configurations (shape as well as
texture) of membranes with orientational order, especially
in experimental situations involving topological defects, and
large shape-deformations.

As an illustrative example, we have obtained an exact
solution to the coupled equations of bulk equilibrium for a
helicoid. Based upon our recent work [15], which uses the
exact solution for helicoids obtained in the present paper,
we have proposed an experimental test of our results on
membranes in the unusual setting of lamellar liquid crystals
with in-plane order—asymmetry in the energetics of dispira-
tions (topological defects in smectic-C∗ liquid crystals) having
strengths of equal magnitude but opposite signs.

Derivation of the shape equation for membranes endowed
with orientational order has been attempted earlier [16]. We
have discussed the root causes that lead to an erroneous result
for the shape equation proposed in Ref. [16]. In this context
we have pointed out that it is not possible to obtain the shape
equation using abstract surfaces described solely in terms
of internal coordinates. We have contrasted the experimental
consequences of the shape equation of Ref. [16] with those of
our result, known experimental results, and known theoretical
predictions from numerical studies.
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