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Magnetic reconnection around three dimensional �3D� magnetic null points is the natural
progression from X-point reconnection in two dimensions. In 3D the separator field lines of the
X-point are replaced with the spine line and fan plane �the field lines which asymptotically approach
or recede from the null�. In this work analytical models are developed for the newly classified
torsional spine and torsional fan reconnection regimes by solving the steady state, kinematic,
resistive magnetohydrodynamic equations. Reconnection is localized to around the null through the
use of a localized field perturbation leading to a localized current while a constant resistivity is
assumed. For the torsional spine case current is found to localize around the spine leading to a
spiraling slippage of the field around the spine and out along the fan. For the torsional fan case
current is found to be localized to the fan plane leading again to a spiraling slippage of the field. In
each case no flux is transported across either the spine or the fan. An intermediate twist is then
introduced and a link is established between the two regimes. We find that for a general twist plasma
flows associated with both torsional spine and fan appear in distinct regions. As such we suggest that
the “pure” flows of each are extreme cases. © 2010 American Institute of Physics.
�doi:10.1063/1.3480639�

I. INTRODUCTION

Magnetic reconnection is a fundamental physical process
of an astrophysical plasma. It is the restructuring of the mag-
netic field through the changing of the connectivity of the
magnetic field lines. The majority of astrophysical plasmas
including the solar corona, however, have low plasma resis-
tivity so reconnection may only occur in regions where very
intense currents develop. Therefore the key questions regard-
ing reconnection in astrophysical plasmas are where do these
intense currents develop and what effects do they have on the
plasma flows and energy release?

This however is not an easy problem since the astro-
physical plasmas have a very complex three dimensional
�3D� magnetic structure. Recent efforts to understand mag-
netic reconnection in the solar corona have led to some
progress. Two main scenarios have emerged during the in-
vestigation of the current sheet formation process: reconnec-
tion at and around 3D magnetic null points and their associ-
ated separator field lines—the field line that connects two
nulls �for example, see Refs. 1–9�. We focus here on recon-
nection around an isolated 3D null. The field topology in the
vicinity of such a null is defined by two structures. The fan
�or �-� plane, a continuum of field lines that asymptotically
recede from �or approach� the null, and the spine �or �-� line,
two field lines that asymptotically approach �or recede from�
the null. These structures may be found by examining the
linearized field topology around the null defined by the
equation

B = M · r , �1�

where the matrix M is given by the Jacobian of B and r the
position vector �x ,y ,z�T. The eigenvectors of M �whose cor-

responding eigenvalues sum to zero since � ·B=0� define the
spine and fan such that the two eigenvalues whose real parts
have like sign lie in the fan plane with the third directed
along the spine line. The fan surface is a separatrix surface
between two topologically unique regions. The spine cannot
separate different regions being only a line but is still an
important feature as changes in the symmetry within the re-
gions separated by the fan manifest in a change in the field at
or around the spine.

The existence of 3D nulls is predicted in abundance in
the solar corona �e.g., Refs. 10–12�. Proposed applications
for null reconnection include sites for coronal heating13 and
involvement in jets,14,15 solar flares,16,17 and coronal mass
ejections.18,19 The evidence for 3D null point reconnection is
also suggested in the Earth’s magnetotail on the basis of
observations from the cluster satellites.20

Although it is now accepted that reconnection at 3D null
points is of great importance in realistic 3D field geometries,
a full understanding of the different kinds of reconnection
that occurs at these null points is still to be achieved. Early
work using ideal steady state kinematic models3,9 suggested
reconnection types that transported flux across the fan or
spine. Later work by21,22 extended this to include a local
diffusion region and constant current J. Two different current
cases were considered. When J was parallel to the fan plane
flux was found to cross both the spine and fan in a similar
way as was suggested by Ref. 9. When J was parallel to the
spine however a rotational slippage of the field was found
where no flux was transported across either the spine or fan
but rotated around the spine symmetrically. Numerical ex-
periments by Refs. 23 and 24 also found this rotational slip-
page but with currents diffused in one direction when the
magnetic field is rotationally perturbed. Pontin and
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Galsgaard23 also noted that perturbing the fan or spine pro-
duced local currents focusing on the null with plasma flow
across the fan or spine, respectively. The culmination of all
these results led Pontin and Priest25 to reclassify reconnec-
tion around 3D nulls into three types: torsional fan and tor-
sional spine which involve spatially diffused currents in one
direction leading to rotational slippage and spine-fan which
covers all cases of flux transport across the spine or fan in the
more traditional manner.

As noted, so far, all the steady state, kinematic models
have been studied by localizing �. However, from simulation
studies �for example, Refs. 23 and 24�, localized currents
have been seen with slippage of flux velocities around the
spine and fan, and for applications to astrophysical plasma, it
may also be interesting to explore the effect of localized
current. This work aims to present steady kinematic models
for torsional spine and torsional fan through the use of a
localized current.

II. GENERAL METHOD

We seek to find solutions to the kinematic, steady state,
resistive MHD equations in the vicinity of a 3D magnetic
null point. Thus, we solve

E + v � B = �J , �2�

� � E = 0, �3�

� � B = �0J , �4�

� · B = 0. �5�

From Eq. �3� we can express the electric field as E=−��
where � is a scalar potential. The component of Eq. �2�
parallel to B can be combined with this and integrated along
the magnetic field lines to give

� = −� �J · Bds + �0. �6�

This integral is solved by using the field line equations in
�r ,� ,z� expressed in terms of the parameter s and some ini-
tial position �r0 ,�0 ,z0�. The field line equations are obtained
by solving

dr

Br
=

rd�

B�

=
dz

Bz
= ds . �7�

These equations are invertible so � can be represented as a
function of s and initial position to carry out the integral in
Eq. �6� and then transferred back into a function of r, �, and
z to find the electric field from

E = − �� . �8�

Thus for a given magnetic configuration we can find the
electric field due to nonideal effects �i.e., those due to J�0�.
Using this we can also find the resulting flow velocity per-
pendicular to the magnetic field by taking the vector product
of Eq. �2� with B to give

v� =
�E − �J� � B

B2 . �9�

In the next section, we consider a general perturbation in the
�-component of a simple linear magnetic field and investi-
gate the properties of torsional reconnections using this gen-
eral method.

III. TORSIONAL RECONNECTION

Consider

B = B0�r, jr	z��zr2�
e−�1/l2��a2r2+b2z2+c2�zr2�2�,− 2z� , �10�

where 	, 
, and � are all either zero or positive integers and
a, b, c, l, and j are constants. This type of perturbation leads
to a twist of the field lines around the spine and depending
on the choice of parameters a rotational slippage of these
field lines. In the following subsections, we investigate in
detail the two main types of torsional reconnections.

A. Torsional spine

Consider the case �=0 and a=1; b=0 in the above Eq.
�10�. Thus the field is of the form

B = B0�r, jr	�zr2�
e−�1/l2��r2+c2�zr2�2�,− 2z� . �11�

The field line equations for r and z can be found to be

r = r0eB0s, z = z0e−2B0s. �12�

Using these we can express the � field line as

� = jB0�z0r0
2�
e−�c2/l2��z0r0

2�2
F�	 − 1� + C , �13�

where C is a constant of integration and F�A� is defined as

F�A� = r0
A� eAB0se−�r0

2/l2�e2B0s
ds . �14�

Using integration by parts, it is easy to show a recurrence
relation for F defined by

F�A + 2� =
l2

2
�AF�A� −

rA

B0
e−r2/l2� , �15�

and since

F�1� =
l	�

2B0
erf� r

l
� ,

F�2� = −
l2e−r2/l2

2B0
,

and the fact that 	�0, we can find solutions for nonsingular
fields. Here erf�x� is an error function. Using Eq. �4� we find

J =
jB0

�0
�z−1
− 
 +

2c2

l2 �zr2�2�,0,r−1��2
 + 	 + 1�

−
2

l2 �r2 + 2c2�zr2�2��r	�zr2�
e−�1/l2��r2+c2�zr2�2�, �16�

and using Eq. �6� we find the electric potential
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� =
j�0B0

�0

�
 −

2c2

l2 �zr2�2�F�	 + 3��zr2�
−1

−
4

l2F�	 − 1��zr2�
+1 + 2��	 + 2
 + 1�

−
4c2

l2 �zr2�2�F�	 − 3��zr2�
+1�e−�c2/l2��zr2�, �17�

where 	�1 or 3.
It is clear that depending on the choice of parameters the

field will be perturbed differently. In the following subsec-
tions we investigate in more detail the reconnection process
that occurs for these different types of perturbation.

Throughout the paper unless otherwise stated we shall
consider l=�0=�0=B0=1 with the plots being produced us-
ing MAPLE 13 with a relative scaling of �strength /
maximum�1/d �where d=3 unless otherwise stated� for
clarity.

1. Same direction twist

For the field lines to be symmetric above and below the
fan plane we must choose 
 to be even in conjunction with
	0, when 	=0 all values of 
 give rise to sinks and
sources, such flows are unphysical.

a. The z independent case: 
=0 and c=0.
Note from Eq. �17� that for 
=0, the z-component of the

electric field �Ez=−�� /�z� is zero when F�	−3� /F�	−1�
=2 / �	+1�l2 for r�0. The total plasma flows, therefore,
have sinks and sources in the rz-plane for all odd 	 values.
Such flows are unphysical. From Eq. �16� it is clear that for

=0 a singular current results from 	=0. Also, 	=2 gives a
nonzero v�� when r=0, which is not a realistic physical
solution. Thus, for 
=0, only even values of 	�4 are per-
missible.

b. Even 	.
Using 	=4 we get a field of the form

B = B0�r, jr4e−r2/l2,− 2z� . �18�

Figure 1 shows the resulting twisted field lines associated
with this choice of parameters. We see a radially symmetric
twist in the field that is localized to a toroidal region around
the spine but which is unbounded in height. The value of l
varies the strength of the damping from the exponential term
which will stretch the toroidal region inward or outward.
Outside the region we see the field lines straighten out as the
field becomes more potential in nature. The current flows are
found to be localized to the region of twist and exist in
annular bands around the spine. Figure 2, left panel, shows
them as opposite bands in the rz-plane. Such bands were also
observed at intermediate time steps in the numerical simula-
tions by Ref. 23. Recall that in our model, there is no current
at the null itself so the field and the flows are more represen-
tative of the later stages of evolution after an initial
disturbance.

Lastly, in the right and bottom panels of Fig. 2, we show
the plasma velocity resulting from the twisting of the field
lines. It appears that the plasma spirals down around the
spine and then spirals out along the fan plane. As expected,
the strongest flows occur within the region of greatest twist.
For higher even values of 	, the twist in the field is reduced
�increased� where r� l �r l�, with similar plasma and cur-
rent flows. This kind of reconnection was also seen in the
numerical simulation studies carried out by Ref. 23. They
also find rotational plasma flows but their flows were af-
fected by reflections of the pulse from the simulation box
boundary creating counter rotating flows which we do not
see here.

FIG. 1. Top and side views of field lines plotted for 	=4 and 
=0 with j=3. The field lines close to the spine are approaching the null and receding away
from the null in the fan plane.
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c. The z dependent case: 
�0 and c�0.
For this case, the twist in the field lines is localized to

around the spine and near the fan while being zero in the fan
plane. In order to have a symmetric twist above and below
the fan plane, even values of 
 must be chosen. As we wish
to study a smooth transition from z independence to z depen-
dence we choose to keep 	�4 for 
�0 also. So we start
with a field of the form

B = B0�r, jz2r8e−�r2/l2�−�c2/l2��zr2�2
,− 2z� , �19�

where we have chosen 	=4 and 
=2 while including a non-
zero c value to maintain localization.

Figure 3 shows the twist in the field that is again focused
to a toroidal region around the spine with potential field sur-
rounding it. However now the region has been pinched at the
top and bottom by c�0 and split to either side of the fan
plane by the z power dependence �
�0�. Thus, on the fan
itself the field lines are of potential form with the twist in the
field existing in two tori on either side of it. The shape of
these regions is clearly outlined by the shape of the current
flow shown in the left panel of Fig. 4. We see that it is

oppositely directed above and below the fan plane and flows
in a circuit within these squashed tori.

Figure 4, right and middle panels, shows the plasma flow
which is also localized to these shaped regions with an extra
counter rotating flow �marked out in red �solid� lines� that
takes plasma in along the fan and out along the spine. This
region is introduced by the extra damping due to c�0 in the
exponential term in Eq. �19�. Another interesting aspect of
this flow is that there is no outflow of plasma in the fan
plane, even though because of the corotating nature of the
plasma either side of this plane the plasma rotates around
within it. This is a consequence of the z power dependence
�
�0�.

We also find that because the perturbation is a multiple
of r2 all other higher even values of 	 give similar results.
Note that for odd values of 	, the z-component of the electric
field has sinks and sources for r�0, which is unphysical.

2. Opposite direction twist

To create a counter rotation of the field requires us to
choose 
=odd in conjunction with 	=even. Since 	�4
there are no constraints on the values 
 may take.

FIG. 2. The left panel shows a slice of the radially symmetric current flow. The right and bottom panels are the scaled plots of the plasma flow. These are
plotted for 	=4 and 
=0 with j=3. Note that here r denotes either x or y.
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In this case we find that we have an oppositely directed
twist in the field which is localized to two squashed tori,
such that, once again, there is no twist in the fan plane. On
either side of the fan plane the current density is equally
directed but still of a similar general form as the previous z
dependent symmetric case.

We also note that the flows above and below the fan are
opposite to each other such that in the fan plane the plasma is
static suggesting no flux is reconnected at the fan plane by
this perturbation.

B. Torsional fan

We now consider a current term localized in height z. It
is convenient to choose 	=1, a=0, and b=1 in Eq. �10� to
yield field of the form

B = B0�r, jr�zr2�
z�e−�z2/l2�−�c2/l2��zr2�2
,− 2z� , �20�

where 
 and � are positive integers. Using Eq. �7� the field
line equations are

r = r0eB0s, z = z0e−2B0s, �21�

and

� = jB0�z0r0
2�
e−�c2/l2��z0r0

2�2
G��� + C , �22�

where C is a constant of integration and G�A� is defined as

G�A� = z0
A� e−2AB0se−�z0

2/l2�e−4B0s
ds . �23�

The recurrence relation for G�A� is

FIG. 3. Top and side views of field lines plotted for 	=4, 
=2, and c=0.2 with j=3. The field lines close to the spine line are approaching the null and
receding away from the null in the fan plane.

FIG. 4. �Color online� Scaled plots of the radially symmetric current flow �left panel� and plasma flows �middle and right panels� for 	=4, 
=2, and c
=0.2 with l=1 and j=3. Here, the maple scaling is applied with d=13 and r denotes either x or y.
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G�A + 2� =
l2

2
�AG�A� +

zA

2B0
e−z2/l2� , �24�

where we can generate solutions for all values of A from

G�1� = −
	�l

4B0
erf� z

l
� , �25�

G�2� =
l2

4B0
e−z2/l2. �26�

Using Eq. �4� we find the current

J =
jB0

�0
�− ��� + 
�z−1 −

2

l2�z + c2�zr2�2z−1��,0,2�1 + 
�r−1

−
4c2

l2 �zr2�2r−1�rz��zr2�
e−�z2/l2�−�c2/l2��zr2�2
�27�

and Eq. �6� gives us the electric potential as

� =
j�0B0

�0

zr2���� + 
� −

2c2

l2 �zr2�2�G�� − 2� −
2

l2G����
+ 2�2�
 + 1� −

4c2

l2 �zr2�2�G�� + 1���zr2�
e−�c2/l2��zr2�.

�28�

It is clear that ��0 or 2 but there are no such constraints on

. In a similar manner to the previous section we now inves-
tigate further reconnection brought about by different
choices of the various parameters.

1. Opposite direction twist

It is clear from Eq. �20� that to perturb the field in this
way we need �+
 to be odd, i.e., �=odd and 
=even, or
�=even and 
=odd. A choice of the latter results in flows

containing sinks and sources similar to those in the torsional
spine, 	=odd case. We therefore only investigate in detail
the �=odd and 
=even possibility.

a. The radially linear perturbation: 
=0 and c=0.
In this case

� = jB0G��� + C . �29�

The �=1 case is a special case with a nonzero current that
linearly increases with r in the fan plane which makes it
different from the generic case of ��3. Thus we shall study
the more generic case while pointing out any differences
from the special case of �=1. Let us consider �=3 for which
the field is given by

B = B0�r, jrz3e−z2/l2,− 2z� . �30�

Figure 5 shows how the twist in the field is localized to two
flattened toroidal disklike regions above and below the fan
plane. In Fig. 6 we see that the resulting current is localized
to this region of twist and exists in two disks of opposite
current within each of the twisted regions. Current disks of
this kind were observed by Ref. 23.

Figure 6 �middle and right panels� shows the plasma
flow. This flow counter rotates below the fan with static
plasma in the fan plane separating the two regions. As a
result of this, we have counter spiraling flows that move in
along the fan and then spiral out close to the spine. Compar-
ing to Fig. 2 we note that in the positive rz-plane the flows
are in the opposite direction to torsional spine. As expected
the flow is strongest in the two disklike twisted regions.

Note that the effect of increasing � to higher odd values
is to increase �decrease� the twist where z l �z� l� in an
analogous way to the torsional spine case. Similarly increas-
ing l also serves to reduce the damping of the exponential
term with height and therefore to stretch the solution in z.

FIG. 5. Side and top view of field lines plotted for �=3, 
=0, j=5, c=0, and l=1. The field on the spine line is approaching the null and receding away from
the null in the fan plane.
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b. The radially nonlinear perturbation: 
�0 and c�0.
Here we consider 
�0 and even. Since we are prohib-

ited to choose �=0 �see Eq. �28�� we consider the previous
case of �=3 combined with 
=2 and a nonzero c value to
maintain locality giving a field of the form

B = B0�r, jr4z5e−�z2/l2�−�c2/l2��zr2�2
,− 2z� . �31�

The resulting field lines are shown in Fig. 7. The twist in the
field lines is differentially varying with radius and localized
to within two squashed tori on either side of the fan. Like the
torsional spine case this is due to the extra damping, i.e.,
c�0.

Figure 8, left panel, shows the resulting current that is
localized to this region and rotates around within it. The
middle and right panels of the figure show the plasma flow.
The flows are much more complex than in the linear case.
The original flow is sandwiched by counter rotating flows

from below and above. The flow in the vicinity of the fan
plane results from the nonlinearity in r of the power law in
the perturbation, i.e., through 
�0. This new flow spans
both the spine and the fan becoming infinitely thin far away
from the null, i.e., only the fan and the spine themselves. The
second flow is a result of the nonlinearity in r of the expo-
nential from c�0. These flows are effectively the nonlinear
radial nature of torsional spine reconnection asserting itself
in the torsional fan regime.

Lastly, the �=1 case behaves differently from the more
generic cases of ��3. The smaller value of � means that
there is a linear plasma flow �
=c=0� down around the
spine and out along the fan in the same manner as in the
torsional spine reconnection. Therefore when the perturba-
tion is made nonlinear in r the new flow is lost within the
original one. We do however still see a counter rotating flow
because of c�0 but it is counter rotating in relation to the

FIG. 6. Scaled plots of the radially symmetric current flow �left panel� and plasma flow �middle and right panels�. Plotted for �=3 and 
=0 with l=1, c=0,
and j=5. Here r denotes either x or y.

FIG. 7. Side and top views of field lines plotted for �=3, 
=2, j=5, l=1, and c=0.2. The field on the spine line is approaching the null and receding away
from the null in the fan plane.
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first flow and, therefore, is in the more generic direction for
fan reconnection, along the fan and up the spine. Figure 9
illustrates this for the example of �=1, 
=2, and c=0.2.

So the overall picture of the plasma flow for the most
generic, radially differentially varying counter twist, is a
counter rotating spiraling flow, the majority of which travels
along the fan and up around the spine with a portion of it
counter rotating in relation to this first flow down the spine
and out along the fan in two distinct regions. Static plasma in
the fan separates the positive and negative z regions.

2. Same direction twist

As mentioned earlier the choice of �=even is not a re-
alistic solution to the problem so we consider � and 
 both
odd for this case. As an example, let

B = B0�r, jr3z4e−�z2/l2�−�c2/l2��zr2�2
,− 2z� , �32�

where �=3 and 
=1 yield same direction twist field lines in
the rz-plane. Such field lines result in a current density which
is oppositely directed on either side of the fan plane while
still being localized in a similar way to the previous current
in Fig. 8. The plasma flows are again found to be counter
rotating flows of the generic type described in the previous
section except now the flow is equally directed on either side
of the fan allowing for a rotating flow in the fan itself. Again
for the �=1 case the new flow is lost within that of the
original due to its different directional nature.

IV. DISCUSSION

We have seen that for a twisting perturbation of the field
around a 3D null current localizes to a torus within the per-

FIG. 8. �Color online� The left panel shows a slice of the scaled radially symmetric current flow, the middle and right panels showing the side and top views,
respectively, of the scaled plasma flow when �=3, 
=2, and c=0.2 with l=1 and j=5 where d=13 with r denoting either x or y.

FIG. 9. �Color online� Top and side views of the scaled radially symmetric plasma flow for �=1, 
=2, and a=0.2 with l=1 and j=5, where d=13 with r
denoting either x or y.
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turbed region of field driving a slippage of the plasma though
this region. Flux transport is therefore heavily dependent on
the localization of the perturbation. The two main cases are
that of localization around the spine or the fan. We have seen
that the inclusion of terms with nonlinearity in r leads to
torsional spine type flows and terms with nonlinearity in z
lead to torsional fan type flows. Thus, we expect a smooth
transition from one to the other. This requires an intermediate
step: when a=b=�=	=0 with c=
�0, resulting in a field
of the form

B = B0�r, j�zr2�
e−�c2/l2��zr2�2
,− 2z� . �33�

A field of this form is perturbed in a way which has no bias
to either spine or fan but varies differentially in zr2. In this
case both electric potentials reduce to

� =
j�0B0

3�0
�

 −

2c2

l2 �zr2�2� r

z

+ 2
2
 + 1 −
4c2

l2 �zr2�2� r

z
�zr2�
e−�c2/l2��zr2�2

. �34�

Figure 10 shows how the two cases are linked by this term
by focusing on the plasma flow in the positive rz-region
since the direction of twist in this region remains the same
for all values of 	, �, and 
. The region A corresponds to
pure z-independent torsional spine flow, B corresponds to

pure linear torsional fan flow, and C and D are associated
with the damping from c�0. We see how most of these
flows appear in each case.

V. CONCLUSION

We investigated torsional magnetic reconnection at a 3D
null point by allowing perturbations in the � component of
the magnetic field. We introduced models for the torsional
spine and torsional fan reconnection regimes through solu-
tions of the steady state kinematic resistive MHD equations.
In both regimes we found spiral slippage of the field lines
around the spine where we noted that this slippage is not
involved in flux transport across the spine or the fan, i.e., flux
is reconnected within the two topological distinct regions
separated by the fan but not between them. This indicates
that this kind of reconnection would not change the topologi-
cal structure of an overall field but would act as an energy
release for rotational stresses within it. We also found from
the nature of the twist in the field that these stresses are
manifest in currents focused around the spine for torsional
spine and the fan for torsional fan agreeing with previous
numerical studies.

We then investigated twists with nonlinearity in both r
and z. The flows are found to be complex with competing
effects between the two nonlinearities. We then linked the

FIG. 10. �Color online� Flux transport regions in the positive rz-plane for the torsional spine �
�0 and c�0� and fan �
�0, ��3, and c�0� cases and the
connecting regime between them. The top row shows the plasma direction while the bottom row separates regions in each regime. The solid red lines denote
where v�z=0.
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two main cases with an intermediate step indicating that each
of the “pure” linear regimes of torsional spine and fan are
extreme cases of a general twist in the field.
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