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Asymmetric current sheets are likely to be prevalent in both astrophysical and laboratory plasmas

with complex three dimensional (3D) magnetic topologies. This work presents kinematic analytical

models for spine and fan reconnection at a radially symmetric 3D null (i.e., a null where the

eigenvalues associated with the fan plane are equal) with asymmetric current sheets. Asymmetric

fan reconnection is characterized by an asymmetric reconnection of flux past each spine line and a

bulk flow of plasma across the null point. In contrast, asymmetric spine reconnection is

characterized by the reconnection of an equal quantity of flux across the fan plane in both

directions. The higher modes of spine reconnection also include localized wedges of vortical flux

transport in each half of the fan. In this situation, two definitions for reconnection rate become

appropriate: a local reconnection rate quantifying how much flux is genuinely reconnected across

the fan plane and a global rate associated with the net flux driven across each semi-plane. Through

a scaling analysis, it is shown that when the ohmic dissipation in the layer is assumed to be

constant, the increase in the local rate bleeds from the global rate as the sheet deformation is

increased. Both models suggest that asymmetry in the current sheet dimensions will have a

profound effect on the reconnection rate and manner of flux transport in reconnection involving 3D

nulls. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4804338]

I. INTRODUCTION

The importance of magnetic nulls to magnetic reconnec-

tion has long been recognized. In two dimensions (2D)

reconnection only occurs where there is a hyperbolic null (or

X-point) in the magnetic field. Nulls of this type form the ba-

sis for the classic two dimensional reconnection models of

Sweet-Parker1,2 and Petschek.3 However, as an increasingly

accurate picture of the complex three dimensional (3D) na-

ture of the solar and magnetospheric magnetic fields is devel-

oping, the importance of the fully 3D null point is now being

more appreciated.

For instance, during quiet sun periods 3D nulls are

inferred to exist in abundance in the lower solar atmos-

phere,4,5 whereas in active times of the solar cycle they play

a role higher up and are believed to be involved in solar

flares,6 magnetic breakout,7 jets,8,9 flux emergence,10 and

flare brightening.11,12 Through in situ observations 3D nulls

have been confirmed to exist in the earths magnetotail,13 as

well as being inferred through global simulations to exist in

clusters within the polar cusp regions.14 In certain 3D labora-

tory experiments reconnection at 3D nulls also plays an im-

portant role.15

The field structure of the 3D null is somewhat different

from the 2D X-point and can be described via a Taylor

expansion in the vicinity of the null so that

B ¼M � r; (1)

where M is the Jacobian of B and r is the position vector

ðx; y; zÞT when the coordinate system is chosen so that the

null is situated at the origin. The simplest linear potential

null can be expressed accordingly as

B ¼ B0

L0

ðx; jy;�ð1þ jÞzÞ; (2)

where j is a dimensionless constant and B0 and L0 are some

typical field strength and length scale, respectively.16 The

eigenvectors of M (whose corresponding eigenvalues sum

to zero since $ � B ¼ 0) define the spine and fan such that

the two eigenvalues whose real parts have like sign lie in the

fan plane with the third directed along the spine line. The fan

plane is a separatrix surface and separates two topologically

distinct regions. In the special case of j ¼ 0, the spine

expands into the y-direction and the null becomes an X-line.

Reconnection occurring within the current layers which

form at 2D X-points only takes the form of a one-to-one

breaking and rejoining of the magnetic field. However, at

fully 3D null points new connections form in a variety of dif-

ferent ways. Twisting motions about the spine (fan) lead to

the formation of a current sheet aligned to the fan (spine)

within which torsional fan (spine) reconnection occurs.17–19

Shearing motions across the spine (fan) lead to current sheets

forming aligned to the fan (spine) within which fan (spine)

reconnection occurs.20,21 Exact incompressible models exist

for these modes utilizing current layers of reduced dimen-

sionality.22,23 Such solutions are sometimes referred to as

reconnective annihilation,24 since the infinite extent of the

current layers means that once field lines thread into a cur-

rent layer they never leave. Therefore, there is no “other
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end” of the field line in an ideal region which this field may

be “reconnected” to. What field is washed into the current

layers (crossing the spine or fan in the process) is instead dis-

sipated through ohmic heating. When the incompressibility

assumption is relaxed, however, the current layer which

forms is localized around the null (locally spanning both the

spine and fan) within which a combination of both spine and

fan reconnection occur known as spine-fan reconnection.19

Conceptually, this combination is similar to the 2D scenario

as the magnetic flux crosses both the spine and the fan out-

side of the non-ideal region, where field lines are frozen to

the plasma, so that flux is genuinely “reconnected” as a

result.

Typically, investigations of both 2D and 3D null recon-

nection focus on the symmetric case where flux is fed into

and removed from the non-ideal region in a symmetric man-

ner. However, there are many situations where this is not the

case including at the Earth’s magnetopause,25 during the

occasional CME and solar flare26 and in certain laboratory

experiments (e.g., the “pull” and “push” modes of the

Magnetic Reconnection Experiment (MRX)27,28).

In 2D magnetohydrodynamics (MHD), and in the ab-

sence of a guide field, the electric field is perpendicular to

the magnetic and velocity fields (E � B ¼ 0) so that the con-

nection change of the anti-parallel field in the current layers

occurs in a pairwise fashion,29 with the electric field at the

null giving the absolute rate of reconnection. Literature con-

cerning asymmetry in 2D configurations typically denotes

asymmetric upstream/downstream densities and magnetic

field strengths. The initial investigations of such asymmetries

focused on how the asymmetry affected the absolute rate of

reconnection, the exhaust velocities and the sheet thick-

ness,30,31 for a current sheet of fixed length. Further exten-

sions of these asymmetric results have also considered, for

example, the effects of plasma compressibility,32 the struc-

ture and nature of the diffusion region33,34 and collisionless

plasmas.34,35 Phenomenologically, a measurable result of

such asymmetry is the displacement of the flow field stagna-

tion point from the null.

In 3D, the important quantity for reconnection is the

component of the electric field parallel to the magnetic field

(Ek), with the maximum of
Ð

Ekdl along all field lines thread-

ing the non-ideal region giving the measure of the reconnec-

tion rate.36 Therefore, of particular importance to the 3D

reconnection rate are the dimensions of the non-ideal region

and the strength of Ek within it. Due to the differing mag-

netic field geometry, reconnection involving 3D nulls can

become asymmetric in one of two ways. First, the null field

itself may have inherent asymmetry. That is, the eigenvalues

associated with the fan plane are of different values (j 6¼ 1).

This leads to asymmetric current sheet formation

and a reconnection rate which depends upon j.18,37,38

Alternatively, the null field itself may be symmetric (j ¼ 1)

but, through the manner of external driving or local plasma

anisotropy, the current sheet that forms at it is not. Recent

work by Wyper, Jain, and Pontin39 and Wyper and Pontin40

has shown that even with an initially symmetric null and a

homogeneous plasma such current sheet asymmetries can

arise due to transient effects. Watson and Craig41 are, to

date, the only investigation to construct asymmetric analyti-

cal current sheet solutions at 3D nulls. They noted in a broad

investigation of different fan reconnection solutions that

asymmetric hyperbolic solutions of reduced dimensionality

were possible to construct but did not pursue this further.

The principle aim of this paper is to develop asymmet-

ric analytical models to investigate the consequences of

current sheet asymmetry for reconnection at 3D magnetic

null points. Specifically, we will develop kinematic models

of the spine and fan reconnection modes with asymmetric

current sheets and show that each mode has a distinct and

different behavior. The layout of this paper is as follows.

In Sec. II, we introduce the analytical methodology.

Section III introduces the model for fan reconnection and

Secs. IV and V introduce a simple model for spine recon-

nection and how asymmetry affects the reconnection rate

in this case. In Secs. VI and VII, we discuss further the

consequences of current sheet asymmetry for the reconnec-

tion rate using more complex spine models and conclude

our findings.

II. GENERAL METHOD

We consider various models which are solutions of the

steady state kinematic resistive MHD equations given by

Eþ v� B ¼ gJ; r� E ¼ 0;

r� B ¼ l0J; r � B ¼ 0:
(3)

In each, we start with a linear potential radially symmetric

magnetic null of the form

Bn ¼
B0

L0

ðx; y;�2zÞ; (4)

to which some localized perturbation field Bp is added such

that the total magnetic field is given by

B ¼ Bn þ Bp: (5)

A symmetric null is chosen as the background field for these

models so that only the effects of asymmetry from the pertur-

bation field is important. The electric field and perpendicular

plasma flow are then found using

dXðsÞ
ds
¼ BðXðsÞÞ; U ¼ �

ð
gJ � Bdsþ U0; (6)

E ¼ �$U; v? ¼
ðE� gJÞ � B

B2
; (7)

where U is the electric potential, v? is the component

of velocity perpendicular to the magnetic field, XðsÞ
¼ ðxðsÞ; yðsÞ; zðsÞÞT is the parametric representation of the

position vector in terms of s, where s is related to the dis-

tance along a field line through ds ¼ dl=jBj. In addition,

$U0 � B ¼ 0 so that U0 is identified with a global ideal

background electric field. Solutions with U0 6¼ 0 are known

as composite solutions and couple the local non-ideal region

to the global field. However, we set U0 ¼ 0 in these models
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and focus on solutions purely of the non-ideal integral term

in Eq. (6), known as pure solutions, which show how flux is

reconnected locally. Composite solutions are deferred for

later work. For clarity, we denote U as Uni from now on.

Lastly, vk may be found through an additional constraint on

v, such as the assumption of incompressibility ($ � v ¼ 0).

However, no such assumptions are made in the models pre-

sented below so that vk remains unspecified.

III. ASYMMETRIC FAN RECONNECTION

To model asymmetric fan reconnection

Bp ¼ f ðx; zÞ ŷ ¼ � jB0

L0

ze�
z2

h2�
ðzx2Þ2

l6 gðzÞ ŷ (8)

is chosen so that the field perturbation (and therefore the

current, J) is localized in x and z and asymmetry can be

introduced through the weighting function g(z). The param-

eters h, l, and j control the sheet thickness, width, and

strength, respectively. The field line equations are then

given by

x ¼ x0eB0s=L0 ; z ¼ z0e�2B0s=L0 ; Y ¼ Y0eB0s=L0 ; (9)

where Y0ðx0; y0; z0Þ is a constant of integration and

Y ¼ y� eB0s=L0

ð
e�B0s=L0 f ðx; zÞ ds

¼ y� j

2
z�1e�

ðzx2Þ2

l6 I1ðzÞ:
(10)

In general, the function IaðzÞ is given by

IaðzÞ ¼ z
1
2

ð
z

a
2e�

z2

h2 gðzÞdz; (11)

using the fact that ds ¼ dz=Bz and that both zx2 and zY2 are

independent of s. Surfaces of field lines are described by

C1ðzx2Þ ¼ const: and C2ðzY2Þ ¼ const:, where C1 and C2 are

arbitrary functions which are independent of s.

Assuming a resistivity localized in the y-direction

g ¼ g0e�
ðzY2Þ2

k6 ; (12)

the electric potential can be obtained as

Uni ¼
jgB0

l0L0

x
1

2
1� 2

l6
ðzx2Þ2

� �
I�3ðzÞ �

1

h2
I1ðzÞ

�

� 4

l6
zx2I3ðzÞ þ

1

2
K�1ðzÞ

�
e�

z2x4

l6 ; (13)

where

KaðzÞ ¼ z
1
2

ð
z

a
2e�

z2

h2 g0ðzÞdz; (14)

and 0 denotes d/dz. KaðzÞ can also be related to IaðzÞ using

integration by parts, although it is more convenient to leave

it in this form.

A. The symmetric case

Before considering the asymmetric model, the symmet-

ric one is first developed as a reference. In the symmetric

case, closed form solutions can be achieved through the

choice of g(z)¼ 1 giving

Y ¼ y� 2j

3

2

7

z2

h2
M 1;

11

4
;
z2

h2

� �
þ 1

� �
ze�

z2

h2�
ðzx2Þ2

l6 ; (15)

where Mðl; �; xÞ is the Kummer M hypergeometric function

and

Uni ¼ �
jgB0

l0L0

½Aþ Bþ C�xe�
z2

h2�z2x4

l6 ; (16)

where

A ¼ 1� 2

l6
ðzx2Þ2

� �
ð2Bþ 1Þ; (17)

B ¼ 8

21

z4

h4
M 1;

11

4
;
z2

h2

� �
þ 2

3

z2

h2
; (18)

C ¼ 8

5l6
z4x2M 1;

9

4
;
z2

h2

� �
: (19)

Figures 1(a) and 1(b) show the localization of the non-ideal

region and current flow and Figures 2(a) and 2(b) the

induced perpendicular plasma velocity. Due to its shape, the

non-ideal region only affects a finite amount of magnetic

flux and once the magnetic field threads into the non-ideal

region it never exits. Therefore, this model can be considered

to be the kinematic equivalent of the fan reconnection solu-

tions of Craig and co-workers22,23 (where all the flux enters

the non-ideal region) modified to include current/resistivity

localization perpendicular/parallel to the direction of shear.

FIG. 1. (a) and (b) isosurface of gjJj at 25% of the maximum and the current

flow in the y¼ 0 plane for the symmetric model. (c) and (d) the equivalent

figures for the asymmetric model with p¼ 0.5 and m¼ 0.5 (see Eq. (20)).

Both have the parameter set ðB0;L0;g0;l0;j;h;l;kÞ¼ð1;1;1;1;2;1;21=3;21=3Þ.
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The result of localizing the influence of the non-ideal

region is to induce cyclic flows within the envelope of field

lines which just touch the edge of the non-ideal region. Such

cyclic flows have also been seen before in the context of

pure kinematic solutions for “finite-B” reconnection.42 In

particular, the flows in the finite-B case have an opposite

vorticity either side of the non-ideal region. Despite the dif-

ferent field geometry, we see something similar appearing

here with multiple vortices aligned to the spine lines.

B. The asymmetric case

To introduce asymmetry into the model, we now choose

gðzÞ ¼ 1þ m erf
z

p

� �
; (20)

where erf(x) is the error function and 0 � m � 1. When

m¼ 0 or p!1, g(z)¼ 1 and the symmetric analytical solu-

tion above is recovered. On the other hand, when m¼ 1 and

p! 0, g(z) is double the heavyside (unit step) function and

the magnetic field perturbation is switched off where z < 0.

Thus, a simple measure of the degree of system asymmetry

is given by the factor m/p.

This choice of g(z) allows for an analytical closed form

solution for K�1ðzÞ given by

K�1ðzÞ ¼
4

5
tz2M 1;

9

4
; tz2

� �
þ 1

� �
4mffiffiffi
p
p

p
ze�tz2

; (21)

where t ¼ ðh2 þ p2Þ=h2p2. However, no closed form solu-

tions exist for IaðzÞ in this case so these integrals are found

numerically by casting the general integral in the form

dIaðzÞ
dz
¼ 1

2z
IaðzÞ þ z

aþ1
2 e�

z2

h2 gðzÞ; (22)

ignoring the homogeneous solution and using a fourth order

accurate Runge-Kutta scheme with the value of each integral

at z¼ 0 (given by the values of the symmetric solutions)

used as the initial value.

The skewed shape the non-ideal region and current flow

now take is shown in Figures 1(c) and 1(d). We now denote

the region where z > 0 as the strong shear region, and where

z < 0 the weak shear region. As a consequence of the weak-

ened perturbation in the weak shear region the current flow

is reduced there, with the converse being true of the region

of strong shear. However, the current at the null remains the

same as the symmetric case. It is evident from Figures 2(c)

and 2(d) that the induced plasma flow is strongly affected by

the asymmetry, with the flow in the weak shear region domi-

nating in strength over the strong shear flow. Most strikingly

it is clear that the stronger flows of the weak shear region

have crossed over the fan plane and flows over the top of the

null. An expression for the flow of plasma at the null may be

derived by considering the behavior of the various terms in

Ohm’s law (see Eq. (3)) as the null is approached (i.e., in the

limit of ðx; y; zÞ ! ð0; 0; 0Þ). This leads to an expression for

the full plasma velocity v at the null of the form

vð0; 0; 0Þ ¼ 0;� 2jg0

l0

ffiffiffi
p
p m

p
; 0

� �
: (23)

Thus, for asymmetric fan reconnection a bulk flow of plasma

occurs across the null point. This flow is a function of the

degree of asymmetry of the system (m/p). How this affects

the manner of connection change across the spine lines can

be seen by tracking the movement of flux tubes bound to

fluid elements in the ideal regions near each spine for the

two cases (Figure 3). The presence of asymmetry clearly

leads to different rates of flux transfer past each spine. This

seems to be a generic feature of asymmetric fan reconnection

brought on by the odd nature of the K�1ðzÞ function.

In summary, asymmetric fan reconnection is character-

ized by asymmetric flux transfer past the spine lines and a

non-zero plasma flow across the null which depends on the

degree of asymmetry in the sheet.

IV. ASYMMETRIC SPINE RECONNECTION

To create spine reconnection solutions, it is more con-

venient to work in cylindrical coordinates so that now

Bn ¼
B0

L0

ðr; 0;�2zÞ: (24)

To this, a perturbation function localized in r, of the follow-

ing form, is added

Bp ¼ Fðr;/Þ ẑ ¼ jB0

L0

f ð/Þre
� r2

hð/Þ2 ẑ: (25)

The field line equations are then given by

r ¼ r0eB0s=L0 ; / ¼ /0; Z ¼ Z0e�2B0s=L0 ; (26)

where Z0ðr0;/0; z0Þ is a constant of integration and

FIG. 2. (a) and (b) v? in the x¼ 0 and z¼ 4 planes, respectively, for the

symmetric model. (c) and (d) v? in the same planes for the asymmetric case

with m¼ 0.5. The contours and arrows denote gjJj and v?, respectively. The

spine is shown in blue as a line in the x¼ 0 plane and a square in the z¼ 4

plane. The fan plane is shown in red. The parameters are as in Figure 1.
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Z ¼ z� e�2B0s=L0

ð
e2B0s=L0 Fðr;/Þ ds

¼ zþ jf ð/Þ hð/Þ
2

r2
D; (27)

with

D ¼ r

2
e
� r2

hð/Þ2 � hð/Þ
4

ffiffiffi
p
p

erf
r

hð/Þ

� �
: (28)

In this case, flux surfaces are defined by C1ðZr2Þ ¼ const:
and C2ð/Þ ¼ const, where C1 and C2 are arbitrary functions.

A resistivity is then chosen of the form

g ¼ g0e�
ðZr2Þ2

k6 ; (29)

to complete the localization of the non-ideal (gjJj) term.

Using Eq. (6), the resulting electric potential is given by

Uni ¼ �
jgB0

l0L0

ffiffiffi
p
p

hð/Þ
2

f
0 ð/Þerf

r

hð/Þ

� �
� 2Df ð/Þ h

0ð/Þ
hð/Þ

� �
:

(30)

A. The symmetric case

Let us start by modeling the symmetric case which will

be used as a benchmark for comparison once asymmetry is

introduced. In particular, symmetric spine reconnection may

be modeled by the choice of

f ð/Þ ¼ sinð/Þ and hð/Þ ¼ L: (31)

This model can again be considered to be a kinematic exten-

sion of those of Craig and co-workers,22,23 with the spine

aligned non-ideal region containing a finite magnetic flux

due to the localization of g along the spine.

Figure 4 shows how the non-ideal and current flow

regions align to the spine axis. Since this is a pure solution,

we would again expect cyclic flows within the envelope of

flux which just touches the edge of the non-ideal region.

Figures 5(a), 5(b), and 6(a) show how the resulting plasma

flows reconnect flux equally and oppositely across the fan

plane, rotate it around the spines and then return it back

across the fan again. In other words, flux is continually

rotated about the line y¼ z¼ 0. This is most easily seen in

the z/-plane as two vortices of opposite vorticity centered

on / ¼ 0 and p. This creates two distinct regions (denoted 1

and 2) within which magnetic flux moves back and forth.

Such induced plasma flows are a direct result of the

underlying field geometry, and are in fact linked to the coun-

ter flows shown to be a generic feature of isolated finite-B

reconnection.42 To understand this, consider the diagram in

Figure 7(a). Since E � B 6¼ 0 inside the non-ideal region in

the finite-B and spine cases there is a potential difference

(say a drop) between A and B so that at A, U ¼ UA and at B,

U ¼ UB, where UA > UB. Following both loops back to A
the potential must increase again from UB to UA. In the

finite-B case, along the path between C1 and D1 (C1D1) the

potential is fixed since in the ideal region E � B ¼ 0.

FIG. 3. Evolution of flux in the symmet-

ric (a)–(c) and asymmetric (d)–(f) fan

cases. For the parameter set given in

Figure 1.

FIG. 4. (a) and (b) isosurface of gjJj at 25% of the maximum and the current

flow in the z¼ 0 plane for the symmetric model. (c) and (d) are the equiva-

lent figures for the asymmetric model with m¼ 0.5. Both have the parameter

set ðB0; L0; g0;l0; j; L; kÞ ¼ ð1; 1; 1; 1; 2; 1; 1Þ.
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Since the electric field requires a directional derivative,

this results in oppositely directed electric fields along C1B
and D1A. As the background magnetic field is constant this

leads to counter rotational flows (Figure 7(b)). A similar

argument applies to the case when there is a null, except that

now the electric potential varies smoothly between B back to

A in the ideal region so that the electric field is oppositely

directed along C2B and C2A. However, as the background

field contains a null the field switches direction along the

axis of rotation AB, matching the sign change in E so the end

result is the co-rotating flow described above (Figure 7(b)).

This argument remains true for any finite non-ideal region

within which Ek 6¼ 0 and so applies beyond resistive MHD.

B. A simple asymmetric case

A simple and analytically tractable way to incorporate

current sheet asymmetry into the previous solution is through

hð/Þ. Wyper, Jain, and Pontin39 noted that asymmetric driv-

ing pulses lead to asymmetric spine-fan current sheets

shifted in the direction of shear. This scenario seems the

most plausible in practice and so we begin by modeling this

via the choices of

f ð/Þ ¼ sinð/Þ and hð/Þ ¼ Lð1þ m sinð/ÞÞ; (32)

where 0 � m � 0:5 so that when m¼ 0 the symmetric case is

recovered. In this model, the parameter m provides a measure

of the degree of current sheet asymmetry. The skewed shape

this gives the non-ideal and current regions is shown in

Figures 4(b) and 4(c) when m¼ 0.5. The asymmetric current

rings correspond to a strong wide deformation of the fan plane

on one side and a weak narrow one on the other. Figures 5(c)

and 5(d) show how the general form of the cyclic flow

remains, with plasma flowing through the fan plane on one

side, looping around the spine and passing back through on

the other within two distinct regions (1 and 2). However, now

the axis of rotation has been shifted into the strong shear

semi-plane (Figure 6(b)). The rate at which plasma passes

through the fan plane in each is now different with plasma

flow across the weak shear region increased relative to the

symmetric case. The inverse is true of the strong shear region

in that the plasma flow is now weakened by comparison to the

symmetric case. So, like asymmetric fan reconnection, the

strongest outflows occur on the weakly deformed side. Why is

this the case? To answer this it is convenient to first introduce

the reconnection rate for the system and discuss both together.

V. RECONNECTION RATE: THE SIMPLE ASYMMETRIC
CASE

In symmetric spine-fan reconnection, the reconnection

rate is associated only with the transfer of magnetic flux

FIG. 5. (a) v? in the x¼ 0 plane with contours showing the strength of gjJj.
The spine is in blue and the fan plane red. (b) v?z evaluated on the fan plane

(Z¼ 0) with the dotted circle showing the cut taken in Figure 6. (c) and (d)

are the corresponding figures for the simple asymmetric case. For the param-

eters given in Figure 4.

FIG. 6. v?ðr ¼ 2Þ with (a) n¼ 0, (b) n¼ 1, and (c) n¼ 3. To be compared

against Figures 5(b), 5(d), and 10(b), respectively. For the parameter set

ðB0;L0; g0;l0; j; L; k;mÞ ¼ ð1; 1; 1; 1; 2; 1; 1; 0:5Þ.

FIG. 7. (a) Integral loops constructed along paths either ? or k to the mag-

netic field. Such paths enable potential drops (UB ¼
Ð

Ekdlþ UA) along field

lines crossing R to be compared with flux movement in the ideal region. (b)

The induced flux transport in the ideal region threading R with the edge of

R depicted by blue lines.
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across the fan plane.43 The flow of flux across this plane is

due solely to the spine reconnection aspect of it. As such, the

same methodology is applicable to pure spine reconnection.

The rate of flux transfer in one direction across the fan plane,

in the ideal region outside of the current sheet, is taken as the

reconnection rate of flux in this direction through that plane.

For the strong shear region this can be measured by

_W ¼ �
ð

C2

v� B � dl; (33)

where C2 is the path shown in Figure 8. Since E ¼ �v� B

in this region and the integral of the electric field is path in-

dependent (as E ¼ �$U is conservative) this can be found

from

_W ¼
ð

C1

Ekdl ¼ jUB � UAj: (34)

Here, A and B are points in the fan plane lying between the

regions of positive and negative flux transfer (outside of the

non-ideal region) about which plasma flows circulate and C1

is the path along the radial field lines between them (see

Figure 8). This again shows the similarity to the finite-B sce-

nario where the potential drop along the axis of rotation is

also the measure of the reconnection rate.42 Since in steady

state the integral of electric field is path independent

ð
C2

v� B � dl ¼
ð

C3

v� B � dl: (35)

Thus, the weak shear region transfers an equal quantity of

magnetic flux in the opposite direction across the fan plane

in any given period of time. This explains why in the smaller

weak field region the plasma jet is more intense than in the

wider strong shear one. The strong shear region has a wider

area over which to spread the same flux transfer. Therefore,

asymmetric spine reconnection, in contrast to the fan case, is

inherently balanced in how it reconnects flux.

To measure the rate of flux transfer in both directions

across the fan plane in this asymmetric model requires the

asymptotic value of the non-ideal electric potential at large

radii (r � L) evaluated on the fan plane (Z¼ 0) given by

Uniðr � LÞ ¼ � jg0B0

ffiffiffi
p
p

2l0L0

�
hð/Þf 0 ð/Þ þ h0ð/Þf ð/Þ

�
: (36)

For these choices of f ð/Þ and hð/Þ this becomes

Uniðr � LÞ ¼ � jg0B0

ffiffiffi
p
p

2l0

L

L0

�
1þ 2m sinð/Þ

�
cos /: (37)

Depending on the value of m, this potential will change and

therefore will give different reconnection rates. In particular,

the reconnection rate in both directions across the fan plane

is given by double the difference between the maximum and

minimum of this function. These occur at /max ¼ /1 and

/min ¼ p� /1, respectively, where /1 is the lowest positive

solution of

sin /1 ¼ �
1

8m
6

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

16m2
þ 2

r
: (38)

The reconnection rate is then given in terms of this angle as

_W ¼ 2jg0B0

ffiffiffi
p
p

l0

L

L0

�
1þ 2m sinð/1Þ

�
cosð/1Þ (39)

or expressing it in terms of the reconnection rate of the sym-

metric case

_W ¼ _Wm¼0

�
1þ 2m sinð/1Þ

�
cosð/1Þ: (40)

Therefore, it is found that in the simplest asymmetric sce-

nario the reconnection rate changes depending upon the

degree of asymmetry, but the manner of flux transport across

the fan plane remains a balanced process.

Lastly, it could be argued that the above result may be a

consequence of the steady state condition. However, con-

sider the integral of the electric field around some closed

path C (C1 þ C2 in Figure 8) enclosing the entire non-ideal

region in the fan plane in the general time dependent case.

Then,

ð
C
E � dl ¼

ð
C
r � E � dS ¼ �

ð
C

@B

@t
� dS ¼ 0; (41)

where S is a surface on the fan plane enclosed by the closed

curve C for which B � S ¼ 0 by definition. Thus, on the fan

plane ð
C
v� B � dl ¼ 0: (42)

Therefore, even in time dependent systems the reconnection

of flux across the fan plane (in contrast to reconnection

across the spine lines) is always a balanced process. Note

FIG. 8. Reconnection rate diagram. The edge of a general asymmetric non-

ideal region is shown in red on the fan plane. The points A and B lie between

the positive and negative regions of flux transport across this plane. These

points can be connected by a path through the ideal region around the edge

of the large side of the non-ideal region (C3), around a path circuiting the

small side (C2) or though the non-ideal region and the null (C1).
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also, this argument relies only upon there being a localized

non-ideal region in the fan plane for which Ek 6¼ 0 and not

on the non-ideal term itself or its extent along the spine.

Therefore, this argument applies in general beyond the con-

fines of resistive MHD and to spine-fan reconnection.

VI. ASYMMETRIC SPINE RECONNECTION: GENERAL
EXAMPLES

Let us now consider more complex examples of asym-

metric spine reconnection and generalize some of the ideas

presented in Sec. V. Although perhaps less dynamically real-

izable, the following solutions provide valuable insight into

the dynamics of highly deformed current structures in the

fan plane of 3D nulls. The above are in fact part of a family

of solutions given by

f ð/Þ ¼ sinð/Þ; hð/Þ ¼ Lð1þ m sinðn/ÞÞ:

Figure 9 shows the projection of the non-ideal region on to

the fan plane for the first five modes. To be clear, each of

these modes has the same current flow at the null, but the

shape of the current sheet varies as n is changed. The value

of n dictates how many lobe-like extensions of the non-ideal

region there are and so, along with m, is a measure of the

sheet deformation. For n � 2 (and m > 0:5 when n¼ 1,

where small lobes also appear) these lobe-like extensions

produce plasma flow back and forth within each semi-plane

and can considerably complicate the plasma dynamics near

the fan.

Figures 10(a), 10(b), and 6(c) show current and plasma

flows when n¼ 3. As with all the models flux is cycled con-

tinuously, however, now distinct regions of contained flux

movement (regions 3 and 4) occur. Within regions 3 and 4 a

single vortex cycles magnetic flux around continuously,

reconnecting it back and forth across the fan plane. In

regions 1 and 2 a similar large vortex flow is present, but

within it, two internal vortices coexist with a stagnation point

between them. Depending upon where flux initially starts in

regions 1 and 2 it will find itself either trapped to circulate

around within one of these internal vortices or around the

edges of both. Regions 1 and 2 are roughly speaking analo-

gous to the two regions discussed in the previous sections

when n¼ 1 and 2 as flux is, in general, brought through the

fan plane in the positive direction in the y > 0 semi-plane

and sent back through the fan in the negative direction in the

y < 0 semi-plane. Regions 3 and 4 have no direct counter-

part as flux is trapped to circulate within the wedge defined

by them. For modes with larger n the number of these flux

transport regions and the number of vortices internal to them

(like the two vortices in region 1 for instance) increase.

These additional wedges and internal vortices make the

definition and interpretation of the rate at which flux is

reconnected across the fan plane more difficult. On the one

hand, the total physical amount of flux reconnected across

the fan is given by the sum of all flux cycled back and forth

by every vortex flow (including those internal to each flux

transport region). This quantity gives the genuine reconnec-

tion rate of the system. On the other hand, the wedges of

contained flux transport and internal vortex flows that do not

straddle the line y¼ z¼ 0 give a net zero contribution to the

flux driven through the semi-plane they lie in. If the plasma

flows of the non-ideal region are assumed to be coupled to

the global environment through an ideal stagnation point

flow of the traditional type, i.e., one that brings in flux to be

reconnected in opposite directions across each semi-plane,

then such internal vortices do not contribute to the global

rate at which flux is “seen” to cross the fan plane by the

global field. The net transfer of flux through one semi-plane

is given, in this case, by the potential difference along the

line y¼ z¼ 0 (AB in Figure 9).

Therefore, in general, for spine reconnection two recon-

nection rates can be defined. A local reconnection rate given

by the sum of the potential drops between adjacent maxima

and minima in the electric potential, evaluated in the fan

plane outside of the non-ideal region (r � L and Z¼ 0).

FIG. 9. The shape of the non-ideal region

shown in red on the fan plane when

hð/Þ ¼ Lð1þ m sin n/Þ. The distance L
indicates the length of the non-ideal

region along the line AB.
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These maxima and minima correspond to points in the fan

plane where v? ¼ 0, so lie either in the centers of the vorti-

ces or the stagnation points between two vortices of like vor-

ticity. As such, this potential drop gives the total flux transfer

between these zero points. Figure 10(c) shows this relation-

ship between Uni and v? evaluated in the ideal region

(r � L) on the fan plane (Z¼ 0) for n¼ 3. Since around the

entire non-ideal region the flux transfer across the fan plane

in both directions is balanced, this quantity can be expressed

as double the sum of the difference between each maxima

and the next minima ahead of it in /

_WlocalðNÞ ¼ 2
XN

k¼1

jUmaxð/kÞ � Uminð/ > /kÞj; (43)

where N is the total number of peaks in the electric potential.

Alternatively, a global reconnection rate can be defined

which gives the net flux transfer through both semi-planes

_Wglobal ¼ 2jUð/ ¼ 0Þ � Uð/ ¼ pÞj; (44)

quantifying the rate that an observer far from the null “sees”

flux reconnected at the null if the ideal flow is of a stagnation

point type. The definitions of each then lead to the following

properties when all other parameters are fixed

_Wlocal ¼ _Wglobal; n ¼ 0; (45)

_Wlocal > _Wglobal; n � 1; (46)

_WlocalðN þ 1Þ � _WlocalðNÞ: (47)

Thus, this local rate will always at least equal that of the

global rate. Under this new definition, the reconnection rate

found in the simple asymmetric case (n¼ 1) in Sec. V

becomes the local rate. Modes with high n can be used to

describe the situation when the edge of the current sheet is

deformed by the action of an instability such as the tearing

mode or Kelvin-Helmholtz instability. During such deforma-

tions this local rate would be expected to dwarf the global

one.

For these choices of f ð/Þ and hð/Þ the global rate is

given by

_Wglobal ¼
2jg0B0

ffiffiffi
p
p

l0

L

L0

; (48)

which is independent of both the degree of asymmetry (m)

and the number of lobes (n) as a result of the fact that the

length of the non-ideal region along the line AB always

remains fixed as L (Figure 9). Thus, even in the situation

when the edge of the sheet is fragmented (and if it is the net

transfer that is of interest) then it is the length scale along the

line AB that dictates the global reconnection rate. When this

length scale is not conserved by the manner of sheet asym-

metry the global reconnection rate is simply dictated by this

changing length scale (Ln)

_Wglobal ¼
2jg0B0

ffiffiffi
p
p

l0

Ln

L0

: (49)

For example, the choice of

f ð/Þ ¼ sinð/Þ; hð/Þ ¼ Lð1þ mcosðn/ÞÞ (50)

leads to a changing length scale of Ln ¼ L
	
1þ mð�1Þn



depending on whether two lobes are in or out of phase along

the line AB. The global reconnection rate in this case, there-

fore, has two distinct rates.

A. Reconnection rate vs ohmic dissipation

Finally, we now consider how these two reconnection

rates compare against ohmic heating. For simplicity, con-

sider the case when g ¼ g0 so that the non-ideal region is

invariant along the direction aligned to the spine. The ohmic

dissipation per unit length in this direction is then given by

Wg ¼
ð

gJ2dV ¼ g0

ð
Jðr;/Þ2rdrd/; (51)

and the local and global reconnection rates are still as given

above. How each quantity varies as the mode parameter n
(and so the sheet deformation) increases is shown in Figure

11(a). _Wglobal remains fixed, as discussed above, but for large

values of n both Wg and _Wlocal increase toward the same

power law dependence 	n2. This shows that (i) the above

axioms relating _Wglobal to _Wlocal are upheld and (ii) when all

other parameters are fixed it is the complete transfer of flux

across the fan plane ( _Wlocal) not the rate at which an observer

far from the null sees it cross ( _Wglobal), which is related to

ohmic dissipation. However, such a decoupling of _Wglobal

from Wg seems unlikely as in practice if a current sheet is

fragmented following an instability (essentially changing to

a sheet with higher n) the current density will not increase

indefinitely but is likely to stall. It might be more reasonable

to expect that the ohmic dissipation within the layer would

FIG. 10. Asymmetric spine reconnection with n¼ 3. (a) Current flow in the

z¼ 0 plane. (b) v?z in the fan plane (Z¼ 0) to be compared against Figure

6(c). (c) Uniðr ¼ 4; Z ¼ 0Þ (red) overlayed with v?ðr ¼ 4;Z ¼ 0Þ (green).

The overlaid dashed grid highlights the relationship between the two

quantities.
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increase only up to a point. Such a stall can be included heu-

ristically by introducing a dependence of j upon n such that

jðnÞ ¼
j0; n � n0

j0n0

n
; n > n0:

8<
: (52)

Figure 11(b) shows the transition in the scalings of each

when n0 ¼ 30. Once Wg stalls, the global transfer of flux

across the fan plane reduces at the rate at which the local

rate increases (	n) as energy available to globally reconnect

flux is now expended in cyclic local flux transfer.

In a self consistent system it is likely that, following say

some instability which filaments the current layer, both

effects will be observed. That is, there will be both an

increase in ohmic dissipation/local reconnection rate and a

decrease in the global rate that flux is transferred across the

layer. This has been observed recently in numerical simula-

tions of a similar situation when the torsional fan current

sheet is fragmented via the Kelvin-Helmholtz instability.40

VII. CONCLUDING REMARKS

This paper has been concerned with investigating the

role of current sheet asymmetry in the reconnection modes

of spine and fan reconnection. Through a series of analytical

models we have shown that the behavior of each is rather

different. Asymmetric fan reconnection is characterized by

an asymmetric reconnection of flux past each spine line and

a bulk flow of plasma across the null point. Such behavior

was masked in previous 3D symmetric studies,20,22,43 but

shares some general characteristics with the asymmetric 2D

studies of Cassak and Shay31 and others30,32,34,35 in that

asymmetric magnetic fields in the inflow regions lead to a

non-zero flow of plasma across the null.

In contrast to asymmetric fan reconnection, asymmetric

spine reconnection is characterized by the reconnection of an

equal quantity of magnetic flux across the fan plane in both

directions. However, with an extra degree of freedom, asym-

metric spine reconnection is considerably more complex. In

the simplest asymmetric case, asymmetric outflow jets were

formed within the vicinity of the null but globally an equal

magnetic flux is driven through both sides of the fan plane.

The asymmetry in the outflow jets results from the altered

shape of the current layer in the fan plane. Rapid outflows

occur when the plasma is funneled through a narrow region

of the fan whereas slower flows result across the conversely

widened region of flux transport on the other side of the

spine. Such funneling leading to asymmetric outflow jets is

also a feature of 2D simulations44,45 where the outflow on

one side is blocked, although the geometry is rather different.

More direct comparisons can be made with the similar 3D

situation of inclined solar coronal jets containing 3D

nulls46–48 where the outflow toward the photosphere is

slowed by the pileup of flux beneath the domed fan plane. In

light of our results, it suggests that the current sheet near the

null must be asymmetric to accommodate the observed

asymmetric jetting flows in the vicinity of the null.

Higher modes for asymmetric spine reconnection were

also investigated where constrained regions of flux transport

were localized to within wedges in each semi-plane (Figure

10). In this more complex situation, two definitions for

reconnection rate became appropriate: a local reconnection

rate quantifying how much flux is genuinely reconnected

across the fan plane and, on the assumption that the non-

ideal region has been created through some background ideal

stagnation point flow, a global rate associated with the net

flux driven across each semi-plane. Such a two part defini-

tion has already been shown to be useful in the similar sce-

nario of torsional fan reconnection subject to current sheet

fragmentation following the KH instability.40 The choice of

background ideal flow used to advect flux into and away

from the non-ideal region is crucial for the interpretation of

the reconnection rate. Therefore, different composite solu-

tions could potentially give rise to different reconnection

rates depending upon how much of the flux transfer within

each vortex flow can be accessed by the global ideal flow

field. An investigation of the composite solutions would be

interesting to pursue in the future.

These models also provide a link between the exact

incompressible solutions with current sheets of reduced

dimensionality22,23 traditionally used to investigate spine

and fan reconnection and the localized kinematic solutions

of spine-fan37,43 and finite-B42 reconnection utilizing local-

ized resistivities in fields of constant current flow. In particu-

lar, the spine scenario shows how both single null point and

finite-B reconnection are driven by fundamentally the same

process (E � B 6¼ 0 leading to a potential difference) but with

a different resulting effect in terms of flux transport facili-

tated by the local magnetic field structure. This also ties in

nicely with the separator model of Wilmot-Smith and

Hornig.49 These authors developed a time dependent

FIG. 11. Log-log plots of _Wlocal; _Wglobal,

and Wg vs n. (a) when all other parame-

ters are held fixed (given in Figure 6). (b)

when a stall is introduced heuristically

into Wg (see Eq. (52)).
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kinematic model for reconnection occurring along the sepa-

rator joining two magnetic nulls. They found that singular

(since in their model the field near the nulls is ideal) cyclic

flows were driven at the nulls by reconnection along a single

separator and that as the non-ideal region grows stronger

multiple separators form. The cyclic flows they observed are

described well by our symmetric spine model and one could

postulate that the wedges of constrained transport found in

cases with a highly deformed current sheet may be linked to

where multiple separators rejoin the null. This may also be

interesting to pursue in future.

Lastly, it should be noted that the general behavior of

both asymmetric spine and fan reconnection described above

are fairly independent of the choice of g in the models. In

particular, solutions with a constant resistivity are readily

found in the limit of k !1 (see Eqs. (12) and (29)). In this

limit, the non-ideal regions in each stretch to become infinite

tubes aligned to the z- and y-axis for spine and fan respec-

tively. This stretches the cyclic flows in each model along

the length of their respective tubes. However, this neither

affects the flow of plasma across the null in the fan models

nor the rate and manner of which flux is transferred across

the fan plane in the spine models. In this sense, the results

presented herein are reasonably generic.
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