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Abstract
Moving towards a future power system dominated by renewable en-

ergy, it is vital that the siting of spatial-dependent technologies such as
wind maximises the power generation while minimising the variability
associated with wind power. This study develops a novel methodology
for wind farm diversification by identifying pairs and triplets of loca-
tions across Western Europe which together form ‘virtual’ wind farms
with a better guarantee of a minimum power generation level, pro-
viding capacity planners with tools to design a network of connected
wind farms working together on a continental scale. These locations
were found using hourly wind speed data spanning 10 years by ex-
amining time periods of local low wind availability at each grid point
and identifying the best complementary wind resource locations. The
best links are identified and presented in this paper. From an ide-
alised capacity factor (CF) of 0.70 for a single site, the method found
the potential for virtual CFs of 0.64 for grid point pairs and 0.68 for
grid point triplets. This suggests that this approach can model virtual
wind farms with virtual CFs comparable to conventional generation
technologies and drastically reduce the amount of time during which
farms are producing no power.

1 Introduction

The quest for a clean, sustainable energy supply is a key challenge we must
tackle this century in order to secure our future on this planet. To continue to
burn fossil fuels at the current rate would lead to a runaway global warming
effect with severe consequences for the environment and the global economy
[1]. Additionally, fossil fuels are a finite resource, with oil and gas set to run
out by 2050 [2], therefore an alternative energy source is needed to guarantee
energy security.

Todays global power demand is in the region of 13TW but the generation
capacity potential of renewable technologies far outstrips our demand for
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energy. Wind alone could supply about 96PWh/year of energy, yet currently
we only generate a fraction of that [3]. In the present climate wind power
is the most economical form of renewable energy [4], and is currently seeing
an exponential growth across the globe as the cost of generation allows it to
compete with traditional power sources such as coal, gas and nuclear.

Europe is home to about a third of global wind power capacity, which in
2016 totalled 153.7GW (10.4% of EU electricity consumption), a net growth
of 142.6GW since 2000 [5] and the European Wind Energy Association (now
WindEurope) forecasts a central scenario of 320GW of installed capacity in
2030 (24.4% of EU electricity consumption) [6]. This still only represents
a fraction of the economically competitive potential of onshore and offshore
wind in Europe [7], which estimates the energy generation potential to be 7
times more than the total demand in 2030. There is plenty of evidence to
show that a 100% renewable future is possible [3, 8]. However, with large
shares of renewable technologies come new challenges. By its very nature
renewable energy is an intermittent source of energy due to the stochastic
nature of wind availability, and this greater energy variability requires bet-
ter capacity planning and grid flexibility to ensure the demand is always
adequately matched by the supply.

Historically, energy planners and policymakers had a simple approach to
generation expansion, opting to invest in utilities which produced energy at
the lowest rate [9]. This was suitable as most of these plants ran on fossil
fuels and therefore their outputs could be controlled to match the electricity
demand. A diverse portfolio of plants was selected based on how quickly
energy generation would need to be switched on and off. As the penetration
of variable technologies increases, the complexity associated with maintain-
ing grid stability increases. As well as this, capacity planners nowadays
must broaden the criteria for energy planning by taking into account factors
such as reducing dependency on fossil fuels, improving demand response and
mitigating climate change [9].

The requirement for better planning methods for siting wind farms be-
comes ever more important, since the location of sites is the largest contribut-
ing factor to the output characteristics of the farm. As the field of wind farm
diversification has matured, several different methodologies have emerged
to formulate optimisation problems to tackle the challenges of smoothing
out power fluctuations [10], maximising grid penetration and transmission
[11, 12], minimizing the static reserve capacity [13, 14], increasing grid stabil-
ity [15, 16] and balancing supply and demand [17, 8, 18]. All these approaches
agree on the benefits in closer coordination between countries on renewable
energy policies, as the spread of wind farms across a larger geographical area
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leads to less correlation between sites and a greater potential for efficiency
gains. This study proposes a new methodology for wind farm diversifica-
tion that identifies pairs and triplets with wind profile characteristics which
complement the generation of wind power with one another in a way which
smoothes the combined power output of the farms. The scope of this study
will primarily focus on wind resource availability. The economic factors of
farm construction and operation will not be considered. Transmission as-
pects will be simplified to prefering solutions that are geographically less
dispersed, using distance as a proxy for transmission losses.

2 Wind Energy and Transmission Background

2.1 Wind Power

A wind turbine generates power by extracting kinetic energy from the wind
and converting it into electrical energy. As wind passes through a turbine,
it slows down and spreads out, which reduces its kinetic energy, some of
which is exploited by the turbine. If a turbine were to extract all the kinetic
energy, the outlet wind speed would drop to zero, which would prevent more
air from passing through the turbine. In order to keep the wind moving
there must be an outlet velocity at the exit of the wind turbine, therefore
not all the wind energy can be extracted. This theoretical limit is described
by Betz’s law, which states that the maximum power that can be extracted
by the wind is 59.3% [19]. Modern wind turbines can reach 75–80% of this
limit under the right conditions [20].

The amount of power produced by a wind turbine is determined by its
diameter and the wind speed. The larger the swept area of a wind turbine,
the more energy it can extract. Figure 1 presents a simplified capacity factor
profile for a wind turbine, and the one used for this study. A minimum cut-
in wind speed of 4 ms-1 is required to begin to generate power, achieving
maximum power at 13ms-1 to a maximum cut-out speed of 25ms-1, above
which the turbines shut down to prevent damage to the blades due to the
high stresses induced. The Capacity Factor is a measure of the ratio of
maximum power to actual power generated.
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Figure 1: A typical idealised wind turbine capacity factor profile.

This capacity factor profile is a simplified case, using a linear segment
from cut-in to rated speed. In reality the gradient of the increasing slope
tends to decrease with higher wind speeds, and above the cut-out speed the
capacity factor drops with a steep gradient. Additionally wind turbines tend
to be built as part of a larger wind farm, which leads to losses caused by
upstream turbines slowing down the wind and reducing the amount of power
which can be extracted further. These losses vary depending on wind farm
design and direction of the prevailing wind [21], and as a result wind farms
have a slightly altered capacity factor profile.

2.2 Grid Integration and Transmission Losses

Before the electrical energy produced is sent to the grid, it needs to be
converted in order to match the frequency of the grid. Wind turbines produce
AC power with a variable frequency depending on the wind speed, therefore
it is first converted into DC and subsequently back into AC at the correct
frequency. A transformer then steps up the voltage to several hundred kV
and the power is fed into the grid. Offshore wind farms transmit power to
the onshore grid via high voltage AC (HVAC) cables, normally at 132 kV or
lower. Electricity is transmitted at high voltages in order to reduce the losses
in the cables, as according to Joule’s Law heating losses in the conductors are
directly proportional to the square of the current for a given power. Voltage
is inversely proportional to current therefore doubling the voltage reduces
these losses by a factor of 4.

The grid is a network of generators and consumers with variable load
patterns of supply and demand. A control system ensures electrical en-
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ergy is generated at the same rate as it is consumed. Imbalances in the
grid can cause generators or transformers to shut down to prevent damage
which can lead to blackouts. As the variability of generation increases with
the growth of renewable technologies it becomes more difficult to guarantee
this balance. When demand exceeds supply, gas-fired plants or stored hy-
dro plants on standby are switched on, or industrial customers consuming
large amounts of energy are curtailed until sufficient generation is available
again [22]. Conversely, when supply outstrips demand stored hydro can also
pump water back into its reservoirs storing energy, or thermal power plants
are switched off until their energy is required again. Interconnectors joining
countries together help to balance the grid by supplying or demanding ex-
cess power to avoid options such as shutting down plants, expensive energy
storage options or negative energy pricing [23].

For the purposes of this study, tranmission losses are not explicitly com-
puted. Distance between locations is used as a simple proxy to prefer com-
pact solutions over disperse solutions. In practice, the energy generated
would be fed into the European transmission grid. Currently, the over-
all transmission losses for the European grid are reported at 6.44% [24].
This could be compensated by installing a 7% larger wind farm to ensure
the same end point delivery. An alternative, more conservative, estimate
at transmission losses is to consider the combined losses of the European
countries crossed. Based on the key result from this paper, the countries
(with transmission efficiencies from [24]) are: Sweden (95.2%), Germany
(96.1%), France (93.6%), and Spain (90.4%); leading to a combined effi-
ciency of 77.5%, or equivalently a total line loss of 22.5% requiring a 29%
larger wind farm to compensate for this loss.

3 Conceptual Framework

A ‘virtual’ wind farm will be created by connecting a set of geographically
separate wind farms. A few assumptions and simplifications will be made in
this analysis. The capacity of each of the constituent (physical) farms in the
virtual farm will be equal. While the total potential capacity of the virtual
wind farm will be the sum of the individual farms, this analysis focuses on the
ability to guarantee a high capacity factor of a single constituent farm. As
a result of this assumption, there are no calculations on the levelised cost of
energy, as this would add complexity to the design that is beyond the scope
of this study. That is, the focus of this work is to maximise availability and
security of wind power. The fundamental idea is to identify ‘complementary’
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wind sites: these are sites where when there is low wind availability at one
site, there will be sufficient wind availability at the complementary site with
high probability.

3.1 Virtual Wind Farm Concept

A virtual wind farm combines a set of 2 or more wind farm sites which are
geographically separated but treats them as one single farm. In this study the
resultant transmission losses which would occur when transmitting the power
from one site to another are neglected, forming this virtual wind farm which
can take advantage of the complementary wind relationship between sites to
reduce variability in power output. Sites are selected with complementary
wind profiles where power at one site tends to be produced at times when the
alternate site is not producing power, and vice versa. The process of finding
these sites is explained in Section 4. As a result the capacity factor of the
virtual wind farm is improved, however a new definition of ‘virtual’ capacity
factor is required to understand the difference. A virtual wind farm with a
1GW capacity consisting of 2 complementary sites requires a total installed
capacity of 2GW, 1GW at each site. The modified capacity factor measures
the proportion of time that at least 1GW of power is being generated by
the combination of both sites, which could be producing upto 2GW at any
moment in time. The capacity factor no longer relates to the maximum rated
power, but to the virtual wind farm rated power.

3.2 Pareto Optimality Criterion

The wind farm site pairs were evaluated on the basis of two objectives: the
virtual capacity factor and the distance between the two sites. In order to
identify the best pairs within groups of links from a geographical cluster,
Pareto Optimality conditions were applied. Pareto Efficiency is where one
objective can only be improved at the cost of the other, which in this case
was maximising virtual capacity factor and minimising the distance. Using
this technique it was possible to find the best unique sets of pairs within a
sample.

3.3 Atmospheric Data Assimilation

The wind speed data used in this investigation originates from the MERRA-2
database [25], a reanalysis data product based on the GMAO/GEOS-5 Data
Assimilation System (Global Modelling and Assimilation Office/ Goddard
Earth Observing System [26]). It combines an atmospheric model, land
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surface model and ocean model to simulate climate variability on several
time scales, from hourly to multi-century climate change. It is based on
measured data from weather stations and satellites, coupled with climate
models to generate several of climate data parameters, developed to support
earth science research into climate and weather prediction, system modelling
and design, and basic research, such as this study. The data was supplied
in NetCDF Format, which supports array-oriented scientific data, and the
two required parameters were wind speeds at 10m height and the surface
roughness coefficient. It was necessary to use the surface roughness data in
order to calculate wind speeds at hub height. Surface roughness is a measure
of the friction generated by the land on wind which slows it down as it gets
closer to sea level. The following logarithmic wind shear equation was used:

v = vref
ln z

z0

ln
zref
z0

(1)

where v represents the wind speed at hub height, vref is the wind speed at
reference height, z is the hub height (set to 50m), zref is the reference height
(set to 10m), and z0 represents the surface roughness.

4 Methodology

The data acquired from NASA’s MERRA-2 reanalysis database covered
Western Europe and some of Central Europe, between the latitudes of 36◦N–
65◦N and longitudes of 11.25◦W–20.00◦E. The spatial resolution of these
data points is 0.5◦× 0.625◦respectively, producing 2950 grid points. The
temporal resolution is hourly and spans 10 years between 2005–2015, lead-
ing to over a quarter of a billion data points in total. For most of the analysis,
only the first two years of data (2005 & 2006) were used to produce results,
with the other 8 years used to analyse their reliability. The surface roughness
values were used to calculate actual wind speed at an assumed hub height
of 50m. This is a good approximation for onshore turbines however offshore
turbines tend to be larger and this hub height is an underestimation.

The first analysis conducted was to calculate the capacity factor between
2005–2006 for each grid point. This was to filter out the locations with
low average wind speed which were points of little interest for this study.
Calculating the potential ideal capacity factor (CF) instead of mean wind
speed gave a better indication of the value of that point, as mean wind speed
does not account for very high wind speeds at which wind turbines would
be shut down, or for turbine power profile against wind speed. The ideal
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capacity factor is calculated every hour and a mean over the 2 years is found
for each location. The minimum CF was set to 0.65 (see Table 1) following
some a simple parameter analysis to determine a suitable minimum which
will be discussed in the results section.

The main experiment was designed to find pairs of locations whose low
wind profiles complemented one another, so that whenever there was no wind
at one location, there would be a high probability of good wind at the other
site. For each grid location, the timestamps at which there was insufficient
wind were recorded. The Low Wind Threshold (LWT) was initially set at
4ms-1, the same speed as the turbine cut-in speed below which the wind
turbines would not produce power. Each grid location had a unique set
of timestamps for low wind conditions, which were used to calculate the
capacity factors of all the other grids at these times. The top 10 locations
with the highest CF for each point was found. Using this list, the best overall
locations were found based on how often these locations occurred in the top
10 locations of other grid points, and their corresponding top 10 locations
formed a matrix of the top grid points.

The next step was to find complementary links between the locations.
In order for a pair to be considered they must both feature the other in
their top 10 locations. Once the pairs were established, the next step was
to calculate their combined virtual capacity factor. The pairs were modelled
as a virtual wind farm, taking the highest capacity factor for every hour of
either of the two sites to produce a new combined virtual capacity factor for
the pair. As a proxy for transmission losses, the Euclidean distance between
the two points was also calculated. Shorter links are more desirable due to
lower transmission losses. Using these two objectives, the Pareto Optimal
front was identified to the groups of pairings which had similar coordinates
to find the best unique spatial links across Europe.

As well as finding pairs, a further analysis was conducted to find the best
triplets which could further increase the capacity factor. It was possible to
use the same methodology to find an additional point by treating the original
pairs found as a single wind farm, and then iterating the search process again.
This was applied to all the top pairs found in the first experiment, using
the same LWT to find the third point. Due to the complexity of calculating
proportionate distances between 3 points a distance value was not calculated,
however this will be explored in the discussion section.

A key parameter in the analysis was the Low Wind Threshold. This de-
termined the timestamps which were to be involved in finding suitable pairs.
By increasing this threshold the amount of data being analysed increases.
Increasing the threshold to the maximum wind speed, all timestamps would
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be used, essentially reducing to the brute force technique. The brute force
method involves computing every possible combination of sites to find the
best result. The threshold value was varied between 4–11ms-1 in 1ms-1 steps,
and the results were compared to the brute force results to evaluate the ef-
fectiveness of the method. Both the pairs and the triplets were compared.
Compared to the pairs O(n2) level of complexity, finding the additional point
using the method was O(2n2) while the brute force triplets search was O(n3),
significantly more computationally intensive.

A separate study applied the methodology to the area surrounding the
United Kingdom, to establish its own geographical links and suggest loca-
tions to potentially develop. In order to evaluate the reliability of these
results, the best pairs and triplets were evaluated for a further 8 years from
2007–2015. These results are presented in the next section.

5 Results and Discussion

5.1 Capacity Factors

Figure 2 shows a map presenting the geographical limits of the study and the
mean potential capacity factors calculated at each gridpoint. The number
of gridpoints in each band is shown below in Table 1. The results found
in this analysis are idealised values based on multiple assumptions and in
reality it is not possible for a wind farm to acheive a 0.7 capacity factor.
The capacity factors of two actual UK offshore wind farms can be compared
to the calculated values; The Greater Gabbard farm, located North East
of London has a reported capacity factor of 0.422, and the farm West of
Duddon Sands near the Isle of Man has a reported capacity factor of 0.442
[27]. This methodology calculated these sites to have a 0.634 and 0.592 ideal
capacity factor respectively.
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Figure 2: Potential Capacity factors across 2005-2006.
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Table 1: Cumulative number of Grid Points for each Capacity Factor
Capacty Factor Number of Points
>0.70 24
>0.65 528
>0.60 904
>0.55 1227
>0.50 1518
>0.45 1862
>0.40 2157
>0.35 2457
>0.30 2654

The discrepancy between ideal and actual CFs may be due to the follow-
ing:

• The data acquired from the MERRA-2 database consists of hourly
time-averaged values. While this temporal resolution may be high and
provides a decent representation of the wind profile, the power output
of a turbine will change instantaneously with the wind speed, and the
variability in the wind across this hour leads to some error in the power
generated, generally overestimating it.

• The capacity factor was calculated using the simplified wind turbine
power profile shown in Figure 1. As mentioned in Section 2, in reality
different sizes and models have different power profiles and the majority
of wind turbines are built as part of a larger wind farm, leading to array
losses that occur due to upwind turbines sapping some of the energy
out of the wind.

• Routine downtime for maintenance and repair is necessary to keep
turbines operating efficiently. Typically an individual wind turbine is
available 97–98% of the time [28], and wind farms will attempt to limit
the number of turbines which are offline at any given time.

• Demand for wind power is assumed to be always 100%. This is not
always the case as there are times when wind speeds are high but
energy demand is low, leading to a surplus of energy in the grid. In
extreme cases this leads to a shutdown of wind farms if the surplus
energy cannot be stored or used elsewhere.
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To compensate for the ideal Capacity Factor overestimation, a correction
factor is calculated. By taking the arithmetic mean of the correction factor
for both the Greater Gabbard and the West Duddon Sands wind farms, an
estimate correction factor of 0.7061 is obtained. This will be used to scale
computed ideal Capacity Factors into an estimated Capacity Factor.

It was desirable to reduce the number of grid points analysed to improve
computational efficiency. After running the initial experiment at different
capacity factors it was established that the minimum capacity factor should
be set to 0.65, reducing the number of points to 528 in the European grid.
All the top pairs found consisted of locations with capacity factors above
this value, and the interaction with other points did not affect the results. A
three-fold decrease in points between 0.5 and 0.65 resulted in a 32 = 9-fold
decrease in computational time when calculating the pairings, since the code
manipulates this number twice; The first is when comparing one grid point
to all the other grid points, and second when it does this for every other grid.
When calculating triplets, this reduces the computational time by a further
three-fold decrease to a total of 33 = 27-fold decrease, due to the extra step
of comparing the pairs with an additional point. This reduction applies to
both the experimental methodology and the brute force method.

5.2 Effect of Low Wind Threshold

The LWT was varied between 4–11ms-1 and the results were compared to the
brute force method. In the case of the triplets, the LWT was kept constant
for both finding the first pair and then the additional location. The results
are illustrated in Figure 3. The first point to note is the values of the virtual
capacity factors were found to be around 0.90 for the pairs and 0.96 for the
triplets, a significant increase in comparison to the individual locations of
around 0.70. The graph presents the highest CF value found as well as the
average CF for the best 10 pairs/triplets found in each method.

When finding the pairs, we can see that a LWT of only 6ms-1 is necessary
to achieve the same result as the brute force method (where all windspeed
data is considered). This threshold finds on average 2500 timestamps for
each gridpoint, which compared to the brute force method which uses 17520
timestamps it gives a 7-fold decrease, justifying the use of this method. Even
when using 4ms-1 the maximum pair and mean of the top 10 found is only
0.24% and 0.83% lower respectively, using just 1000 timestamps per grid.

With respect to the triplets, a slightly higher LWT was required to
achieve similar results to the brute force approach, however using 6ms-1

again only lead to a 0.37% and 0.60% reduction in maximum and mean vir-
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Figure 3: Comparing Low Wind Threshold to the maximum possible values
and the average value of the top 10 results.
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tual capacity factor in the triplets as compared to the brute force approach.
Overall these are promising results, proving that the proposed methodology
is effective at finding pairs and triplets of points.

Extrapolating this methodology to finding more than three points could
lead to greater errors in the final result. A further experiment could improve
this by using varying LWT values at each stage of the method. For example
using a LWT greater than 6ms-1 to find the first pairs has been shown to
be unnecessary. There is also the issue that the search is delivering virtual
wind farms with a virtual capacity factor close to the limit of 1, and further
reiterations would not yield significantly different results. Finally, the calca-
lated ideal CFs are scaled to provide an estimate of what would be expected
in the real world.

5.3 European Pairs

Figure 4 shows the best unique pairs of locations in Europe based on a LWT
of 6ms-1. The first part of the methodology, before applying optimality
conditions produced a total of 96 pairs. From these, 3 unique groups of links
were identified visually. These groups are represented by the green line, and
the optimal links are shown by the black line. It is evident that there is a
strong link between South-West Europe and the Baltic Sea, with 80 of the
96 pairs found here. This link spans a distance of roughly 2,500km.

Comparing the results to actual wind farm locations in Europe, the
largest proportion of onshore and offshore wind farms are located in Den-
mark, Germany and the surrounding North Sea, yet none of the pairs found
have coordinates in this region. Since wind is spatially-correlated, the links
with the highest capacity factors favour the sites furthest away from an-
other, hence the absence of points in this area. This is a limitation of the
methodology, which will be discussed fully in the next section.

When the actual wind farms in the Baltic Sea and in the Gulf of Bothnia
are compared to the cluster of points found here using the Global Offshore
Wind Farms Database [29], this region is highly underdeveloped compared to
the North Sea, despite its high wind potential and shallow seas. This region
was found to be of great importance to the overall reliability of a European-
wide network of wind power. The wind industry in this area is less mature
and presents a key region of growth for European Wind. A 2012 report com-
missioned by the Intergovernmental Baltic Sea Region Energy Co-operation
[30] provides a strategy for the promotion of wind power throughout the
Baltic Sea Region (BSR), estimating its total constrained potential to ex-
ceed 130GW of installed capacity, with over half of this potential found in
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Figure 4: Map presenting the results of the experiment to find the best pairs
of points across Europe. The 3 types of point markers indicate the 3 main
links found when using an LWT of 6ms-1. The green line represents the
average of each group of points, and the thickness of the line is proportional
to the number of individual pairs. The black lines are the best pairs found
by applying Pareto Optimality on links with similar coordinates.
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Finnish waters. Estimates predict that by 2020 the BSR will be home to
4.3GW of capacity, so the potential for growth in this region is enormous.

Looking at the European South-West region, the Offshore Database can
be used in conjunction with inland databases to assess the current situation.
The 5 points in Spain have good potential for expansion and yet have very
few current or proposed wind farms. Wind farms had been proposed in
the past in the Northern region by seAsturlab [31] to test new technologies
but have faced difficulties leading to cancellations. The cluster of points in
the South of France correlate to a high density of wind farms in this area,
including further proposed offshore wind farms. If built up in conjunction
with the Baltic Sea, these regions can compliment one another very well,
with idealised virtual capacity factors in the region of 0.90 (scaled CF of
0.64).

The North of Scotland is another location with favourable links to the
Baltic Sea, with the added benefit of being significantly closer geographically.
Despite this the ideal virtual capacity factors found are still high at 0.89
(scaled CF of 0.63). Some of these points are located in deep waters not
yet suitable for offshore developments, however as offshore wind technology
matures locations such as these may become feasible in the near future.

The third main link found was between a location near Manchester and
several points near the coast of Iceland, also located in waters too deep for
current wind farm technologies. Under closer inspection, this result seemed
anomalous and may be the result of errors in the data. The capacity fac-
tor for the UK gridpoint is significantly higher than that of the adjacent
points, which can be seen in Figure 2. The raw wind speeds obtained from
the MERRA dataset where compared to wind speeds from NOABL, an al-
ternative database which is regularly used by the wind industry to provide
estimates of wind speed, and the results were largely similar. However, the
surface roughness of this grid is significantly higher than the surrounding
areas, which leads to the method erroneously calculating that at higher alti-
tude the wind speed increases faster due to the greater wind shear, explaining
why this outcome is consistent even when looking at different times through-
out the 10 years of data. Through this inspection it was revealed that the
Surface Roughness coefficients were incorrectly calibrated to the wind speed
data, with the surface roughness of this grid near Manchester supposed to be
representing North Wales, which in Figure 2 is represented by a blue square.
However, correcting for this error was outside of the scope of this study, and
therefore the extent of its effect on the results is unknown.
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5.4 European Triplets

Figure 5 shows the best 3 unique triplets that together have the highest
capacity factor. Once again locations in the Baltic Sea Region dominate
the results, with similar links to Southern France, Spain and the seas to
the East of England. The 3 best results were selected based on the highest
capacity factor and not distance. It is difficult to objectively measure the
relative distance between the triplets. There are numerous ways to quantify
this distance, such as measuring the perimeter of the triangle, the average
distance to the midpoint of the triangle or even the area. Furthermore,
the distance is not the only factor to consider when assessing the proximity
of the points, as the locations and sizes of existing interconnects is a key
contributor to the capability of distributing this energy evenly throughout
the grid. Additional studies would require an assessment of distance, briefly
discussed in the next section.
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Figure 5: Map presenting the best three unique triplets found using LWT of
6ms-1 for both finding the pair and the additional point, resulting in ideal
capacity factors of 0.96 (scaled CF 0.68).

The performance of these triplets was compared to the performance of
the constituent individual sites. The Red Triplet was selected for analysis,
and a time series graph of individual capacity factors for each of the 3 sites
was compared to the virtual capacity factor as well as the average power,
shown in Figure 6.

As can be seen from the graph, the virtual CF (green line) provides a
consistent high output as expected, maintaining approximately maximum
virtual CF for the majority of the time. While the virtual CF tracks the
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highest output of any of the farms, the blue line is the average power out-
put of the 3 farms combined. Since this measure is reflective of the actual
power output it fluctuates about an average of 0.70, just as the single sites
do, however the variability of the generation is greatly decreased. As more
sites are added to form an extended network, this variation should continue
decreasing until forming an optimal smooth power generation. It is also
worth noting that the total time spent producing no power due to low wind
conditions amounts to only 8hrs a year for the virtual triplet, whereas in
comparison the individual sites had on average 43 days (1,032 hours) of zero
output, a significant improvement.

In order to construct virtual wind farms from these triplets, a large in-
vestment in interconnectors is required. The interconnectors across Europe
are currently not extensive enough to support the exchange of large amounts
of energy across the continent, therefore a high level of coordination between
countries is required. In light of this a final experiment was conducted look-
ing at the UK and its surrounding waters to assess the potential of the
method on a smaller scale.

5.5 UK Analysis

A rectangular grid of 420 points spanning a latitude of 49.5◦–59.5◦N and a
longtitude of 10.625◦W –1.875◦E was selected, covering the British Isles and
its surrounding seas. All the points were involved in the analysis instead of
filtering by capacity factor since the number of points was still smaller than
the EU experiment. Based on the previous experiments, a LWT of 6ms-1 was
selected, and only the pairs were found. Figure 7 presents the 3 main groups
of links found in this experiment, as well as the best performing pairs within
these groups established using the Pareto Optimality curve. The average
virtual CF for these pairs comes to 0.86 (scaled CF of 0.61).

All 3 links represent a similar amount of pairings, and the majority of
the sites are located offshore. As before the method favoured sites with
large distance between them, increasing the likelihood of a high CF. The
East Coast of England has a shallow sea, and the blue points found here
correspond to an extensive network of offshore wind farms. From these
results it is clear that building farms in off the West Coast of Scotland could
help balance the power output produced in these locations, however these
locations are situated in waters with depths ranging from 200–2000m [32],
currently unfeasible for farm construction. Similarly, sites highlighted in red
East of Scotland, some of which correlate to actual wind farm locations,
would also benefit strongly from turbines being constructed here. The pairs
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Figure 6: A Time Series Graph of the Red triplets daily response over the
first 100 days of 2005. The Green Line is the Virtual Capacity Factor, the
blue line shows the average combined power of the 3 sites, and the other
three thin lines represent the individual sites. The daily points represent the
mean of the last 24 hourly timesteps.
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Figure 7: The 3 main links are represented by the green lines, whose thickness
is proportional to the number of pairs it represents. The point markers
indicate which grid locations are involved in the results, with the black lines
displaying the best unique pairs found for each link.
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represented by black circles highlight a strong link between the North East
of Scotland and the Celtic Sea South of Ireland. These points are found in
much shallower waters, with depths at either side ranging between 60–150m.
Sea depth in excess of 60m is considered deep water with respect to wind
farm construction, however the water is still significantly shallower than the
sites in the North-West and demonstrate a large area of untapped potential
which could in the near future offer excellent conditions for offshore wind
development. There are no current or proposed farms in the Celtic Sea, a
vast area of sea with high wind conditions, little oil or gas exploration [33]
and relatively low shipping traffic. A drawback of this is the lack of deep sea
power cables crossing the region, with only one interconnector joining the
South of Ireland to the French Coast, increasing the cost of installations of
wind farms in this region.

5.6 Ten Year Comparison

For decisions on wind farm locations to be based on the work above, it was
necessary to investigate how stable the wind conditions were and how this
affected the results. The best 9 unique pairs found across Europe were tested
for a period of ten years, from 2005–2015. Table 2 presents the results of
this, comparing the original 2 years of data to 10 years, as well as the best
and worst 2 year capacity factor.

Table 2: Table comparing the original 2 year data to an extended period of
10 years for European Pairs
Pair number Original CF 10 Year CF Best 2 Years Worst 2 Years

1 0.9072 0.9018 0.9099 0.8865
2 0.9070 0.8933 0.9070 0.8735
3 0.9056 0.9036 0.9157 0.8940
4 0.9045 0.8950 0.9056 0.8809
5 0.8971 0.8950 0.9076 0.8832
6 0.8967 0.8835 0.9025 0.8670
7 0.8949 0.8823 0.8961 0.8611
8 0.8871 0.8806 0.8934 0.8670
9 0.8745 0.8702 0.8802 0.8585

From this table, it can be seen that the 10 year capacity factor value is
consistently lower than the Original CF, however the reduction is very small,
with an average decrease of 0.86%. All the pairs except one experience a
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higher CF at an alternate 2 year period within the 10 years, suggesting that
performance of the pairs is not at a maximum between 2005–2006. Overall
these results indicate that the pairs output is reasonably reliable across the
10 years, with no drastic reductions in ideal CF and therefore it is expected
that they will continue to perform well over several decades.

6 Discussion and Limitations

The methodology and results were critically analysed, with the aim of high-
lighting the acheivement of the study, assessing the reliability of the results,
the limitations of the method and how these could be addressed in subse-
quent investigations. Overall this research highlights some interesting corre-
lations between points across both Europe and the UK. These links indicate
that greater investments in interconnectors across the continent are neces-
sary, in particular joining the UK to the mainland and the Baltic Sea to the
rest of the Europe, which corroborates the work conducted by Speicker [12]
evaluating interconnector investments in Northern Europe considering wind
power penetration. Combining his study with the results found here and
with the further work discussed in this section, one could produce results
which could actively contribute to the field of capacity planning and wind
farm diversification.

There are some considerations which need to be acknowledged in order to
develop the results from idealised values to realistic scenarios. The capacity
factors found must account for the constraints and losses in the real-world
discussed in Section 5.1. It is suggested that further work should primarily
focus on tackling this issue, in particular the transmission losses associated
with transporting power over large distances. For now, the estimated CF
values are approximated using a scaling factor of 0.7061, found when com-
paring the calculated ideal capacity factor of two operational wind farms in
Section 5.1 against the reported values in [27]. Table 3 compares the ca-
pacity factors of other generation technologies against the estimated virtual
wind farm solutions identified in this work.

This table demonstrates how poorly wind and solar are currently per-
forming with regards to CF. Many wind farms such as The Greater Gabbard
farm boast of capacity factors above 0.40 and yet the average CF is just 0.22.
There are many reasons for this, but the main problem can be attributed
to sub-optimal siting. It is often the case that the optimal siting for a wind
farm from a capacity factor point of view is not the same as the optimal
location for an investor, the government or the local population. Sites near
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densely populated areas or places that rely heavily on tourism, in particular
on coastal areas where wind speeds are higher, receive a lot of opposition,
whereas sites in rural areas are favoured, leading to more farms being built
at sub-optimal locations [34]. Additionally, many of the sites found to have
the highest capacity factors in this study are situated in deep waters which
are a largely untapped resource due to technological barriers.

While by no means an accurate estimate, the scaled CF values provide a
good idea of the potential for virtual wind farms to compete with traditional
generation technologies on capacity factor (see Table 3). It is important to
consider that, where possible, renewable technologies are given priority on
the grid, therefore in times of abundant energy the coal and gas plants are
switched off first, reducing their capacity factor. Even so, wind is tradition-
ally considered to have a low capacity factor with an unpredictable power
output and this study presents an alternate view that it can have high ca-
pacity factors if diversified correctly and using the modified capacity factor.
This suggests that wind is capable of performing far better within the grid
than it currently is performing.

With regards to the reliability of the results, the length of time over
which the data represents should be considered. Although 10 years may
seem a long time on an economical and technological level, it is a relatively
short time when measuring atmospheric oscillations and thus wind speeds
[34]. The longer the temporal range is, the more reliable the results, and

Table 3: Comparison of Capacity Factors of various generation technologies
in Europe [27]

Generator Type Average Capacity Factor
Nuclear 0.77
Coal 0.51
Natural Gas 0.39
Hydro 0.40
Wind 0.22
Solar PV 0.13
Greater Gabbard WF 0.42
West Duddon WF 0.44
European Virtual Pair 0.64 (corrected)
European Virtual Triplet 0.68 (corrected)
UK Virtual Pair 0.61 (corrected)
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the pairs were found using only 2 years of wind speed data. With more time
and computational power it would be beneficial to use data spanning several
decades to determine the prime locations. The error identified in Section 5.3
in the calibration of the surface roughness will have reduced the reliability
of the results, however it is a simple fix and an error which subsequent
investigations should not make.

Additionally, while increasing the LWT level above 6ms-1 did not improve
the maximum capacity factor by much, it did lead to alternative groups of
pairs being found not featured in the presented results. The effect of this
threshold was not fully investigated and had a greater influence on the results
than originally thought. It does suggest that there are many more links to be
found throughout Europe, typically connecting the regions of high capacity
factor identified in Figure 2. The results presented are just an example of
the type of links that could be found and do not demonstrate all of them,
however it is a promising start which with further work could provide a
key tool to capacity planners in building a European wide network of wind
power.

From the results found, it is clear that the method tends to favour points
that are furthest away from one another due to their stronger complementary
correlation. Currently the pairs are found based on the virtual capacity
factor, and then the distance is considered afterwards to find the best ones.
In order to improve this, further revisions should incorporate a technique
which accounts for the distance between the points during the initial analysis.
This should lead to local phenomena being better represented in the final
results.

Another limitation of the methodology is that the only pairs found are
those which feature in the top 10 locations of their complementary location
and vice versa. This fails to capture those pairs of sites who feature first for
one of the grids but 11th for the other, therefore a revised method would
analyse all the complementary locations and instead use their overall rank
to rate their suitability.

7 Conclusions

As we look towards a future EU power system dominated by wind and solar,
the tools required to design a reliable yet flexible international grid become
ever more complex as generation variability increases. The results produced
by this research suggest that better coordination in capacity planning across
the continent can lead to improved forecasting in total wind power gener-
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ation. If countries fail to adequately diversify the locations of wind farms,
instead choosing to concentrate them in sub-optimal locations then the grid
will be unable to cope with the large gradient change in demand caused by
changes in the wind. In this scenario the need for large energy storage ca-
pacity will outstrip the technological feasibility of such projects [13] leading
to reduced grid reliability and increased chances of blackouts, which disrupt
the economy and reduce confidence in renewable energy.

The concept of a virtual CF should be used in conjunction with tradi-
tional CF values when assessing the suitability of a site. During the proposals
of new wind farms neighbouring countries with shared interconnectors could
collaborate to maximise the virtual CF for mutual gains. Alternatively with
some modification of the method it would be possible to map out the loca-
tions of current wind farms and evaluate which new locations provide the
best output characteristics to stabilise the overall power output.

This research could be taken further by conducting a similar analysis of
Europe’s solar potential and combining it with the wind data to produce a
network of solar and wind sites that together can further stabilize the total
power output. Solar output is also dependent on the atmospheric condi-
tions that produce clouds and therefore there may be patterns and links
not previously found hidden in irradiance data. Additionally solar produces
the most energy at times that wind power generates the least [8] i.e. during
the day peaking in the summer months, therefore it is important to develop
methodologies that look to optimise the geographical distribution of these
technologies. Ummel [17] takes a different approach to this problem by find-
ing the sites for wind and solar in South Africa that run at the highest
capacity factor during times of peak load demand, which are the periods of
time most likely to suffer from blackouts. By tailoring the diversification of
sites to maximise outputs during these times, it is possible to increase the
grid stability. A combination of the two approaches, with the additional work
suggested in the discussion section has great potential to identify strategies
for renewable energy deployment.

Another application of this study could be to determine whether areas of
high wind speed variability such as mountain ranges could contain a network
of locations which together can produce a stable enough output to make
it economically viable to build turbines in these regions. The summits of
mountains can have very high wind speeds at times and an assessment of
the region using a higher spatial resolution could produce some interesting
results. Specially designed wind turbines which can take better advantage
of the turbulent environment could become feasible in these regions if an
effective network of turbines is designed.
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The wind is always blowing somewhere across Europe. Between 2005–
2006 the lowest average hourly wind speed recorded was 13ms-1. Techno-
logically we are at a stage where we can state with confidence that a 100%
renewable future for Europe is possible.
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