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*Highlights (for review)

Multiswapped networks generalize OTIS networks and biswapped networks.
We further investigate the topological properties of multiswapped networks.
If G and H are Hamiltonian then so is the multiswapped network Msw(H;G).
MSw(H;G) can be Hamiltonian even when G and H are not.

Core to our proofs is finding Hamiltonian cycles in heavily pruned tori.
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Abstract

OTIS networks are interconnection networks amenable to deployment as hybrid networks containing both electronic and optical
links. Deficiencies as regards symmetry led to the subsequent formulation of biswapped networks which were later generalized to
multiswapped networks so as to still enable optoelectronic implementation (as it happens, multiswapped networks also generalize
previously studied hierarchical crossed cubes). Multiswapped networks of the form M sw(H ; G) are known to possess good (graph-
theoretic) properties as regards their use as (optoelectronic) interconnection networks (in distributed-memory multiprocessors) and
in relation to those of the component networks G and H. Combinatorially they provide a hierarchical mechanism to define new
networks from existing networks (so that the properties of the new network can be controlled in terms of the constituent networks).
In this paper we prove that if G and H are Hamiltonian networks then the multiswapped network M sw(H; G) is also Hamiltonian.
At the core of our proof is finding specially designed Hamiltonian cycles in 2-dimensional and heavily pruned 3-dimensional tori,
irrespective of the actual networks G and H we happen to be working with. This lends credence to the role of tori as fundamental
networks within the study of interconnection networks.

Keywords: Hamiltonian cycles, interconnection networks, network topology, multiswapped networks, optoelectronic networks.

1. Introduction

Interconnection networks are used to interconnect the pro-
cessors of a distributed-memory multiprocessor computer (such
as a Cray Jaguar or an IBM Blue Gene) as well as within
networks-on-chip, cluster computers and data centres (it is pri-
marily the combinatorics related to the former usage that con-
cerns us in this paper). The stereotypical examples of inter-
connection networks are the hypercubes although many other
networks have been so proposed (for example, the two super-
computers mentioned above have their processors connected in
the form of a 3-dimensional torus). The design of an intercon-
nection network is complex with topology, flow control, routing
and traffic patterns all impacting upon its practical usefulness
(see, e.g., [7] for more details).

There is a strong and established link between the practi-
cal behaviour of a real interconnection network and the graph-
theoretic properties of its abstraction as a graph. From a topo-
logical point of view, it is desirable for an interconnection net-
work (abstracted here as an undirected graph) to possess nu-
merous graph-theoretic properties including: having a small di-
ameter (to aid message routing), a low degree (so as to limit
overheads related to communication) and a high connectivity
(so that faults can be tolerated); possessing embeddings of paths
and cycles of various lengths (to aid simulations and message
routing); and being highly symmetric (to assist with program-
ming and analysis). There has been a considerable amount
of research undertaken as to the efficacy of a whole range of
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graphs proposed as interconnection networks, which includes,
to mention just a few, n-stars, (n, k)-stars, k-ary n-cubes, gen-
eralised and augmented hypercubes, pancake graphs and recur-
sive circulant graphs (see, e.g., [19, 20, 48]). The study of in-
terconnection networks is an inter-disciplinary mix of discrete
mathematics, computer science and engineering; moreover, no
matter which application scenario one works in, there does not
exist an optimum interconnection network design and trade-offs
always have to be made.

Traditionally, communication within interconnection net-
works has been implemented electronically. However, opto-
electronic interconnection networks, where communication is
undertaken via a mix of electronic and optical links, have re-
cently been proposed and constructed. Multiswapped networks
were introduced in [38] as interconnection networks amenable
to optoelectronic implementation. They generalise biswapped
networks, as defined in [46], which in turn generalise OTIS
networks, which originated in [32, 39, 50, 51, 52] (we shall
describe these networks and their suitability in an optoelec-
tronic framework in more detail in the next section). As was
demonstrated in [38], not only does a multiswapped network
Msw(H;G), where G is the base graph and H is the net-
work graph, have numerous properties appropriate for its use
as an optoelectronic interconnection network but it also mer-
its investigation when viewed solely in graph-theoretic terms
as the provider of a generic mechanism to compose two other
graphs, G and H, to yield a third (in much the same way as,
say, the Cartesian product or the Tensor product do); indeed,
we show that existing interconnection networks, namely hi-
erarchical crossed cubes [21], are instantiations of our multi-
swapped construction. Some of the graph-theoretic properties



of Msw(H;G) studied in [38] involve the lengths of shortest
paths joining any two nodes, the diameter, the connectivity, the
fault-diameter and node symmetry. All of these properties are
highly relevant with regard to the use of multiswapped networks
as (optoelectronic) interconnection networks but they also hint
as to the naturalness of M sw(H ; G) as a method of graph com-
position.

In this paper we continue with the development of multi-
swapped networks both as providing the topologies of potential
interconnection networks and also as a generic mechanism for
graph composition (we also highlight later how multiswapped
networks might be relevant to the design of data centre net-
works). In particular, we prove that if G and H are Hamiltonian
graphs then so is M sw(H; G) but that M sw(H; G) might still
be Hamiltonian even if it is the case that G and H are not both
Hamiltonian. As we shall see, our proof relates the construc-
tion of Hamiltonian cycles in M sw(H; G) with the existence
of specially constructed Hamiltonian cycles in 2-dimensional
and heavily-pruned 3-dimensional tori (that is, with many links
removed), no matter which graphs are chosen as G and H.
The study of interconnection networks with faulty links is well
established; however, ordinarily these faults are randomly dis-
tributed and limited in number. The emergence of the heavily-
pruned tori in this paper is, in so far as we are aware, the first
time interconnection networks with abundant faults and struc-
tured fault patterns have featured. The study of Hamiltonic-
ity, as well as various related concepts such as Hamiltonian-
connectedness, Hamiltonian-laceability and path covers, in in-
terconnection networks is a thriving research area (we provide
numerous examples of roles of Hamiltonicity as motivation).

This paper is structured as follows. In Section 2, we pro-
vide some background as to OTIS networks, biswapped net-
works and multiswapped networks; we also explain how a mul-
tiswapped network is a generalisation of the previously studied
hierarchical crossed cubes. In addition, we provide a reason-
ably detailed account of the role of Hamiltonicity in and its rel-
evance to interconnection networks. In Section 3, we prove
our main results, and we present our conclusions in Section
4. We reiterate that throughout an interconnection network is
equated with its abstraction as an undirected graph. For stan-
dard graph-theoretic terminology we refer the reader to [9] and
for the fundamental aspects of interconnection networks we re-
fer the reader to [7, 20, 48]. In order to emphasise the architec-
tural origins of our graphs, we often refer to graphs as networks
(though we use the two terms interchangeably) and we always
refer to vertices as nodes and (undirected) edges as links.

2. Background and motivation

In this section, we describe the evolution of multiswapped
networks from their origins as OTIS networks and through their
emergence from biswapped networks. In addition, we provide
motivation for the study of Hamiltonicity within interconnec-
tion networks and their various implementations as, for exam-
ple, distributed-memory multiprocessors, networks-on-chips,
compute clusters and data centre networks.

2.1. Optoelectronic interconnection networks

Ordinarily, interconnection networks are implemented elec-
tronically and the ‘two-dimensional nature’ of this environment
can impose restrictions. Free-space optical interconnect tech-
nologies can offer several advantages over electronic imple-
mentations. For example, optical signals can pass through one
another with little interference, and over a distance of greater
than a few millimetres optical connections out-perform elec-
tronic connections in terms of power consumption, speed and
crosstalk. However, optical connections are not a panacea for
it can be difficult to route messages and the additional hard-
ware components can be costly (the reader is referred to, e.g.,
[4, 14, 18, 23, 53] for further details on the physical properties
of optical connections).

2.1.1. OTIS networks

A popular model of optical communication is the Optical
Transpose Interconnection System (OTIS) (OTIS networks orig-
inated within the optics community in [32] and within the com-
puter architecture community in [39] and, independently under
the name of swapped networks, in [50, 51, 52]). OTIS networks
have a base graph G, on n nodes, and consist of n disjoint
copies of GG. These copies are labelled G1,Go,...,G, and
the nodes of any copy are vy, vo, ..., v,. The links involved in
any one of these copies of G are intended to model (shorter)
electronic connections whereas additional links, where there is
a link from node v; of copy G; to node v; of copy Gj, for
every i,j € {1,2,...,n} with ¢ # j, are intended to model
the (longer) optical connections. The resulting OTIS network
is denoted by OTIS-G. Of course, an OTIS network is de-
pendent upon its base graph G, and there is an extensive lit-
erature concerning the structural and algorithmic properties for
both specific base graphs and classes of base graphs (see, e.g.,
[5, 6, 8, 22, 29, 30, 31, 33, 34, 35, 36, 56] for a selection). In
particular, it was proven in [34] that if G is Hamiltonian then
OTIS-G is Hamiltonian.

2.1.2. Biswapped networks

We mentioned in the previous section that symmetry within
an interconnection network is important. There is a precise def-
inition of what we mean by symmetry: an interconnection net-
work is node-symmetric if given any two distinct nodes v and v,
there is an automorphism of the interconnection network map-
ping u to v (that is, a one-to-one map f whose domain and
range is the set of nodes and so that (z, y) is a link if, and only
if, (f(z), f(y)) is a link). Intuitively, when an interconnection
network is node-symmetric every node ‘looks exactly the same’
as every other node. A stronger property than node-symmetry
is when an interconnection network is a Cayley graph (see, e.g.,
[20, 48] for a precise definition). This is a group-theoretic con-
dition that yields additional benefits in relation to, for example,
routing and analysis. Node-symmetry is an important property
of an interconnection network: the same routing algorithm, for
example, can be deployed at each node; loads tend to be well-
balanced; and in any analysis of a property that is required to
hold for every node, the property need only be verified at one



(randomly) chosen node (see, e.g., [7, 20, 48] for more on as-
pects of symmetry).

One displeasing aspect of OTIS networks is that no mat-
ter what the base graph G is, the corresponding OTIS network
OTIS-G cannot be a Cayley graph, or even a node-symmetric
graph, as an OTIS network is not regular (a regular graph is a
graph where every node has the same number of neighbours).
In order to try and surmount this deficiency, the biswapped net-
work Bsw(G) was defined in [45] very similarly to the OTIS
network OTIS-G except that instead of having n copies of the
base graph G (where G has n nodes), we have 2n copies G},
GE,....Gy,G1,G%,...,G? and the ‘optical’ links join node
v; in G§ with node v; in G, where 4,5 € {1,2,...,n}. Imme-
diately we see that if G is regular then the biswapped network
Bsw(G) is regular and so there is some hope for recapturing
any symmetric properties of the base graph G; indeed, if G
is a Cayley graph then Bsw(G) is. The reader is referred to
[44, 46,47, 55] for more detailed discussions on biswapped net-
works and recent related research. In particular, it was proven
in [44] that if G is Hamiltonian then Bsw(G) is Hamiltonian
(this latter result was reported in [46] but not proven there nor
subsequently).

The basic mechanism by which OTIS and biswapped net-
works are implemented using free-space optical interconnec-
tions can be visualized in Fig. 1, where two banks of lenslets
focus light from a node’s transmitter to another node’s receiver
(see, e.g., [53] for a good account of free-space optics).

2.1.3. Multiswapped networks

In [38], biswapped networks were generalised so as to ob-
tain multiswapped networks. This generalisation arises from the
simple observation that if one ‘concatenates’ biswapped net-
works then one can still obtain networks that can easily be laid
out (in an optoelectronic sense, just as OTIS and biswapped net-
works can) but where these new networks have increased flexi-
bility and improved topological and algorithmic properties (that
one might do this was hinted at in [53] where it was stated that
the OTIS optical architecture ‘can be cascaded to accommodate
successive processing planes’). The new networks are not only
parameterized by a base graph G but also by a network graph
H which determines the ‘pattern of concatenation’; we denote
the resulting network by Msw(H;G). As such, a network
M sw(H; G) is hierarchical. The biswapped network Bsw(G),
with base graph G, is the network M sw(H; G) where H con-
sists of a solitary link.

Our generalisation of a biswapped network is defined as fol-
lows.

Definition 1. Ler H = (U,F) and G = (V, E) be graphs
where U and V' both contain at least 2 nodes. The network
Msw(H;G) is known as the multiswapped network with net-
work graph H and base graph G and is defined as follows:

o Msw(H;G) has node set {(u,v,w) : u € Uyv,w € V}
o Msw(H;G) has link set consisting of:

- {((u,v,w), (w,v,w")) : v € Uv,ww €V,
(w,w’) € E}, the cluster links, and

- {((u,v,w), (v, w,v)) :

the swap links.

(u,v') € Fio,w € V},

We say that the nodes corresponding to some node u € U
are the nodes of M sw(H; G) whose first component is u, and
that a node (u, v, w) of Msw(H;G) corresponding to u € U
has index v € V. In addition, the links induced by the nodes
of Msw(H;G) corresponding to some node u € U are the
cluster links. We denote the copy of G induced by the nodes
corresponding to » and indexed by v as G,

The nodes corresponding to the nodes u and v’ of U and the
link (u, u’) of F are depicted in two different ways in Fig. 2. In
both depictions, the nodes of V' are enumerated as vy, va, . ..,
vy,. In the top depiction, the node (u, v;, v;), for example, lies
on the row corresponding to node u € U, and within this row it
is node v; of the cluster indexed by v;. In the bottom depiction,
as regards the nodes corresponding to u’, there is one row for
the nodes indexed by each v € V, and the node (u', v;, v;), for
example, lies on the row indexed by node v; € V.

Various properties of M sw(H;G) were proven in [38], in
terms of those of the graphs G and H. For example: the lengths
of shortest paths between specific pairs of nodes in G and H,
and consequently a formula for the diameter A(M sw(H; G))
of Msw(H;G) in terms of the diameters A(G) and A(H) of
G and H, were obtained; it was proven that if G is a graph of
connectivity x > 1 and H is a graph of connectivity A > 1
where \ < k then M sw(H; G) has connectivity at least £ + \;
upper bounds on the (k + A)-diameter of M sw(H; G) in terms
of the k-diameter of GG and the \-diameter of H were derived;
a distributed routing algorithm for a distributed-memory multi-
processor whose underlying topology is M sw(H; G) was ob-
tained; and it was proven that if G and H are Cayley graphs
then M sw(H; G) need not be a Cayley graph, but when addi-
tionally H is a bipartite Cayley graph, the graph M sw(H; G)
is necessarily a Cayley graph.

One immediate observation from the above results is that
specific properties of Msw(H;G) are strongly related to the
same properties of G and H. Not only are multiswapped net-
works conducive for deployment in an optoelectronic context
but their modular nature means that they enable existing net-
works to be ‘joined together’ in a uniform way so that struc-
tural properties of the component networks can be retained (or
even enhanced). In general, methodologies enabling the modu-
lar construction of new interconnection networks from old are
extremely important. For example, modular constructions en-
able a much more effective packaging (analysis) of component
parts (packaging is, essentially, the partitioning of nodes to the
same or different boards or racks and of links as intra-board or
inter-rack, for example; see, e.g., [7]). Multiswapped networks
provide for much flexibility in the consideration and analysis
of packaging and are reflective of the increasing move towards
hierarchical constructions within interconnection networks.

2.1.4. Hierarchical crossed cubes

The construction of M sw(H; G) is closely related with the
construction of hierarchical crossed cubes HCC(k,n), origi-
nating in [21] and further investigated in, e.g., [25, 26]. The
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Figure 1: Banks of lenslets used in OTIS and biswapped networks.

focus in [21] on the definition of hierarchical crossed cubes is
algebraic (the reader is referred to [21] for a precise definition
of crossed cubes as it is not important to the content of this

paper).

Definition 2. The hierarchical crossed cube HCC(k,n) has
node-set {0,1}*+2". Each node of HCC(k,n) is written as
(u,v,w), where u € {0,1}* and v,w € {0,1}". The set of
links of HCC'(k,n) is partitioned into 2 sets, Fins and Eeyy.
The set E;pn; is referred to as the set of internal links, whilst
the set E..¢ is referred to as the set of external links. In more
detail,

Eint = {((ua v, W)7 (u7v7wl)) : (W7W/) isa
link of the crossed cube CQy,}
and
Eezt - {((u’ V) W)7(u/’w7 v)) : (u7 u/) isa

link of the hypercube Q1 }.

Consequently, HCC(k, n) is identical to M sw(Qy; CQ.,), and
it is interesting to note that the same network has arisen in-
dependently from two entirely different directions. However,
HCC(k,n) is but one instantiation of a multiswapped network
where the network graph is chosen to be (), and the base graph
to be CQ,,.

In [26], the Hamiltonicity of HCC(k,n) was investigated
with HCC(k,n) shown to be Hamiltonian. Explicit algebraic
properties of hypercubes and crossed cubes were used to con-
struct Hamiltonian cycles in HCC'(k,n) via generalized Gray
codes in the form of reflective edge-labelled sequences and cy-
cle patterns. Of course, the approach taken in [26] cannot be
taken here as we consider M sw(H; G) where H and G are ar-
bitrary graphs. Also, if we apply our upcoming constructions to

M sw(Qr; CQy,) then, interestingly, we obtain a very different
Hamiltonian cycle to that constructed in [26].

2.2. Hamiltonicity in interconnection networks

Not only is Hamiltonicity a fundamental graph-theoretic
concept but it is also extremely relevant in the context of inter-
connection networks where the existence of Hamiltonian cycles
or paths can have a number of applications. The relevance of
Hamiltonicity runs across the spectrum of instantiations of in-
terconnection networks as distributed-memory multiprocessors,
networks-on-chips, compute clusters, and data centre networks.
Now that we have provided some background as regards multi-
swapped networks, it is apposite that we explain and motivate
the study of Hamiltonicity within interconnection networks.

We illustrate below some of the roles Hamiltonian cycles
and paths have assumed within interconnection networks. We
begin with some general applications (that are well established
within the literature; see, e.g., [1, 12, 20, 27]) before looking at
some more specific examples. In an all-to-all communication
pattern, the existence of a Hamiltonian cycle enables every node
to send its packets out so that in a one-port, synchronous sys-
tem what results is an optimal algorithm (the algorithm works
in an asynchronous system too, although without an associated
claim of optimality); if there are edge-disjoint Hamiltonian cy-
cles then these cycles can be used to reduce the time complex-
ity when the system is multi-port; and regardless of whether
the system is one-port or multi-port, edge-disjoint Hamiltonian
cycles enable improved fault-tolerance. Cycles and paths are
recognized as important data structures as a large number of
parallel algorithms in contexts such as matrix-vector multipli-
cation, Gaussian elimination, and bitonic sorting have been de-
veloped within which these data structures are commonplace;
consequently, having a Hamiltonian cycle or path in an inter-
connection network facilitates the implementation of these al-
gorithms (as arbitrarily long paths, up to the number of nodes
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Figure 2: Some links in M sw(H; G).

in the interconnection network, can be embedded within the
cycle). In addition, many interconnection networks are recur-
sively structured; consequently, the existence of Hamiltonian
cycles (in the recursive sub-structures) also yields sets of dis-
joint cycles (within which multiple paths can be embedded).
Now for some more specific applications. An influential pa-
per was [28] where a deadlock-free path-based multicast worm-
hole routing algorithm for distributed-memory multiprocessors
was devised, with the freedom from deadlock stemming from
the existence and use of a Hamiltonian cycle embedded within
the interconnection network; this paper has inspired a range of
related research (see, e.g., [40] and the references therein). In
[49] a method for diagnosing faults in distributed-memory mul-
tiprocessors (under the PMC model) was devised where a nec-
essary condition is that the interconnection network is Hamil-
tonian: the nodes of a fault-free portion of a Hamiltonian cycle
are used to diagnose the remaining nodes, so as to obtain a five-
round adaptive diagnosis algorithm. In wavelength-division-
multiplexing optical networks, the existence of Hamiltonian cy-
cles in the underlying network has been used so as to develop
protection algorithms; that is, algorithms which prolong the sur-
vival of paths in a faulty system (see, e.g., [15] for a recent
application). As regards a networks-on-chip context, in [54]
a bufferless routing algorithm for the Gaussian macrochip (an
optical chip-scale network) is developed that ensures that de-
flected packets reach their destinations; the routing algorithm
takes advantage of Hamiltonian cycles within the underlying
Gaussian network. Furthermore, the paper [28], mentioned
above, has influenced not only deadlock-free routing in distrib-
uted-memory multiprocessors but also fault-tolerant routing in

three-dimensional networks-on-chips where Hamiltonian paths
are used to yield fault-tolerance [13]. In [37] the complexity of
the black hole search problem (a black hole in an agent-based
network is a location in which a resident process, such as an
unknowingly-installed virus, deletes visiting agents or incom-
ing data) in various interconnection networks is studied; this is
the first consideration of this problem in interconnection net-
works and crucial to the agent-based algorithms that are devel-
oped is the existence of Hamiltonian cycles in the underlying
interconnection networks. In [24], the existence of Hamilto-
nian cycles in specific cubic symmetric graphs (from the Fos-
ter Census) is used to build broadcast schedules that facilitate
the solution of parallel molecular dynamics problems. In [11],
Hamiltonian cycles are used to design privacy-preserving algo-
rithms for distributed data mining in networks. Finally, the ex-
istence of Hamiltonian cycles in interconnection networks can
be used implicitly; for example, in [2] the existence of a Hamil-
tonian cycle in various interconnection networks was used to
obtain bounds in a congestion analysis.

In summary, Hamiltonicity in interconnection networks is
an important consideration; moreover, as new networks, meth-
odologies, and applications arise, it is likely that new appli-
cations for Hamiltonicity will arise. For example, researchers
have recently turned their attention to Hamiltonicity and asso-
ciated structural concepts in certain data centre networks (see,
e.g.,[41, 42, 43]) and to the use of Hamiltonian cycles in grids
and clouds (see, e.g., [3]). Furthermore, the study of Hamil-
tonicity has given rise to the study of many new concepts in
interconnection networks such as Hamiltonian-connectedness,
Hamiltonian-laceability, and path covers (see, e.g., [20]).



3. The composition of Hamiltonian graphs

In this section we prove our main result; that is, we prove
that if G = (V,E) and H = (U, F') are Hamiltonian graphs
then M sw(H; G) is Hamiltonian too (we also show that whilst
this condition on GG and H is sufficient, it is not necessary). Our
constructions differ depending upon the parity of the number of
nodes of H and G. Throughout we use the fact that if G’ is a
subgraph of G and H' is a subgraph of H then M sw(H'; G’)
is a subgraph of M sw(H; G).

We begin with the case when H has an even number of
nodes. Note that we regard a path in a graph as a sequence
of nodes and so it makes sense to concatenate paths to obtain
longer paths (so long as there is a link joining the last node of
the first path to the first node of the second).

Lemma 3. Let H and G be Hamiltonian graphs where H has
an even number of nodes. The network M sw(H; G) is Hamil-
tonian.

Proof Enumerate the nodes of V' as vy, vg, ..., v, so that this
enumeration forms a Hamiltonian cycle in G, and define the
path p(v;, v;) to be a Hamiltonian sub-path of this Hamiltonian
cycle (and so j =4 — 1 or j = ¢ + 1, where we identify n 4 1
with 1 and 0 with n). Denote the isomorphic copy of any path
p(vi, v;) in the copy G, of G corresponding to the node v € U
and with index v € V by p(v;,v;). Suppose that (u,u’) € F.
Define the path oy, in Msw(H; G) as follows:

/
Py, (Unsv1), poy, (01, 02), Py, (1, v2),
/ ’
Doy (V2,03), por, (V2,13), por, (U3, V4),
!
L Pgﬂ (Unfla Un)v Pﬁn (Unv Ul)~

The path 0, can be visualized (in bold) as in Fig. 3.

Now let w1, us, . .., U, be an enumeration of the nodes of
U so that they form a Hamiltonian cycle in H (recall that m
is even). The path 0y, v, s Ous,uss - -+ s T —1,u 15 @ Hamilto-
nian path in M sw(H; G) from the node (u1, v1,v,,) to the node
(U, Un,v1), and so yields a Hamiltonian cycle in M sw(H; G)
(@s ((tm, vn,v1), (u1,v1,vy)) is alink of Msw(H;G)). O

Note that the construction in the proof of Lemma 3 works
when H consists of a solitary link; that is, oy, is a Hamil-
tonian path of Msw(H;G) = Bsw(G) from (u,v1,v,) to
(u', v, v1), and so M sw(H; G) is Hamiltonian (as was shown
in [44, 45]).

Now we turn to the more difficult case where H has an odd
number of nodes; but first we define the k£ X k torus Q’g as being
a k x k mesh with wrap-around links on every row and in every
column.

Theorem 4. Let H and G be Hamiltonian graphs where H has
an odd number of nodes and where G has an even number of
nodes. The network M sw(H; G) is Hamiltonian.

Proof Let C and D be Hamiltonian cycles in G and H, respec-
tively, so that C' = vy, v9,...,v, and D = uy, ug, ..., Up.

We shall work only in the spanning subgraph M sw(D;C') of
Msw(H;G). We begin by giving an example of a Hamiltonian
cycle in a particular scenario and then we show how this Hamil-
tonian cycle can be ‘flattened’ to obtain a Hamiltonian cycle in
a two-dimensional torus. We next apply the reversal of this con-
struction in the general case so as to turn a specially constructed
Hamiltonian cycle in an n X n torus into a Hamiltonian cycle
of Msw(D;C).

Consider the subgraph X of Msw(D;C) corresponding
to the sub-path uy, u2, us of D (that is, induced by the nodes
whose first component is u1, ug or us). Let’s start with a spe-
cific construction. The subgraph X is depicted in Fig. 4(a) in
the case when n = 4 (the indices are shaded in grey and not all
nodes are named). Moreover, in this figure there is depicted a
cycle Y (in bold) spanning all nodes of X . Note how Fig. 4(a)
is obtained by ‘re-drawing’ Fig. 2 so that the nodes lie in the
shape of a ‘heavily pruned’ 3-dimensional torus; that is, with
many of the links removed. The links that have been removed
are alternately the row links and the column links on each ‘hor-
izontal plane’ of the 3-dimensional torus (this might be better
appreciated by viewing the forthcoming Fig. 6).

Consider the 16 nodes of X corresponding to the node uo €
U. We can also imagine these nodes as being the nodes of a
4 x 4 torus Q3 where the node on row i and in column j is the
node (u2,v;,v;). Note that in Q3 all row and column links of
Q% are present; so, Q% contains links that do not exist in X. In
particular, all the row links of Q% are also present in X but none
of the column links is.

Consider the cycle Y. Trace this cycle Y around the nodes
of X so as to obtain a cycle Z in Q3 as follows:

e consider the nodes of Q3 as being those nodes of X cor-
responding to the node us € U and whenever the cycle
Y leaves the ‘plane’ of Q%, introduce a column link in Z
in Q% joining the node where it left the plane to the node
where it rejoined the plane.

So, for example, when Y leaves the plane of Q3 at node (uz, v1,
v1) to follow the path (us,v1,v1), (us, v1,ve) before rejoining
the plane at node (uz,v2,v1), we introduce the link ((uz,v1,
v1), (u2,v2,v1)) into Z. Note that all such paths in Y that leave
the plane of Q4 at (us, v;,v;) before rejoining it at (uz, v}, v;)
are such that 7 and ¢’ differ by 1 or are 1 and 4 (and so cor-
respond to column links in Q3). This construction can be vi-
sualized in Fig. 4(b), where the dotted lines denote the new
column links (which, of course, only exist in Q% and not in
Msw(D;C)). What results is a Hamiltonian cycle Z of Q3,
namely:

(v4,v1), (v3,01), (V2,01), (V1,01), (V1,v2), (V4, v2),
(Ug, U2)7 (U27 U2)7 (U27U3)7 (Uh U3)7 (U4a U3)a

(U37 U3)7 (U37 U4)7 (1}2,’()4), (Uh U4)7 (U47 1}4)

(we have suppressed the first component us in the names of
all these nodes). Note that the column links used in Z (and
derived from Y') correspond to either a link of some cluster of
X (corresponding to u3) or a path of length 3 in some cluster
of X (corresponding to u1).
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Figure 4: The subgraph X of M sw(H;G) and the ‘flattened’ cycle Z in Q3.

We can extend this construction (or, more precisely, its re-
versal) to the general case as we now describe. Whereas in our
example above we have constructed a Hamiltonian cycle Z in
Q5 from our spanning cycle Y in X, we can equally well start
with a Hamiltonian cycle in 3, with certain properties (to be
defined), and use this cycle to obtain a spanning cycle Y of X.
For the moment, we continue to work with our sub-path w1, us,
us of D. However, suppose that (05 is an n X n torus whose
node set is the set {(u2,v;,v;) : 4,5 = 1,2,...,n} and where
there is a link ((u2,v;,v;), (u2,vir,vj)) if either: ¢ = i’ and
(j=j +lor(j=1landj =n)):orj=jand (i =14 +1or
(i = 1 and i’ = n)). In what follows, we suppress the first com-
ponent us when we denote such nodes. Suppose that we can
find a Hamiltonian cycle Z in Q% with the following property:

e the intersection I of any set of n column links of Q%
(lying in the same column) with the links of Z results in
aset of 5 — 1 mutually node-disjoint paths all but one of
which is a link so that the remaining path has length 3.

Such a Hamiltonian cycle Z for the torus Q3 is depicted in
Fig. 5(a) where, if one looks at the first column, for example, the
intersection set I consists of the links ((v1,v1), (ve,v1)) and
((vs,v1), (v4,v1)) together with the path ((vs,v1), (ve,v1),
(v7,v1)) (the cycle Z is given by the bold black and grey links
in Fig. 5(a)).

Colour the 2 — 2 isolated links of all such intersection sets

2
(that s, all paths in I consisting of a solitary link) black and also

colour the two non-incident links of the path of length 3 black,
with the internal link of the path of length 3 coloured grey (as
is done in Fig. 5(a)). Fix some column of Q5. Note that when
the nodes of this column are regarded as nodes in X, there are
links from every node to the nodes of a cluster in M sw(D; C)
corresponding to node u; € U and also to the nodes of a cluster
corresponding to node u3 € U (these links are the vertical links
in Fig. 4(a)). For each column: replace every black link by a
path of length 3 through a link of the cluster corresponding to
node uz € U; and replace the grey link by a path of length
n + 1 through all nodes of the cluster corresponding to node
u; € U (this corresponds to a reversal of the ‘flattening’ of
Y in Fig. 4(a) to get Z in Fig. 4(b)). Because of the specific
property required of Z, this gives us a cycle spanning all the
nodes of X.
What is more, if our (Hamiltonian) path D is uy, ug, us,
., Um With m > 5 odd then we can extend the cycle spanning
X constructed above by removing every column link involving
nodes corresponding to ug, such as the link ((us, v, v;), (us,
v;, Uj+1)), and replacing it with the path

(u37 (%% Uj)7 (U4,'Uj,’()7j), ) (um—la Uy, Ui),
(Um, Vi, Uj)a (uma Ui7vj+1)7 (unL—la Uj+1,’U7‘,),
o5 (uay vj41,v3), (U3, 0i, V41).

The construction can be visualized in Fig. 5(b) for the torus Q3
(the white nodes are the nodes corresponding to us and not all
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Figure 5: A cycle in Qg and replacing links of Qg with paths.

nodes and links are depicted). What results is a Hamiltonian
cycle of M sw(H;G).

It is important to note that if our (Hamiltonian) path D is
U1, U, U3, - - - , U, With m > 4 even, then our construction
does not work: for example, starting from (us,vs,v1), there
is no ‘vertical’ path ‘up’ to (uyy,, v1,v3) and on to (ty,, v1,v4)
and ‘down’ to (ug,v4,v1). This is why we require the number
of nodes in H to be odd.

All that remains is to demonstrate that such a Hamiltonian
cycle Z, with the required properties, exists in ()% irrespective
of n (recall that n is always even). Construct Z as follows (with
reference to Fig. 5(a)).

e Build the path (Un_j+1,11j), (vn_j,vj), (vn_j_l,vj),
(Un—j—2,v;) in each column j for which j # n — 11is
odd, and in column n — 1 build the path (va, vy—1), (v1,
Un,1)7 (Una 'Unfl)a ('Unfla 'Unfl)~

e In each column j for which j & {2,n} is even, build the
path (vn—jt3,05)s (Un—j42,05)s (Un—jt1,05)s (vn—j,
v;); in column 2, build the path (v, v2), (vn, v2), (U1,
v2), (Un—2, v2); and in column 7, build the path (vs, vy,),
(v2,vn), (V1,Un ), (Un, Un).

e In all columns, include a maximal set of mutually non-
incident links so that all links are also non-incident with
the path of length 3 in that column as built above. So, for
example, in column 1 we include the links ((v1,v1), (ve,

Ul))’ ((U3’ Ul)’ (U4,1)1)), R ((Un—57 U1)7 (Un_4, Ul))'

o If j # n — 1 is odd then include the link ((v;,v;), (vs,
vj+1)), forevery i & {n —j +1,n—j,n—j— 1},
and include the link ((v;, vn,—1), (v;,vy)), for every i &
{2,1,n}.

o If j # n is even then include the link ((vn—j,v;), (Vn—j,
vj+1)), and also include the link ((vy,, vr), (Un, v1)).

Itis not difficult to verify that the links of Z form a Hamiltonian
cycle in @F so that the intersection of the set of links of Z
with the set of links in some column results in a mutually node-
disjoint collection of 5§ — 1 paths all but one of which is a link
so that the remaining path has length 3. The result follows. O

In fact, the proof of Theorem 4 yields the following slightly
stronger result.

Corollary 5. Let H be a graph containing a Hamiltonian path
and let G be a Hamiltonian graph where H has an odd num-
ber of nodes and where G has an even number of nodes. The
network M sw(H; G) is Hamiltonian.

Of course, Corollary 5 shows that there exist graphs H of ar-
bitrary size for which M sw(H; G) is Hamiltonian even though
H is not.

We now deal with the case where both H and G have an
odd number of nodes.

Theorem 6. Let H and G be Hamiltonian graphs where both
H and G have an odd number of nodes. The network M sw(H;
Q) is Hamiltonian.

Proof Let C and D be Hamiltonian cycles in G and H, respec-
tively, so that C' = vy, vg,...,v, and D = uy,ug, ..., Uy,
with both m and n odd. We shall work only in the spanning
subgraph M sw(D; C) of Msw(H;G).

We begin with an observation. Consider the m xn x n mesh
M (m,n,n) where the first component denotes the ‘level’, the
second the ‘row’ and the third the ‘column’. Thus, viewed 3-
dimensionally, M (m,n,n) consists of m levels of n x n two-
dimensional meshes with ‘vertical’ links joining corresponding
nodes on adjacent levels. We suppose that the ‘bottom’ level is
level 1 and the ‘top’ level is level m. Amend M (m,n,n) so
that there are wrap-around links for each row and each column
of each level (there are no wrap-around links from the top level
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Figure 6: A Hamiltonian path when m and n are odd.

to the bottom level), and then remove all row (resp. column)
links from all odd-numbered (resp. even-numbered) levels. De-
note the resulting graph by M (m,n,n). Our observation is that
if we ignore links joining nodes of M sw(D; C') corresponding
to w3 € U and nodes corresponding to u,, € U then the re-
maining subgraph of M sw(D; C) is the graph M (m, n,n). In
particular, M (m,n, n) is a spanning subgraph of M sw(H;G).
The graph M (7,5,5) is depicted in Fig. 6 where not all of the
(row and column) wrap-around links are shown and where we
have added some additional (dotted) links (from M sw(H; G))
that we shall return to later (for the moment, ignore the fact
that some links are bold and some aren’t, and ignore the dot-
ted links). This observation assists in visualizing the following
construction.

There is an alternate view of M (m,n,n). We can think
of it as n disjoint copies of an m X n ‘mesh’, where there are
m rows and n columns, so that there are (wrap-around) row
links on the odd-numbered rows but no row links on the even-
numbered rows (in Msw(D;C), the ith m x n mesh is in-
duced by the nodes of {(u;,vi,vp) : 1 <7 <m,1 <k <
n}). With reference to Fig. 6, the first of these five 7 x 5
meshes is that sub-graph in the ‘vertical’ plane containing the
nodes (u1,v1,v3) and (u7,v1,v4) (for example), the second
is that containing the nodes (u1,v2,v4) and (u7,ve,vs), and
so on. We shall construct, in each of these meshes, a span-
ning path so that we can join these paths together, using links
of Msw(D;C) joining nodes corresponding to u,, € U and
nodes corresponding to u; € U (dotted links, as in Fig. 6), so
as to obtain a Hamiltonian cycle in Msw(D;C). In Fig. 6,
note how the bold spanning paths of the meshes are joined by
dotted links to yield a Hamiltonian path in M sw(D; C) from
(u1,v1,v3) to (u7, vs,v1), and that there is a link ((u7,vs,v1),
(u1,v1,v3)) (not shown).

We require the following simple result. If a = (i,j) €

{1,2,...,n}? then define a + 1 = (4,5 + 1), where n + 1
is equated with 1 (as we assume in the claim) and define a =
(4,7). A simple proof by induction (on %) suffices to prove the
claim.

Claim 7. Let n = 2p + 1 > 3 be odd. Define the sequence
ai,bi,a9,ba, ..., ay, by, where each a; and b; is an element of
{(J,k) : 1 < 4,k < n}, as follows:

® a1 = (1ap+ 1)’
o foreveryic {1,2,....,n}, by =a; + 1;
o foreveryie {2,3,...,n}, a; = bi_1.

Foreveryi € {1,2,...,n}, ifiis oddthen a; = (%,p—l—%),
i

and ifi is even then a; = (p+1+ %, 5). In particular, ay = b

Consider Claim 7 when n = 5. We obtain the sequence

(1,3), (1,4), (4,1), (4,2), (2,4),(2,5), (5, 2),
(5,3),(3,5), (3,1)

with the a;’s and b;’s defined accordingly.

For some pair a = (i, ) € {1,2,...,n}?, we write (u,v,)
to denote the node (u,v;, v;). Note that there is a link joining
(u,v4) and (u,v,41) and if (u,u') is a link of H then there is
a link joining (u, v,) and (u’, v ). In Fig. 6, note how there is a
spanning path of: the first mesh from (uy, vq, ) to (ur, v, ); the
fourth mesh from (u1, v,,) to (u7, vy, ); the second mesh from
(u1,vq,) to (u7, v, ); and so on. Note also that there are links
(('LL7, Uby )7 (ula vaz))’ (('LL7, sz)a (ula va3))’ and so on.

In general, if a1, b1, az, b, . .., a,, by, is the sequence as in
the statement of Claim 7 then let f(i) be the first component
of a; and b; (f is well-defined). In particular, f is a permuta-
tion of {1,2,...,n}. Foreveryi € {1,2,...,n}, in the mesh



induced by the nodes whose second component is f (i), there
is a spanning path from node (u1,v,;) to node (i, vy, ) (this
spanning path is obtained by going up and down the columns
and across the rows as depicted in Fig. 6). Moreover, for every
i€{1,2,...,n—1},thereis alink ((wm, vy, ), (U1, Va;,,)) as
well as a link ((wm, vy, ), (u1,vq,)). Consequently, we obtain
a Hamiltonian cycle in M sw(D; C) and so in Msw(H;G). O

The following is immediate from Lemma 3 and Theorems 4
and 6.

Corollary 8. If H and G are both Hamiltonian graphs then
Msw(H; Q) is a Hamiltonian network.

Note that the fact that M sw(H;G) can be Hamiltonian
when both G and H are not can be viewed positively, with the
multiswapped construction enhancing properties of the compo-
nent networks.

4. Conclusion

In this paper we have demonstrated that multiswapped net-
works provide a mechanism for graph composition, as well as
further demonstrating the efficacy of multiswapped networks as
interconnection networks for parallel computing (and not just
in an optoelectronic environment). Our proofs also reinforce
the fundamental role of low-dimensional tori in interconnection
network design.

There are numerous directions for further research, moti-
vated by the role of multiswapped networks as interconnec-
tion networks. For example: from a structural perspective, it
would be interesting to consider the embedding of various paths
and cycles within multiswapped networks and also the toler-
ance of multiswapped networks to faults (be these node or link
faults), as well as more refined Hamiltonicity properties such
as Hamiltonian-connectedness; and from an algorithmic per-
spective, it would be interesting to develop message-routing
and broadcasting protocols in the situations where messages
need to be simultaneously routed from one node to a collec-
tion of nodes and from a collection of nodes to another collec-
tion of nodes (the fact that multiswapped networks are designed
to be used in optoelectronic environments could mean that any
performance analysis might have to be with respect to specific
switching techniques). In short, it would be useful to generalize
results on hierarchical crossed cubes to multiswapped networks
(we note that previously established results on the connectiv-
ity, symmetry and Hamiltonicity of hierarchical crossed cubes
from [21, 25, 26] actually follow from general results here and
in [38]).

It is worthwhile mentioning existing research on the Hamil-
tonicity of Cartesian products of graphs. The Cartesian product
of two Hamiltonian graphs is clearly Hamiltonian (the Carte-
sian product of two cycles, a 2-dimensional torus, is Hamil-
tonian). Hence, any 3-dimensional torus is clearly Hamilto-
nian. We reduce the problem of determining the Hamiltonicity
of M sw(H; G) (with G and H Hamiltonian) to determining the
Hamiltonicity of a subgraph of a 3-dimensional torus where this

subgraph is missing many links of the 3-dimensional torus; as
we have seen, this situation is much more complex. However,
there has been quite a bit of work on necessary and sufficient
conditions for the Hamiltonicity of the Cartesian product of two
(not necessarily Hamiltonian) graphs (see, e.g., [10]). Obtain-
ing necessary and sufficient conditions for the Hamiltonicity of
Msw(H;G) in terms of properties of G and H is worthy of
further study (and [10] might be a good place to start).

Finally, the design of data centre networks (DCNs) is be-
coming increasingly important as the scale of these networks
expands rapidly (some DCNs consist of hundreds of thousands
of processors and have footprints of thousands of square me-
tres) so that physically laying out these DCNs is a complex
process. Recently-proposed DCNs (such as DCell, BCube and
FiConn; see, e.g., [16]) are recursively defined with clusters
being recursively interconnected. Multiswapped networks have
much potential as blueprints for the design of DCNss: their clus-
ter links will correspond to the links within clusters; and their
swap links will correspond to longer inter-cluster links. Of
course, it will be important to choose the base graph and the
network graph carefully but the theory of multiswapped net-
works will allow us to better understand the properties of the
resulting DCNs. Multiswapped networks also have potential as
regards the design of DCNs such as the very recently-proposed
DCN FireFly [17] where wireless or optical inter-rack links are
added to a DCN. It should be clear as to how the swap links of a
multiswapped network can be used to model and design DCN's
such as FireFly.

Thanks. The author is indebted to Yonghong Xiang for a num-
ber of discussions in relation to the research in this paper and
to two anonymous reviewers whose comments significantly im-
proved the exposition.
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