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Axion-like particles (ALPs), relatively light (pseudo-)scalars coupled to two gauge bosons, are a common 
feature of many extensions of the Standard Model. Up to now there has been a gap in the sensitivity 
to such particles in the MeV to 10 GeV range. In this note we show that LEP data on Z → γ γ
decays provides significant constraints in this range (and indeed up to the Z-mass). We also discuss 
the sensitivities of LHC and future colliders. Particularly the LHC shows promising sensitivity in searching 
for a pseudo-scalar with 4 �ma � 60 GeV in the channel pp → 3γ with m3γ ≈ mZ .

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Over the last few years there has been a rising interest in 
searching for particles with low mass but also weak coupling 
to the Standard Model. In part this is motivated by the simple 
fact that “the new particles have weak couplings to the Standard 
Model” provides an equally good answer to the question “why 
haven’t we found the new physics” as “the new particles are very 
heavy”. Accordingly we should search in both of these directions. 
Additional motivation comes from theoretical studies demonstrat-
ing that relatively light and weakly coupled particles arise quite 
naturally in a wide range of extensions of the Standard Model, 
also in connection with dark matter. See, e.g. [1–3] for some re-
views/overviews.

In this note we will be concerned with lightish (pseudo-)scalar 
particles, called axion-like particles or ALPs [4–7]. ALPs are loosely 
defined as relatively light scalar or pseudoscalar particles cou-
pled to two gauge bosons and/or two Standard Model fermions.1

They are one of the prime test-models in the search for light 
weakly coupled new physics. In field theory models (pseudo-)

* Corresponding authors.
E-mail address: jjaeckel@thphys.uni-heidelberg.de (J. Jaeckel).

1 Their name, of course, originates from the similarity to the famous axion in-
troduced to solve the strong CP problem [8–11]. The axion crucially features a low 
mass and couplings to two gauge bosons as well as optional couplings to the Stan-
dard Model fermions. As a consequence of solving the strong CP problem, the axion 
couplings are proportional to the axion mass with an essentially known and fixed 
proportionality constant. In any plot of mass vs coupling strength axion models 
therefore populate a relatively narrow band. From the phenomenological point of 
view we can simply take axion-like particles as a straightforward generalization of 
axions where we relax the strict relation between mass and coupling and allow 
them to populate the whole mass vs coupling plane.
http://dx.doi.org/10.1016/j.physletb.2015.12.037
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scalars with such interactions naturally arise as pseudo-Nambu–
Goldstone bosons of spontaneously broken approximate symme-
tries [4] and or by mixing with the Higgs boson [12–14]. In 
string models moduli and string axions provide natural candi-
dates [15–20]. Last but not least, ALPs could also provide nice 
messengers to dark matter (sectors) [21,22] and in some cases 
could even be the dark matter particles themselves [6,23].

In this note we want to focus in particular on axion-like par-
ticles whose dominant interaction with the Standard Model is via 
two gauge bosons (i.e. where interactions with the Standard Model 
fermions can be neglected). This can be viewed as a simple test 
example,2 but such a situation also arises quite naturally in string 
models [20]. Practically we consider interactions with two photons 
and with two hypercharge bosons,

Lint ⊃ −1

4
gaγ γ aF μν F̃μν or − 1

4
gaB BaBμν B̃μν. (1.1)

This interaction is for the specific case of a pseudo-scalar, but 
the analyses of this paper can be straightforwardly generalized to 
scalar, and we expect quantitatively similar results.

This note is motivated by two very simple observations:

• The striking gap in the limits on the ALP coupling to two 
photons shown in Fig. 1 in the MeV to roughly 10 GeV re-
gion.3 While reactor experiments have explored this mass re-
gion [32–40] the corresponding limits depend on a coupling to 

2 Therefore we also happily continue the coupling to relatively large values that 
may be difficult to generate in a perturbative embedding.

3 Although future fixed target experiments such as, e.g. SHiP [31], will nicely ex-
tend [3] the “beam dump” region in Fig. 1, they are limited to weaker couplings 
because they require a sizeable decay length for the ALPs.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Limits on the axion-like particle to two photon coupling. Figure slightly 
adapted from [3] which is a compilation adapted from [1,24] updated with [25–30]. 
Note the gap in the MeV to 10 GeV region.

Fig. 2. Production of ALPs with subsequent decay into two photons. Left panel: a +γ
production via a virtual photon and subsequent decay to 3γ . Right panel: production 
of an on-shell Z and subsequent decays into a + γ and then 3γ .

fermions (typically nucleons) and are not directly applicable if 
there only is a coupling to gauge bosons.

• The interaction with hypercharge bosons can to some degree 
be viewed as the more fundamental one. However, this cou-
pling allows a decay of a Z -boson via Z → aγ . It is therefore 
natural to look for unusual decays of the Z which promises 
sensitivity to ALPs with mass � mZ ≈ 90 GeV.

Indeed LEP data [41,42] on the decay Z → 3γ has already been 
used to constrain ALP couplings to two photons [28] via the pro-
cess e+e− → a + γ , a → 2γ as shown in Fig. 2(a). Our analysis 
differs in two essential points. First we also consider the coupling 
to the hypercharge bosons. This allows for the decay of an on-
shell Z into an ALP and a photon in contrast to the production of 
an ALP and a photon via a (highly) virtual photon (cf. Fig. 2(b)). 
This on-shell production significantly enhances the sensitivity. Sec-
ond and more importantly we also use data on Z → 2γ decays. 
The search for a 3γ signature is only sensitive for sufficiently 
high ALP masses such that the two photons arising from the de-
cay of a fast moving ALP can be separated. In practice this limits 
the sensitivity to masses ma � 10 GeV. However two tightly colli-
mated photons essentially produce the same detector response as 
one photon with the combined energy. One can therefore use the 
Z → 2γ search in this regime. This allows us to fill in the sensitiv-
ity gap in the MeV to 10 GeV region as shown in our result plots 
Figs. 4(a) and 4(b). Finally, we note that we only use data from 
the Z-pole measurement [41,43–47], while [28] also uses higher 
energy data [42].
The remainder of this note is structured as follows. In the next 
Section 2 we describe our analysis of the two and three photon 
LEP searches and present the corresponding new limits. Following 
this we have a look at the prospects at LHC and at future colliders 
in Section 3. We briefly summarize and conclude in Section 4.

2. Searching ALPs at LEP with Z → 2γ and Z → 3γ

2.1. ALPs from Z decays

For some time of its operation LEP has run with an energy on 
or close to the Z mass. During this time a huge number of Z
were produced (∼ few × 106). This opportunity has been used to 
constrain the branching ratios for unusual Z decays, in particular 
decays to two and three photons [41,43–47].

In presence of a coupling of ALPs to two hypercharge bosons, 
the Z boson can decay to an ALP and a photon with a rate,

�Z→a+γ = g2
aB B sin2(θW ) cos2(θW )

96π
m3

Z , (2.1)

where θW is the Weinberg angle.
The ALP subsequently decays into two photons with a rate,

�a→2γ = g2
aB B cos4(θW )

64π
m3

a . (2.2)

For detection purposes two factors are important. First the de-
cay length in the laboratory frame has to be within the detector, 
more precisely before the electromagnetic calorimeter. It is given 
by

�decay = γa

�a→2γ
≈ mZ

2ma

1

�a→2γ

∼ 2 cm

(
10−3 GeV−1

gaB B

)2 (
100 MeV

ma

)4

, (2.3)

where γa is the relativistic factor for the ALP. On the left hand side 
we have used that in the LEP Z peak measurement Z bosons are 
produced at rest and consequently for ALP masses much smaller 
than the Z mass, half the energy goes into the ALP. For small 
masses and couplings the decay length limits the sensitivity of the 
measurement. In the low mass regime we therefore only take the 
fraction of events that decays within the first 10 cm into account. 
In practice for the couplings accessible with LEP data this only has 
an effect for masses �100 MeV. For larger masses essentially all 
ALPs decay within the detector.

The second important factor is whether the two photons of 
the a → 2γ decay can be separated in the experiment. This de-
cides whether the constraints of the Z → 3γ measurements are 
applicable or one has to consider those from Z → 2γ . For central 
production, the separation is roughly given by

�R ∼ 2ma

pT
∼ 4ma

mZ
, (2.4)

see Fig. 3. We generate the distributions of Fig. 3 using Madgraph 
[56] and impose no cuts at generator level.

For example requiring a separation of 20 degrees as in [41]
�R ∼ sin(20◦) ∼ 0.34 one finds that this limits the mass reach of 
the Z → 3γ to ALP masses ma � few GeV (cf. also [28]).

However, if the separation is very small the two photons from 
the ALP decay appear essentially as one photon of the combined 
energy. Indeed already the LEP collaborations themselves used the 
Z → 2γ measurements to constrain the branching ratios of Z into 
photon and mesons which subsequently decay into two photons, 
e.g. Z → γ + π0 or Z → γ + η.
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Fig. 3. �R separation of the two closest photons for different values of ma in 
the process e+e− → Z → aγ → 3γ . The black vertical lines correspond to �R =
4ma/mZ .

Let us now apply this to the case of our ALPs. In practice we 
consider three regions.

1) ma ≤ mπ0 = 135 MeV. Here we use the limit from on the 
branching ratio BR(Z → γ + π0) ≤ 5.2 × 10−5 [46] simply as 
BR(Z → γ + a) = �Z→aγ /�Z ≤ 5.2 × 10−5.

2) mπ0 ≤ ma ≤ 10 GeV. In this region we have simulated angu-
lar distribution for the production and decay e+ + e− → Z →
a + γ → 3γ . This we compared bin by bin to the distribu-
tion given in [46]. For those bins where there was a (non-
significant) excess in a bin we have added this excess to the 
statistical uncertainty to obtain a conservative bound.

3) 10 GeV ≤ ma ≤ mZ = 91.2 GeV most of the decays result in 
clearly separable 3γ events. Accordingly we have used the 
limit BR(Z → γ + a → 3γ ) ≤ BR(Z → 3γ ) ≤ 10−5 from [41].

The resulting limits are shown in green in Fig. 4(a). The solid 
line indicates the limit from Z → 3γ and the dashed one that from 
the Z → 2γ measurements. The latter one is sensitive to relatively 
low ALP masses and indeed most of the “hole” mentioned in the 
introduction is covered by this measurement.

We note that the stronger limit at large masses from the Z →
3γ measurement as compared to Ref. [28] arises from the on-
shell production of the Z boson. Using the production via a virtual 
photon, as done in the next subsection, produces results roughly 
compatible with Ref. [28].

2.2. ALPs from production via virtual photons

While a pure coupling to two hypercharge bosons will always 
lead to a decay Z → a + γ it is possible to have a combination of 
couplings to two hypercharge bosons and to two SU(2)weak bosons 
such that the corresponding ALP-photon-Z coupling does not exist 
and one is effectively dominated by a two photon coupling. Al-
though we think that the presence of an ALP-photon-Z coupling 
is rather generic it is nevertheless worthwhile to also consider the 
latter case.

If ALPs are coupled only to two photons, production has to oc-
cur via a virtual photon as shown in Fig. 2(a). In general an ALP 
photon pair produced in this manner has an invariant mass given 
by the centre of mass energy of the two colliding particles produc-
ing the virtual photons and therefore not necessarily mZ . However, 
this is still the case for the LEP measurement at the Z peak, be-
cause at a lepton collider such as LEP the two colliding particles 
have a definite energy given by the collider energy and for the 
measurements we consider this was (nearly) mZ .

Aside from the difference in production the analysis follows 
along similar lines as in the previous subsection. To obtain the 
limits in this case we have simply rescaled the limits with the ap-
propriate lower ALP production cross section.

The resulting limits are shown in light green Fig. 4(b). Again 
the solid line indicates the Z → 3γ measurement and the dashed 
one the Z → 2γ limit. As above we see that the two photon mea-
surement extends the reach to low masses. In the overlapping 
region our limits are slightly weaker than those of [28] which also 
used data based on more integrated luminosity at energies off the 
Z -peak (since the production via photons is always off-shell there 
is no special benefit in Z -peak data).
Fig. 4. Left panel: Limits on a coupling to two hypercharge bosons. Right panel: Limits on a coupling only to photons. The new LEP limits from 2 and 3 photon signatures are 
shaded in green and enclosed by dashed and solid black lines, respectively. The future FCC-ee limit is indicated by the red solid line. Our projected LHC sensitivity for 13 TeV 
and 100 fb−1 by the blue line (only applicable to the coupling to hypercharge bosons). The rest of the figure is adapted from [1,3,24–30]. The FCC-ee limits are based on the 
assumption that the collider is running with a center-of-mass energy of mZ . (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)
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3. ALPs at LHC and future colliders

3.1. Future electron–positron machines

Let us first consider the sensitivity of future lepton colliders 
such as ILC [48,49], CEPC [50], and FCC-ee [51,52]. For these the 
analysis that one can perform is exactly as in the previous sec-
tion and limits can be obtained for both the pure photon and the 
hyperacharge coupling in Eq. (1.1).

Indeed with at FCC-ee running at the Z -peak we can hope for 
about 107 times as many Z -bosons as were produced with LEP-I 
running at the Z -peak. Naively, we can scale the improvement in 
the branching ratio as 

√
N Z . We therefore expect that the branch-

ing ratios could be improved by a factor 103–105. Accordingly the 
limits on the couplings are improved by a factor of 30–100.4 This is 
shown by the red lines labeled FCC-ee indicated in Fig. 4. Expect-
ing improvements also in the detectors and a dedicated analysis 
one can hope that the actual sensitivity will actually be signifi-
cantly better.

3.2. Testing the hypercharge coupling with LHC

However, while the FCC-ee or any similar machine is still in 
the distant future the LHC is running right now. Searches for ALPs 
coupled to two gauge bosons at LHC have already been consid-
ered in [27]. However, in that paper the opportunity to look for 
relatively low mass ALPs from the decay of Z bosons via a cou-
pling of the ALP to hypercharge bosons was not considered. This is 
what we will do here.5 As we will see this allows significant im-
provements of the LHC sensitivity for ALPs coupled to hypercharge 
bosons6 (second coupling in Eq. (1.1)).

If one has the option of an on-shell Z -boson decaying into a +γ
one has an additional clean search channel: one can look for two 
or three photons reconstructing to the Z -mass. With a total cross 
section for Z production in the range of

σ(pp → Z + X) ∼ 3 × 104 pb 7 TeV (3.1)

LHC has already produced a very large number,

NLHC
Z ∼ 7 × 108, (3.2)

of Z bosons.
At LHC experiments, isolated photons are reconstructed by 

studying the shower profile in the electromagnetic calorimeter. 
Highly collimated photon-pairs are likely to violate the reconstruc-
tion requirements for isolated photons. For a first sensitivity study 
of this channel we will limit ourselves to the scenario where three 
isolated photons can be reconstructed. We parametrize the pho-
ton reconstruction efficiency and jet-fake-photon rate according 
to [55], i.e. we smear the momenta of all reconstructed final state 
objects with Gaussians and parametrize the photon reconstruction 
efficiency with

Eγ = 0.76 − 1.98e−pT ,γ /16.1 GeV (3.3)

and the jet-photon fake rate with

P j→γ = 0.0093e−0.036pT , j/GeV. (3.4)

4 We note that due to the smaller couplings that are tested, the region affected 
by a too long decay length can now extend up to a few × 100 MeV. Yet, with a 
suitable analysis for displaced vertices this effect may be ameliorated.

5 During finalization of this article, a search by ATLAS in the channel pp → Z ′ →
3γ was published [54].

6 For a study of relatively light pseudo-scalars coupled to fermions at LHC 
see [53].
Two of the photons in the signal tend to be highly collimated. 
Hence, we define photons to be isolated if pT ,γ ≥ 20 GeV and if 
the amount of hadronic energy in a cone of R = 0.1 around the 
photon is less than 10% of the photon’s transverse energy. With 
three fairly hard photons the final state is likely to satisfy trigger 
requirements.

We generate signal samples with Madgraph [56] and back-
ground samples with Sherpa [57]. As dominant backgrounds we 
consider the processes 3γ , 2γ + j and γ +2 j, where the first back-
ground is irreducible while the other two require one or two of the 
photons to be mis-identified.

While the angular separation for two of the photons strongly 
depends on the mass of a, the transverse momentum distribution 
does not. Hence, to reduce background without biasing our selec-
tion towards a specific mass of the axion-like particle, we require 
for the photons staggered pT cuts, i.e.

pT ,γ1 ≥ 30 GeV, pT ,γ2 ≥ 20 GeV, pT ,γ3 ≥ 20 GeV, (3.5)

and their invariant mass to be in a window around the Z boson 
mass,

80 GeV ≤ m3γ ≤ 100 GeV. (3.6)

Eventually we reconstruct the axion-like particle by requiring that 
at least one of the three di-photon combinations satisfies

ma − 3 GeV ≤ mγiγ j ≤ ma + 3 GeV. (3.7)

In Fig. 5 we show the transverse momentum distributions and 
�R-separations of the three signal photons for ma = 4, 20 and 
60 GeV after the reconstruction steps Eqs. (3.5)–(3.7). For the back-
grounds we find generically σ(γ j j) � 4σ(γ γ j) � 9σ(3γ ), i.e. the 
much larger inclusive production cross section of γ j j is almost, 
but as a result of the large fake rate for pT ,γ � 20 GeV not quite, 
reduced to the irreducible 3γ background.

We show in Table 1 signal and background rates after recon-
structing the Z boson and the axion-like resonance. We find that 
a large range of masses can be excluded with 100 fb−1 assuming √

s = 13 TeV, outperforming existing limits from LEP (see Fig. 4(a)). 
However, while we apply a crude fast-detector simulation to take 
into account reconstruction efficiencies and fake rates relevant for 
this process, the signal and background rates have only been cal-
culated at leading-order accuracy. Hence, the statistical significance 
we quote is plagued by large theory uncertainties. In the steps of 
Eqs. (3.5)–(3.7) we focused on a reconstruction of the final state 
that is not biased towards a specific ma . If a specific ma is envi-
sioned, the cuts can be optimized towards a stronger separation 
of signal and background. The simple counting experiment we use 
to evaluate the statistical significance can also be severely affected 
by normalization uncertainties and pileup contributions. However, 
as long as the axion-like particle is a narrow resonance, a side-
band analysis, similar to the prominent Standard Model search of 
a Higgs boson decaying into photons [58,59], can retain sensitivity 
irrespective of these problems.

For ma < 4 GeV existing photon reconstruction strategies start 
to fail since �Rγ2γ3 � 0.15. Photons will not be considered isolated 
anymore and there will be a mistag rate where the two photons 
induce a shower similar to a single photon. To improve the sen-
sitivity for small masses dedicated reconstruction strategies, e.g. 
di-/multi-photon taggers [60], would need to be developed.

4. Conclusions

Relatively light (pseudo-)scalars coupled to two gauge bosons 
often dubbed axion-like particles (ALPs), are a feature of many ex-
tensions of the Standard Model. They are also attractive because 
of possible connections to dark matter. Z decays provide a unique 
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Fig. 5. Transverse momentum distributions for the hardest, second and third hardest photons (left). �R separations of the three photons (right). We choose ma = 4 GeV
(upper panels), ma = 20 GeV (middle panels) and ma = 60 GeV (lower panels).

Table 1
Signal and background cross sections for pp → Z → aγ analysis. We assume g = 10−4 GeV−1 and calculate the final significance for 100 fb−1. The cross sections are shown 
after applying the cuts of Eqs. (3.5)–(3.7). εS and εB denote the signal and background survival rate after all cuts.

ma [GeV] σS [fb] εS σ3γ [fb] σ2γ j [fb] σγ 2 j [fb] εB S/B S/
√

B100

4 0.0948 1.6 · 10−3 0.0028 0.0042 0.0274 2.6 · 10−10 2.76 5.1
8 0.0971 1.7 · 10−3 0.0059 0.0170 0.0935 8.7 · 10−10 0.83 2.8

15 0.0788 1.7 · 10−3 0.0110 0.0266 0.0984 8.7 · 10−10 0.62 2.2
20 0.0910 2.0 · 10−3 0.0150 0.0260 0.0889 1.0 · 10−9 0.70 2.5
45 0.1031 4.6 · 10−3 0.0350 0.0692 0.1745 2.1 · 10−9 0.37 2.0
60 0.0979 9.9 · 10−3 0.0771 0.1429 0.3986 4.6 · 10−9 0.16 1.2
opportunity to search for ALPs in the MeV to multi-GeV range. Us-
ing data from LEP-I we have excluded a previously allowed range 
of masses for ALPs coupled to two photons. Future precision mea-
surements of Z decays at electron–positron colliders such as FCC-
ee promise improvements in the sensitivity by about two orders of 
magnitude over the current limits.
We also performed a first analysis on the LHC discovery 
prospects of light resonances in 3γ final states with an invariant 
mass close to the Z mass, i.e. for unusual and rare Z -decays. We 
find that ATLAS and CMS have a significant discovery potential for 
ALPs, possibly outperforming LEP. Hence, a dedicated experimental 
analysis of this channel would be highly desirable.
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