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1. Introduction

Since recent years there is an increasing interest in studying curvature notions on 
discrete spaces. First of all there are various approaches to Ricci curvature based on 
L1-optimal transport on metric measure spaces starting with the work of Ollivier, [52,53]. 
These ideas were employed for graphs by various authors [7,38,45,46] to study geometric 
and spectral questions. A related and very effective definition using L2-optimal transport 
was introduced in [24]. Secondly, in [38,46] there is the approach of defining curvature 
bounds via curvature-dimension-inequalities using a calculus of Bakry–Emery based on 
Bochner’s formula for Riemannian manifolds. Similar ideas were used in [6] and very 
recently in [50] to prove a Li–Yau inequality for graphs. Finally let us mention the work 
on so-called Ricci-flat graphs [18] and [26] for another approach. All these approaches 
have in common that they model some kind of Ricci curvature and that they are very 
useful to study lower curvature bounds.

In contrast to these developments we are interested in sectional curvature and upper 
curvature bounds. The notion we develop has its origins in planar polygonal complexes 
or tessellations. For planar tessellations this notion is defined by an angular defect and 
these ideas go back as far as to works of Descartes [25] and often there is no obvious 
relation of this curvature to the recent notions of Ricci curvature above. For planar 
graphs this curvature notion has proven to be very effective to derive very strong spectral 
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and geometric consequences of upper curvature bounds [8,9,33,42–44,61] which often 
relate to results to upper bounds on sectional curvature of Riemannian manifolds. (For 
consequences on lower bounds see, e.g., [19,36,35,51,58,63] as well.)

We introduce a notion of sectional curvature for more general non-planar polygonal 
complexes. A similar notion is found in the work of Wise [60] which uses in turn ideas 
of [30,55,57]. These works address primarily group theoretic questions, see also [48] for 
recent developments. In contrast, the aim of this work is to focus on geometric and 
spectral theoretic questions. So, we identify a class of polygonal complexes that is well 
suited for our purposes.

This class consists of polygonal complexes with planar substructures. They are 
2-dimensional CW-complexes equipped with a family of subcomplexes homeomorphic 
to the Euclidean plane. We call these subcomplexes apartments since they have cer-
tain properties similar to the ones required for apartments in Euclidean and hyperbolic 
buildings. The 2-cells of a polygonal complex with planar substructures can be viewed as 
polygons and they are called faces and their closures are called chambers. The geometry 
is based on this set of faces and their neighboring structures. In particular, there is a 
combinatorial distance function on the set of faces.

Let us discuss the properties of apartments in more detail. First of all, we require that 
there are enough apartments, that is any two faces have to lie in at least one apartment 
(condition (PCPS1) in Definition 2.4 below). Sometimes, we require the stronger con-
dition (PCPS1∗) that every infinite geodesic ray of faces is included in an apartment. 
The second crucial property is that all apartments are convex (see condition (PCPS2)). 
These properties are also similar to the ones satisfied by flats in symmetric spaces. The 
definition of polygonal complexes with planar substructures comprises both planar tes-
sellations and all 2-dimensional Euclidean and hyperbolic buildings.

We use the apartments of a polygonal complex with planar substructures to define 
combinatorial curvatures on them. Since these apartments could be seen in a vague sense 
as tangent planes of the polygonal complex with planar substructures, we call these 
curvatures sectional curvatures. We introduce sectional curvatures on the faces and on 
the corners of an apartment (see Definition 2.8), and they are invariants measuring the 
local geometry of the polygonal complex with planar substructures.

The definition of polygonal complexes with planar substructures and basic notions 
are introduced in Section 2. The results in this article are then given in Sections 3 and 4. 
While most of these results are known for planar tessellations, it seems to us that several 
of these results were not known for Euclidean and hyperbolic buildings. Next, we explain 
our results in more detail.

In Section 3 we discuss implications of negative and non-positive curvature to the 
global and asymptotic geometry of a polygonal complex with planar substructures. Many 
of the presented results have well-known counterparts in the smooth setting of Rie-
mannian manifolds. Amongst our results, we present a combinatorial Cartan–Hadamard 
theorem for non-positively curved polygonal complexes with planar substructures (see 
Theorem 3.1) and we conclude Gromov hyperbolicity and positivity of the Cheeger 
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isoperimetric constant for negatively curved polygonal complexes with planar substruc-
tures with certain bounds on the vertex and face degree (see Theorems 3.6 and 3.8). 
These results are based on negativity or non-positivity of the sectional corner curvature. 
We also state an analogue of Myers theorem in the case of strictly positive sectional face 
curvature (see Theorem 3.13).

Section 4 is devoted to spectral considerations of the Laplacian. We discuss combina-
torial/geometric criteria to guarantee emptiness of the essential spectrum and to derive 
certain eigenvalue asymptotics on polygonal complexes with planar substructures (see 
Theorem 4.1). We also show that non-positive sectional corner curvature on polygonal 
complexes with planar substructures implies absence of finitely supported eigenfunctions 
(see Theorem 4.3). Finally, we derive solvability of the Dirichlet problem at infinity for 
polygonal complexes with planar substructures in the case of negative sectional corner 
curvature (see Theorem 4.6).

As mentioned before, 2-dimensional Euclidean and hyperbolic buildings provide large 
classes of examples of polygonal complexes with planar substructures. While all these 
spaces have non-positive sectional face curvature, their corner curvature is not always 
necessarily non-positively curved. The main purpose of the final Section 5 is to provide 
a self-contained short survey over these important classes.

In the appendix we discuss how Wise’s definition of sectional curvature, which is in
some sense an even more flexible notion, is related to our notion of curvature.

2. Basic definitions

In this section we introduce polygonal complexes with planar substructures and define 
a notion of sectional curvature on theses spaces. In order to do so we introduce poly-
gonal complexes and planar tessellations first. In the second subsection we explore some 
basic consequences of the convexity assumption we impose. In the third subsection we 
introduce a combinatorial sectional curvature notions for these spaces.

2.1. Polygonal complexes with planar substructures

The following definition of polygonal complexes is found in [3].

Definition 2.1 (Polygonal complex). A polygonal complex is a 2-dimensional CW-complex 
X with the following properties:

(PC1) The attaching maps of X are homeomorphisms.
(PC2) The intersection of any two closed cells of X is either empty or exactly one closed 

cell.

For a polygonal complex X we denote the set of 0-cells by V and call them vertices, 
we denote the set of 1-cells by E and call them the edges and we denote the set of 2-cells 
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by F and call them the faces. We write X = (V, E, F ). Note that the closures of all 
edges and faces in X are necessarily compact (since they are images of compact sets 
under the continuous characteristic maps, see [32, Appendix]). We call two vertices v
and w adjacent or neighbors if they are connected by an edge in which case we write 
v ∼ w. We call two different faces f and g adjacent or neighbors if their closures intersect 
in an edge and we write f ∼ g. It is convenient to call the closure of a face a chamber.

The degree |v| ∈ N0∪{∞} of a vertex v ∈ V is the number of vertices that are adjacent 
to v. The degree |e| ∈ N0∪{∞} of an edge e ∈ E is the number of chambers containing e. 
The boundary ∂f of a face f ∈ F is the set of all 1-cells e ∈ E being contained in the 
closure f . Since in CW-complexes every compact set can meet only finitely many cells 
(see [32, Prop. A.1]), we have |∂f | = #∂f < ∞. The degree |f | of a face f ∈ F is the 
number of faces that are adjacent to f and, in contrast to |∂f |, the face degree |f | can 
be infinite.

We call a (finite, infinite or bi-infinite) sequence . . . , fi−1, fi, fi+1, . . . of pairwise dis-
tinct faces a path if successive faces are adjacent. The length of the path is one less than 
the number of components of the sequence. The (combinatorial) distance between two 
faces f and g is the length of the shortest path connecting f and g and the distance is 
denoted by d(f, g). We call a (finite, infinite or bi-infinite) path (fk) of faces a geodesic
or a gallery, if we have for any two faces fm and fn in the path d(fm, fn) = |m −n|, i.e., 
the distance between fm and fn is realized by the path.

Definition 2.2 (Convex). A polygonal subcomplex Σ of a polygonal complex X is called 
convex if every geodesic in X connecting two faces in Σ is included in Σ.

We say a polygonal complex X is planar if X is homeomorphic to R2. We also say 
that a polygonal complex X is spherical if X is homeomorphic to the two-sphere S2.

Next we introduce the notion of a planar tessellation following [8,9].

Definition 2.3 (Planar tessellation). A polygonal complex Σ = (V, E, F ) is called a (pla-
nar/spherical) tessellation if Σ is planar/spherical and satisfies the following properties:

(T1) Any edge is contained in precisely two different chambers.
(T2) Any two different chambers are disjoint or have precisely either a vertex or a side 

in common.
(T3) For any chamber the edges contained in it form a closed path without repeated 

vertices.
(T4) Every vertex has finitely many neighbors.

Note that property (T3) is already implied by (PC1) and (PC2). The tessellations 
form the substructures which we will later need to define sectional curvature. Now, we 
are in a position to introduce polygonal complexes with planar substructures.
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Definition 2.4. A polygonal complex with planar substructures is a polygonal complex 
X = (V, E, F ), together with a set A of subcomplexes whose elements Σ = (VΣ, EΣ, FΣ)
are called apartments, with the following properties:

(PCPS1) For any two faces there is an apartment containing both of them.
(PCPS2) The apartments are convex.
(PCPS3) The apartments are planar tessellations.

Similarly, we introduce polygonal complexes with spherical substructures by replacing 
property (PCPS3) in Definition 2.4 by

(PCSS3) The apartments are spherical tessellations.

Prominent examples of polygonal complexes with planar substructures are 2-dimen-
sional Euclidean and hyperbolic buildings (see Section 5 for the definition of a building 
as well as several examples). Moreover, every planar tessellation is trivially a polygonal 
complex with planar substructures. For reasons of illustration, we introduce the following 
example of a Euclidean building.

Example 1. Let X0 be the finite simplicial complex constructed from the seven equilateral 
Euclidean triangles illustrated in Fig. 1 by identifying sides with the same labels xi.

Then X0 has a single vertex which we denote by p0, seven edges and seven faces. Its 
fundamental group Γ = π1(Π0, p0) has the following presentation

Γ = 〈x0, . . . , x6 | xixi+1xi+3 = id for i = 0, 1, . . . , 6〉

(where i is taken modulo 7). Let X = (V, E, F ) be the universal covering of X0 together 
with the lifted triangulation. Then it follows from [4, Theorem 6.5] that X is a thick 
Euclidean building of type Ã2 and every edge of X belongs to precisely 3 triangles. 
Therefore, X is a polygonal complex with planar substructures. The group of covering 
transformations is isomorphic to Γ and acts transitively on the vertices of this building 
(see [16]).

Fig. 1. Labeling scheme for the simplicial complex X0.

For some of our results we need the following slightly stronger assumption than 
(PCPS1):

(PCPS1∗) Every (one-sided) infinite geodesic is included in an apartment.
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Condition (PCPS1∗) is satisfied for all 2-dimensional Euclidean and hyperbolic build-
ings with a maximal apartment system (see Theorem 5.7 below).

Finally, let us mention the following important fact. To a polygonal complex X =
(V, E, F ) we can naturally associate a graph GX by letting F be the vertex set of GX

and by defining the edges of that graph via the adjacency relation of the corresponding 
faces. This “duality” becomes important when we use results for graphs in our context.

2.2. Consequences of convexity

The convexity assumption (PCPS2) is very important in our considerations. In this 
subsection we collect some of the immediate consequences.

Lemma 2.5. Let X be a polygonal complex with planar substructures, Σ an apartment 
and let dΣ be the combinatorial distance within the apartment. Then, for any two faces 
f, g ∈ FΣ

d(f, g) = dΣ(f, g).

Proof. The inequality “≤” is clear. For the other direction “≥” let γ = (f0, . . . , fn) be a 
path connecting f and g minimizing d(f, g). As γ is a geodesic with end-faces in Σ it is 
completely contained in Σ by (PCPS2). Hence, the statement follows. �

We say a subset F0 of F is connected if any two faces in F0 can be joined by a path 
in F0.

Lemma 2.6. Let X be a polygonal complex with planar substructures. Let Σ1 and Σ2 be 
two apartments of X. Then the set FΣ1 ∩ FΣ2 is connected.

Proof. Let f and g be two faces in FΣ1 ∩ FΣ2 . Then, by (PCPS2), every geodesic con-
necting f and g is completely contained in Σ1 and Σ2. Thus, FΣ1 ∩ FΣ2 is convex and, 
therefore, connected. �

For a fixed face o ∈ F (called center), we define the (combinatorial) spheres and balls 
about o by

Sn = Sn(o) =
{
f ∈ F | d(f, o) = n

}
,

Bn = Bn(o) =
n⋃

k=0

Sk,

for n ≥ 0. For f ∈ F , we let the forward and backward degree be given by

|f |± = |
{
g ∈ F | g ∼ f, d(g, o) = d(f, o) ± 1

}
|,



M. Keller et al. / Advances in Mathematics 307 (2017) 1070–1107 1077
and we call g ∈ F with g ∼ f and d(g, o) = d(f, o) +1 (respectively d(g, o) = d(f, o) − 1)
a forward (respectively backward) neighbor of f . The next lemma shows that the con-
vexity condition (PCPS2) imposes a lot of structure of the distance spheres.

Lemma 2.7. Let X be a polygonal complex with planar substructures and o ∈ F be a 
center. Let f ∈ F with f ∈ Sn for some n ≥ 0 and f+ ∈ Sn+1, f0 ∈ Sn, f− ∈ Sn−1 be 
neighbors of f . Then,

(a) Every face sharing the same edge with f and f+ is in Sn+1.
(b) Every face sharing the same edge with f and f0 is in Sn ∪ Sn−1.
(c) Every face sharing the same edge with f and f− is in Sn.

Proof. (a) Let g ∈ F be such that ∂g ∩ ∂f ∩ ∂f+ �= ∅. Since g is a neighbor of f+, 
we have d(o, g) ≥ n. Since g is a neighbor of f , we have d(o, g) ≤ n + 1. Therefore, we 
have g ∈ Sn ∪ Sn+1. If g was in Sn, then there are geodesics from the center o over g
to f+ and from o over f to f+. By (PCPS2) both of these geodesics lie together in one 
apartment. Hence, g lies in one apartment together with f , f+ and o. Then, there is an 
edge contained in three faces f, f+ and g within one apartment Σ. This contradicts (T1) 
in the definition of a planar tessellation. But Σ is a planar tessellation, by (PCPS3). 
Thus, g ∈ Sn+1.

(b) Let g ∈ F be such that ∂g ∩ ∂f ∩ ∂f0 �= ∅. If g was in Sn+1 then there were two 
geodesics from o to g, one via f and the other one via f0. By a similar argument as 
in (a), the faces g, f , f0 and o lie in the same apartment. Again this is impossible by 
(T1) and (PCPS3).

(c) Let g ∈ F be such that ∂g ∩ ∂f ∩ ∂f− �= ∅. Clearly, g is in Sn ∪ Sn−1. If g was 
in Sn−1 then, by similar arguments as in (a) and (b), the faces g, f , f− and o lie in the 
same apartment which is again impossible by (T1) and (PCPS3). �
2.3. Sectional curvature

For an apartment Σ = (VΣ, EΣ, FΣ), let |v|Σ be the degree of v in Σ which is the 
number of neighboring vertices in VΣ. We notice that the degree of an edge in Σ, i.e., 
the number of faces in FΣ bounded by the edge, is always equal to 2 by (T1). Moreover, 
the degree |f |Σ of a face f in Σ is equal to |∂f |. Therefore, |f |Σ1 = |f |Σ2 for any two 
apartments Σ1, Σ2 that contain f . Furthermore, for a polygonal complex with planar 
substructures X and Σ ∈ A we let the set of corners of X and of Σ be given by

C =
{
(v, f) ∈ V × F | v ∈ f

}
, CΣ =

{
(v, f) ∈ VΣ × FΣ | v ∈ f

}
.

Definition 2.8 (Sectional curvature). Let Σ be an apartment of a polygonal complex with 
planar substructures X. The sectional corner curvature κ

(Σ)
c : CΣ → R with respect to 

Σ is given by
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κ(Σ)
c (v, f) = 1

|v|Σ
− 1

2 + 1
|f |Σ

,

and the sectional face curvature κ(Σ) : FΣ → R with respect to Σ is given as

κ(Σ)(f) =
∑

(v,f)∈CΣ

κ(Σ)
c (v, f) = 1 − |f |Σ

2 +
∑

v∈VΣ,v∈f

1
|v|Σ

.

The above combinatorial curvature notions are motivated by a combinatorial version 
of the Gauß–Bonnet Theorem for closed surfaces. We have for polygonal tessellations 
Σ = (V, E, F ) of a closed surface S (see [8, Theorem 1.4])

χ(S) =
∑
f∈FΣ

κ(Σ)(f)

where χ(S) is the Euler characteristic of S. The sectional curvatures in Definition 2.8
are then the intrinsic curvatures in the apartments Σ, and the apartments Σ can be 
understood as discrete analogues of specific tangent planes. Note that curvature is a 
local concept and, for a given corner or face, only information of the nearest neighboring 
faces in the apartment are needed for its calculation.

Example 1 (revisited). The apartments in Example 1 are regular tessellations of a Eu-
clidean plane by equilateral triangles. Thus, this example has vanishing sectional face 
and corner curvature. This is a special case covered by Proposition 5.5 in Section 5.2.1
which presents curvature properties in the general situation of Euclidean buildings.

Let us briefly comment on two other notions of curvature.

Remark 2.9. (a) Wise [60] introduces a sectional curvature which is closely related to 
the notion above, however, it is more flexible as it can be defined for general polygonal 
complexes. In contrast to our definition he considers a “sectional vertex curvature” rather 
than a sectional face curvature as above. However, both concepts are related. Precisely, 
we show in the appendix that non-negative sectional corner curvature in our sense implies 
non-negative sectional planar curvature in the sense of Wise (with a natural choice of 
angles). We refer to the appendix for a more detailed discussion.

(b) Metric spaces of non-positive Alexandrov curvature are characterized by a com-
parison of their geodesic triangles to the Euclidian case, see e.g. [37, Section 2.3] or [10,
11]. Specifically, a metric space (M, δ) is said to have non-positive Alexandrov curvature 
(or is NPC or CAT(0)) if, for all points x, y, z ∈ M and every geodesic γ : [0, 1] → M

connecting x and z and all 0 ≤ t ≤ 1, we have

δ2(y, γ(t)
)
≤ (1 − t)δ2(y, γ(0)

)
+ tδ2(y, γ(1)

)
− t(1 − t)δ2(γ(0), γ(1)

)
.

This notion of curvature fits very well to the combinatorial curvature introduced above 
in the case of non-negative curvature, i.e., when the relation sign is flipped to “≥”, see 
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e.g. [36,35]. In this case the inequality above can be translated into a statement about 
the angular defect about a vertex.

However, polygonal complexes equipped with the combinatorial metric that we con-
sider above never have non-positive Alexandrov curvature: Namely, the inequality above 
implies by direct calculations that geodesics between two points must be unique, confer 
[37, Corollary 2.3.2]. But this is not the case for tessellations considered with the com-
binatorial metric. Indeed, two geodesics connecting the same points can have arbitrarily 
large “interior” in the case of vanishing combinatorial curvature, see e.g. [9, Fig. 1]. We 
show that in certain cases of negative curvature two geodesics connecting the same points 
can have at most distance one, see Theorem 3.3, but this bound can not be improved to 
be zero instead.

Nevertheless, we are optimistic that the following strategy is applicable instead. If we 
consider a geometric realization of our polygonal complexes, then these metric spaces 
should inherit the sign of the curvature of the corresponding combinatorial object. This 
is for example the case for Euclidean Bruhat–Tits buildings which have non-positive 
Alexandrov curvature, see e.g. [37, Example 3, p. 55]. Moreover, if there is a uniform 
bound on the vertex and the face degree, then one can compare the polygonal complex 
to its metric realization via rough isometries in the spirit of Kanai [39,40].

3. Geometry

In this section we discuss implications of the curvature sign to the global geometry 
of polygonal complexes with planar substructures like emptiness of cut-locus, Gromov 
hyperbolicity and positivity of the Cheeger constant. Before we enter into these topics, 
we first introduce some more useful combinatorial notions.

We say X is locally finite if for all v ∈ V and e ∈ E

|v| < ∞ and |e| < ∞.

Since |f | =
∑

e∈∂f (|e| − 1), we also have |f | < ∞ for locally finite polygonal complexes. 
For locally finite X, we define for a face f ∈ F

mE(f) = min
e∈∂f

(|e| − 1), ME(f) = max
e∈∂f

(|e| − 1)

the minimal and maximal number of neighbors over one edge of f . The minimal and 
maximal thickness of X is then given by

mE = min
f∈F

mE(f), ME = sup
f∈F

ME(f).

The maximal vertex and face degree are defined by

MV = sup
v∈V

|v|, MF = sup
f∈F

|f |.

Note that we always have ME ≤ MF and both can be infinite.
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3.1. Absence of cut-locus

We first present a theorem which is an analogue of the Hadamard–Cartan theorem 
from Riemannian manifolds. It is a rather immediate consequence of convexity and [9, 
Theorem 1] for plane tessellating graphs.

For a face f ∈ F in a polygonal complex X = (V, E, F ), the cut locus of f is defined 
as

Cut(f) =
{
g ∈ F | d(f, ·) attains a local maximum in g

}
.

Absence of cut locus means that Cut(f) = ∅ for all f ∈ F which means that every finite 
geodesic starting in f can be continued to an infinite geodesic.

Theorem 3.1. Let X = (V, E, F ) be a polygonal complex with planar substructures such 
that κ(Σ)

c ≤ 0 for all apartments Σ ∈ A. Then, Cut(f) = ∅ for all f ∈ F . Moreover, 
every geodesic within an apartment Σ can be continued to an infinite geodesic within Σ.

We conclude from Theorem 3.1 that emptiness of cut-locus holds, e.g., for our Exam-
ple 1 and Examples 6–9 (found in Section 5). Note also that the condition of non-positive 
sectional corner curvature in Theorem 3.1 cannot be weakened to non-positive sectional 
face curvature as Fig. 2 in [9] shows.

Proof. Let f ∈ F . Choose g ∈ F and let Σ be an apartment which contains both f
and g (which exists by (PCPS1)). By [9, Theorem 1] the cut locus of f within Σ is 
empty that is there is a face h ∈ FΣ with g ∼ h such that dΣ(f, h) = dΣ(f, g) + 1. (Note 
that [9, Theorem 1] is formulated in the dual setting which, however, can be carried over 
directly.) As d = dΣ on Σ, by Lemma 2.5, we conclude g /∈ Cut(f). Since this holds for 
all g ∈ F , we have Cut(f) = ∅. The second statement is an immediate consequence of 
[9, Theorem 1] and Lemma 2.5. �
Corollary 3.2. Let X = (V, E, F ) be a polygonal complex with planar substructures such 
that κ(Σ)

c ≤ 0 for all Σ ∈ A. Then, every face has at least one forward neighbor.

3.2. Thinness of bigons

In this subsection we show a useful hyperbolicity criterion.
Let X = (V, E, F ) be a polygonal complex. A bigon is a pair of geodesics (f0, . . . , fn)

and (g0, . . . , gn) such that f0 = g0 and fn = gn. We say a bigon is δ-thin for δ ≥ 0, if 
d(fk, gk) ≤ δ for all k = 0, . . . , n.

Theorem 3.3. Let X = (V, E, F ) be a polygonal complex with planar substructures such 
that κ(Σ)

c < 0 for all apartments Σ ∈ A. Then, every bigon is 1-thin.
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Proof. Let γ1 = (f0, . . . , fn) and γ2 = (g0, . . . , gn) be a bigon and Σ ∈ A be an apartment 
that contains f0 = g0 and fn = gn. By the convexity assumption (PCPS2) the apartment 
Σ contains both geodesics γ1 and γ2 and, therefore, the pair (γ1, γ2) is a bigon within Σ. 
By [9, Theorem 2] it follows that dΣ(fk, gk) ≤ 1 for k = 0, . . . , n, and by Lemma 2.5 we 
conclude that d(fk, gk) ≤ 1 for k = 0, . . . , n. �

We have an immediate consequence.

Corollary 3.4. Let X = (V, E, F ) be a polygonal complex with planar substructures such 
that κ(Σ)

c < 0 for all Σ ∈ A. Let f1, f2 ∈ F with d(f1, f2) = n. Then, we have for all 
0 ≤ k ≤ n

|Bk(f1) ∩Bn−k(f2)| ≤ 2.

In particular, if f1 is considered as a center, f2 has at most two backward neighbors.

Proof. By convexity we can restrict our considerations on any apartment Σ ∈ A con-
taining f1 and f2. Every f ∈ Bk(f1) ∩Bn−k(f2) must obviously satisfy d(f1, f) = k and 
d(f, f2) = n − k. If there were three faces in the intersection Bk(f1) ∩ Bn−k(f2) ⊂ FΣ, 
then there would be three geodesics from f1 to f2 in Σ. Then, one of the three geodesics 
is enclosed by the other two in Σ and the other two geodesics form a bigon. Then this 
bigon in not 1-thin which contradicts the previous theorem. �

In fact, using the techniques of [9] the last statement of Corollary 3.4 holds even for 
non-positive sectional corner curvature.

Proposition 3.5. Let X = (V, E, F ) be a polygonal complex with planar substructures 
such that κ(Σ)

c ≤ 0 for all Σ ∈ A and o ∈ F be a center. Then every face has at most 
two backward neighbors.

Proof. This is a consequence of the results in [9]. Let f ∈ F . Let Σ ∈ A be an apartment 
containing o and f . Then the ball Bn ∩ Σ is an admissible polygon in Σ in the sense 
of [9, Def. 2.2] and ∂f ∩ ∂Bn is a connected path of length ≤ 2, by [9, Prop. 2.5]. This 
shows that f can have at most two backward neighbors. �
3.3. Gromov hyperbolicity

Recall from the end of Subsection 2.1 that every polygonal complex X = (V, E, F )
can also be viewed as a metric space via the associated graph GX and its natural com-
binatorial distance function. Geodesics (fi) of faces in X correspond then to (vertex) 
geodesics in GX . With this understanding, we call the polygonal complex (X, d) Gro-
mov hyperbolic if there exists δ > 0 such that any side of any geodesic triangle in GX

lies in the δ-neighborhood of the union of the two other sides of the triangle. We show 
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Gromov hyperbolicity of a polygonal complex with planar substructures (X, d) with 
negative sectional corner curvature as well as properties of the Gromov boundary X(∞)
under the additional boundedness assumption of the vertex and face degree. For details 
on the Gromov boundary (and the Gromov product used to define it) we refer to [14, 
Chpt. III.H].

Theorem 3.6. Let X be a polygonal complex with planar substructures with MV , MF < ∞
and κ(Σ)

c < 0 for all Σ ∈ A. Then, (X, d) and all its apartments are Gromov hyper-
bolic spaces. If additionally (PCPS1∗) is satisfied then every connected component of 
the Gromov boundary X(∞) contains the Gromov boundary of an apartment which is 
homeomorphic to the unit circle S1.

By the theorem in the section above all bigons in (X, d) are 1-thin. For Cayley graphs, 
[54, Theorem 1.4] tells us that the statement of the theorem above is true. For general GX , 
we need the following generalization given in the unpublished Master’s dissertation of 
Pomroy (a proof of it can be found in [17, Appendix]). Here, a ρ-bigon in a geodesic 
metric space with metric d is a pair of (1, ρ) quasi-geodesics γ1, γ2 with the same end 
points, i.e.,

|t− t′| − ρ ≤ d
(
γi(t), γi

(
t′
))

≤ |t− t′| + ρ,

for all t, t′.

Theorem 3.7 (Pomroy). If for a geodesic metric space there are ε, ρ > 0 such that ρ-bigons 
are uniformly ε-thin, then the space is Gromov hyperbolic.

Proof of Theorem 3.6. By Theorem 3.3 all bigons in (X, d) are 1-thin. The same holds 
true within all apartments. For GX to satisfy the requirement of a geodesic metric space, 
we view it as a metric graph with all its edge lengths equal to one. Choose ρ < 1/2
and ε = 1, we can then conclude from Theorems 3.3 and 3.7 that (X, d) and all its 
apartments are Gromov hyperbolic.

Next we prove the rest of the theorem assuming (PCPS1∗). From MF < ∞ we con-
clude that GX is a proper (i.e., closed balls in GX of finite radius are compact) hyperbolic 
geodesic space and, therefore, the geodesic boundary (defined via equivalence classes of 
geodesic rays, where rays are equivalent iff they stay in bounded distance to each other) 
and the Gromov boundary coincide (see, e.g., [14, Lm. III.H.3.1]) and we can think of 
any boundary point ξ ∈ X(∞) as being represented by a geodesic ray (fi) of faces in F . 
Using (PCPS1∗), there is an apartment Σ ∈ A such that all the faces fi are in FΣ and 
ξ ∈ Σ(∞) ⊂ X(∞). We also know from [9, Cor. 5] that Σ(∞) is homeomorphic to S1, 
finishing the proof. �
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It is easy to see that the Euclidean buildings in Example 1 and 6 are not Gromov 
hyperbolic. Theorem 3.6 is not applicable since these examples have vanishing sectional 
corner curvature.

3.4. Cheeger isoperimetric constants

In this subsection we prove how negative curvature effects positivity of the Cheeger 
isoperimetric constant.

Let X = (V, E, F ) be a locally finite polygonal complex. We consider the following 
Cheeger constant which is very useful for spectral estimates. For H ⊆ F , we define

αH = inf
K⊆H finite

|∂K|
vol(K)

with

∂K =
{
(f, g) ∈ K × F \K | f ∼ g

}
and

vol(K) =
∑
f∈K

|f |.

Note that αH ≤ 1. We set α = αF .
Firstly, we present a result that shows positivity of the Cheeger isoperimetric constant 

for negative sectional corner curvature under the additional assumption of bounded 
geometry. This result is a consequence of a general result of Cao [15], which also holds in 
the smooth setting of Riemannian manifolds. Secondly, we give more explicit estimates 
for the Cheeger constant.

Theorem 3.8. Let X = (V, E, F ) be a polygonal complex with planar substructures such 
that κ(Σ)

c < 0 for all Σ ∈ A. Assume that X additionally satisfies (PCPS1 ∗) and 
MV , MF < ∞. Then, α > 0.

A straightforward consequence of Theorem 3.8 and Theorem 5.7 below is the following 
result.

Corollary 3.9. Every 2-dimensional locally finite hyperbolic building with regular hyper-
bolic polygons as faces has a positive Cheeger constant α > 0.

Proof. Note that negative sectional curvature and the definition do not depend on the 
choice of the apartment systems. Hence, we switch to the corresponding building with 
maximal apartment system to obtain (PCPS1 ∗) by Theorem 5.7. We conclude the state-
ment by Theorem 3.8. �
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In particular, all buildings in Examples 6–9 in Section 5 have positive Cheeger con-
stant.

Proof of Theorem 3.8. Note that by the comment at the end of Subsection 2.1 we can 
associate to every polygonal complex with planar substructures X = (V, E, F ) a graph 
GX by considering the faces of X as vertices in GX and the edge relation given by the 
adjacency relation of the faces. In this light [15, Theorem 1] tells us that a polygonal com-
plex (X, d) has positive Cheeger isoperimetric constant if the following four assumptions 
are satisfied

(1) (X, d) has bounded face degree MF < ∞,
(2) (X, d) admits a quasi-pole,
(3) (X, d) is Gromov hyperbolic,
(4) every the Gromov boundary X(∞) has positive diameter (with respect to a fixed 

Gromov metric),

where (2) means that there is a finite set Ω ⊂ F of faces and a δ > 0 such that every 
face f ∈ F is found in a δ-neighborhood of a geodesic ray emanating from this finite set. 
Moreover, for (4) we follow [15] and define for two geodesic rays (fi), (f ′

i) of faces with 
the same initial face f0 = f ′

0 representing the points ξ, η ∈ X(∞):

df0,ε(ξ, η) = lim inf
n→∞

exp(−ε
(
n− 1

2d
(
fn, f

′
n

)))
.

Then, there is an ε > 0 such that df0,ε is a metric which is called a Gromov metric. Note 
that the Cheeger constant considered in [15] is defined as

h = inf
H⊆F

|∂FH|
|H| ,

where ∂FH = {f ∈ F | d(f, H) = 1}. As every face in ∂FH is connected with H via at 
least one edge we have |∂H| ≥ |∂FH|. Also vol(H) ≤ MF |H| and, therefore,

α ≥ h

MF
.

Hence, by the assumption MF < ∞ the constant α is positive whenever h is. Thus, it 
remains to check the conditions (1)–(4).

Let X = (V, E, F ) be a polygonal complex with planar substructures which satisfies 
the assumptions of the theorem. Then, (1) is obviously satisfied. Secondly, by absence 
of cut-locus, Theorem 3.1, condition (2) is satisfied and by Theorem 3.6 condition (3) 
is satisfied. Finally, let us turn to (4). By Theorem 3.6 and the assumption (PCPS1∗) 
we know that every connected component of the Gromov boundary of X includes the 
Gromov boundary of an apartment. Therefore, it suffices to show (4) for the Gromov 
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boundary of an apartment. We observe that we find in every apartment a bi-infinite 
geodesic. This can be seen as follows: Let (f−n, . . . , fn) be a geodesic in an apartment 
Σ ∈ A. By [9, Theorem 1] the face fn is not in CutΣ(f−n) and, therefore, there is fn+1 ∈ Σ
such that (f−n, . . . , fn+1) is a geodesic. Simultaneously, f−n is not in CutΣ(fn+1) and, 
therefore, there is f−(n+1) ∈ Σ such that (f−(n+1), . . . , fn+1) is a geodesic in Σ. In this 
way, we construct a bi-infinite geodesic (fn)n∈Z. Let ξ, η ∈ X(∞) be the end points of 
the geodesics (fn)n≥0, (f−n)n≥0 ⊂ FΣ. Since (fn)n∈Z is a bi-infinite geodesic, we have 
d(fn, f−n))) = 2n. So, we obtain for any ε > 0

df0,ε(ξ, η) = lim inf
n→∞

exp
(
−ε

(
n− 1

2d(fn, f−n)
))

= 1.

Hence, (4) is satisfied and we finished the proof. �
Remark 3.10. The question whether a Gromov hyperbolic space has positive Cheeger 
constant is very subtle. Note that every infinite tree T is Gromov hyperbolic. But if we 
attach to one of its vertices the ray [0, ∞) with integer vertices then the new tree T̃1 is 
still Gromov hyperbolic but it has vanishing Cheeger constant. This new ray adds an 
isolated point to the Gromov boundary of T and therefore assumption (4) is violated 
for T̃1. On the other hand, if we attach to a sequence of vertices (vn)n∈N in T the 
segments [0, n] with integer vertices and denote the new tree by T̃2, then this new tree 
has again vanishing Cheeger constant. In this case both trees T and T̃2 even have the 
same boundaries, but T̃2 cannot have a quasi-pole since the newly added vertices do not 
lie in geodesic rays and, therefore, assumption (2) is violated (see end of Subsection 1.1 
in [15]).

The next result provides explicit lower bounds for the Cheeger constant in terms of 
the face degrees and minimal and maximal thickness.

Theorem 3.11. Let X be a locally finite polygonal complex with planar substructures such 
that κ(Σ)

c ≤ 0. Then,

α ≥ inf
f∈F

(
mE(f)
ME(f)

(
1 − 6

|∂f |

))
≥ mE

ME

(
1 − 6

minf∈F |∂f |

)
.

In particular, α > 0 if |∂f | ≥ 7 and ME < ∞. Secondly,

α ≥ inf
f∈F

mE(f) − 2
|f | ≥ mE − 2

MF
.

In particular, α > 0 if mE ≥ 3 and MF < ∞.

The theorem implies in particular that all locally finite 2-dimensional Euclidean build-
ings with minimal thickness mE ≥ 3 (i.e., every edge is contained in at least 4 chambers) 
have positive Cheeger constant. Moreover, all locally finite hyperbolic buildings with 
generating polygon P at least a 7-gon have also positive Cheeger constant.
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Proof. Translating [20, Lemma 1.15] into the “dual” language (as the comment at the 
end of Section 2.1 indicates) tells us that if there is a center o ∈ V and C ≥ 0 such that

|f |+ − |f |− ≥ C|f |

for all f ∈ F , then α ≥ C. Thus, it suffices to estimate inff∈F (|f |+ − |f |−)/|f | to get a 
lower bound on α. For f ∈ F , let n ≥ 0 be such that f ∈ Sn and let Σ be an apartment 
that contains f . By Proposition 3.5 we immediately have |f |− ≤ 2. Moreover, by [8, 
Theorem 3.2] (combined with Theorem 3.1) there are at most two neighbors of f in 
FΣ ∩Sn and, therefore, |f |+ ≥ mE(f)|f |Σ,+ ≥ mE(f)(|∂f | − 4). Here |f |Σ,+ denotes the 
number of forward neighbors of f within Σ, which is |∂f | minus the number (≤ 2) of 
backward neighbors of f minus the number (≤ 2) of neighbors of f in FΣ∩Sn. Moreover, 
|f | ≤ ME(f)|∂f |. Hence,

|f |+ − |f |−
|f | ≥ mE(f)

ME(f)

(
1 − 6

|∂f |

)

which yields the first inequality. On the other hand, we have by Theorem 3.1 and 
Lemma 2.7 (a) |f |+ ≥ mE(f). Hence, by |f |− ≤ 2

|f |+ − |f |−
|f | ≥ mE(f) − 2

|f | .

This finishes the proof. �
From the proof we may easily extract the following statement which turns out to be 

useful for studying the essential spectrum of the Laplacian. Define for a locally finite 
polygonal complex X = (V, E, F ) the Cheeger constant at infinity by

α∞ = sup
K⊆F finite

αF\K .

Corollary 3.12. Let X be a locally finite polygonal complex with planar substructures such 
that κ(Σ)

c ≤ 0. Then,

α∞ ≥ sup
K⊆F finite

inf
f∈F\K

mE(f)
ME(f)

(
1 − 6

|∂f |

)
.

3.5. Finiteness and infiniteness

In this subsection we show that positivity or non-positivity of sectional face curvature
determines whether a locally finite polygonal complex with planar/spherical substruc-
tures is finite or infinite. The statement that positive curvature implies finiteness is an 
analogue of a theorem of Myers for Riemannian manifolds [49].
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Theorem 3.13. Let X = (V, E, F ) be a locally finite polygonal complex with planar or 
spherical substructures with apartment system A.

(a) If we have κ(Σ)(f) > 0 for all Σ ∈ A and all f ∈ FΣ, then F is finite and X is a 
polygonal complex with spherical substructures.

(b) If we have κ(Σ)(f) ≤ 0 for all Σ ∈ A and all f ∈ FΣ, then F is infinite and X is a 
polygonal complex with planar substructures.

Proof. Note first that every planar tessellation has infinitely many faces (since the clo-
sure of every face is compact) while every spherical tessellation has finitely many faces. 
Therefore, FΣ, Σ ∈ A, is infinite if X is a polygonal complex with planar substructures 
and finite if X is a polygonal complex with spherical substructures.

We first prove (b) by contraposition. Assume that X is a polygonal complex with 
planar or spherical substructures with F a finite set. We will show that there is a face 
with positive sectional face curvature. Choose an apartment Σ ∈ A. By the Gauß–Bonnet 
Theorem, we have

∑
f∈FΣ

κ(Σ)(f) = χ
(
S

2) = 2,

where χ denotes the Euler characteristic. Hence, κ(Σ) must be positive on some faces. 
This shows (b).

Turning to (a), we assume that κ(Σ)(f) > 0 for all Σ ∈ A and all f ∈ FΣ. By 
DeVos–Mohar’s proof of Higuchi’s conjecture [19, Theorem 1.7] (which is again stated in 
the dual formulation) every apartment must be finite. Moreover, the number of faces (in 
their case vertices) in an apartment is uniformly bounded by 3444 except for prisms and 
antiprisms.1 A prism in our dual setting are two wheels of triangles glued together along 
their boundaries and an antiprism are two wheels of squares glued together along their 
boundaries (see Fig. 2). We can think of these two wheels as representing the lower and 
upper hemisphere of S2 and the boundaries as agreeing with the equator of the sphere S2.

If F is infinite, then there exists a face f0 ∈ F and a sequence of faces fn ∈ F with 
d(f0, fn) → ∞ because of the local finiteness. Then, f0 must lie in a sequence (Σn) of 
spherical apartments S2 tessellated by pairs of wheels with number of faces going to 
infinity, glued together along the equator. Assuming that f0 lies always in the lower 
hemisphere of Σn

∼= S
2, then the south pole of all these apartments would be one and 

the same vertex v0 ∈ f0. But this would imply that |v0| = ∞, which contradicts the 
local finiteness. Therefore, F must be finite which implies that X is a polygonal complex 
with spherical substructures. �
1 Note that in the meantime the bound has been improved by Zhang [63] to 580 vertices while the largest 

known graph with positive curvature has 208 vertices and was constructed by Nicholson and Sneddon [51].
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Fig. 2. A wheel of triangles and a wheel of squares.

4. Spectral theory

In this section we turn to the spectral theory of the Laplacian on polygonal complexes. 
As the geometric structure is determined by assumptions on the faces, it is only natural to 
consider the Laplacian for functions on the faces. The reader who prefers to think about 
the Laplacian as an operator on functions on the vertices is referred to the comment at 
the end of Section 2.1. That is, we can associate a graph GX to each polygonal complex 
X = (V, E, F ) in a natural way.

Let X = (V, E, F ) be a locally finite polygonal complex and

2(F ) =
{
ϕ : F → C |

∑
f∈F

|ϕ(f)|2 < ∞
}
.

For functions ϕ, ψ ∈ 2(F ) the standard scalar product is given by

〈ϕ,ψ〉 =
∑
f∈F

ϕ(f)ψ(f),

and the norm is given by ‖ϕ‖ =
√

〈ϕ,ϕ〉. Define the Laplacian Δ by

Δϕ(f) =
∑

g∈F,g∼f

(
ϕ(f) − ϕ(g)

)

for functions in the domain

D(Δ) =
{
ψ ∈ 2(F ) | Δψ ∈ 2(F )

}
.

It can be checked directly that the operator is positive and, moreover, it is selfadjoint 
by [62, Theorem 1.3.1]. Note that the operator Δ can be seen to coincide with the graph 
Laplacian on 2(GX).

By standard Cheeger estimates [42] based on [21,27] we have
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λ0(Δ) ≥ mF

(
1 −

√
1 − α2

)
,

where λ0(Δ) denotes the bottom of the spectrum of Δ and

mF = min
f∈F

|f |.

Applying Theorem 3.8 gives a criterion when the bottom of the spectrum is positive and 
Theorem 3.11 even gives explicit estimates.

4.1. Discreteness of spectrum and eigenvalue asymptotics

In this subsection we address the question under which circumstances the spectrum 
of Δ is purely discrete. We prove an analogue of a theorem of Donnelly–Li, [23], for Rie-
mannian manifolds that curvature tending to −∞ outside increasing compacta implies 
emptiness of the essential spectrum.

For a selfadjoint operator T we denote the eigenvalues below the essential spectrum 
in increasing order counted with multiplicity by λn(T ), n ≥ 0. For two sequences (an), 
(bn) we write an ∼ bn if there is c > 0 such that c−1an ≤ bn ≤ can. We denote the 
maximal operator of multiplication by the face degree by DF . That is DF is an operator 
from {ϕ ∈ 2(F ) | | · |ϕ ∈ 2(F )} to 2(F ) acting as

DFϕ(f) = |f |ϕ(f).

We call X balanced if there is C > 0 such that CmE(f) ≥ ME(f) and strongly balanced
if

sup
K⊆F finite

inf
f∈F\K

mE(f)
ME(f) = 1.

That means that C in the definition of balanced equals 1 asymptotically. An analogue 
of the Donnelly–Li result reads as follows. Let

κ∞ := inf
K⊆F finite

sup
Σ∈A,f∈FΣ\K

κ(Σ)(f).

Theorem 4.1. Let X = (V, E, F ) be a locally finite polygonal complex with planar sub-
structures that is balanced and κ(Σ)

c ≤ 0. If κ∞ = −∞, then the spectrum of Δ is purely 
discrete and

λn(Δ) ∼ λn(DF ).

If, additionally, X is strongly balanced, then

λn(Δ) → 1 as n → ∞.

λn(DF )
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Finally, under the additional assumption ME < ∞, purely discrete spectrum of Δ implies 
κ∞ = −∞.

We like to mention that the result here holds for the generally unbounded discrete 
Laplacian. The first result on the essential spectrum of graphs analogous to Donnelly–Li 
was proved by Fujiwara [27] and he considered the normalized Laplacian. The very 
different spectral behavior of these two operators is discussed in [42].

The proof of Theorem 4.1 is based on the following proposition.

Proposition 4.2. Let X = (V, E, F ) be a locally finite polygonal complex with planar 
substructures. If

a := sup
K⊆F finite

inf
f∈F\K

mE(f)
ME(f)

(
1 − 6

|∂f |

)
> 0,

then the spectrum of Δ is discrete if and only if

sup
K⊆F finite

inf
f∈F\K

|f | = ∞.

In this case,

(
1 −

√
1 − a2

)
≤ lim inf

n→∞
λn(Δ)
λn(DF ) ≤ lim sup

n→∞

λn(Δ)
λn(DF ) ≤

(
1 +

√
1 − a2

)
.

Proof. The characterization of discreteness of spectrum follows from Corollary 3.12 and 
[42, Theorem 2]. The asymptotics of eigenvalues follow combining Corollary 3.12 and 
[12, Thms. 2.2. and 5.3.]. �
Proof of Theorem 4.1. We observe that for all Σ ∈ A and f ∈ FΣ

−|f |Σ
2 ≤ κ(Σ)(f).

Hence, κ∞ = −∞ implies supK⊆F finite inff∈F\K |f | = ∞. Combining this with the 
assumption that X is balanced with constant C implies that a ≥ 1/C, where a is taken 
from Proposition 4.2. In the case of X being strongly balanced we have a = 1. Thus, the 
first part of the theorem follows from Proposition 4.2. Conversely, if there is c > 0 such 
that κ∞ ≥ −c > −∞, then there is a sequence of faces fn with d(f, fn) → ∞ for any 
fixed face f ∈ F and apartments Σn, n ≥ 0, such that

−c < κ(Σn)(fn) ≤ 1 − |fn|Σ
6 ≤ 1 − |fn|

6ME
,

where we used |v|Σ ≥ 3 for all v ∈ VΣ which holds as Σ is a tessellation. We conclude 
that |fn| is uniformly bounded by some constant c′ > 0. Thus, the essential spectrum 
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of Δ starts below c′ (confer [42, Theorem 1]) and Δ does not have purely discrete 
spectrum. �
Example 2. The simplest example of a polygonal complex with planar substructures 
satisfying the conditions of Theorem 4.1 is a planar tessellation X = (V, E, F ) with one 
apartment Σ = X and center o ∈ F such that limn→∞ inff∈Sn

|f | = ∞. In this case we 
have

κ(Σ)(f) ≤ 1 − |f |
6 ,

and we see that κ∞ = −∞. Moreover, X is strongly balanced since we have mE(f) =
ME(f) = 1. Therefore, the spectrum of Δ is purely discrete and λn(Δ)/λn(DF ) → 1.

Note that purely discrete spectrum can also be established by increasing mE(f)
instead of |∂f | for all faces outside compact sets (by keeping the polygonal complex bal-
anced) and applying Proposition 4.2 directly. The condition supK⊆F finite inff∈F\K |f | =
∞ follows then directly from |f | ≥ mE(f).

4.2. Unique continuation of eigenfunctions

While unique continuation results hold in great generality for continuum models with 
very mild assumptions, there are very natural examples for graphs with finitely supported 
eigenfunctions, see e.g. [22] and various other references. In this subsection we prove that 
for non-positive curvature there are no finitely supported eigenfunctions.

Theorem 4.3. Let X = (V, E, F ) be a locally finite polygonal complex with planar sub-
structures such that κ(Σ)

c ≤ 0 for all Σ ∈ A. Then, Δ does not admit finitely supported 
eigenfunctions.

Cases where we do not have finite supported eigenfunctions are therefore Example 1
and Examples 6–9.

In [44,43] results like Theorem 4.3 are found for the planar case and more general 
operators. Indeed, we consider here also nearest neighbor operators, where we even do 
not have to assume local finiteness.

Definition 4.4. Let X = (V, E, F ) be a polygonal complex. We call A a nearest neighbor 
operator on X if there is a : F × F → C

(NNO1) a(f, g) �= 0 if f ∼ g,
(NNO2) a(f, g) = 0 if f � g,
(NNO3)

∑
g∈F |a(f, g)| < ∞ for all f ∈ F ,

and A acts as



1092 M. Keller et al. / Advances in Mathematics 307 (2017) 1070–1107
Aϕ(f) =
∑
g∈F

a(f, g)ϕ(g),

on functions ϕ in

D̃(A) =
{
ϕ : F → C |

∑
g∈F

|a(f, g)ϕ(g)| < ∞ for all f ∈ F

}
.

The summability assumption (NNO3) guarantees that the functions of finite support 
are included in D̃(A). Clearly, the Laplacian introduced at the beginning of this section 
is a nearest neighbor operator, where we can also add an arbitrary potential to be in the 
general setting of Schrödinger operators. Theorem 4.3 is an immediate consequence of 
the following theorem.

Theorem 4.5. Let X = (V, E, F ) be a polygonal complex with planar substructures such 
that κ(Σ)

c ≤ 0 for all Σ ∈ A and A be a nearest neighbor operator on X. Then A does 
not admit eigenfunctions supported within a distance ball.

Proof. Let ϕ ∈ D̃(A) be an eigenfunction of A to the eigenvalue λ. Let k be such that ϕ
vanishes completely on all distance spheres at levels larger or equal than k from a center 
o ∈ F . Let f0 ∈ F be a face at distance k − 1. We want to show that ϕ(f0) = 0. Let 
Σ be an apartment containing o and f0. Since we do not have cut-locus in any of the 
apartments due to non-positive sectional corner curvature, cf. Theorem 3.1, there exists 
a face g0 ∈ FΣ adjacent to f0 with d(o, g0) = k. By assumption, we have ϕ(g0) = 0. 
Now, by convexity, all faces f ∈ F with d(f, o) = k − 1 adjacent to g0 lie within Σ. By 
Proposition 3.5 there can be at most two such faces, one of them equal to f0. If there is 
only one such face, namely f0, we conclude from the eigenfunction identity evaluated at g0
that we have ϕ(f0) = 0. If there are two such faces, say f0, f1, then we conclude from the 
eigenfunction identity evaluated at g0 that a(g0, f0)ϕ(f0) = −a(g0, f1)ϕ(f1). With the 
notation of [9, Section 2.2] the vertex v0 in the intersection of f0, f1 and g0 has label b with 
respect to the tessellation Σ (label b means that there is more than one adjacent face to v0
within Bk−1 or if one of the faces adjacent to v0 is a triangle then there are even more than 
three adjacent faces in Bk−1; however, the case that v0 has a neighboring triangle can be 
excluded by κ(Σ)

c ≤ 0). The vertex v0 has two neighbors in the boundary of Bk−1 in Σ. 
One of these neighbors is in the intersection of f0∩g0 and the other one which we denote 
by v1 is in the intersection of f1 ∩ g0. By [9, Cor. 2.7.] the vertex v1 has label a+ (which 
means that v1 has only one adjacent face within Bk−1). This implies that the face f1 has 
another neighbor g1 in Sk. By assumption ϕ(g1) = 0 and applying the same arguments to 
g1 we find f2 ∈ Sk−1∩FΣ, f2 ∼ g1 such that a(g1, f1)ϕ(f1) = −a(g1, f2)ϕ(f2). Proceeding 
inductively we find the sequences (f0, . . . , fn), f0 = fn, and (g0, . . . , gn), g0 = gn of faces 
in Σ that form a closed boundary walk and boundary vertices (v0, . . . , v2n), v0 = v2n, 
with labels b, a+, b, a+, b, . . . . However, this is geometrically impossible [44, Prop. 13]. 
Hence, we conclude ϕ(f0) = 0. As this argument applies for all faces in Sk−1 we deduce 



M. Keller et al. / Advances in Mathematics 307 (2017) 1070–1107 1093
Fig. 3. Part of the tessellation Σ4 with a finitely supported eigenfunction which is zero at the faces with no 
entry.

that ϕ vanishes on Sk−1. Repeating this argument for Sk−j , j = 2, . . . , k, yields that ϕ
vanishes on Bk and thus by assumption on F . We finished the proof. �

We conclude this subsection by giving examples of tessellations with negative sectional 
face curvature that admit finitely supported eigenfunctions. This shows the assumption 
in the theorem cannot be modified to negative sectional face curvature instead of non-
positive sectional corner curvature.

Example 3. Let Σn, n ≥ 3, be a bipartite tessellation of the plane R2 with squares as 
follows. There are two infinite sets of vertices V1 and V2, where the vertices in V1 have 
degree 2n and the vertices in V2 have degree 3. The tessellation Σn is now given such 
that vertices in V1 are only connected to vertices in V2 and vice versa. Hence, each face 
contains two vertices of V1 and two of V2. See Fig. 3 for the tessellation Σ4, realized in 
the hyperbolic Poincaré unit disk.

The face curvature is then given by

κ(f) = 1 − |f |
2 +

∑
v∈f

1
|v| = 1 − 2 + 2

3 + 2
2n = −n− 3

3n .

For n > 3 the face curvature is negative and in the interval (−1/3, −1/12). On the other 
hand, we have for the corner curvatures

κc(v1, f) = −n− 2
4n , κc(v2, f) = 1

12 > 0,

with v1 ∈ V1 and v2 ∈ V2 and v1, v2 ∈ f . Moreover, for a vertex with degree 2n let 
F0 = {f1, . . . , f2n} be the faces around it in cyclic order. Let a function ϕ with support 
in F0 be given such that ϕ(f2j) = 1 and ϕ(f2j−1) = −1 for j = 1, . . . , n. Then, ϕ is a 
finitely supported eigenfunction of Δ to the eigenvalue 6. Looking at the dual regular 
graph Σn

∗ with constant vertex degree 4, we see that the Δ-eigenfunction ϕ of Σn

corresponds to an eigenvector of the adjacency matrix of Σn
∗ to the eigenvalue −2.
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4.3. The Dirichlet problem at infinity

We assume that X = (V, E, F ) is a polygonal complex with planar substructures 
with strictly negative sectional corner curvature and that (PCPS1∗) holds. Moreover, we 
assume MV , MF < ∞. Then we know from Theorem 3.6 that (X, d) is Gromov hyperbolic 
and that the boundary X(∞) carries a natural topological structure. Moreover, X =
X ∪X(∞) is compact (see [14, Prop. III.H.3.7(4)]). Given a function U ∈ C(X(∞)), the 
Dirichlet problem at infinity asks whether there is a unique continuous function u ∈ C(X)
which agrees with U on X(∞) and such that the restriction u0 = u|X is harmonic (i.e., 
Δu = 0). The existence of such a function u is the main problem since uniqueness of the 
solution is typically obtained from a maximum principle type argument. Applying the 
general theory of [2] to Theorem 3.8 answers this question positively.

Theorem 4.6. Let X = (V, E, F ) be a polygonal complex with planar substructures such 
that κ(Σ)

c < 0 for all Σ ∈ A. Assume that X additionally satisfies (PCPS1 ∗) and 
MV , MF < ∞. Then (X, d) is Gromov hyperbolic and the Dirichlet problem at infin-
ity is solvable on X.

Examples of spaces, where the theorem is applicable and the Dirichlet problem at 
infinity can be solved, are all locally finite 2-dimensional hyperbolic buildings with regular 
hyperbolic polygons as faces.

Proof. Let P = 1
MF

(MF − Δ) be the operator

Pϕ(f) =
∑
g∈F

p(f, g)ϕ(g),

where p(f, f) = (MF − |f |)/MF and p(f, g) = 1/MF if f ∼ g, and p(f, g) = 0 in 
all other cases. Then P is symmetric with respect to (ϕ1, ϕ2) =

∑
f∈F ϕ1(f)ϕ2(f), i.e., 

p(f, g) = p(g, f), and Markovian, i.e., P1 = 1, where 1 denotes the constant one-function 
on the set of faces. Moreover, it is easy to see that P satisfies the properties of [2, 
Assumptions 1.1], i.e., P is admissible. Note further that a function ϕ on F satisfies 
Δϕ = 0 if and only if Pϕ = ϕ.

Following the theory in [2], we first use the fact that X has positive Cheeger constant 
and, therefore, the Dirichlet problem at infinity is solvable with respect to the P -Martin 
boundary.

Note that the P -Martin boundary of X is based on the associated Green func-
tion G : F × F → [0, ∞), which is defined as G(f, g) =

∑
n≥0 p

n(f, g). We know 
from Theorem 3.8 that the Cheeger constant α of X is positive. We conclude from 
[2, Prop. 4.4] that ‖P‖2 < 1 and, therefore, that there exists ε > 0 such that 
Gε(f, g) =

∑
n≥0(1 −ε)−n−1pn(f, g) is finite (this is the crucial condition (*) in [2], estab-

lishing a Harnack inequality at infinity). For a given reference point f0 ∈ F , note that the 
P -Martin boundary consists of (equivalence classes) of sequences fj with d(f0, fj) → ∞
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and K(f) = limj→∞ G(f, fj)/G(f0, fj) exists for all f ∈ F . (Two sequences are equiv-
alent if they lead to the same limit function K.) Then [2, Cor. 5.4] guarantees that the 
Dirichlet problem at infinity is solvable with respect to the P -Martin boundary.

Moreover, we know from Theorem 3.6 that (X, d) is Gromov hyperbolic. This allows 
us to apply [2, Cor. 6.10] and to conclude that the Gromov compactification satisfies 
the assumptions (G.A) in [2, Theorem 5.2] which, in turn agrees with the P -Martin 
compactification. This shows that the P -Martin boundary, the Gromov boundary and 
the geodesic boundary coincide and, therefore, that the Dirichlet problem at infinity is 
solvable for each one of these boundaries. �
5. Examples

In this section, we will mainly focus on non-positively curved polygonal complexes with 
planar substructures. Rich classes of examples are provided by 2-dimensional Euclidean 
and hyperbolic buildings. Before we consider these classes more closely, let us start with 
particularly simple examples of non-buildings.

5.1. Simple examples and basic notions

As mentioned earlier, every planar tessellation Σ = (V, E, F ) is trivially a polygonal 
complex with planar substructures with just one apartment, i.e., A = {Σ}.

Next, let us introduce morphisms between two complexes X1 and X2: These are 
continuous maps from X1 to X2 mapping k-cells of X1 homeomorphically to k-cells 
of X2, for all k. A morphism f : X1 → X2 is an isomorphism if both f and f−1 are 
morphisms. In this case we call X1 and X2 isomorphic complexes.

Example 4 (“Book”). Let H = (V, E, F ) be the tessellation of the upper half space 
{(x, y) ∈ R

2 | y ≥ 0} where

V =
{
(x, y) ∈ Z

2 | y ≥ 0
}
,

E is the set of horizontal and vertical straight Euclidean line segments of length 1 
connecting two vertices of V , and F is the set of all Euclidean unit squares with vertices 
in V . Let k ≥ 2 be an integer and Xk be the polygonal complex obtained by taking k
copies of H and identifying them along their boundaries R × {0} ⊂ H. We can think 
of Xk as a book with the copies of H as its pages. Note that the union of any two 
pages can be understood as a tessellation of the plane by squares. Every such choice 
represents an apartment of the polygonal complex with planar substructures Xk. It 
is straightforward to see that Xk has non-positive sectional corner curvature. Books 
can also be obtained by combining pages with more general and different polygonal 
structures by using isomorphisms between their boundaries (considered as 1-dimensional 
cell complexes). Moreover, it is also possible to consider books with infinitely many pages. 
They are obviously non-locally finite polygonal complexes with planar substructures.
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Example 5. Let us present an example of polygonal complexes that have no planar sub-
structures satisfying (PCPS1) and (PCPS2). Let X = (V, E, F ) be given by V = Z

3, 
E be the set of straight Euclidean line segments of length 1 connecting two vertices 
of V , and F be the set of all unit squares with vertices in V . The triple X is obviously 
a polygonal complex, but there does not exist a choice of apartments (planes tessellated 
by squares) satisfying both conditions (PCPS1) and (PCPS2). The set of all planes par-
allel to the coordinate planes does not satisfy (PCPS1). Thus, we also need to declare 
certain topological planes which are bent to be apartments. But it is easy to see that 
the convexity property (PCPS2) is violated for any such bent plane.

Next, we come to two important notions in the local combinatorial description of 
polygonal complexes. Our purpose is to use these notions later to define certain buildings 
in the next sections.

Definition 5.1 (Link). Let X = (V, E, F ) be a polygonal complex. The link L(v) of a 
vertex v ∈ V is a graph defined as follows: Every edge adjacent to v is represented by a 
vertex in L(v), and two vertices w1, w2 in L(v) are connected by an edge in L(v) if the 
edges in X corresponding to w1, w2 are edges of a face f in F .

As an easy example one finds that the link of a vertex of degree d in a planar tessel-
lation is a d-gon. Similarly, one finds that the link of a vertex in Z3 is an octahedron.

Furthermore, polygonal complexes are often described via the type of their faces and 
the graphs appearing as links. It is proven in [3, Theorem 1] that for given p ≥ 6, n ≥ 3
there is a continuum of non-isomorphic simply connected polygonal complexes such that 
the faces are p-gons and the links of all vertices are the 1-skeletons of an n-simplex.

Next, we give the definition of generalized m-gons that appear as links of Euclidean 
and hyperbolic buildings which are introduced in the next section.

Definition 5.2 (Generalized m-gon). Let m ≥ 2 be an integer. A generalized m-gon is 
a connected bipartite graph of diameter m and of girth 2m such that each vertex has 
degree ≥ 2.

Next to ordinary 2m-gons, important examples of generalized m-gons are the Heawood 
graph (m = 3) and complete bipartite graphs (m = 2). As it shall be discussed in the 
next sections, they appear as examples of links of vertices of buildings.

Let us make another remark to stress the relevance of these notions. The adjacency 
matrices of regular generalized m-gons have interesting spectral properties. In particular, 
they are Ramanujan graphs (see [47, Section 8.3]). Spectral properties of the links of 
vertices of 2-dimensional simplicial complexes were also very useful to obtain Kazhdan
property (T) for groups acting cocompactly in these complexes (see [5]).
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5.2. Euclidean and hyperbolic buildings

Let us give a quick introduction into 2-dimensional Euclidean and hyperbolic build-
ings, following essentially [28]. In contrast to our Definition 2.1, the cells in the polygonal 
complexes used for Coxeter complexes and buildings have an additional metric structure, 
namely, the 1-cells are open Euclidean or hyperbolic geodesic segments and the 2-cells 
are Euclidean or hyperbolic polygons (we restrict our considerations to compact ones), 
and the attaching maps are isometries (see also [14, Sct. I.7.37]). We call an isometric 
isomorphism between two polygonal complexes an isometry, for simplicity. The closures 
of the 2-cells are called chambers of the polygonal complex.

Important planar polygonal complexes are Coxeter complexes, which we introduce 
first (for more details see, e.g., [34]). Let X stand for either the Euclidean plane R2 or 
the hyperbolic plane H2. Let P ⊂ X be a compact polygon with k ≥ 3 vertices such that 
the interior angle at vertex i is of the form π/mi with mi ≥ 2. We call such a polygon 
P a Coxeter polygon. Let S = {s1, . . . , sk} be the set of reflections along the sides of P
and W be the group generated by the elements of S. Then it is a well known fact due 
to Poincaré that W is a discrete subgroup of the isometry group Iso(X) with P as its 
fundamental domain, i.e., the translates {gP | g ∈ W} form a tessellation of X, which 
is a planar polygonal complex in the above sense. We refer to it as the Coxeter complex
C(W, S) and call the polygon P the generating polygon of the Coxeter group (W, S).

Definition 5.3 (Building). Let X ∈ {R2, H2}, P ⊂ X be a Coxeter polygon and (W, S) be 
the associated Coxeter group. A (2-dimensional) building of type (W, S) is a polygonal 
complex X = (V, E, F ), together with a set A of subcomplexes whose elements Σ =
(VΣ, EΣ, FΣ) are called apartments, with the following properties:

(B1) For any two cells of X there is an apartment containing both of them.
(B2) If Σ1 and Σ2 are two apartments containing two cells c1, c2 of X, then there exists 

an isometry f : Σ1 → Σ2 which fixes c1 and c2 pointwise.
(B3) Each apartment Σ is isometric to the planar tessellation C(W,S).

The building X is called Euclidean if X = R
2 and hyperbolic if X = H

2. A building is 
called thick if every edge is contained in at least three chambers. A building which is not 
thick is called a thin building.

Proposition 5.4. Every 2-dimensional Euclidean or hyperbolic building is a polygonal 
complex with planar substructures, i.e., it satisfies the axioms (PCPS1 ), (PCPS2 ),
(PCPS3 ).

Proof. Disregarding the additional Euclidean or hyperbolic structure of the cells of 
a building, we can view it and its apartments as polygonal complexes in the sense 
of Definitions 2.1 and 2.3. Since the apartments of buildings are always convex (see 
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[28, p. 164, l. −5] and also [1, Corollary 5.54] or [29, Proposition on p. 59] for simplicial 
buildings), we see that every building is a polygonal complex with planar substruc-
tures. �
5.2.1. Euclidean buildings

In this subsection we discuss how our theory applies to Euclidean buildings and give 
two specific examples.

As discussed above the Coxeter polygon P has to be a k-gon whose interior angles 
are given by π/m1, . . . , π/mk with integers m1, . . . , mk ≥ 2 which have to satisfy

(k − 2)π = π

m1
+ . . . + π

mk

due to the Euclidean structure. This implies k ≤ 4. As for P being a triangle, k = 3, one 
has either of the interior angles {π

3 , 
π
3 , 

π
3 }, {

π
2 , 

π
4 , 

π
4 } or {π

2 , 
π
3 , 

π
6 }. Each of these choices 

leads to a unique Coxeter group and to a class of Euclidean buildings which are said 
to be of type Ã2, C̃2 and G̃2, respectively, see [1, Example 10.14]. For k = 4 the only 
possibility for P is to be the regular equilateral, the square.

By this discussion the following proposition can be checked immediately. We highlight 
it as it clarifies the applicability of the results of the previous sections to Euclidean 
buildings.

Proposition 5.5. For every 2-dimensional Euclidian building, we have κ(Σ) = 0, for every 
apartment Σ. Moreover, the sectional corner curvature κ(Σ)

c is constantly zero on every 
apartment Σ if and only if the Coxeter polygon is an equilateral triangle (type Ã2) or a 
square. Otherwise, some of the sectional corner curvatures are strictly positive.

Proof. For the Coxeter polygon P with interior angles given by π/m1, . . ., π/mk, the 
vertex degrees in the apartments of corresponding buildings have to be 2m1, . . . , 2mk in 
order to sum up to 2π about each vertex. This gives the result by direct calculation. �

Let us stress that even though there are only three types of Euclidean triangles as 
Coxeter polygons, a classification of all buildings of one of these types is impossible 
because of their abundance (see [56, p. 157]).

Next we focus on two examples in more detail. First we revisit Example 1 in Subsec-
tion 2.1 in more detail.

Example 1 (revisited). This example is a thick Euclidean building based on an equilat-
eral Euclidean triangle. Thus, it is of type Ã2 and has, therefore, zero sectional corner 
curvature.

To get a better understanding of this building, it is worth looking at the links of its 
vertices. It can be checked, that these links are all isomorphic to the Heawood graph 
which is a generalized 3-gon.



M. Keller et al. / Advances in Mathematics 307 (2017) 1070–1107 1099
Next, we consider a natural class of Euclidean buildings based on a square.

Example 6 (Product of trees). Let r, s ≥ 2 and Tr and Ts be infinite regular metric trees 
of vertex degrees r and s, respectively. All edge lengths are chosen to be 1. We can think 
of one of the trees, say Tr, to be horizontal and the other one to be vertical. Then the 
product Tr × Ts carries a natural structure of a thick Euclidean building X = (V, E, F )
with P = [0, 1]2 ⊂ R

2. The set V consists of all pairs (x, y) where x and y are vertices 
in Tr and Ts respectively. Two vertices (x1, y1), (x2, y2) ∈ V are connected by an edge 
in E, if either (x1 = x2 and y1 ∼Ts

y2) or (y1 = y2 and x1 ∼Tr
x2). In the first case we 

call the edge in E horizontal and in the second case we call the edge in E vertical. The 
chambers are the unit squares with boundary vertices (x1, y1), (x1, y2), (x2, y1), (x2, y2)
for any choice x1 ∼Tr

x2 and y1 ∼Ts
y2. All vertices in Tr × Ts have degree r + s (with 

r emanating horizontal and s emanating vertices edges). Moreover, a vertical edge is 
contained in precisely r chambers while a horizontal edge is contained in precisely s
chambers.

Two bi-infinite combinatorial geodesics g1 ⊂ Tr and g2 ⊂ Ts can be viewed as infinite 
regular trees of vertex degrees 2. The corresponding subcomplex Σ = Σg1,g2 = g1 × g2 is 
isomorphic to a regular tessellation of R2 by unit squares. We choose A to be the set of 
all those subcomplexes.

From the proposition above we learn that the sectional corner curvatures are con-
stantly zero, i.e., κ(Σ)

c = 0 for every apartment.
Another interesting fact about these buildings is that the link of every vertex in Tr×T2

is the complete bipartite graph Kr,s.

5.2.2. Hyperbolic buildings
Finally, let us consider some examples of hyperbolic buildings.
In the hyperbolic case, the Coxeter polygon P has to be a k-gon whose interior angles 

π/m1, . . . , π/mk with integers m1, . . . , mk ≥ 2 have to satisfy

(k − 2)π >
π

m1
+ . . . + π

mk

due to the hyperbolic structure.
This gives the following immediate consequence.

Proposition 5.6. For every 2-dimensional hyperbolic building, we have κ(Σ) < 0, for every 
apartment Σ. Moreover, the sectional corner curvature satisfies κ(Σ)

c < 0 if the Coxeter 
polygon is a regular hyperbolic polygon.

Proof. Again, the vertex degrees in the apartments of corresponding buildings have to 
be 2m1, . . . , 2mk in order to sum up to 2π about each vertex. This gives the result by 
direct calculation using the discussion above. �
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Note that while all hyperbolic buildings have negative sectional face curvature they 
do not always have also non-positive sectional corner curvature: consider a tessellation 
of the hyperbolic plane by triangles with interior angles π

r , 
π
s , 

π
t with r, s, t ≥ 2 and 

1
r + 1

s + 1
t < 1 (which has to be satisfied as the sum over the angles of a hyperbolic 

triangle has to be less than π). This tessellation is a thin hyperbolic building and it has 
non-positive corner curvature if and only if r, s, t ≥ 3.

Henceforth, we only consider hyperbolic buildings with regular polygons as faces. These 
hyperbolic buildings have always negative sectional corner curvature by the above propo-
sition.

Below, we briefly outline three examples of hyperbolic buildings and refer the inter-
ested readers to the corresponding references.

We start with hyperbolic buildings whose faces are right-angled polygons.

Example 7 (“Bourdon buildings”). Let p ≥ 5 and q ≥ 3. Then there is a unique hy-
perbolic building Xp,q with the following properties (see [13]): All chambers are regular 
right-angled hyperbolic p-gons and the link L(v) of every vertex is the complete bipar-
tite graph Kq,q. Since every edge of Xp,q lies in q chambers, Xp,q is a thick building. 
Moreover, Xp,q has constant negative sectional corner curvature κ(Σ)

c = 1/p − 1/4 < 0.

Next, we mention a general method to obtain hyperbolic buildings admitting a co-
compact group action. First, we choose finitely many hyperbolic polygons, label their 
oriented edges and identify edges with the same labels (these edges must obviously have 
the same length). We call such a compact polygonal complex a polyhedron. Then its uni-
versal covering is again a polygonal complex (admitting a cocompact group action with 
this polyhedron as its quotient) and the links of its vertices provide useful information 
in the decision whether it is a building (see, e.g., [28]).

Next, we give an example which uses this construction.

Example 8 (see [59,41]). Let K be a polygonal presentation associated to the disjoint 
connected bipartite graphs G1, . . . , Gn in the sense of [41, Definition 1.2]. Assume that 
all Gi are copies of the same generalized m-gon. Every cyclic p-tuple in K provides a 
clockwise labeling of the oriented edges of a regular hyperbolic p-gon with angles π

m . 
If mp > 2m + p then the universal covering of the polyhedron corresponding to K

is a hyperbolic building, see [59, p. 472]. It has constant sectional corner curvature 
κ

(Σ)
c = (2m + p − mp)/(2mp) < 0. This approach provides examples of hyperbolic 

buildings with p-sided chambers for arbitrary p ≥ 3 with a cocompact group action.
In particular, the triangle presentations given in [41] lead to explicit hyperbolic build-

ings with regular triangles as faces.

Finally, techniques of Haglund [31] provide us with the following result.

Example 9 (see [28, Thme. 3.6]). Let P ⊂ H
2 be a regular hyperbolic polygon with angles 

π , m ≥ 3 and an even number of sides. Let (W, S) be the associated Coxeter group. 
m
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Let L be an algebraic generalized m-gon over a field with large enough cardinality. (The 
term “algebraic” refers to the fact that the m-gon is based on a Chevalley quadruple, 
see [28, Definition 3.3].) Then there are uncountably many hyperbolic buildings of type 
(W, S) with faces isometric to P such that all links are isomorphic to L.

5.3. Maximal apartment systems in buildings

Since any union of apartment systems of a building X = (V, E, F ) forms again an 
apartment system (see [1, Thm. 4.54] for a proof in the case of simplicial buildings), 
there exists a unique maximal system of apartments by Zorn’s lemma. In the proof of 
positive Cheeger constant as a consequence of negative curvature (Theorem 3.8), we used 
the stronger axiom (PCPS1∗) instead of (PCPS1). Below we show that, for a building 
with maximal apartment system, (PCPS1∗) is satisfied. We give the full reference for 
the simplicial case and we believe that the result remains true in the polygonal case as 
well. The proof was indicated to us by Shahar Mozes.

Theorem 5.7. Every locally finite 2-dimensional Euclidean or hyperbolic building with a 
maximal apartment system satisfies the axioms (PCPS1 ∗), (PCPS2), (PCPS3).

Proof. By Proposition 5.4 we only have to show (PCPS1∗), that is, every one-sided infi-
nite geodesic is included in an apartment. Consider a one-sided infinite geodesic (fj)j≥0

of faces. Define A0 to be the set of all apartments that contain f0. Define a metric δ on 
A0 viz

δ(Σ1,Σ2) = 1/max
{
r ∈ N | Σ1 ∩Br(f0) = Σ2 ∩Br(f0)

}
for Σ1 �= Σ2 and 0, otherwise. We show that the metric space (A0, δ) is compact by 
showing that it is totally bounded and complete. Note that total boundedness of (A0, δ), 
(i.e., the metric space can be covered by finitely many ε balls for every ε > 0) follows 
from local finiteness, as local finiteness implies the set {Σ ∩Br(f0) | Σ ∈ A0} is finite for 
all r. In order to see completeness, we let (Σn) be a Cauchy sequence in A0 and observe 
that, for a given r, there is N such that br = Σn ∩ Br(f0) are constant for n ≥ N . One 
can check that Σ =

⋃
r≥1 br is isometric to the Coxeter complex C(W, S) and, thus, Σ is 

contained in the system of maximal apartments by [1, Proposition 4.59]. Hence, Σ ∈ A0

and, thus, Σ is a limit of (Σn) in A0. Hence, (A0, δ) is totally bounded and complete and, 
thus, compact. Now, let Σn ∈ A0 be an apartment that contains fn and, by convexity 
of the apartments, f0, . . . , fn ∈ Σn. By compactness, there is a convergent subsequence 
with limit Σ ∈ A0 which therefore contains the faces of the geodesic (fj)j≥0. �

Let us close this section by a one-dimensional example that shows that the choice of 
the apartment system is not unique. Analogues in higher dimensions are easy to find.
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Example 10. Let Tr = (V, E) be a regular metric tree of edge length 1 and vertex degree 
r ≥ 3, and let φ : E → {1, 2, . . . , r} be a labeling of the edges such that the r edges 
emanating from every vertex carry pairwise different labels. Let A be the set of bi-infinite 
paths (fk) such that the bi-infinite sequence xk = φ(fk) has no doublings (i.e., xk �= xk+1
for all k ∈ Z) and is periodic (i.e., there exists t ≥ 1 such that xk+t = xk for all k ∈ Z). 
Then it is easy to see that Tr together with A as its system of apartments forms a 
one-dimensional Euclidean building. Another choice A′ of an apartment system is the 
set of all bi-infinite paths without doublings in the above sense, which is the maximal 
apartment system. It is obvious that A′ is a strictly bigger apartment system than A.
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Appendix A. Comparison to Wise’s curvature

In this appendix we compare our notion of curvature for polygonal complexes with 
planar substructures to the definition of sectional curvature by Wise.

We start by briefly introducing the sectional curvature notion of Wise. For more details 
we refer to [60] and references therein.

Let X be a polygonal complex. We restrict ourselves to the case where all polygons 
are regular, that is, all angles in an n-gon f have degree π(n − 2)/n (which implies that 
Wise’s curvature of the face f vanishes).

For a vertex v in X, a section is a based immersion, i.e. locally injective map,
σ : (S, s) → (X, v) from a polygonal complex S = (VS , ES , FS) to X such that σ(s) = v. 
A section is called planar if the link L(s) of s is a circle. In this case the curvature κσ

at v with respect to σ is defined by

κσ(v) = 1 − |s|S
2 +

∑
f∈FS ,s∈f

1
|f |S

.

We say that a polygonal complex has non-positive planar sectional curvature in the sense 
of Wise at v if κσ(v) ≤ 0 for all vertices v and all planar sections σ.

In comparison to our definition it is obvious that Wise’s definition is “much more 
local”, i.e., it does not need any planar substructures but only planar sections.
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Nevertheless, a natural question is how non-positive curvature in the sense of our 
paper is related to non-positive curvature in the sense of Wise.

To get the obvious out of the way let us mention that for the sectional face curvature 
as we defined it, there is no relation to the “vertex” curvature of Wise. In particular, 
already in the case of planar tessellations vertex and face curvature are not related, 
namely, there are graphs with somewhere positive vertex curvature but non-positive face 
curvature everywhere and vice versa.

Let us turn to a more subtle question. Many of our results use the assumption of non-
positive sectional corner curvature. This raises the question whether this already implies 
non-positive planar sectional curvature in the sense of Wise for polygonal complexes with 
planar substructures.

The non-obvious part here stems from the fact that for a polygonal complex with 
planar substructures there might be a based section σ : (S, s) → (X, v) such that S
is locally not isomorphic to an apartment of X. On the other hand, convexity of the 
apartments is a rather strong assumption. So, we will show that non-positive sectional 
corner curvature implies non-positive planar sectional curvature in the sense of Wise. 
This is the main result of this appendix.

Theorem A.1. If a polygonal complex with planar substructures has non-positive sectional 
corner curvature, then it has non-positive planar sectional in the sense of Wise.

A key ingredient for the proof of this theorem is the following lemma.

Lemma A.2. Let Σ be a non-positively corner curved apartment. For two faces f, f ′

sharing only a common vertex v, let f0, f1, . . . , fn be the faces around v with cyclic 
enumeration such that f0 = f . Let 1 ≤ k ≤ n such that fk = f ′. Then, at least one of 
the two paths γ1 = (f = f0, f1, f2, . . . , fk = f ′) and γ2 = (f0 = f, fn, fn−1, . . . , fk = f ′)
is a geodesic.

Proof. We give an indirect proof. Every geodesic γ = (g0 = f, . . . , gm = f ′) encloses a 
(possibly empty) interior domain of faces (since f and f ′ touch in the vertex v) and this 
interior together with the geodesic γ encloses one of the two paths γ1 or γ2. Since we 
assume that none of these two paths is a geodesic itself, every geodesic γ connecting f

and f ′ has a non-empty interior of faces. Let γ0 = (g0 = f, g1, . . . , gm = f ′) be a 
geodesic connecting f and f ′ with minimal number of interior faces and let f̂0 be a face 
in the strictly interior of γ0. Then we can find a geodesic γ̂ = (h0 = f, h1, . . . , hn = f̂0)
consisting only of faces of γ0 itself and its interior (subpaths of γ̂ lying outside γ0 and 
with end faces in γ0 can be replaced by the corresponding subpaths along γ0). Since Σ
has non-positive corner curvature, the cut locus of f is empty [9, Theorem 1] and we can 
extend the geodesic γ̂ consecutively by interior faces f̂1, f̂2, . . . with d(f, f̂i) = n + i until 
f̂r coincides again with a face gj of γ0. Then, the geodesic γ′ = (h0, . . . , hn = f̂0, . . . , f̂r =
gj , . . . , gm) connects f and f ′ with less inner faces than γ0, which is a contradiction. �
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Proof of Theorem A.1. Assume there is a vertex v of the polygonal complex with planar 
substructures X with a planar section σ : (S, s) → (X, v) such that κσ(v) > 0. We show 
that there must be a corner in an apartment of X with positive corner curvature.

We prove this statement by contradiction. So, we assume, in particular, there is no 
apartment Σ such that there is an immersion (S, s) → (Σ, v). Let n be the number of 
neighbors of s in S. We distinguish three cases n = 3, 4, 5 as for the case n ≥ 6 we always 
have κσ(v) ≤ 0. In each case, we enumerate the faces around v with respect to σ by 
f0, . . . , fn−1 in cyclic order and denote the common edge of fj and fj+1 by ej .

Case n = 3: Let Σ be an apartment that contains f0 and f1 (but not f2). Then, there 
is a face g �= f2 in Σ adjacent to f1 and v in e1. Then, (f0, f1, g) is a geodesic: Otherwise, 
f0 and g were adjacent and intersect in one of the edges e0 or e2. In the first case, 
g intersects f1 in two edges which is a contradiction to the axioms of a tessellation for 
the apartment that contains g and f1, cf. (PCPS3). In the second case, g intersects f2 in 
two edges and we obtain again a contradiction by the same argument. Hence, (f0, f1, g)
is a geodesic. But, then also (f0, f2, g) is a geodesic which implies that f0, f1, f2 are all 
contained in one apartment, by (PCPS2), which is a contradiction.

Case n = 4: Since f0 and f2 are not adjacent, both paths (f0, f1, f2) and (f0, f3, f2)
are geodesics and f0, . . . , f3 are in the same apartment, which is a contradiction.

Case n = 5: Note that positive planar sectional curvature in the sense of Wise implies 
that at least four of the faces f0, . . . , f4 must be triangles and the sum of the angles of any 
two corners (v, fi), (v, fj) is < π. Since f0, . . . , f4 are not in contained in an apartment, 
there must be a face g adjacent to one of the edges e0, . . . , e4, say w.l.o.g. e2. Consider 
the path γ0 = (f0, f1, f2, g). If γ0 was a geodesic so is (f0, f4, f3, g). Since both geodesics 
must be contained in the same apartment, by (PCPS2), this implies that f0, . . . , f4 are 
contained in one apartment contrary to the assumption.

So, γ0 is not a geodesic and d(f0, g) = 1 or d(f0, g) = 2. In the first case, g and f0
must be adjacent along one of the edges e0 or e4. If they are adjacent along e0, then 
f1, f2, g are three faces around v with positive planar sectional curvature in the sense of 
Wise (since the sum of the angles in the corners (v, f1) and (v, f2) is < π) and we can 
return to Case n = 3 to obtain a contradiction. An analogous argument applies if g and 
f0 are adjacent along e4. So, we have d(f0, g) = 2. Let Σ be an apartment containing 
f0 and g. Since both faces touch in v, we can apply Lemma A.2 and find a face h ∈ Σ
adjacent to f0 and g and containing v, such that (f0, h, g) is a geodesic. Moreover, h and 
f0 share one of the two edges e0 or e4. We can assume, w.l.o.g., that f0 is a triangle. 
(Namely, if f0 is not a triangle, then f3 is a triangle and we rename the faces f0, h, g by 
f3, g, h, respectively. Note that (f3, g, h) is also a geodesic.) Since we assume that the 
corner curvature of (v, f0) is non-positive in Σ, we have |v|Σ ≥ 6 and, by Lemma A.2, 
d(f0, g′) = 3 for the second neighbor g′ �= h of g along v in Σ. Note that g′ meets g in 
the edge e2 and that g′ �= f2, f3 since d(f2, f0) = d(f3, f0) = 2. Now, we consider the 
apartment Σ containing f0 and g′, which must contain both geodesics (f0, f1, f2, g′) and 
(f0, f4, f3, g′), in contradiction to the assumption that f0, . . . , f4 do not lie in a common 
apartment. �
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