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The discovery of the Higgs boson marks a key ingredient to establish the electroweak structure of the 
Standard Model. Its non-abelian gauge structure gives rise to, yet unobserved, non-perturbative baryon 
and lepton number violating processes. We propose to use cosmic ray air showers, as measured, for 
example, at the Pierre Auger Observatory, to set a limit on the hadronic production cross section of 
sphalerons. We identify several observables to discriminate between sphaleron and QCD induced air 
showers.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The recent discovery of the Higgs boson [1,2] was the last miss-
ing piece to establish the Standard Model of particle physics as 
effective theory describing interactions at O(1) TeV. The Standard 
Model is predicted to give rise to non-perturbative solutions at en-
ergies of O(α−1

W mW ) TeV � O(10) TeV which can result in the 
production of many quarks, leptons and electroweak gauge bosons. 
This production of multiple electroweak gauge bosons can occur 
with [3–5] or without [6–8] baryon and lepton number violating 
(BLNV) processes. The latter can be indicative for the existence 
of electroweak sphalerons [9], unstable solutions of the classical 
action of motion for the Standard Model’s SU (2)L that are interpo-
lating between topologically distinct vacua. Their discovery would 
yield direct implications for the observed matter-anti-matter asym-
metry of the universe [10–12]. However, whether these processes 
can be observed at the LHC or a future collider remains an open 
question as their production cross section is largely theoretically 
unknown [13–18].

Phenomenologically lepton-number violating processes with 
many gauge bosons would give rise to striking signatures at hadron 
colliders, easily distinguishable from Standard Model backgrounds 
generated in perturbatively describable interactions: events with 
many leptons, missing energy and large H T are expected [19,20]. 
Thus, the limiting factor to study non-perturbative solutions of 
the Standard Model gauge group is the centre-of-mass energy of 

* Corresponding authors.
E-mail addresses: gusbroo@phys.columbia.edu (G. Brooijmans), 

peter.schichtel@durham.ac.uk (P. Schichtel), michael.spannowsky@durham.ac.uk
(M. Spannowsky).
http://dx.doi.org/10.1016/j.physletb.2016.08.030
0370-2693/© 2016 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
the initial state particles and the sphaleron production cross sec-
tion. While the LHC with up to 

√
s = 14 TeV is unlikely to be able 

to induce these processes, a future proton–proton collider with √
s � 100 TeV might be able to [21].

Intriguingly, ultra high energy cosmic rays (UHECRs) provide 
us with a natural source for proton–nucleon collisions, where the 
most energetic ones, E = 1011 GeV, reach collision energies with 
nucleons in the atmosphere of 

√
s � √

2mN E � 500 TeV. In this 
paper we study whether the striking signatures of BLNV processes 
induced by sphalerons can be observed at ground-based detection 
experiments, e.g. the Pierre Auger Observatories.

Previous work aimed at setting limits on new physics using cos-
mic ray interactions has either predominantly focused on exploit-
ing primary and secondary neutrinos [22–25] or hadronic shower 
particles [26]. An alternative way of setting a limit to sphaleron 
production at Auger was proposed in [27]. The authors advise to 
use the deeply penetrating horizontal-showers to earth-skimming-
showers ratio as measure, see also [28,29]. These showers originate 
from ultra high energetic neutrinos and their ratio is sensitive to 
the neutrino cross section. However, their limits still rely on the 
experimentally poorly known neutrino flux and the so-called ‘holy 
grail’ function for the sphaleron production cross section [14]. As 
sphaleron production is a non-perturbative process, the precise 
calculation of its production cross section is very challenging and 
new approaches resulting in widely different estimates have been 
advocated recently [18]. Hence, to be as model-independent as 
possible we will abstain from making a definite assumption on the 
parametric dependence of the sphaleron production cross-section.

We instead propose to study hybrid measurements of the lon-
gitudinal shower profile together with the flux of muons at ground 
level. Furthermore, we show the intense imprint the hard process 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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leaves in the shower distributions of muons at ground level ini-
tiated by proton–proton interactions in the atmosphere. Here we 
exploit the fact that these two observables react in a very distinct 
manner to the ultra high energy processes in the upper atmo-
sphere. The longitudinal shower profile is sensitive to the num-
ber of final state objects sharing the total initial energy. We will 
show that the muon flux, once the primary energy is fixed,1 is 
sensitive to the particle multiplicity of the initial state. Therefore, 
our findings are straightforwardly generalisable to black-hole and 
multi-resonance production processes.

In the following section we first discuss our analysis frame-
work and the potential final states induced. We then compare 
these signatures with existing data as measured by the Auger Ob-
servatory and derive actual limits on the production cross section 
of sphaleron processes in the second section of this paper. In the 
last section we extend the analysis assuming more detailed shower 
data was accessible. Finally we provide a summary of our findings.

2. Elements of the analysis

Calculating processes involving multi-vector boson final states 
accompanied by several quarks and leptons is a very difficult task 
in proton–proton collisions. Not only because the phase space is 
very complex, but also because in our case the final state is in-
duced by a non-perturbative hard process.

For the signal events we use HERBVI [15,30] as implemented 
in HERWIG [31], specifically designed to generate BLNV processes. 
The BLNV process we study induces a change in baryon and lepton 
number �B = �L = −3 and is assumed to be

qq → 7q̄ + 3l̄ + nV W /Z + nH H, (1)

where the incoming quarks and one outgoing antiquark are of first 
generation, and three outgoing antiquarks are of each of the sec-
ond and third generations.

While it is for sphaleron-induced processes not necessary to in-
volve electroweak bosons, it was suggested that production cross 
sections are enhanced if many electroweak bosons O(1/αW ) are 
produced in association with the fermions [3–5,32,33]. Hence we 
select nV = 24 and nH = 0 in our simulation.

To compute observables for Auger we further process the events 
with CORSIKA [34] version 4.7. As default interaction models we 
chose QGSJET [35] and GHEISHA [36]. The proton induced QCD 
background we compute with HERWIG as well. To make sure that 
HERWIG handles the signal and background collisions correctly we 
let CORSIKA also simulate primary collisions on its own and com-
pare to our HERWIG results. We find very good agreement, for 
example in the spacial number distribution of secondaries over all 
energies. Iron induced QCD collisions, used as baseline for heavy 
primaries, are computed with CORSIKA alone. We shower 1000 
primary events for each sample considered in the following. We 
use an example interaction point with 45 degree inclination and 
18.3 km altitude. We checked that the sensitivity remains largely 
unchanged when varying these values.

3. Observables and limits from Auger

The probability to produce a sphaleron in proton–proton col-
lisions from high-energetic proton-cosmic rays is readily parame-
trised by

Psphal = A σsphal/σT , (2)

1 This can be done independently via longitudinal evolution.
Fig. 1. Distribution of Xmax for QCD proton (blue) and iron (green), as well as 
sphaleron (red) induced events at a primary energy of 1 EeV. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

where A = 14.6 is the average atomic mass of a nucleus of air 
[26] and σT is the total cross section of a proton with the air. The 
numerical value for σT for centre-of-mass collision energies 

√
s

corresponding to EeV primaries we quote from [37] to be 505 ±
22 (stat) +28

−36 (sys) mb.
The Auger Observatory is a ground-based cosmic ray detec-

tor. It uses a surface detector array (SD) consisting of 1600 water 
Cherenkov detectors covering an area of 3000 km2 and a fluo-
rescence detector (FD) to study detailed properties of cosmic ray 
showers in the atmosphere. The combination of SD and FD allows 
the sampling of electrons, photons and muons at ground level and 
the measurement of the longitudinal development of air showers 
[38,39].

The number distribution of particles in longitudinal direction 
can be measured by the FD system. It follows the Gaisser–Hillas 
function [40]. Xmax denotes the atmospheric depth, where the 
number of electro-magnetic particles reaches its maximum. It can 
be used to measure the nature of cosmic rays [41]. In Fig. 1 we 
show the distribution of Xmax for QCD (proton and iron induced) 
and sphalerons at E = 1 EeV. While the proton induced QCD is 
clearly distinguishable from the sphalerons the iron one is not. This 
is connected to the fact that the presence of a sphaleron induces a 
high-multiplicity final state. Therefore, the total available energy is 
shared between these final state particles causing a similar effect 
as for the nucleons building up iron. To remedy this fact we also 
study the radial muon distribution ρμ on ground level in Fig. 2. 
Therefore we compute the expected number of muons between 
500 and 600 meter distance from the shower core. Here we find 
a complementary pattern. The sphalerons re-assemble the proton 
induced QCD events, while iron is clearly distinguishable. This en-
courages us to use these two observables as input for a cut and 
count analysis.

Furthermore, we note that the mean values depend for both 
observables not only on the short scale physics but also on the col-
lision energy, angle and interaction height. While the dependence 
on the angle is rather strong this does not pose a problem as the 
incident angle can be measured well by Auger.2 The dependence 

2 We use the vertical optical depth here and not the SLANT depth.
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Fig. 2. Expected flux of muons ρμ for QCD proton (blue) and iron (green), as well 
as sphaleron (red) induced events between 500 m and 600 m distance from the 
shower core. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)

Table 1
〈Xmax〉 and 〈ρμ〉 for QCD proton and iron, as well as sphaleron induced events. 
In the upper row we present possible cut values. εS respectively εB is the survival 
probability.

log E[GeV] 8 9 10

Xmax,cut 495 550 600
ρμ,cut 41 28 23

sphaleron 〈Xmax〉 485 ± 28 540 ± 29 588 ± 36
〈ρμ〉 33.4 ± 6.7 25.9 ± 5.7 21.1 ± 5.3
εS 0.56 0.49 0.49

proton QCD 〈Xmax〉 525 ± 32 572 ± 32 615 ± 34
〈ρμ〉 5.6 ± 2.4 25.6 ± 6.2 21.0 ± 5.3
εB 0.16 0.19 0.26

iron QCD 〈Xmax〉 488 ± 29 532 ± 27 573 ± 39
〈ρμ〉 45.5 ± 6.8 33.8 ± 5.6 26.7 ± 5.1
εB 0.19 0.14 0.22

on the collision height only becomes significant when the uncer-
tainty on the primary interaction exceeds several kilometres. Pri-
mary altitude as well as energy are measured well by Pierre Auger.

In Table 1 we show the expected average of Xmax and ρμ

for different collision energies for both types of QCD as well as 
sphaleron induced events. In the first row we show a possible 
choice of cut values for these observables. The third sub-row in 
each of the different physics scenarios presents the corresponding 
survival probabilities for that channel.

In principle the width can be used to differ between protons 
and heavy nuclei as well [42]. However, we do not find any sensi-
tivity here.

Asking for S/
√

B > 2 to set a 95 % confidence limit we can com-
pute an upper limit on the fraction of the total proton air cross 
section

fσT ≤
√

4εB

ε2
S A2N

, (3)

where N is the number of recorded air showers. To estimate the 
sensitivity of Auger we study its hybrid measurement mode. For 
the EeV energy range ref. [43] found 4329 events recorded be-
tween December 2004 and April 2007, while ref. [41] found 3754 
until 2009. Another analysis [44] extracted 6744 events until 2011. 
Fig. 3. Expected average energy of a muon at the altitude of Auger for different 
primary energies. Sphalerons in red and QCD in blue. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of 
this article.)

We estimate that Auger has 10000–15000 suitable events by now.3

Cutting at 50% signal efficiency yields approximately a 20% back-
ground efficiency, see Table 1. The limit on the sphaleron cross 
section is therefore 0.0010–0.0012 × σT , e.g. σsphaleron ≤ 600 μb. 
Furthermore, a dedicated sphaleron analysis could also take lower 
energy data (E ≈ 1017 eV) into account, where the difference be-
tween sphalerons and QCD is more pronounced. Additionally Auger 
may design less stringent shower quality cuts streamlined for a 
dedicated sphaleron analysis. Auger could therefore be in a posi-
tion to limit the sphaleron cross section to the level of few micro 
barn.

4. Shower observables for improved limits

So far we have shown that Auger is able to set an upper limit 
on the sphaleron cross section using a simple cut and count ap-
proach for the longitudinal shower profile together with the muon 
flux at ground level. However, we expect a structural imprint in 
each cosmic ray shower itself, which we can possibly connect to 
the short distance physics during the collision. It is therefore our 
aim in this section to identify additionally discriminating observ-
ables in air showers. These will not be simply reconstructible from 
the Auger detectors, but rather show the great power of cosmic ray 
showers as window to new physics. We hope to trigger discussion 
in the experimental community concerning the practical feasibil-
ity of such measurements. In the following we only use showers 
with zero inclination and fix the height of the primary collision to 
18.3 km. We neglect iron induced events.

In Fig. 3 we plot the expected average energy a muon carries 
when reaching the Cherenkov chambers. We observe a huge dif-
ference between the sphaleron induced events and QCD. To trace 
back this difference we first exploit the expected energy distribu-
tion per event, see Fig. 4. QCD and sphalerons look exactly the 
same except for the high energy region, where the sphaleron dis-
tributions are enhanced. Indeed, as we show in Fig. 5, it is almost 
exclusively the highest energy muon which induces this difference. 
To learn more we also plot the radial energy distribution in Fig. 6. 
Again QCD and sphaleron events almost agree completely except 

3 We think this a conservative estimate.
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Fig. 4. Expected energy distribution per event for muons. (For interpretation of the 
references to colour in this figure, the reader is referred to the web version of this 
article.)

Fig. 5. Distribution of the most energetic muon in sphaleron (red) and QCD (blue) 
events. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

for the shower core. We can therefore conclude that a sphaleron 
event will most likely be accompanied by a very highly energetic 
muon within its shower core. Tagging this one muon constitutes a 
powerful method to observe sphaleron induced air showers. In ad-
dition we note that sphaleron events are significantly bigger than 
QCD events, see Fig. 6. While all energy of QCD events is confined 
in a radius of less than 10 km around the primary collision point, 
sphaleron events can induce air showers with radii of 100 km and 
more. Some of the quarks and gauge bosons in the sphaleron decay 
can have large transverse momenta. Although the flux of muons is 
small in the most outer part of the air shower, it can be used as a 
smoking gun signature for sphalerons.

While the former observables are difficult to measure, as they 
are relying on the experiment’s ability to measure the muons’ en-
ergy, their structure is rather simple. Let us now assume that we 
have a perfect detector layer on the ground, able to measure the 
spatial and energetic distribution of all muons of the air shower. 
Fig. 6. Radial energy distribution. (For interpretation of the references to colour in 
this figure, the reader is referred to the web version of this article.)

Fig. 7. Number of jets from anti-kT R = 0.2 jet clustering algorithm. (For interpre-
tation of the references to colour in this figure, the reader is referred to the web 
version of this article.)

To search for structural differences we can cluster the muons with 
a jet algorithm, a very promising strategy at the LHC [45]. We use 
an anti-kT algorithm in spherical coordinates as implemented in 
FastJet [46] with radius parameter R = 0.2. This choice guaran-
tees good performance in the forward region as well as circular jet 
shapes when projected onto a sphere. However, due to the practi-
cal necessity of including a thinning procedure during air shower 
evolution, we are confronted with a structural problem: the thin-
ning algorithm (over)simplifies the kinematics of soft muons. To 
avoid a strong sensitivity of our observables to badly modelled soft 
particles, we only allow muon clusters with E > 10 GeV to be re-
combined into jets.

In Fig. 7 we show the number of muon-jets, an observable with 
sensitivity to decay structure. However, we can observe no differ-
ence between both hypothesis. The situation changes once we sum 
over the two4 leading jets in energy and compute the invariant 

4 Summing over more jets does not change the result any further.
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Fig. 8. Invariant mass of the sum of the first and second leading jet in energy. (For 
interpretation of the references to colour in this figure, the reader is referred to the 
web version of this article.)

mass, see Fig. 8. Obviously, there is a strong correlation between 
this observable and energy distribution of the hardest muon in 
Fig. 5.

5. Conclusions and outlook

Using Xmax, a well known air shower observable, and the muon 
flux at ground level ρμ we are able to set an upper limit on the 
sphaleron cross section of σsphaleron ≤ 600 μb assuming an amount 
of 10000–15000 events recorded by Pierre Auger. We encourage 
the experimentalists to perform a dedicated sphaleron analysis 
which might set even more stringent limits of the order of sev-
eral μb.

Furthermore, we note that measurements, which rely solely on 
Xmax [43,44,47–50], can not be used straight forward to determine 
the primary composition. Complementary information is manda-
tory as otherwise SM sphalerons cannot be entangled from heavy 
nuclei. For example, [51] presents such a measurement, where a 
discrepancy between the measured and predicted Xmax and the 
muon flux data was found. While the measurement of Xmax indi-
cates cosmic rays are predominantly protons at energies of 1018 eV
the muon flux is consistent with a relatively pure iron sample over 
the entire energy range. Hence, the combination of Xmax and muon 
flux can be used to set tight limits for sphalerons.

In the second part of this letter we introduce new air shower 
observables connected to the energy distribution of the muons and 
show that sphaleron events are most likely to have at least one 
very hard muon in their shower core. Any experiment to measure 
these hard muons could help to identify sphaleron events in air 
showers. A second observable we identified to provide a strong 
discrimination between sphaleron and QCD events is the radial size 
of the air shower.

In the last part of the paper we use jet clustering, a tech-
nique well developed in collider physics, on air shower muons. We 
demonstrate that we can recover the powerful discriminating be-
haviour observed before for the energy distribution. However, from 
a technical point of view the thinning algorithm poses an obsta-
cle. Because the algorithm is computer wise necessary we propose 
an enhancement, where, for example, the particles are not just 
dropped but clustered to ghost particles to have directional infor-
mation available as well. This, however, is clearly a field of further 
study.

We hope to initiate discussion in the community about the 
technological feasibility of such measurements. Even if one even-
tually concludes that the Auger Observatory will not be able to 
exploit these observables, it might be intriguing to use the wide 
and densely packed coverage of smart phones [52] to search for 
non-perturbative solutions of the Standard Model.
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