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Abstract  29 

The Neoproterozoic strata of the Sichuan Basin is a key target for oil and gas. To 30 

evaluate the hydrocarbon evolution and its relationship with tectonic events in the 31 

Micang Shan Uplift, northernmost Sichuan Basin, we apply solid bitumen 32 

geochemistry (bitumen reflectance and fluorescence) and rhenium-osmium (Re-Os) 33 

geochronology.  34 

The geochemistry of the solid bitumen indicates it is highly mature pyrobitumen that 35 

formed contemporaneously with dry gas generation during oil thermal cracking. The 36 

pyrobitumen is enriched in both Re (~106 - 191 ppb) and Os (~3030 - 5670 ppt). The 37 

Re-Os isotope data imply an Early Jurassic date for pyrobitumen formation, which 38 

coincides well with age estimates from fluid inclusion data and basin modelling. The 39 

Re-Os date for pyrobitumen formation coupled with previously presented AFT 40 

analysis show that exhumation of the Neoproterozoic strata occurred during the 41 

Cretaceous in the Micang Shan Uplift. This extensive uplift led to the erosion of any 42 

potential gas reservoirs and surface exposure of bitumen-bearing Neoproterozoic 43 

strata. In contrast, the more southern and central portions of the Sichuan Basin have 44 

experienced less severe exhumation and as result Neoproterozoic sourced gas systems 45 

are present. This study shows that through the combined application of Re-Os and 46 

AFT methodologies the timing of gas generation and subsequent erosion of any 47 



potential gas reservoirs in the Micang Shan Uplift, northern Sichuan Basin can be 48 

quantified. Moreover, the Re-Os and AFT data illustrate the potential to constrain the 49 

timing of gas generation in petroleum systems worldwide. 50 

Key words: Solid bitumen, Re-Os geochronology, Petroleum evolution, Gas 51 

generation, Sichuan Basin 52 

 53 

1. Introduction  54 

Hydrocarbon (oil and gas) production and shows sourced from or reservoired in 55 

Proterozoic to Cambrian successions occur worldwide, and are an important 56 

economic resource (Bhat et al., 2012; Craig et al., 2009; Ghori et al., 2009). For 57 

example, the Lena–Tunguska Proterozoic–Early Cambrian (microfossils and K-Ar 58 

dates on glauconites show the oldest date is 590 - 680 Ma) petroleum province, which 59 

includes the Lena Trough, the Kansk Basin, the Tunguska Basin, and the Sukhana 60 

Basin, located on the Siberian Craton, northern Russia, has a total estimated resource 61 

of 2 Bbbl (billion barrels) of oil and 83 Tcf (trillion cubic feet) of gas (Ghori et al., 62 

2009; Meyerhoff, 1982). In addition, three potentially economically viable 63 

Proterozoic oil and gas systems have been found in Australia (McArthur, Urapungan 64 

and Centralian), which have a combined estimated resource of over 2 Bbbl of oil and 65 

10 Tcf of gas (Bradshaw et al., 1994; Jackson et al., 1986; Munson, 2014). In the 66 

poorly explored Taoudenni Basin of North Africa, two deep exploration wells 67 

(Abolag-1 and Ouasa-1) have intersected a Neoproterozoic reservoir. A short duration 68 

open hole test on Abolag-1 well provided an estimated gas resource of 48000 scf 69 



(standard cubic feet) per day (Lottaroli et al., 2009). In China, the Sichuan Basin is 70 

another potentially prolific Proterozoic-Cambrian petroleum sourced area with an 71 

estimated resource of 26.2 Bbbl of oil and ~180 Tcf of gas (Fig. 1) (Ghori et al., 2009; 72 

Li et al., 2001; Zhang and Zhu, 2006; Zou et al., 2014a). Specific examples in the 73 

Sichuan Basin include the Weiyuan and Anyue gas fields, which are both sourced and 74 

reservoired in Neoproterozoic to Cambrian sedimentary rocks, and contain ~1.4 and 75 

~15.4 Tcf of gas, respectively (Fig. 1) (Korsch et al., 1991; Li et al., 2015; Ma et al., 76 

2010).  77 

It is considered that much of the ‘‘easy exploration’’ around the world has been 78 

exhausted, and as a result industry is being forced to focus on more challenging 79 

exploration targets, such as Neoproterozoic-Cambrian strata (Bhat et al., 2012; Craig 80 

et al., 2009; Ghori et al., 2009). However, such systems typically possess significantly 81 

more complex geological evolution compared with conventional Phanerozoic 82 

petroleum systems, and as a result the exploration risk is greatly increased (Ghori et 83 

al., 2009; Katz and Everett, 2016). Further, as a direct outcome of multiple tectonic 84 

events, potential reservoirs have experienced high temperatures and pressures as well 85 

as uplift and subsidence. These factors, coupled with low quality seismic profiles, 86 

resulted in six decades of exploration to find the Anyue giant gas field following the 87 

discovery of the Weiyuan gas field in the Sichuan Basin (Wei et al., 2008; Zou et al., 88 

2014a). Thus, in order to improve the exploration success rate of 89 

Proterozoic-Cambrian petroleum systems, a better understanding of their evolution, 90 

including timing of hydrocarbon generation, migration, accumulation and even trap 91 



destruction, is needed. 92 

Basin modelling, as well as, hydrocarbon fluid inclusion analysis are widely used 93 

methods to constrain hydrocarbon evolution history (Angevine et al., 1990; Gonzaga 94 

et al., 2000; Parnell et al., 1996; Parnell et al., 2000; Schneider, 2003). However, 95 

imperfect kinetic models and poorly constrained parameters, such as the 96 

paleo-geothermal gradient, pressure and properties of the strata, hamper the accuracy 97 

of proposed evolution histories (Braun and Burnham, 1992; Roberts et al., 2004; 98 

Tissot et al., 1987). Since the 1980s, isotopic dating methods, for example, authigenic 99 

K-Ar illite (Dong et al., 1995; Lee et al., 1985; Meunier et al., 2004; Tohver et al., 100 

2008), Ar-Ar K-feldspar (Mark et al., 2010), and Ar-Ar quartz fluid inclusion (Qiu et 101 

al., 2011), have all been shown to yield valuable information with regard to the timing 102 

of hydrocarbon generation and migration. However, authigenic illite K-Ar and Ar-Ar 103 

could only yield the maximum timing of hydrocarbon emplacement, given the 104 

challenge to isolate 40Ar from samples (Dong et al., 1995; Mark et al., 2010). 105 

Additionally, Ar-Ar dating of quartz fluid inclusions requires samples to be enriched 106 

in gas-liquid inclusions. The latter, combined with the analytical challenge of isolating 107 

the Ar from the gas inclusions has limited the available results (Liu et al., 2011; Qiu et 108 

al., 2011). Compared to K-Ar and Ar-Ar dating on associated minerals, for example 109 

illite, K-feldspar and quartz fluid inclusions, rhenium-osmium (Re-Os) dating directly 110 

of the oil or solid bitumen, has shown promise to determine the absolute timing of 111 

hydrocarbon (oil and gas) generation (Cumming et al., 2014; Finlay et al., 2011; Ge et 112 

al., 2016; Georgiev et al., 2016; Lillis and Selby, 2013; Liu et al., 2017; Selby and 113 



Creaser, 2005; Selby et al., 2005; Selby et al., 2007). 114 

Solid bitumen can form at different evolutionary stages within a petroleum system 115 

(Jacob, 1989; Lewan, 1985; Meyer and De Witt Jr, 1990; Stasiuk, 1997; Wu et al., 116 

2000). For example, asphalt and gilsonite are associated with crude oil generation, 117 

with impsonite and high maturity pyrobitumen considered to be related to crude oil 118 

decomposition or gas formation (Bernard et al., 2012; Lewan, 1997; Stasiuk, 1997; 119 

Wu et al., 2000; Xiao et al., 2007; Zhang and Li, 1999). To date, the available Re-Os 120 

data are for solid bitumen from the Polaris Mississippi Valley-type Zn-Pb deposit, 121 

Canada and the Northern Longmen Shan Thrust Belt, Southwest China, gilsonite from 122 

the Green River petroleum system in the Uinta Basin, western USA, and pyrobitumen 123 

from the Majiang-Wanshan reservoir, South China (Cumming et al., 2014; Ge et al., 124 

2016; Ge et al., 2017; Selby et al., 2005).  125 

The complex tectonic and hydrocarbon evolution of the Sichuan basin has resulted in 126 

highly debated timing and source models for many of hydrocarbon systems (e.g., the 127 

Weiyuan, Ziyang, Anyue and Puguang gas fields (Ma et al., 2007; Wei et al., 2008; 128 

Zhu et al., 2006)). Present research based on both structural and sedimentary analysis 129 

in the Sichuan basin suggests that the Late Silurian (ca. 420 Ma), Permian (ca. 250 130 

Ma) and Early Jurassic (ca.180 Ma) could be key time intervals for both oil and gas 131 

generation (Li et al., 2016; Sun, 2008; Wang and Wang, 2011; Wang, 2015). Located 132 

in the north of the Sichuan Basin is the Micang Shan Uplift (Liu et al., 2015). 133 

Compared with the central or northwest Sichuan Basin, the Micang Shan Uplift has 134 

undergone additional tectonism since the Cretaceous (Chang et al., 2010; Sun et al., 135 



2011a; Sun et al., 2011b; Yang et al., 2013) . Thrust tectonics during the Yanshan (ca. 136 

150 Ma) or Himalayan orogeny (ca. 60Ma) resulted in the uplift of both Cambrian 137 

and Neoproterozoic strata to the surface (Dai et al., 2009).  138 

Here we present solid bitumen Re-Os geochronology of the Micang Shan Uplift, 139 

coupled with bitumen reflectance, fluorescence analysis and previously published 140 

apatite fission track data (AFT age and thermal history modelling) to determine the 141 

Proterozoic-Cambrian hydrocarbon evolution process of the Micang Shan Uplift in 142 

the northern sector of the Sichuan Basin. Our data has potential implications for 143 

understanding the Proterozoic-Cambrian hydrocarbon evolution of other regions in 144 

the Sichuan Basin, and illustrates that the combined application of solid bitumen 145 

Re-Os geochronology and apatite fission track (AFT) analysis can provide valuable 146 

chronological data for petroleum evolution. In addition to Micang Shan Uplift, high 147 

maturity solid bitumen (pyrobitumen) occurs worldwide, e.g., in the Alberta Basin, 148 

Canada (Stasiuk, 1997), the Dahoney Basin, Nigeria (Meyer and De Witt Jr, 1990) 149 

and the Basque-Cantabrian Basin, Spain (Agirrezabala et al., 2008), this work are also 150 

potentially helpful for the hydrocarbon exploration worldwide.  151 

 152 

2. Geological setting 153 

The Micang Shan Uplift occurs along the northern margin of the Upper Yangtze block 154 

and comprises the northernmost sector of the Sichuan Basin, occupying an area of ~ 155 

4500 km2 (1737 mi2 ) (Li et al., 2014). The Micang Shan Uplift is bordered by three 156 

different orogenic belts (Longmen Shan, Hannan Uplift, and the Daba Shan Orogeny), 157 



which lie to the west, northeast and east, respectively (Fig. 2) (Liu et al., 2015; Wang 158 

et al., 2014). From north to south, the Micang Shan Uplift is divided into three 159 

structural belts: the Basement Thrust Belt, the Submountain Fault-Fold Belt, and the 160 

South Foreslope (Huang, 2013). The entire Micang Shan Uplift records at least three 161 

orogenic events: 1) the Caledonian (ca. 480 Ma), 2) the Indosinian (ca. 200 Ma), and 162 

3) the Yanshan (ca. 150 Ma) orogenies (Dong et al., 2012; Dong et al., 2011; Sun et 163 

al., 2011a; Sun et al., 2011b; Tian et al., 2012; Yang et al., 2013) (Fig. 3). 164 

Structurally the Micang Shan Uplift represents a regional-scale anticline that 165 

comprises basement Neoproterozoic metavolcanics and granite, with overlying 166 

Neoproterozoic, Paleozoic (Cambrian to Silurian and Permian) and Mesozoic 167 

(Triassic and Jurassic) marine carbonate and clastic rocks (Qi et al., 2004; Wang et al., 168 

2008) (Fig. 3). Solid bitumen is widely distributed within the Micang Shan Uplift in 169 

the Neoproterozic Dengying Formation (Dai et al., 2009). The Dengying Formation 170 

occurs over an area of 8500 km2 (3281 mi2), and has a maximum thickness of ~500 m 171 

(1640 ft), with an average thickness of ~100 m (328 ft). The estimated total solid 172 

bitumen reserves in the Dengying Formation of the Micang Shan Uplift and adjacent 173 

area is about 12.5 billion tons, which is equivalent to ~150 Bbbls of crude oil (Dai et 174 

al., 2009). The solid bitumen exists as pyrobitumen as a result of thermal cracking of 175 

pre-existing hydrocarbons (this study; see section 4 and 5 for details). Given the total 176 

abundance of pyrobitumen in the Micang Shan Uplift, the generated gas volume 177 

during pyrobitumen formation is determined to have exceeded 400 Tcf (Liu et al., 178 

2015). As a result of tectonic uplift since the Cretaceous, all cap rocks in the Micang 179 



Shan Uplift have been exhumed (Chang et al., 2010; Dai et al., 2010). In contrast, cap 180 

rocks are well developed in the more southern sectors of the Sichuan Basin. For 181 

example, the Cambrian and Silurian, and Triassic and Jurassic units are local seals in 182 

the Tongjiang and Bazhong regions (Liu et al., 2015). The Early Cambrian 183 

Qiongzhusi Formation is considered to be the principal source of the pyrobitumen in 184 

the Sichuan Basin, according to current biomarker analysis of the solid bitumen 185 

(though high maturity may affect the parameters) and potential source rocks (Liu et al., 186 

2015; Zhang, 2013), element geochemistry evaluation of the potential sources (Cao et 187 

al., 2014) and the similar carbon isotope values of the Cambrian shale (δ13C ~ 27.2 ‰) 188 

and pyrobitumen (δ13C ~ 27.5 ‰). 189 

 190 

3. Samples and methodology 191 

The solid bitumen samples analysed in this study are representative of occurrences 192 

along the southern margin of the Micang Shan Uplift (Fig. 2). Solid bitumen occurs as 193 

accumulations as small as ~1 cm (0.39 in) long and ~ 0.2 - 0.5 cm (0.08 - 0.20 in) 194 

wide, and more commonly as ~ 3 - 5 cm (1.18 - 1.97 in) long and ~ 2 - 3 cm (0.79 - 195 

1.18 in) wide (Fig. 4) within pores and fractures that are found widely distributed in 196 

the dolomite reservoir of the Dengying Formation. In hand specimens, the solid 197 

bitumen possesses a smooth and vitreous surface. Under the microscope, the bitumen 198 

is shown to occur intergrown with calcite and quartz, and to be predominantly hosted 199 

in hairline fractures or vugs. Eleven samples were collected from seven different 200 

locations. From east to west, these locations are the Jiulingzi(JLZ), Nanmushu(NMS), 201 



Mayuan(MY), Zhujiaba(ZJB), Kongxigou(KXG), Huitan(HT) and Yangba(YB) areas. 202 

The distance between each sample location is ~ 5 to 8 km (3 – 5 mi) (Fig. 2) (see 203 

Table 1 for latitude and longitude data). All the samples were collected from surface 204 

exposures and from similar stratigraphic levels within the Denying Formation, which 205 

dips at ~ 40º towards the southeast.  206 

The solid bitumen fluorescence analyses were conducted at the Wuxi Institute of 207 

Petroleum Geology, SINOPEC. The solid bitumen-bearing limestones were first cut 208 

and polished into standard thin sections (~ 0.03 - 0.05 mm). The solid bitumen was 209 

examined using a Nikon ECLIPSE LV100N POL polarizing microscope under 210 

transmitted, reflected and fluorescent light at room temperature. The light source was 211 

a 100 W mercury lamp, with a digital photomicrography system. Bitumen reflectance 212 

(BRo, %) of incident light under oil immersion was used to assess the thermal 213 

maturity of samples. The reflectance microscope measures the amount of reflected 214 

light relative to the incident light and expresses this ratio as a percentage. The BRo 215 

value is obtained according to the formula, BRo = (N - Ne)2 + K2 / (N + Ne)2 + K2, 216 

where Ne is the refraction index of the oil used, N is the sample refraction, and K is 217 

the absorption coefficient (Zhang, 1988). The solid bitumen reflectance analyses were 218 

conducted at the Wuxi Institute of Petroleum Geology, SINOPEC, based on the 219 

method of (Zhang, 1988). The solid bitumen was first ground to ~ 0.15 mm, then 220 

mixed with resin and finally compressed into a cylindrical form. One surface of the 221 

cylinder was polished and immersed into oil with a refraction index (Ne) of 1.518. 222 

The sample refraction (N) was measured using a monochromatic light with a 223 



wavelength of 546 nm and a microscopy spectrophotometer (version: MPV-Ⅲ, 224 

806(5)). The BRo value is determined through an average of 30 measured points in 225 

each sample. 226 

The Re and Os isotopic analysis of the solid bitumen samples were analysed at the 227 

Laboratory for Source Rock and Sulfide Geochronology and Geochemistry (a 228 

member of the Durham Geochemistry Centre) at Durham University following 229 

published analytical procedures (e.g.(Selby et al., 2005; Selby et al., 2007). 230 

Approximately 0.2 - 1.0 g bitumen was first separated from the limestone rocks 231 

without metal contact and crushed to ~ 1 mm grains using an agate pestle and mortar. 232 

Approximately 100 - 200 mg of bitumen were dissolved and equilibrated with a 233 

known amount of 185Re and 190Os spike solution by inverse aqua-regia (3 ml HCl and 234 

6 ml HNO3) in a Carius tube for 24 hours at 220˚C. Osmium was isolated and further 235 

purified from the inverse aqua-regia by CHCl3 solvent extraction at room temperature 236 

and micro-distillation, respectively. The Re was isolated using HCl-HNO3 based 237 

anion chromatography. The purified Re and Os were loaded on Ni and Pt filaments, 238 

respectively, and analyzed using Negative Ion Thermal Ionization Mass Spectrometry 239 

(N-TIMS). Rhenium was measured using Faraday collectors and Os in peak hopping 240 

mode using a secondary electron multiplier (SEM). Measured Re and Os ratios were 241 

corrected for oxide contribution and mass fractionation using 185Re/187Re = 0.59738 242 

(Gramlich et al., 1973) and 192Os/188Os = 3.08261, spike and blank contributions. All 243 

data were blank corrected based on the total procedural blanks values of Re (1.6 ± 244 

0.025 pg) and Os (0.05 ± 0.004 pg), with an average 187Os/188Os ratio of ~ 0.22 ± 0.06 245 



(n = 4). All uncertainties include the propagated uncertainty in the standard, spike 246 

calibrations, mass spectrometry measurements, and blanks. The analyses presented in 247 

this study were conducted prior to using DROsS as the in-house control solution 248 

(Nowell et al., 2008) at Durham. The 187Os/188Os values of the Os standard solution 249 

AB2 during these studies were 0.1611 ± 0.0066, with the 185Re/187Re values of the Re 250 

standard solution being 0.5984 ± 0.0002. These values are in agreement with those 251 

previously published for AB2 and Re-std (Cumming et al., 2014; Finlay et al., 2011, 252 

2012; Lillis and Selby, 2013; Rooney et al., 2012). The 185Re/187Re ratios for samples 253 

of this study were corrected for the measured difference of the 185Re/187Re value for 254 

Restd and the 185Re/187Re value of 0.59738 ± 0.00039 (Gramlich et al., 1973). The 255 

Re–Os data of this study are regressed using the program Isoplot V. 4.15 (Ludwig, 256 

2008) using the 187Re decay constant of 1.666×10-11a-1 (Smoliar et al., 1996). The 257 

input data contains 187Re/188Os and 187Os/188Os ratios with their total 2σ uncertainty 258 

and associated error correlation, Rho. 259 

To further discuss the hydrocarbon and tectonic evolution of the Micang Shan Uplift, 260 

we have utilized the previously published  Apatite Fission Track (AFT) data (n = 35) 261 

obtained from outcrop or borehole samples distributed over a north – south transect 262 

across the study area (Lei et al., 2012; Tian et al., 2012; Yang et al., 2013) (Fig. 2; 263 

Table. 2). In addition, thermal history modeling results (n = 15) in the study area are 264 

also utilized (Tian et al., 2012; Yang et al., 2013). These thermal history models are 265 

determined from eight Proterozoic granite, diorite or sandstone samples (MC01, 266 

MC02, MC25, NJ1T, NJ2T, NJ3T, NJ5T, NJ6T) located in the Micang Shan Uplift, 267 



and seven Paleozoic - Mesozoic sandstone samples (MC03, MC05, MC11, NJ12T, 268 

NJ15T, NJ17T, HB1-4) that are distributed in the southern area of the Micang Shan 269 

Uplift, e.g., the Submountain Fault-fold Belt and the South Foreslope (Fig. 2; Table 270 

2). 271 

 272 

4. Results  273 

The bitumen reflectance (BRo, %), which is used in a similar way as vitrinite 274 

reflectance (Ro, %), is an indicator of thermal maturity of bitumen, and has become a 275 

tool used in basin analysis (Bertrand, 1993; Riediger, 1993). The BRo values become 276 

higher with increasing hydrocarbon maturity. According to the linear relationship 277 

between BRo and Ro (Jacob, 1989; Landis and Castaño, 1995; Schoenherr et al., 278 

2007), bitumen at various maturity levels has different BRo values. For example, 279 

immature solid bitumen possess BRo values of < 0.25, with mature and over-mature 280 

solid bitumen being characterised by BRo values of ~ 1.1 and > 1.7 (Jacob, 1989; 281 

Landis and Castaño, 1995; Schoenherr et al., 2007). The BRo values of 3.25 to 4.08 282 

(Table 1) for the five solid bitumen samples from the Micang Shan Uplift characterise 283 

the solid bitumen as thermally over-mature.  284 

Ultraviolet fluorescence of the hydrocarbons (bitumen and oil) is also a useful tool for 285 

evaluating hydrocarbon maturity. With increasing maturity, the fluorescence color 286 

will gradually change from yellow-green, to brownish and finally to colorless (Chen, 287 

2014; Jacob, 1989; Shi et al., 2015). The microscopic features of the solid bitumen 288 

samples (NMS and JLZ) from the Micang Shan Uplift are shown in Figure 5. The 289 



reservoir rocks are mainly composed of dolomite, containing pelletoid or 290 

granular-mosaic solid bitumen within fissures or between grains, with the solid 291 

bitumen possessing no fluorescence, thus characterizing the bitumen as highly mature 292 

(Fig. 5). Collectively, the organic petrography implies that the solid bitumen from the 293 

Micang Shan Uplift are pyrobitumen which formed through thermal cracking under 294 

high temperature environment, ≥ 140˚C (Dieckmann et al., 1998; Pepper and Corvi, 295 

1995; Tsuzuki et al., 1999; Waples, 2000).  296 

The Re and Os abundances of the solid bitumen samples range from ~ 106 to 191 ppb, 297 

and ~ 3030 to 5670 ppt, respectively (Table 1). These Re and Os abundances are 298 

significantly higher than those of average upper crustal values (Re = 0.198 ppb and 299 

Os = 31 ppt) (Esser and Turekian, 1993; Rudnick and Gao, 2003), but similar to 300 

values previously reported for bitumen and organic-rich sedimentary rocks (Cohen et 301 

al., 1999; Ge et al., 2016; Georgiev et al., 2016; Lillis and Selby, 2013; Ravizza and 302 

Turekian, 1992; Rooney et al., 2010; Xu et al., 2009a; Xu et al., 2014). The 303 

187Re/188Os and187Os/188Os values of the solid bitumen range from ~ 166 to 340, and ~ 304 

2.82 to 3.74, respectively (Table 1). All the Re-Os data yield a Model 3 (assumes that 305 

the scatter about the best fit line is a combination of the assigned uncertainties and an 306 

unknown, but normally distributed variation in the 187Os/188Os values (Ludwig, 2008)) 307 

date of 239 ± 150 Ma (n = 11, Mean Squared Weighted Deviation (MSWD) = 398) 308 

(Fig. 6A), with an initial187Os/188Os composition of 2.29 ± 0.64 (Table 1). 309 

All the 35 AFT dates range from 123.5 ± 6.0 to 8.8 ± 1.3 Ma. The AFT dates are all 310 

younger than the intrusion or depositional ages of the sampled rocks, which indicate 311 



that the date represents the timing of thermal resetting. The AFT dates overall show a 312 

trend to younger dates from north to south across the Micang Shan Uplift into the 313 

Sichuan Basin (Fig. 2). The eleven samples in the Micang Shan Uplift possess older 314 

dates (~ 64 - 124 Ma) with a mean age of ca. 102 Ma. Eighteen outcrop samples from 315 

the inner Sichuan Basin possess AFT dates from ca. 60 to 83 Ma, with an average of 316 

ca. 70 Ma. The AFT dates from borehole HB1 from north Sichuan Basin (Fig. 2), 317 

with the exception of the most-shallow sample, HB1-4, which has a date of ca. 73 Ma, 318 

possess considerably younger dates (ca. 9 - 26 Ma). The mean track length of the 319 

thirty-five samples varies between 10.0 ± 0.45 and 13.23 ± 0.10 μm. Similar to the 320 

AFT date distribution, a decrease in track length is observed for samples from north to 321 

south (Table 2). The decreasing trend, in both AFT age and track length, from north to 322 

south implies variable cooling histories across the Sichuan Basin.  323 

The thermal history (time-temperature path) could provide a more detailed 324 

understanding of the tectonic evolution of the Micang Shan Uplift and inner Sichuan 325 

Basin. Fifteen samples, six of our own remodelled samples (MC01, MC02, MC03, 326 

MC05, MC11, MC25) and nine previous published results (Tian et al., 2012) are 327 

shown here (Fig. 7). The thermal history are remodelled using the HeFTy software 328 

(version 1.8.4) based on the fanning curvilinear annealing model (Ketcham, 2005), 329 

c-axis projection (Donelick et al., 1999), and initial mean track length (L0= 16.0 ± 0.8 330 

μm) (Shen et al., 2012). For each sample, 100,000 to several million paths were 331 

calculated until at least 500 ‘good’ [T–t] paths were obtained (see (Yang et al., 2013) 332 

for the detailed modeling methodology). The thermal history modelling results of the 333 



fifteen samples can be divided into two groups. Group 1 comprise samples (n = 8) 334 

from the Micang Shan Uplift. Although there are some minor differences, cooling 335 

between ca. 140 and 100 Ma, with a temperature decrease from ~120 to 60 ºC (apatite 336 

partial annealing zone, APAZ) is revealed (Fig. 7). Group 2 comprise samples (n = 7) 337 

south of the study area and represent a cooling event between ca. 100 and 60 Ma, 338 

which implies that cooling to between ~120 and 60 ˚C in the more southern Sichuan 339 

Basin occurred ~40 myrs after that in the more northern Micang Shan Uplift (Fig. 7).  340 

    341 

5. Discussion 342 

5.1. Bitumen characteristics in the Micang Shan Uplift 343 

Hydrocarbon evolution is a complex process that begins with diagenesis and the 344 

formation of the kerogen (Lewan, 1985; Tissot, 1984; Tissot and Welte, 1984). Solid 345 

bitumen, as a by-product of organic matter, exists through the entire hydrocarbon 346 

evolution process and records events such as hydrocarbon maturity, migration and 347 

accumulation pathways and the origin of the hydrocarbons (Wu et al., 2000). 348 

Processes, such as biodegradation, oxidation, phase-migration and thermal cracking, 349 

can lead to the formation of different types of solid bitumen (asphalt, gilsonite, 350 

grahamite, impsonite, anthroxolite, etc) (Jacob, 1989; Meyer and De Witt Jr, 1990; 351 

Rogers et al., 1974; Wu et al., 2000). The processes of oxidation, biodegradation, 352 

polymerization and devolatilization could result in the removal of the light 353 

hydrocarbons and form asphalt and gilsonite (Meyer and De Witt Jr, 1990). 354 

Phase-migration during hydrocarbon migration can lead to fluid differentiation 355 



through precipitation and de-asphalting (Meyer and De Witt Jr, 1990), resulting in the 356 

formation of grahamite, which typically occurs as veins (Stevenson et al., 1990; 357 

Zhang and Li, 1999). Thermal cracking, controlled by time and high temperature 358 

(Dahl et al., 1999; Vandenbroucke et al., 1999), of all hydrocarbons (e.g., oil, asphalt, 359 

gilsonite and grahamite) can result in the generation of dry gas and high maturity 360 

pyrobitumen (impsonite, antraxolite) (Meyer and De Witt Jr, 1990; Rogers et al., 361 

1974). 362 

High maturity pyrobitumen formed by thermal cracking is insoluble in most organic 363 

solvents and possesses different physical and chemical features compared with solid 364 

bitumen (Jacob, 1989; Mancuso et al., 1989; Rogers et al., 1974; Wu et al., 2000; 365 

Zhang and Li, 1999). For example, the solid bitumen types asphalt and gilsonite are 366 

characterized by low bitumen reflectance (BRo < 1.0%), high H/C atomic ratio (> 367 

0.8), low Tmax (~ 450 ºC), and a yellow-green fluorescence colour. In contrast, the 368 

high maturity pyrobitumen types impsonite and anthroxolite possess high bitumen 369 

reflectance (BRo > 2.0 %), low H/C atomic ratio (< 0.6), high Tmax (~ 500 ºC), dark 370 

or no fluorescence, and contain high adamantine (3- + 4- methyl diamantane) 371 

concentrations (Fang et al., 2014; Hwang et al., 1998; Jacob, 1989; Shi et al., 2015; 372 

Wang et al., 2013; Yang et al., 2014). 373 

All solid bitumen samples collected from the Micang Shan Uplift in this study have 374 

similar features (high bitumen reflectance (BRo = 3.25 – 4.08), no fluorescence and 375 

are insoluble in chloroform). Previous research in the Micang Shan Uplift area found 376 

that the bitumen was also characterized by high Tmax values (~ 540 ºC) (Huang, 377 



2010). Collectively, the BRo values, fluorescence, Tmax, and lack of solubility in 378 

organic solvents characterise the solid bitumen in the Micang Shan Uplift as highly 379 

mature pyrobitumen. Although no gas reservoirs are known in the Micang Shan Uplift, 380 

the Neoproterozoic Weiyuan gas field in the Sichuan basin (Fig. 1), ~ 200 km (124 mi) 381 

south of the Micang Shan Uplift, possesses methane (CH4) which comprises 85 % - 382 

97 % of the total gas composition, with lesser amounts of nitrogen (N2) (< 8%), 383 

carbon dioxide (CO2) (< 5%) and ethane (C2H6)(< 1%) occupying the remaining 384 

components (Wei et al., 2008).   385 

The molecular and isotope data (C1-C3 composition and  δ13C1- δ13C3 value) are 386 

useful tools for identifying the gas formation mechanism (Behar et al., 1992; 387 

Prinzhofer and Huc, 1995). During thermal cracking, the ln(C2/C3) value will increase, 388 

but the ln(C1/C2) and the δ13C2 - δ13C3 values will remain the same for the generated 389 

gas (Prinzhofer and Huc, 1995). The gas from both the Ziyang and Weiyuan gas fields 390 

in the Western Sichuan Basin display ln(C1/C2) values within a narrow range (~5.5 - 391 

7.0), but the ln(C2 /C3) ratio spans a much wider range (~1.0 - 6.5) (Liu et al., 2009). 392 

These data indicate that the gas was formed by thermal cracking of a previously 393 

formed reservoired oil. This also suggests that oils reservoired in the rest of the 394 

Sichuan Basin could have also experienced thermal cracking to form highly mature 395 

pyrobitumen and the accumulations of dry gas (CH4) where trapped.  396 

 397 

5.2. Timing of oil thermal cracking in the Micang Shan Uplift  398 

Source rock hydrous pyrolysis experiments show that, initially, bitumen quantities 399 



increase as the amount of kerogen decreases, but as a result of increasing temperature,  400 

bitumen abundance decreases as it is cracked into liquid oil (Behar et al., 1991; 401 

Lewan, 1985). At higher temperatures (~ 360 ˚C), hydrous pyrolysis experiments 402 

show that the abundance of both bitumen and oil decrease in response to gas 403 

generation, as well as mass increasing in the source rock, which indicates the 404 

generation of high maturity pyrobitumen. The hydrous pyrolysis experiments indicate 405 

that the high maturity pyrobitumen and gas form contemporaneously during the last 406 

stages of hydrocarbon evolution. Further, recent studies on the thermal cracking of oil 407 

(Hill et al., 2003) and hydrocarbon composition numerical modelling (evolution of 408 

C14+ to C1 compounds with time) in the Fahud Salt Basin, North Oman (Huc et al., 409 

2000), found although pyrobitumen could form at the beginning of oil formation, the 410 

majority of the pyrobitumen formed together with the dry gas during the oil cracking 411 

event under high temperatures condition.  412 

The Sichuan Basin contains more than 50 gas fields, which include the Ziyang, 413 

Weiyuan, Anyue and Puguang giant gas fields (Fig. 1) (Luo et al., 2013; Wei et al., 414 

2008; Zou et al., 2014a). To date, there is still no agreement on the timing of the gas 415 

generation. Basin modelling of the Nanjiang area in the northern Sichuan Basin 416 

suggests that oil generation may have begun during the Late Cambrian to Ordovician 417 

(Wang and Wang, 2011). Following the exposure of the strata between the Devonian 418 

and Carboniferous, the entire Late Cambrian to Ordovician units of the Sichuan basin 419 

underwent rapid burial to ~7000 m (22,965 ft) between the Late Permian and Late 420 

Cretaceous (Fig. 8) (Liu et al., 2010; Ma et al., 2008; Wang and Wang, 2011).  421 



Fluid inclusions can represent micron scale samples of the fluids (oil, gas and water) 422 

that flowed through and interacted with the host rocks during the evolution of a 423 

hydrocarbon system (Cooley et al., 2011; Haszeldine et al., 1984). Physical and 424 

chemical (pressure, temperature, fluid composition) conditions recorded by fluid 425 

inclusions within petroliferous basins have been widely applied to constrain both oil 426 

and gas migration and accumulation (Aplin et al., 1999; Bodnar, 1990; Bourdet et al., 427 

2010; Cao et al., 2006; Oxtoby et al., 1995; Ping et al., 2017; Pironon, 2004; 428 

Teinturier et al., 2002). Fluid inclusion analysis in the Weiyuan Gas field, western 429 

Sichuan Basin, show that the homogenization temperatures of the aqueous fluid 430 

inclusions that are coeval with the gas-bearing fluid inclusions range from 108 - 431 

212ºC, with an average of 158ºC (Tang et al., 2004). Furthermore, the fluid inclusion 432 

data from the Neoproterozic Dengying Formation reservoir in the Micang Shan Uplift 433 

possess homogenization temperatures that fall between 105 and 245 ºC, with 87% of 434 

the values being higher than 140 ºC and average temperature at 180 ºC (Fig. 8) (Wang, 435 

2015). As to the few low temperature (< 120 ºC) data, it may relate to early 436 

hydrocarbon migration during the Silurian (Zou et al., 2014b) or the post-entrapment 437 

modification (Okubo, 2005). Applying the generally high homogenization 438 

temperatures to basin burial models within the northern Sichuan Basin (Liu et al., 439 

2015; Sun, 2008; Yuan et al., 2012), a gas migration event is suggested to have 440 

occurred between the Triassic and Jurassic. 441 

All the Re-Os data of the pyrobitumen from the Micang Shan Uplift area yield a date 442 

of 239 ± 150 Ma (n = 11, initial 187Os/188Os (Osi) = 2.29 ± 0.64, MSWD = 398). The 443 



MWSD value obtained from the best-fit of all the Re-Os data suggests that the sample 444 

set have not fully met the criteria to obtain a precise isochron. For example, the entire 445 

sample set does not represent contemporaneous formation, or possess identical initial 446 

isotope compositions (Osi), or that the Re-Os systematics have been disturbed (Cohen 447 

et al., 1999; Kendall et al., 2009; Selby et al., 2007). 448 

The percent deviation from the best-fit line of all the Re-Os data is illustrated in 449 

Figure 6B, which shows that samples HTB01, HTB02, JLZ4, YB01, KXG5 all show 450 

a large deviation (with the exception of sample KXG5 (~2.2%), > 4.4 %) from the 451 

best-fit line. Calculating the Osi value for each sample at 239 Ma (Osi239), which is 452 

based on the Re-Os date of all eleven samples, shows that six samples (My601, 453 

My603, NMS955, NMS1030, NMS1068, ZJB01) possess very similar Osi239 values 454 

(2.25 - 2.30), with the remaining five samples (KXG05, HTB01, HTB02, YB01, 455 

JLZ04) possessing either slightly less or more radiogenic Osi values (1.96 - 2.15, n = 456 

2; 2.36 - 2.52, n = 3, respectively) (Table 1). The differences in the Osi values may 457 

relate to samples bearing different initial Os isotope compositions or samples that 458 

represent different generation ages, or have experienced disturbance to the Re-Os 459 

isotope system. We discuss these possibilities below. 460 

As stated above, the Re-Os data for the six samples with similar Osi values (My601, 461 

My603, NMS955, NMS1030, NMS1068, ZJB01, which are the samples that show the 462 

least deviation of the best-fit line of all the data, Fig. 6B) yield a Model 1 (which 463 

considers that only the assigned uncertainties produce the scatter about the best-fit 464 

line (Ludwig, 2008)) Re-Os date of 184 ± 23 Ma (Osi = 2.50 ± 0.09, MSWD = 1.0) 465 



(Fig. 6C). 466 

The remaining five samples plot in 187Re/188Os-187Os/188Os space either above or 467 

below the ca. 184 Ma isochron (Fig. 6C). Of these samples, sample KXG05 possesses 468 

an Osi239 value of 2.36, which falls between the Osi239 values for HTB01 and HTB02 469 

(2.49 - 2.52), and JLZ04 and YB01 (1.96 - 2.15), and will therefore not fall along any 470 

best-fit line (Fig. 6C). Although the isochron dates determined from two samples are 471 

not considered a robust reflection of the true geologic age (Ludwig, 2008), we note 472 

that the Re-Os data for samples HTB01 and HTB02, and JLZ04 and YB01, yield 473 

Re-Os dates that are within uncertainty of the dates determined from the 6 samples 474 

(205 ± 32 Ma, Osi = 2.68 ± 0.16 and 173 ± 12 Ma, Osi = 2.34 ± 0.06, respectively 475 

(Fig. 6C)).  476 

In the Micang Shan Uplift, the pyrobitumen may suffer from biodegradation, water 477 

washing during the migration and uplift process since formation. Previous work 478 

(Lillis and Selby, 2013; Selby and Creaser, 2005) found that the these effects do not 479 

appreciably disturb the Re-Os system. However, studies have found that the Re-Os 480 

system of the highly mature hydrocarbons, for example oil from Bighorn Basin, USA 481 

and bitumen from North Hebei Depression, China, may exhibit evidence of 482 

disturbance (Li et al., 2017; Lillis and Selby, 2013). Moreover, Re-Os isotope dating 483 

of pyrobitumen, which formed contemporaneously with dry gas, together with clastic 484 

AFT dating in the Majiang-Wanshan reservoir, South China show that the Re-Os date 485 

coincides with the timing related to gas generation and that the hydrocarbon thermal 486 

cracking event at temperatures of >140ºC could reset the previous oil or asphaltene 487 



Re-Os system (Ge et al., 2016). 488 

In this study, Latest Triassic to the Middle Jurassic dates (ca. 205 – 173 Ma) derived 489 

from the Re-Os pyrobitumen data, especially the ~184 Ma date determined from six 490 

samples, from the Micang Shan Uplift agree well with previous basin modelling 491 

(Yuan et al., 2012) and the general temporal understanding of oil and gas 492 

accumulation events in the northern Sichuan Basin (Liu et al., 2015). This age 493 

agreement indicates that the Late Triassic to Jurassic is the key period for thermally 494 

cracking of oil in Neoproterozoic reservoirs that resulted in gas generation and high 495 

maturity pyrobitumen (Fig. 8). Thus, although we cannot rule out disturbance to the 496 

Re-Os systematics of the pyrobitumen, the variation in the Osi values shown by the 497 

sample set most likely represents variations in the Os isotope composition of the 498 

petroleum that thermally cracked to produce pyrobitumen during the Late Triassic to 499 

the Middle Jurassic, and or the protracted interval over which pyrobitumen and gas 500 

generation occurred in the Michan Shan Uplift.  501 

 502 

5.3. Petroleum system evolution of northern Sichuan Basin 503 

Since the Late Triassic collision between the north China block and Yangtze block, 504 

which lead to the formation of the Qinling Orogeny (Yin and Nie, 1993), the Micang 505 

Shan Uplift was affected by a continuous compressional tectonic regime, with the 506 

most severe event occurring during the Cretaceous when the Yangtze block collided 507 

with Qinling Orogeny (south margin of the north China block) (Sun et al., 2011a; Sun 508 

et al., 2011b). During this tectonism the E-W trending fold and thrust structures 509 



between the Micang Shan Uplift and the inner Sichuan Basin were developed (Dong 510 

and Santosh, 2016; Xu et al., 2009b).  511 

The Group 1 AFT samples from the Micang Shan Uplift have older AFT ages (ca. 64 512 

- 124 Ma) with the thermal history modeling showing that the samples entered the 513 

apatite partial annealing zone (APAZ) between ca. 140 and 100 Ma, and cooled 514 

through the APAZ before ca. 90 Ma. In contrast, Group 2 samples, which are 515 

generally located at the transition zone between the Micang Shan Uplift and the inner 516 

Sichuan Basin, possess slightly younger ages (ca. 60 - 83 Ma) and thermal history 517 

modeling shows that the samples in this area pass in to the APAZ from ca. 100 to 60 518 

Ma. The ~ 40 myr difference between both the AFT ages and the modeled cooling 519 

and uplift models coincide well with the N-S propagation of the tectonic front (Hu et 520 

al., 2012; Xu et al., 2009b). The AFT dates (ca. 60 to 124 Ma) and thermal history 521 

models indicate a prolonged and continuous cooling and uplift during the Cretaceous 522 

in the study area. Given the present-day thermal gradient (18 - 21ºC/km (Hu et al., 523 

2000; Lu et al., 2005)) and the near surface temperature (~ 20ºC), more than 5000 m 524 

(16,404 ft) of strata is estimated to have been eroded as a result of the tectonic uplift 525 

during the Cretaceous. However, the much younger AFT dates (ca. 9 - 26 Ma) from 526 

the borehole HB1 (2594 – 4485 m (8510 – 14,714 ft) deep) in the Sichuan Basin 527 

(Table 2) indicate that the Cretaceous tectonic event did not affect the sediments 528 

within the inner Sichuan Basin, with the Jurassic and Triassic units currently at a 529 

depth of more than 2500 m (8202 ft). Moreover, many gas fields that are reservoired 530 

in the Neoproterozoic Dengying (Wei et al., 2008), Permian Changxing, and Triassic 531 



Feixianguan formations (Ma et al., 2008) have been discovered within the central or 532 

southern Sichuan Basin (Fig. 1), which further prove that the tectonic event did not 533 

severely affect the inner Sichuan Basin. The presence of large quantities of 534 

pyrobitumen in the exposed and near-surface Neoproterozoic Dengying Formation 535 

and the absence of the Permian Changxing and Triassic Feixianguan formations in the 536 

northern Sichuan Basin (e.g., around the Micang Shan Uplift) suggest that ~ 5000 m 537 

(16,404 ft) of exhumation has occurred. Further evidence for uplift and erosion of the 538 

Proterozoic, Paleozoic and Mesozoic units of the Micang Shan Uplift is supported by 539 

a north-south paleocurrent direction (He et al., 1997; Meng et al., 2005), sandstone 540 

composition analysis (Dickinson et al., 1983; Liu et al., 2006), and detrital zircon 541 

U-Pb dates of the early Paleogene strata in the western Sichuan Basin (ca. 1800 – 130 542 

Ma) (Jiang et al., 2013).  543 

Integrating the pyrobitumen Re-Os data, AFT results (age and thermal history 544 

modeling) as well as previous basin models from the Micang Shan Uplift, permits the 545 

hydrocarbon evolution in the Micang Shan Uplift area to be quantitatively described 546 

as: (1) prior to the Caledonian Orogeny, Cambrian shales were buried to ~ 2500 m 547 

(8202 ft) depth throughout the whole Sichuan Basin and began to generate oil. 548 

However, subsequent uplift and exhumation during the Devonian to Carboniferous 549 

(Caledonian Orogeny) halted oil generation (Fig. 8a); (2) the Late Paleozoic-Early 550 

Mesozoic witnessed rapid sedimentation of the Permian to Triassic strata which 551 

resulted in the burial of the Neoproterozoic strata to ~ 7000 m (22,965 ft). Thermal 552 

cracking of the hydrocarbons under a high temperature environment (≥ 140 ºC) as a 553 



result of burial the generation of pyrobitumen and dry gas occurred during the Late 554 

Triassic to Middle Jurassic (Fig. 8b); and (3) since the Cretaceous, related to the N-S 555 

compression between the north China block and Yangtze block, the Micang Shan 556 

Uplift experienced rapid uplift and exhumation, bringing the pyrobitumen-bearing 557 

Neoproterozoic strata to the surface and also resulted in the loss of the any 558 

gas-bearing reservoirs. In contrast, in the central and southern sectors of the Sichuan 559 

Basin, Paleozoic and Mesozoic gas reservoirs have been preserved due to limited 560 

uplift during the Late Cretaceous (Fig. 8c). 561 

 562 

6. Conclusions and Implications  563 

High maturity pyrobitumen Re-Os analysis, as well as previous basin modelling of the 564 

North Sichuan Basin, indicate that hydrocarbon thermal cracking (dry gas generation 565 

from oil cracking) in the northern Sichuan Basin occurred during the Early Jurassic 566 

(ca. 184 Ma), as a result of a high temperature environment due to rapid 567 

sedimentation and burial during the Late Permian to Jurassic in the Sichuan Basin. 568 

The AFT data (age and thermal history) indicate that the prolonged Cretaceous 569 

Yanshan Orogeny resulted in significant uplift and exhumation (~ 5000 m (16404 ft)) 570 

and caused the loss of Paleozoic and Mesozoic gas reservoirs in the Micang Shan 571 

Uplift, with only pyrobitumen remaining in the Neoproterozoic strata.  572 

Previous work has shown that combined AFT and solid bitumen Re-Os 573 

geochronology on the Majiang-Wanshan reservoir, South China, has the potential to 574 

constrain the timing of oil cracking (pyrobitumen generation), and by inference, the 575 



timing of gas generation (Ge et al., 2016). Although the AFT and Re-Os dates were 576 

found to be similar in that work, the slightly older Re-Os date (ca. 80 Ma) compared 577 

to the AFT date (ca. 70 Ma) suggest that the temperature condition of resetting of the 578 

Re-Os systematics in hydrocarbons, specifically high maturity pyrobitumen, may be 579 

higher than that of the AFT closure temperature (110 ± 10 ºC) (Ge et al., 2016). 580 

Moreover, the Re-Os age derived from the pyrobitumen of the Micang Shan Uplift in 581 

this study is significantly older than the AFT dates, which further supports that the 582 

closure temperature of the Re-Os systematics in pyrobitumen is higher than that of the 583 

AFT closure temperature. 584 

Deep burial and complex tectonic events have greatly affected the hydrocarbon 585 

systems in the Sichuan Basin, and even the whole of the south China block, resulting 586 

in gas being the main hydrocarbon resource (Zhao et al., 2004). The Re-Os data from 587 

this study imply that the gas in the Sichuan Basin formed during the Latest Triassic to 588 

the Middle Jurassic by thermal cracking. As such, the areas that have been relatively 589 

tectonically stable since the Mesozoic, e.g., in the ancient uplift or slope in the central 590 

and eastern Sichuan Basin (Zou et al., 2014a), may be prospective gas targets. 591 

In addition to South China, pyrobitumen occurs worldwide, e.g., in the Alberta Basin, 592 

Canada (Stasiuk, 1997), the Dahoney Basin, Nigeria (Meyer and De Witt Jr, 1990) 593 

and the Basque-Cantabrian Basin, Spain (Agirrezabala et al., 2008). Thus, Re-Os 594 

pyrobitumen chronology (coupled with AFT dating) could be employed to yield 595 

quantitative timing of gas generation in other basins worldwide, and may enhance our 596 

understanding of the evolution of hydrocarbon systems and help guide gas 597 



exploration. 598 

 599 
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Figure Captions 1206 

Fig. 1. Simplified map of the Sichuan Basin showing the distribution of oil and gas 1207 

fields (Substantially modified from Li et al., 2015; Li et al., 2001; Ma et al., 2010). 1208 

Fig. 2. Simplified geological map of the Micang Shan Uplift, northern Sichuan Basin. 1209 

(A) Regional map of the Micang Shan Uplift and its adjacent area, Longmen Shan 1210 

Orogeny, Hannan Uplift and Daba Orogen in the west, northeast, east, respectively. (B) 1211 
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Simplified geologic and structural map of Micang Shan Uplift, northern Sichuan 1212 

Basin (Substantially modified from Wang et al., 2014), showing the location of both 1213 

bitumen and the AFT samples.  1214 

Fig. 3. Combined stratigraphic sequences, petroleum system and tectonic events in the 1215 

northern Sichuan Basin (Substantially modified from Huang, 2013; Huang, 2010; 1216 

Wang, 2015). 1217 

Fig. 4. Examples of pyrobitumen outcropping in the Jiulingzi (JLZ), Nanmushu 1218 

(NMS), Kongxigou (KXG) and Yangba (YB) areas. 1219 

Fig. 5. Petrography of the pyrobitumen of this study: (A) and (B) from the Nanmushu 1220 

1070 area; (C) and (D) from the Nanmushu 1030 area; and (E) and (F) from the 1221 

Jiulingzi area. 1222 

Fig.6. A. Re-Os isochron plot showing all the data in the Micang Shan Uplift; B. Plot 1223 

of percent deviation from the 239 Ma best-fit line; C. Re-Os isotope data of bitumen 1224 

from Mayuan, Nanmushu and Zhujiaba area with Osi239 from 2.25 - 2.30. Data-point 1225 

ellipses shown with 2-sigma (2σ) absolute uncertainty (sigma (σ) is the standard 1226 

deviation of the age). MSWD is short for Mean Square Weight Deviation. Data labels 1227 

are sample numbers listed in Table 1.  1228 

Fig. 7. Collected apatite fission track (AFT) thermal history modeling results from the 1229 

Micang Shan Uplift and inner Sichuan Basin (Substantially modified from Tian et al., 1230 

2012; Yang et al., 2013). D: determinted apatite fission track age; M: modeled apatite 1231 

fission track age; GOF: goodness of fit; N: number of measured fission track; Lm: 1232 

mean length of the measured fission track length; SD: standard deviation. 1233 



Fig. 8. A. Basin modelling and fluid inclusion results for the Micang Shan Uplift, 1234 

showing the key time for gas generation. B. Cartoon model showing the hydrocarbon 1235 

evolution of the Micang Shan Uplift, north Sichuan Basin: (a) original hydrocarbon 1236 

reservoir formation process prior to the Silurian; (b) pyrobitumen and dry gas 1237 

formation by thermal cracking during the Jurassic; and (c) reservoir alteration and 1238 

erosion during the Cretaceous Yanshan orogeny.  1239 

 1240 

Table 1. Re-Os isotopic and BRo data of the solid bitumen from the Micang Shan 1241 

Uplift, North Sichuan Basin 1242 

Table 2. Apatite fission track data from the Micang Shan Uplift and inner Sichuan 1243 

Basin  1244 



















Table 1.Re-Os isotopic data on the bitumen from the Micang Shan Uplift, North Sichuan Basin 

Sample  

name 
Latitude Longitude Strata 

BRo 

(%) 

Re 

(ppb) 
± 

Os 

(ppt) 
± 187Re/188Os ± 187Os/188Os ± rho 

Osi 

(239Ma) 

HTB01 32°28'58'' 107°05'39'' 
Dengying 

formation 
/ 179.5 0.6 4087.2 18.6 311.6 1.3 3.746 0.012 0.419 2.502 

HTB02 32°30'02'' 106°52'42'' 
Dengying 

formation 
/ 177.4 0.6 4579.2 28.3 271.4 1.5 3.608 0.021 0.554 2.525 

MY601 32°31'32'' 107°19'08'' 
Dengying 

formation 
/ 191.4 0.7 5053.0 21.7 257.8 1.0 3.291 0.010 0.391 2.263 

MY603 32°31'28'' 107°18'54'' 
Dengying 

formation 
/ 154.8 0.5 4823.7 28.7 216.0 1.2 3.168 0.019 0.552 2.306 

NMS955 32°31'28'' 107°18'56'' 
Dengying 

formation 
3.97 143.5 0.5 4307.0 26.5 224.4 1.3 3.182 0.020 0.591 2.286 

NMS1030 32°31'48'' 107°19'38'' 
Dengying 

formation 
3.94 184.9 0.6 5002.3 30.6 251.5 1.4 3.286 0.020 0.580 2.283 

NMS1068 32°31'41'' 107°19'42'' 
Dengying 

formation 
3.25 113.8 0.4 3030.4 19.1 255.4 1.5 3.277 0.021 0.625 2.258 

ZJB01 32°29'52'' 107°09'54'' 
Dengying 

formation 
/ 153.8 0.5 4220.9 25.3 247.2 1.3 3.258 0.019 0.555 2.271 

JLZ04 32°32'11'' 107°19'48'' 
Dengying 

formation 
4.08 188.1 0.7 3777.1 23.8 340.2 2.0 3.326 0.021 0.606 1.969 

YB01 32°28'19'' 106°47'10'' 
Dengying 

formation 
/ 145.2 0.5 5669.5 47.4 166.8 1.5 2.826 0.032 0.653 2.160 

KXG05 32°29'39'' 107°09'35'' 
Dengying 

formation 
3.97 106.2 0.6 4812.9 30.4 263.6 1.5 3.415 0.021 0.585 2.363 



Footnotes: BRo = Bitumen reflectance; Re (ppb) = rhenium (part per billion); Os (ppt) = Osmium (parts per trillion); 187Re/188Os  = 187rhenium/188Osmium; 187Os/188Os = 187Osmium 

/188Osmium; rho =  the associated error correlation of the 187Re/188Os and 187Os/188Os; Osi(239Ma) = initial 187Os/188Os ratio at 239 Ma. 

 



Table. 2 Apatite fission track data from the Micang Shan Uplift inner Sichuan Basin 

AFT 

sample 
Latitude Longitude Lithology Strata 

Elevation 

(m)(ft) 

AFT age 

(Ma) 
± 

Length 

(μm) 
± Ref 

Uplift                     

MC01 32°41'54'' 107°07'27'' Granite Proterozoic  1106(3628) 95.8 4.4 13.00 0.10 Yang et al., 2013 

MC02 32°41'17'' 107°08'24'' Granite Proterozoic  1073(3520 103.0 3.7 12.90 0.10 Yang et al., 2013 

NJ3T 32°37'12'' 106°49'30'' Diorite Proterozoic 1650(5413) 103.0 5.1 13.14 0.12 Tian et al., 2011 

NJ1T 32°36'58'' 106°49'41'' Diorite Proterozoic 1554(5098) 119.8 5.9 13.13 0.10 Tian et al., 2011 

NJ2T 32°36'36'' 106°49'48'' Diorite Proterozoic 1588(5210) 123.5 6 13.23 0.10 Tian et al., 2011 

NJ5T 32°35'42'' 106°50'28'' Diorite Proterozoic 1268(4160) 103.7 4.2 11.40 0.25 Tian et al., 2011 

NJ6T 32°35'28'' 106°50'28'' Sandstone Proterozoic 1286(4219) 110.1 5.3 12.95 0.12 Tian et al., 2011 

MC-8a 32°35'22'' 106°50'40'' Diorite Proterozoic 1269(4163) 99.0 / /   Sun, 2011 

NJ8T 32°34'26'' 106°50'42'' Siltstone Pre-cambrian 1259(4130) 93.9 4.1 / / Tian et al., 2011 

WCS-20 32°33'09'' 106°52'11'' Granite Proterozoic 703(2306) 63.7 6.4 12.10 0.20 Lei et al., 2012 

MC25 32°32'45'' 106°51'53'' Granite Proterozoic  1317(4321) 110.7 6.8 12.80 0.10 Yang et al., 2013 

Basin                     

NJ12T 32°28'26'' 106°52'44'' Sandstone  Ordovician  636(2087) 82.9 7.8 12.25 0.17 Tian et al., 2011 

MC-17a 32°28'19'' 106°26'44'' Diorite Proterozoic 625(2050) 81.0 / / / Sun, 2011 

NJ14T 32°27'18'' 106°53'20'' Sandstone Silurian 575(1886) 60.8 5.7 / / Tian et al., 2011 

MC12 32°26'50'' 106°38'37'' Diorite Proterozoic  978(3209) 68.9 3.5 / / Yang et al., 2013 

WCS-17 32°26'02'' 106°38'38'' Conglomerate Cambrian 1139(3736) 80.4 10.6 12.10 0.20 Lei et al., 2012 

NJ15T 32°25'30'' 106°51'50'' Sandstone Triassic  506(1660) 73.8 3.7 12.66 0.20 Tian et al., 2011 

NJ17T 32°22'19'' 106°51'11'' Sandstone Jurassic  557(1827) 68.4 3.4 12.49 0.16 Tian et al., 2011 

MC14 32°21'39'' 107°10'17'' Sandstone Jurassic  500(1640) 62.4 5.2 / / Yang et al., 2013 

MC03 32°21'07'' 107°10'06'' Sandstone Triassic 515(1690) 66.8 2.9 11.80 0.20 Yang et al., 2013 

MC04 32°20'51'' 107°10'37'' Sandstone Jurassic 550(1804) 78.2 5.8 / / Yang et al., 2013 

MC05 32°19'31'' 107°10'44'' Sandstone Jurassic  505(1657) 64.1 2.1 11.50 0.10 Yang et al., 2013 

WCS-16 32°19'17'' 106°32'13'' Conglomerate Cambrian 541(1775) 69.8 6.2 11.40 0.30 Lei et al., 2012 

MC11 32°17'56'' 107°09'32'' Sandstone Triassic  497(1631) 61.6 3 12.20 0.20 Yang et al., 2013 

MC09 32°15'26'' 107°26'05'' Sandstone Cretaceous  448(1470) 60.3 2.3 / / Yang et al., 2013 

MC15 32°14'52'' 106°58'30'' Sandstone Cretaceous  461(1512) 66.8 2.5 12.20 0.20 Yang et al., 2013 

MC08 32°13'06'' 107°10'41'' Sandstone Jurassic  481(1578) 70.2 4.5 / / Yang et al., 2013 

WCS-14 32°11'34'' 106°27'50'' sandstone Jurassic 462(1516) 70.7 4.7 10.60 0.30 Lei et al., 2012 

WCS-15 32°08'18'' 106°29'19'' sandstone Cretaceous  419(1375) 77.4 6.1 10.90 0.30 Lei et al., 2012 

Borehole            

 

        

HB1-4 32°05'49'' 107°06'07'' Sandstone Jurassic  -68(-223) 73.1 4.7 12.48 0.20 Tian et al., 2011 

HB1-5 32°05'49'' 107°06'07'' Sandstone Jurassic  -2594(-8510) 25.6 2.2 11.02 0.40 Tian et al., 2011 

HB1-6 32°05'49'' 107°06'07'' Sandstone Jurassic  -2972(-9751) 16.1 1.5 10.62 0.34 Tian et al., 2011 

HB1-8 32°05'49'' 107°06'07'' Siltstone Triassic -3398(-11148) 17.3 3 10.00 0.45 Tian et al., 2011 

HB1-9 32°05'49'' 107°06'07'' Sandstone Triassic  -3496(-11470) 14.0 2.5 11.15 0.41 Tian et al., 2011 

HB1-1 32°05'49'' 107°06'07'' Sandstone Triassic  -4485(-14715) 8.8 1.3 10.22 0.48 Tian et al., 2011 
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