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Abstract: Biosynthetic infochemical communication is an emerging scientific field employing
molecular compounds for information transmission, labelling, and biochemical interfacing; having
potential application in diverse areas ranging from pest management to group coordination of
swarming robots. Our communication system comprises a chemoemitter module that encodes
information by producing volatile pheromone components and a chemoreceiver module that decodes
the transmitted ratiometric information via polymer-coated piezoelectric Surface Acoustic Wave
Resonator (SAWR) sensors. The inspiration for such a system is based on the pheromone-based
communication between insects. Ten features are extracted from the SAWR sensor response and
analysed using multi-variate classification techniques, i.e., Linear Discriminant Analysis (LDA),
Probabilistic Neural Network (PNN), and Multilayer Perception Neural Network (MLPNN) methods,
and an optimal feature subset is identified. A combination of steady state and transient features
of the sensor signals showed superior performances with LDA and MLPNN. Although MLPNN
gave excellent results reaching 100% recognition rate at 400 s, over all time stations PNN gave the
best performance based on an expanded data-set with adjacent neighbours. In this case, 100% of the
pheromone mixtures were successfully identified just 200 s after they were first injected into the wind
tunnel. We believe that this approach can be used for future chemical communication employing
simple mixtures of airborne molecules.

Keywords: ratiometric decoding; pheromone; biomimetic infochemical communication; VOC detection;
SAW sensor array

1. Introduction

For over half a century, biomimetics has evolved as a research discipline studying biological
characteristics and operational principles of living organisms to apply in areas such as robotics, sensor
and actuator design, complex system integration, and artificial intelligence [1]. Many species of
insects, with their sensitive olfactory system, rely on volatile pheromones as signal messengers
to locate their mates, detect food sources, organize groups, and avoid dangers from predators.
These ratiometric chemical messages are decoded by the peripheral olfactory system of the insect,
which is subsequently translated into robust behavioural responses under turbulent, real-world
conditions [2]. Insects use their antennae to detect the nature, intensity, and gradient direction of
volatile chemical compounds. This form of communication using chemicals alone has promoted the
development of a new class of technology for labeling, information transmission and biochemical
interfacing [3]. Biosynthetic infochemical communication could also be applied to automated identification
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and data capture, product labeling, search and rescue missions, air silent communication, medical
diagnosis/treatment, environmental monitoring, and source localization.

Insects, in particular moths, utilize blends of different chemical compounds to communicate
with their sophisticated chemical signaling and processing systems [4]. As the species-specific blend
ratio is crucial for male orientation to a female emitter [5], specificity is achieved by precise blends of
pheromone components with variation in molecular chain length, unsaturation level, functional group,
and total number of compounds; rather than by chemically unique structures [6]. These infochemical
signal blends are produced by generating a spatially and temporally defined combination of different
semio-chemicals that are often biosynthesized in the insect’s pheromone gland. Female moths release
tiny quantities of pheromone blends into the air, which are detected several miles away by the extremely
sensitive feathery antennal system of the male moths. Component-specific receptor proteins present in
the antennal sensory neurons of the male moths are activated by these odour cues, producing electrical
potentials conferring information about the odorant molecule [7]. These electrical signals are processed
into a unified, ratiometric signal within the antennal lobe of the brain [8].

The biological inspiration for the work described in this paper is the moth ‘Spodoptera littoralis’ [9,10]
because its infochemical (e.g., sex pheromones) mediated behaviour is well established, both from
a behavioural and neurophysiological point of view. The biosynthetic stages of generation of these
pheromones have also been well-defined [11].

An artificial system mimicking moth-pheromone communication has been developed to
demonstrate pheromone-based ratiometric information encoding, transmission, and decoding.
This innovative modular system consists of a chemoemitter that is capable of releasing a predefined ratio
of volatile compounds, and a chemoreceiver that is capable of detecting the volatile compounds in air.

The chemoemitter utilizes an artificial gland [12] that mimics pheromone production and release
by a female moth. The chemoreceiver consists of a polymer-coated piezoelectric Surface Acoustic
Wave Resonator (SAWR) sensor array, which mimics the molecular detection in the insect antenna
of the male moth. The signal processing in the antennal lobe of the insect brain is simulated by the
recovery of ratiometric information contained in the odour cues by the use of a biologically constrained
signal-processing model. The modular arrangement of the chemoemitter and chemoreceiver [13]
sections of an infochemical communication system prototype is shown in Figure 1; it gives the relation
between the biological and technological counterparts.
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Figure 1. (a) Schematic diagram showing the relation between the primary biological components
contributing to pheromone-based insect communication; and (b) the corresponding bio-inspired
modules that form a possible configuration of a biosynthetic infochemical communication system with
chemoemitter and chemoreceiver.

In this paper, a method to detect biosynthetic ligands using the SAWR sensor system is described,
as well as the decoding of the ratiometric information using various neural network algorithms.
As an approach for rapidly decoding ratiometric infochemical signals in real-time, the applications of
Linear Discriminant Analysis (LDA), Probabilistic Neural Networks (PNN), and Multilayer Perception
Neural Network (MLPNN) algorithms are explored using different feature extraction methods of
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SAWR sensor signals. With complementarily-tuned sensors and advanced data analysis models,
the presented infochemical system demonstrates the potential for autonomous communication by
mimicking the pheromone-based communication between insects.

2. Infochemical Communication System

The basic configuration of the communication system involves a microsystem, called the
chemoemitter module, which is capable of producing and releasing a precise mixture of ratiometric
biosynthetic pheromone compounds, and a sensor system, called the chemoreceiver module,
which is capable of detecting these biosynthetic ligands and decoding the ratiometrically encoded
information [11,14–16]. A prototype of the modular infochemical communication system has been
constructed and assembled, as shown in Figure 2a.
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Figure 2. (a) Prototype of an infochemical test chamber containing syringe pump, micro-evaporator
and array of polymer-coated SAWR sensor. (b) Optical micrograph of a 263 MHz Rayleigh mode
dual SAWR with the polymer indicated on the sensing device. (c) Schematic block diagram of the
feedback-loop oscillator circuit used for the pheromone-based ratiometric measurements.

The chemoemitter module comprises of a neMESYS high-precision multi-channel syringe pump
(Cetoni GmbH, Korbussen, Germany) that drives a micro-machined evaporator (or “artificial gland”)
releasing pheromones into the chamber. Precisely controlled dilution and mixing of the compounds
is used to produce the pheromone blends with encoded ratiometric information. These blends are
released into the environment as time-sensitive and time-registered information via controlled thermal
volatilization using the artificial gland and its associated controller. The Perspex odour chamber
(14 cm × 14 cm × 40 cm in volume), which forms the wind tunnel, is coupled to a membrane venting
pump, in order to transport the odour cues to the chemoreceiver module situated at the opposite side
of the chamber.

The chemoreceiver detects and recovers the ratiometric chemical information via an array of
robust and highly sensitive functionalized 263 MHz SAW resonator devices. The SAWR sensors are
coated with a chemically- selective functional coating (i.e., polymer) to concentrate vapour molecules
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on the device surface. Polyethylene (PE), polystyrene-co-butadiene (PSB), and polyethylene-co-vinyl
acetate (PEVA) were selected based on their Volatile Organic Compound (VOC) sensitivity and
selectivity (i.e., high partition coefficients). The polymers were airbrushed onto the sensing SAWR
device surfaces to a thickness of about ~15 nm, as detailed in [11]. This was achieved by monitoring
the SAWR resonant frequency shift during the polymer coating process.

Absorption of the vapour molecules into the coating changes the propagation of the acoustic
wave, bringing about changes in wave velocity, which can be measured indirectly, as a shift in the
resonant frequency. Figure 2b shows the optical micrograph of the polymer coated sensing side and
the uncoated reference side of a 263 MHz Rayleigh mode dual SAWR sensor fabricated on ST-cut
quartz substrates using Al electrodes. These sensors are designed in a dual configuration in order to
ameliorate the effect of common mode interferences [17]. The SAW resonators are driven by simple
feedback based oscillator circuits as outlined in Figure 2c, which provide highly stable and precise
frequency measurements by detecting the SAW propagation characteristics.

3. Experimental Procedure

The sex pheromone of the Egyptian cotton leafworm (a noctuid moth) Spodoptera littoralis
has been identified as a blend of several compounds including-(Z,E)-9,11-tetradecadienyl acetate
((Z,E)-9,11-14:OAc), (Z)-9-tetradecenyl acetate(Z9-14:OAc), (E)-11-tetradecenyl acetate (E11-14:OAc),
and tetradecyl acetate (14:OAc) [9,10]. However, the female pheromone composition of this moth
varies heavily depending upon the origin of the strain [9,10,18]. A summary of the sex pheromone
compositions of Spodoptera littoralis has been reported in [18], which shows that Z9-14:OAc and
E11-14:OAc forms the two major secondary components, whose ratios vary immensely depending
on the origin of the strain. Hence E11-14:OAc and Z9-14:OAc were chosen as the two pheromone
compounds to encode the ratiometric information, so as to validate the performance of the infochemical
communication system. These pheromone compounds were biosynthesized by Dimov et al. [19] using
a silicon-glass based microreactor coated with anti-adsorption polyelectrolyte multilayer. This MEMS
based biosynthetic reactor forms part of an “artificial gland”, as described in [12], and is capable of
producing a pre-defined amount of the pheromone component. Details of the pheromone synthesis
pathways can be found in reference [18].

Ten binary volatile pheromone blends were used as the ratiometric input dataset, as shown in
Table 1. The ratios of the two pheromones were set to 1:0, 2:1, 1:1, 1:2, and 0:1, within the range
of volumes of 0 to 2 µL. Concentrated pheromone compounds were utilized for the preparation of
the ratios. The selection of the ratios were purely random because of the fact that the natural ratios
vary heavily based on the species origin [18]. Moreover, the purpose of our experiments is to realize
an effective decoding method to recover any ratiometric information successfully. This helps in the
conservation of blend information between the source and the receiver.

Table 1. Ratios of the two pheromones used to demonstrate the basic principle of ratiometric
infochemical communication.

Ratios 1:0 2:1 1:1 1:2 0:1

Categories R1 R6 R2 R7 R3 R8 R4 R9 R5 R10

E11-14:OAc volume (µL) 1 2 0.66 1.33 0.5 1 0.33 0.66 0 0
Z9-14:OAc volume (µL) 0 0 0.33 0.66 0.5 1 0.66 1.33 1 2

Before the start of each experiment, normal clean air was pumped into the odour chamber for the
purpose of purging the chamber to remove any residual volatile vapours from previous measurements.
This allowed the sensor signals to return to their initial ambient conditions. A pheromone blend was
carried and injected by capillary tubes from the syringe pump to the microfluidic channels of the
micro evaporator, after the baseline of the sensor signals became stable. The venting and baseline



Sensors 2017, 17, 2489 5 of 16

establishment times are clearly shown in Figure 3. Frequency responses of each individual SAWR of
the sensor array to the pheromone ratios were carefully recorded as a time series using a commercial
interface board (JLM Innovation, Tübingen, Germany).

The syringe pump based chemoemitter was utilized to inject different volume concentrations of
pheromone E11-14:OAc and Z9-14:OAc into the odour chamber in randomized repeated sequences.
The typical frequency response of a polymer-coated dual SAWR sensor to an injection of 1:2 ratio of
pheromone blends of Z9-14:OAc and E11-14:OAc, respectively, is shown in Figure 3. As is evident
from Figure 3, a frequency shift was observed in both the coated and the uncoated sensor devices,
due to the addition of volatile molecules on to the sensor surface. A differential frequency response
of the SAWR sensor array was obtained, which removed common mode variations and produced a
frequency shift corresponding to the pheromone blend. Also, the differential signal suggests that the
response of the polymer coated SAWR is much greater than the reference signal.
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Figure 3. Surface Acoustic Wave Resonator (SAWR) responses obtained during a typical ratiometric
measurement, (0.33 µL Z9-14:OAc and 0.66 µL E11-14:OAc) showing sensing, reference and difference
signals of a PSB-coated dual sensor. The sensor response during venting and baseline establishment is
also shown.

For the low-volume 5 ratios, measurements were repeated six times and for high-volume 5 ratios,
measurements were repeated three times, all randomly. Responses of the three sensors to 10 categories
of all the repeats were recorded, which added up to a total of 3 (sensors) × 5 (low-volume ratios) ×
6 (repeats) + 3 (sensors) × 5 (high-volume ratios) × 3 (repeats) = 3 × 45 signal profiles. The 3D plot of
the time trajectory based on two sensors of the SAWR sensor array is shown in Figure 4a. It can be
roughly seen that the frequency responses of high volume ratios are larger than the low volume ratios.

3.1. Repeatability and Correlation of Sensor Responses

The average value and standard deviation of sensor response to each category at each time were
calculated. The repeatability of the sensors information was characterized by calculating the ratio of
standard deviation and the average values, which is the statistical deviation percentage or standard
error of the sensor responses from the average. Based on the calculated results, the deviation percentage
of each sensor is random and widely distributed when there is no injection of the pheromone ratios
(because the baseline of frequency shift is around zero). After the injection of pheromone, the sensor
deviation decreases. When a sensor starts to respond, the deviation level decreases rapidly and reaches
a relatively stable level, which is lower than 10%. Minimum deviation occurs at the highest frequency
shifts for most sensors. Good repeatability is shown by PEVA and PSB based SAWR sensors towards
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the steady-state level. However, the deviation level is high for PE-based SAWR sensors towards the
end of the measurements, when compared to other sensor types.

The correlation between the different SAWR sensor responses was determined to quantify the
selectivity of the polymer layers. The mean correlation coefficients between PE and PSB, between PSB
and PEVA, between PE and PEVA based sensors are 0.963, 0.975, and 0.902, respectively, which show
that the sensor responses are strongly correlated. This is to be expected when trying to separate very
chemical compounds structurally similar.

3.2. Principal Component Analysis

Principal Component Analysis (PCA) is generally used to reduce feature dimensionality and
display signal variations. Frequency shifts of the sensors were used as features in a PCA, in order to
evaluate the ratiometric decoding capability of the infochemical communication system. Figure 4b
shows the time dependent trajectory based on the first two principal components (PC1 and PC2).
With time, the data points of each category group together. Starting from t = 250 s, it can be observed
that high concentration ratio points are separated clearly from the low concentration ratio points.
The 10 categories do show considerable intertwining. R1, R2, and R10 overlap each other clearly.
The curves of each category cluster as time increases, but they are entangled from the start of the
injection of pheromones to 600 s. PCA shows some group separation (in reduced multi-linear space),
however the lines are still overlapping. Three-dimensional (3D) plots of the PCs at 650 s are shown in
Figure 4c. Overlapping of groups (i.e., ratios) exists and it will bring more recognition errors.
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In order to decode properly the signals it is clearly necessary to use more advanced feature sets
and non-linear pattern recognition classifiers, and so other features are extracted and studied with the
non-linear, non-parametric, data-driven methods of LDA, MLPNN, and PNN.

4. Feature Extraction

Features are extracted from the sensor responses in order to obtain good decoding performances,
such as high rate and speed of recognition, mainly showing the effectiveness of decoding and
classifying the transmitted information [20–22]. Table 2 lists the features selected and analyzed
in this study. It has been shown elsewhere that the response of polymer-based chemical sensor can be
approximated by a first-order exponential model [23]. Similarly, the frequency response of the SAWR
sensors can be expressed in terms of the rise time, as shown in Equation (1):

f (t) = f (∞)[1− exp(−t/τ)] (1)

where f (∞) is the frequency shift at the stationary state and is expected to be the maximum value,
and τ is the characteristic rise time. Rearranging the equation, the rise time τ is inferred as the
reciprocal of derivative of the logarithm of response signal.

τ = −1/{d{ln[ f (∞)− f (t)]}
dt

} (2)

If 0 < t
τ � 1, the rise time τ can be also obtained by the derivative of response signal directly, as

derived in Equation (3).

τ =
1[

d f (t)
dt

1
f (∞)

] =
f (∞)[
d f (t)

dt

] (3)

Table 2. List of extracted features.

Description Designator Definition 1

Original signal Orig fij(t)
Standardized score Zscore zij(t) = [fij(t) − µj(t)]/σj(t)

Autoscaled value AS

ASij(t) = fij(t)/Li(t), where

Li(t) =

[
3
∑

j=1
(fij(t) )

2

]1/2

AutoRanged value AR ARij(t) = fij(t)/Rj(t), Rj(t) =

[
1
N

N
∑

i=1
(fij(t) )

2
]1/2

Simple scaling by concentration ratio XC XCij(t) = fij(t)/Ci, Ci =

{
1, i = 1, 2, 3, . . . , 30
2, i = 31, 32, . . . , 45

Logarithm of frequency LnF LnFij(t) = ln
(∣∣∣fij(t)

∣∣∣)
1st order derivative of frequency Deriv DFij(t) = dfij(t)/dt

The time constant 1 τ1 τ1ij(t) = −1/
{

d
{

ln
[
fij(∞)− fij(t)

]}
/dt
}

The time constant 2 τ2 τ2ij(t) = 1/
[

dfij(t)
dt

1
fij(∞)

]
= fij(∞)/

[
dfij(t)

dt

]
Ratio between sensors RatioF Rij(t) = [

fi1(t)
fi2(t)

, fi1(t)
fi3(t)

, fi2(t)
fi3(t)

]

1 Subscript i denotes sample number, subscript j denotes sensor number.

5. Decoding Algorithms

10 categories of pheromone mixtures at five ratios and two volumes were defined as the target
biosynthetic chemical codes. For a comparative study, general pattern recognition approaches
can be applied as decoding algorithms. Principal Components Analysis (PCA) [24,25] has been
widely used as a group display technique in electronic noses. Fisher's linear discriminate analysis
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(LDA) is also a typical linear classification technique applied in electronic nose applications [20,26].
Other than these linear techniques, nonlinear techniques, including artificial neural networks (ANN)
and probabilistic neural networks (PNN), are the most studied recognition methods in gas sensing
area [27]. These powerful nonlinear classifiers are adopted and studied as the decoding methods
in the following subsections. Performances, including recognition rate and speed, are analysed
and compared.

5.1. LDA Based Representation and Classification

The infochemical codes (or labels) are associated with discrimination capabilities (e.g., inter-class
distance) by signal classification methods. Both LDA and PCA are linear classification techniques,
which are able to present the points in a transformed space and show inner-class distance and inter-class
distance. Figure 4c,d show the data points at t = 650 s after injection of the pheromone blends in the 3D
space of Principal Components (PCs), and the space of Discriminate Functions (DFs). In the PC space,
the data-points are distributed based on the major variation direction of the original data. But due
to the large deviation of frequency shift, groups clearly overlap with each other. Because the LDA
considers the overall discrimination between groups, the groups in DF space are more centered and
with larger distances between them. The classification is then performed based upon these canonical
functions. Subjects are classified in the groups in which they had the best classification scores. Here,
a linear function is adopted as the classifier.

For the purpose of robust training with small sample sets, the Leave-One-Out verification method
is adopted to demonstrate the process. A sample is randomly chosen as the test vector by this method
and the remaining44 samples are then used as training vectors. This process is repeated for the
remaining unchosen samples. Finally, the overall average recognition rate is computed for each of the
different discrete sample times, e.g., t = 200 s.

5.2. Probabilistic Neural Network Based Classification

A Probabilistic Neural Network (PNN) [28–30] approach employs a supervised neural network
that is closely related to the Bayes classification rule and the Parzen nonparametric probability density
function estimation theory. PNNs offer a way to classify multi-dimensional vectors using probability
density functions (often Gaussian).

It is not necessary to calculate the full probability density function when using Parzen windows
for classification; it is sufficient to evaluate it at the test vector point. The following equation expresses
the method for finding the needed value, extended to the n-dimensional case:

fa(X) = 1/(2π)
p
2 σp(1/na)

na

∑
i=1

exp

(
− (X−Yai)

t(X−Yai)

2σ2

)
(4)

where fa(X) is the value of the probability density function of class A at point X, i is the number of
the training vector, p is the number of components in the training vector, σ is a smoothing parameter,
na is the number of training vectors in class A, X is the test vector to be classified, Yai is the ith training
vector from class A, and finally, superscript t denotes the transpose.

The simple PNN structure used here is shown in Figure 5a. When an input is presented, the first
layer computes the distance (in multi-dimensional space) from the input vector to a training input
vector and produces a vector whose elements indicate how close the input is to the desired value.
The second layer sums these contributions for each class of inputs to produce as its net output a
vector of probabilities. Finally, a transfer function is applied to the output of the second layer and
picks the maximum of these probabilities and produces a binary “1” for that class and a “0” for other
classes. The 10 ratios are encoded as numbers ranging from1 to 10. The input is the verification
sample randomly generated by the Leave-One-Out method, the remaining 44 samples are the pattern
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layer nodes. The average classification/recognition rate of all repeated results is defined as the
recognition ratio.
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The smoothing parameter σ is also the standard deviation of the Gaussian, and it must be
pre-selected to provide an appropriate width for the distribution. If the value chosen for σ is small, then
each Gaussian is narrow; whereas, if the value of σ is made larger, the Gaussian functions are spread
out and flattened, producing a smoother probability density function estimate. Here, the classification
accuracy was found to be relatively insensitive to the exact value of σ. As σ approaches 0, a nearest
neighbour classifier is in effect approximated. As it approaches infinity, the decision boundaries
approach the hyperplanes, thus limiting the classifier to functions that are linearly separable like
LDA. In this paper, as the feature values varied over a large range, a constant smoothing parameter is
inappropriate unless all of the features are normalized (i.e., autoranged) at the first step. However,
the normalization does affect the data structure and to keep the consistent data structure for the
purpose of comparison, the data were not normalized at first, and instead a different smoothing
parameter was calculated for each feature.

It is evident that the appropriate value for the spread parameter of each class depends on the
distances between the adjacent samples of that class. Di is defined as the set of distances between the
samples of the ith class and their nearest neighbours in the same class:

Di =
{

min
{

dist
(
sk, sj

)
; j = 1, · · ·Ni, j 6= k, k = 1, · · ·Ni

}}
, i = 1, · · · c

where dist
(
sk, sj

)
is the Euclidean (linear) distance between two sample vectors sk and sj, Ni is the

number of samples in the ith class, c is the number of classes. Several ways were examined for
obtaining an appropriate value for spread parameter from Di, including the smallest member of Di,
average of Di members, median of Di members, the largest member of Di. It was found that usually
the median(Di) is the most appropriate estimate for spread parameter.

5.3. Back-Propagation Multilayer Neural Network Based Classification

The Rumelhart back-propagation (BP) multilayer neural network is a widely used pattern
recognition approach in odour classification research. For comparison, the BP-based MLPNN is
adopted as the decoding algorithm. Two kinds of outputs can be set for the MLPNN. One way is to
use the 10 category labels as the outputs, similar with the PNN output. The other way is to use the
concentrations of the two pheromones as the output targets and then calculate the ratio to determine
the category. More output nodes in the former method will produce a larger neural network to train,
as the number of hidden layer nodes is generally set to more than the number of output nodes to utilize
the generality of NNs. This would greatly increase the training time. Therefore, the latter approach
was chosen here.

Ten category output targets are defined as [1.00, 0], [0.66, 0.33], [0.50, 0.50], [0.33, 0.66], [0, 1.00],
[2.00, 0], [1.33, 0.66], [1.00, 1.00], [0.66, 1.33], [0, 2.00]. The designed MLPNN structure is shown in
Figure 5b. A sigmoid function is used as the active function in the hidden layer neurons. A linear
function is used in the output layer. The output values are classified into 10 categories based on the
distances to the possible targets.
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6. Results and Analyses

The extracted sensor features in Section 4 are further processed by the LDA, PNN, and MLPNN
classification techniques, as described in Section 5. The recognition rate and speed are determined,
the performance of recognition based on single features, combined features, and sequential selected
features are calculated.

6.1. Decoding Based on Single Feature

Each extracted feature in Table 2 is used as the input of the LDA, PNN, and MLPNN recognition
algorithms. The Leave-One-Out verification method is adopted and the average recognition rates
based on the features are shown in Figure 6.
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It was observed that the AS and Ratio features were not effective for recognition, as the recognition
ratio was roughly lower than 50% for each. For features based on the steady state responses, including
Orig, Zscore, AR, XC and LnF, recognition rates are approximately 50% in the initial period (200 s–500 s),
and improve with time, which could reach over 90% after 800 s. Among these parameters, XC was the
worst from the view of recognition ratio and time to reach the highest score. For features based on
the dynamic responses, including Deriv, τ1 and τ2, recognition rates are roughly 70% in the period of
300 s–700 s, and they remain similar over time.

For the LDA, PNN, and MLPNN recognition results shown in Figure 6, MLPNN shows slightly
better recognition ratio but required much longer training times.

6.2. Decoding Based on Feature Combination

Recognition rates using steady state features increase over time but are low in the beginning as
shown in Figure 6. However, recognition rates using the transient features are higher at the beginning.
A combination of features has the potential to improve the overall recognition rate.

Combinations of features are also fed into the LDA, PNN, and MLPNN algorithms, and the
results are shown in Figure 7. The used features are Orig, Zscore, LnF, Deriv, τ1, and τ2.
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Figure 7. Linear Discriminant Analysis (LDA), Probabilistic Neural Network (PNN), and Multilayer
Perception Neural Network (MLPNN) recognition based on combination of feature. From left to right,
LDA recognition ratio based on two feature combinations with (a) Orig; (b) Z; (c) LnF, PNN recognition
ratio based on two feature combinations with (d) Orig; (e) Z; (f) LnF, and MLPNN recognition ratio
based on two feature combinations with (g) Orig; (h) Z; and (i) LnF.

Figure 7 shows the recognition rate of LDA, PNN, and MLPNN using the combinations of steady
features and transient features. Figure 7a shows the LDA recognition rate of combination of the Orig
feature with others and the Orig-τ2 combination shows the fastest recognition rate, reaching 100%
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ratio at 700 s. Feature combination does improve recognition compared with Figure 6, especially for
combinations with dynamic features. Figure 7b shows the combination of the standardized score with
others and the Z-τ2 combination reaches 100% ratio at 750 s. Figure 7c shows the combination of the
LnF with others and the LnF-Deriv combination achieved 100% ratio at 650 s.

The PNN recognition rate based on feature combinations are shown in the second row of Figure 7.
A combination of Orig with other features shows improved results in Figure 7d and the performances
are similar reaching over 90% ratio at 800 s. Figure 7e shows that the Z-LnF combination gets 97% ratio
at 800 s, while the other combinations show no improvement. Combinations of LnF with other features
shows no improvement, says in Figure 7f.

Figure 7g–i (third row) shows the recognition rate of MLPNN using the combined features.
The improvement of feature combination can be seen clearly and roughly the MLPNN shows better
performance than LDA and PNN. Orig-τ2, Z-τ2, and LnF-Deriv reach 100% ratio at 550 s, 400 s and 650
s, respectively.

In summary, combining a steady state feature and a transient feature can improve the recognition
rate for LDA and MLPNN algorithms, but less so for the PNN algorithm.

6.3. Decoding Based on Sequential Forward Feature Selection

Feature subset selection (FSS) is an important feature selection technique that can be used to
find an optimal subset of features that maximizes information content or predictive accuracy [24].
Sequential search algorithms are computer-intensive strategies that reduce the number of states to be
visited during search by applying local search. The simplest methods are sequential forward selection
(SFS) and sequential backward selection (SBS) [31]. In this work, the SFS approach has been adopted
for the sake of expediency.

The input feature set is designed as {Orig, Zscore, AR, AS, LnF, Deriv, τ1, τ2}. The recognition rate
with SFS based PNN and MLPNN classification algorithms are calculated and the features selected are
shown in Table 3. Compared to Figure 7, there is no clear improvement of the recognition rate. Again,
it can be seen that transient features play greater roles than steady state features during earlier stage to
improve the recognition rate, while steady features play higher roles lately. Among the steady features,
Orig and LnF show up more than others. Deriv shows more than others in transient features. PNN
obtains better recognition rate and faster computation than MLPNN.

Table 3. Table detailing the features selected at time stations with their corresponding recognition rates
obtained using sequential forward selection (SFS) based PNN and MLPNN algorithms.

Time(s)
PNN MLPNN

Features Recognition Rate Features Recognition Rate

150 Deriv 51.1% LnF 35.6%
200 Deriv, τ1 57.8% LnF, τ1, τ2 60.0%
250 Deriv, τ1, τ2 64.4% Deriv, τ1, τ2 57.8%
300 Zscore, τ1 64.4% Orig, LnF 57.8%
350 Orig 62.2% LnF, τ2 64.4%
400 Orig 64.4% Orig, Deriv 68.9%
450 Deriv 62.2% LnF, Deriv 73.3%
500 Zscore, Deriv 68.9% Deriv 60.0%
550 Zscore 64.4% Orig 62.2%
600 Orig 66.7% AS 73.3%
650 Orig 66.7% LnF 75.6%
700 Orig 75.6% Orig, AS, LnF, Deriv 82.2%
750 Zscore 86.7% LnF, Deriv 84.4%
800 LnF 93.3% Orig, AS 88.9%
850 Orig, τ1 100.0% LnF 84.4%
900 Orig 97.8% LnF 84.4%
950 Orig 97.8% AS 80.0%
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6.4. Expanding Input Samples with Neighbours

The challenge of this ratiometric decoding problem is the limitation of pre-tested sensor responses.
This confined data-set has restricted the recognition rate and recognition speed. However, as the
data acquisition interval is far less than the sensor response time, the closest data-points in time also
are closest in values. Therefore, nearest neighbour is adopted as the input of recognition algorithms.
By utilizing this approach, the whole sample set is expanded to 90. Together with the SFS based
recognition methods, greatly improved results are obtained. The LDA based approach can be used
together with SFS after expanding the data set, as it overcomes the limitation described above. But for
MLPNN, the expanding of dataset brings an extremely long training period. Therefore, only the LDA
and PNN are applied in this section.

The recognition results of LDA and PNN using the expanded data-set are shown in Figure 8a.
The calculation time step is 50 s. It can be seen that when using the single feature of Orig in the
expanded data set, the recognition ratio of PNN reaches 100% at 350 s, showing a greatly improved
performance, while LDA recognition performance is slightly improved when compared with Figure 7a.
However, the SFS based LDA and PNN achieve excellent performances. The SFS based LDA approach
obtains more than 90% recognition ratio at 200 s, producing significant improvement. The recognition
ratio of 100% is achieved at 200 s by the SFS based PNN, which means the target information is
decoded 100 s after the injection of the pheromone blend.
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6.5. Real-Time Decoding

Based on the above analysis, when considering the recognition rate and the amount of
computation, the PNN based on the expanded data-set is preferred as the final real-time decoding
approach. Information at each time is recognized by PNN.

To verify the decoding approach, the sensor frequency shifts are processed with the time interval
of 1 s. Figure 8c shows the real-time decoded results plotted 3D over time. The decoded outputs are 0
at the beginning 100 s as there are no pheromone blends. When the pheromone blends are injected
at 100 s, outputs show up as the 10 codes of from R1 to R10. The recognized codes jump between
similar and most adjacent response categories. Initially, R1 has been recognized as R1, R10, and R9 at
the beginning, then jumps to R2 and finally goes to the target code of R1 at about 150 s. Roughly, R1,
R2, R4, R6, R7, R8, R9, and R10 are decoded out before 200 s.

The total recognition ratio is illustrated in Figure 8b. The recognition ratio achieves 100% around
270 s and slightly down to 90% during the period of 300 s to 360 s, because R3 and R5 mixed together,
as shown in Figure 8d. After 360 s, the recognition ratio stays at 100% till the end. Hence, we can say
that all of the settled chemical information is decoded out roughly after 360 s. This decoding time is
greatly shorter than the other approaches. The decoding process is clear, effective, and fast.

7. Conclusions

A biomimetic infochemical communication system in which insect pheromones are employed as
molecular messengers is presented and infochemical transferring experiments have been performed.
Information has been ratiometrically encoded using binary mixtures of two kinds of pheromones
with different concentrations, and then released into a small wind tunnel mimicking the infochemical
transfer process. These uniquely encoded chemical signals were successfully detected by an array of
polymer coated SAWR sensors and ratiometric classifier. Different ratiometric decoding approaches
have been studied and an effective real-time decoding method is described for our infochemical
communication system.

Because sensor responses show low stability and high correlations, it is difficult to classify the data
points by PCA with the original signal. Eight features have been extracted out and utilized in analyzing
the SAWR sensor responses. LDA, PNN, and MLPNN algorithms have been used to analyze different
sets of sensor features. Orig, Zscore, LnF, Deriv, τ1, τ2 are useful features and selected as a good feature
subset, including steady state and transient values. Results show that the combination of steady
state and transient features improve the LDA and MLPNN recognition performances. A sequential
forward feature selection method was combined with the three algorithms to improve optimal feature
selection. Important selected features are Orig and LnF. Orig worked best for PNN, and LnF for
MLPNN. MLPNN shows improved performance based on combinations of steady and transient
features with large computation consumption.

Significant improvement was achieved by using the adjacent neighbouring data-points to expand
the data-set. The SFS based PNN obtains 100% ratio at 200 s with a time interval of 50 s. SFS is time
consuming. Final real-time decoding is performed by PNN using only Orig feature and a greatly
improved recognition performance is achieved. Decoding ratio of 100% is obtained at about 260 s after
the injection of chemical blends, while maximum sensor response occurs at about 600 s after injection.

In conclusion, the system described in this paper has been shown to classify successfully all of
the ratiometric information, thus mimicking a complete insect-based infochemical communication
system. The sensor response time, and consequently decoding rate, could be improved by reducing
spatial scales utilizing nano-engineered VLSI systems, thereby improving temporal precision. Such a
biomimetic system could serve as the foundation for a new form of low-cost information transmission
for broadband chemical communication influencing a range of applications, such as environmental
monitoring, product labeling, medical diagnosis, and nanoscale communication.
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