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Abstract

When written in MATLAB the finite element method (FEM) can be imple-

mented quickly and with significantly fewer lines, when compared to compiled

code. MATLAB is an attractive environment for generating bespoke routines

for scientific computation as it contains a library of easily accessible inbuilt

functions, effective debugging tools and a simple syntax for generating scripts.

However, there is a general view that MATLAB is too inefficient for the anal-

ysis of large problems. Here this preconception is challenged by detailing a

vectorised and blocked algorithm for the global stiffness matrix computation of

the symmetric interior penally discontinuous Galerkin (SIPG) FEM. The major

difference between the computation of the global stiffness matrix for SIPG and

conventional continuous Galerkin approximations is the requirement to evaluate

inter-element face terms, this significantly increases the computational effort.

This paper focuses on the face integrals as they dominate the computation time

and have not been addressed in the existing literature. Unlike existing opti-

mised finite element algorithms available in the literature the paper makes use

of only native MATLAB functionality and is compatible with Octave GNU. The

algorithm is primarily described for 2D analysis for meshes with homogeneous

element type and polynomial order. The same structure is also applied to, and

results presented for, a 3D analysis. For problem sizes of 106 degrees of freedom
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(DOF), both 2D and 3D computations of the local stiffness matrices were ap-

proximately 30 times faster when compared to conventional matrix formulation

algorithms. Additionally, when computing the complete global stiffness matrix

for problems with 106 DOF, both the 2D and 3D codes achieved runtimes of

less than 30 s.

Keywords: efficient, MATLAB, stiffness matrix, symmetric interior penalty,

discontinuous Galerkin, linear elasticity.

1. Introduction

Finite element analysis (FEA) is commonly used as a technique for solving

partial differential equations by engineers, mathematicians and scientists. The

MATLAB environment, with its library of functions and debugging procedures,

allows bespoke FEA routines to be generated quickly with few lines. Examples

include Coombs et al. [1], Sigmund [2] and others. However, an unoptimised

MATLAB script will often run significantly slower than unoptimised compiled

code [3]. This paper demonstrates how the advantage of using only native

MATLAB to generate FEA routines is not necessarily penalised with slow run

times when written in an optimised form for the symmetric interior penalty

Galerkin (SIPG) method.

Significant progress on optimising FEA routines in MATLAB was achieved

by Dabrowksi et al. [3] in 2008. The authors presented MILAMIN, an open

source optimised non-native MATLAB implementation of continuous Galerkin

(CG) FEA code that is capable of setting up, solving, and post processing

2D unstructured mesh problems with 106 degrees of freedom (DOF) in under

a minute. One common method to compute the global stiffness matrix is to

compute each local element matrix in turn through a series of small matrix

multiplications. When creating the MILAMIN algorithm the authors recognised

that there were two significant bottlenecks with this method. Firstly, two nested

for loops are required to generate all the element stiffness matrices in a mesh.

The outer loop, to loop through all the elements and the inner loop, to loop
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through all the Gauss points. As MATLAB loops are inherently slow and the

iteration number of the element loop is big when calculating the stiffness matrix

for a large mesh (excess of 106 DOF) this was recognised as the first bottleneck.

The second bottleneck was recognised as the time required to transfer data

between the RAM and the CPU cache; this time was significantly larger than the

calculation in the CPU itself - even for large calculations [3]. Matrix calculations

in MATLAB are performed by the Linear Algebra Package (LAPACK) which

calls the Basic Linear Algebra Subprogramme (BLAS) package. In conventional

FEA codes the BLAS package is called for every Gauss point for each element

individually making the total transfer time significant.

Dabrowski et al. [3] removed both bottlenecks by designing an algorithm

where an entry in a local stiffness matrix could be computed for all elements

simultaneously. Their size was consequently reduced. As an entry is calculated

for all elements simultaneously the number of BLAS calls is proportional to the

number of entries in the local element stiffness matrix, rather than the number of

elements in the mesh. The number of BLAS calls is therefore in general smaller

and no longer dependent on the size of the problem, the data transfer time

is subsequently minimised removing the second bottle neck. The MILAMIN

routine was further improved by maximising cache reuse, a technique known as

blocking. This work has since been extended by introducing parallel vectorised

stiffness matrix calculations in [4].

More recently Rahman and Valdman [5] produced a fast MATLAB script for

a volumetric integral of elements with linear nodal shape functions. The focus

was to start with a non-vectorised code with a standard finite element structure

and then improve its computational speed through vectorisation. One of the key

characteristics was to preserve the code’s original structure, this ensured that

the readability was not lost which is often the case in code optimisation. Lack of

readability in optimised codes was also highlighted by Dabrowksi et al. [3]. Ad-

ditionally, Anjam and Valdman [6] produced a vectorised MATLAB script for

Raviart-Thomas elements used in discretizations of H(div) spaces and Nédélec

elements in discretizations of H(curl) space. Andreassen et al. [7] provided a
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comparison and discussion of computational performance between different vec-

tor computational languages to assemble a FE global stiffness matrix. Cuvelier

el al. [8, 9] presented a more general approach to vectorise routines for multiple

vector languages.

In a FEA code once all the local element stiffness matrices have been calcu-

lated they are assembled together to form a sparse global stiffness matrix. In

native MATLAB this is achieved using the command sparse which generates

a sparse matrix from triplets of data: row position, column position and the

associated value. The native performance is slow, Dabrowski et al. [3] used

sparse2 a non-native MATLAB command. Other sparse matrix commands for

MATLAB have also been created, investigated, improved and discussed in [10],

who also provide their own improvement and GPU implementation.

In this paper the SIPG method for linear elasticity is implemented. Discon-

tinuous Galerkin (DG) methods were first introduced by Reed et al. [11] for solv-

ing the neutron transport equation. Richter [12] prompted an extension of the

original DG method to elliptical problems including linear convective-diffusion

terms. However, the discontinuous approximation was only applied for the con-

vective terms, with mixed methods for the second-order elliptic operators. Bassi

and Rebay [13] introduced the complete discontinuous approximations for both

the convective and second-order elliptical operators.

One arising characteristic of DG methods is that the degrees of freedom

are element specific, allowing simple communication at the element interfaces.

Specifically, hp-refinement is simplified due to its capability to incorporate hang-

ing nodes at the element interfaces. These qualities make the DG method very

suitable for efficient adaptive refinement to achieve high fidelity simulations [14].

The penalty for allowing this flexibility is that the number of terms to be inte-

grated in the week form and degrees of freedom is higher for the same number

and type of elements when compared to the CG method. The additional inte-

grals are face connectivity stiffness terms which couple the unshared degrees of

freedom between elements. This increases the number of calculations required

to produce the global stiffness matrix, K [15], the need for efficient production

4



of the K matrix is therefore necessary even for relatively small problems.

This paper extends the algorithm presented by Dabrowski et al. [3] to include

optimised integration of the face terms for SIPG, [16], for linear elastic problems

in a vectorised blocked form. In this paper all the algorithms are designed for

native MATLAB functionality only, a clean departure from the majority of the

optimised MATLAB algorithms available in literature [3, 5, 4]. The only other

known vectorised, non-blocked, MATLAB code on DG methods is by Frank et

al. [17]. The authors in [17] consider the time dependent diffusion equation as

their model problem, cast within a local DG formulation in 2D. Here we design

a block vectorised code in native MATLAB, which exploits the symmetry in

SIPG, to model linearly elastic problem in 2D and 3D.

The paper begins with a brief overview of the SIPG formulation for linear

elasticity followed by a reformulation into a matrix form that can be computed

in a vectorised algorithm in Section 2. The vectorised algorithm for computing

SIPG face stiffness terms is presented and discussed in Section 3, the volume

integral is omitted as it is thoroughly covered in [3]. This is followed by a discus-

sion on: generating the local face stiffness matrices, efficiently generating global

variables, Gauss quadrature on faces and sparse storage of the local stiffness ma-

trices into the global stiffness matrix. In Section 3 the Linear2D DG.m script

is explained, with the full code available at [18]. Timing results, validation, and

discussions are presented in Section 4, followed by a conclusion in Section 5.

2. Optimising the DG method

2.1. SIPG weak form for linearly elastic problems

Here we consider the following model problem on a bounded Lipschitz polyg-

onal/polyhedral domain Ω in Rd, d ∈ {2, 3}, with the boundary ∂ΩN ∪ ∂ΩD =

∂Ω, where ∂ΩD and ∂ΩN are the portions of the boundary where homogeneous

Dirichlet and Neumann boundary conditions respectively applied. The strong

form of the problem, for small strain hyperelasticity, is defined as

∇ · σ(u) = 0 in Ω, σ(u) · n = gN on ∂ΩN , and u = 0 on ∂ΩD. (1)
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gD and gN are data in [L2(Ω)]d, they are respectively the applied Dirichlet

and Neumann boundary conditions. The Cauchy stress tensor is defined as

σ = ∂ψ̂(ε)/∂ε(u), where ψ̂ is the free energy function for hyperelasticity, ε is

small strain, u is displacement and n is the normal unit vector to the boundary.

The Cauchy stress tensor can also be described σ = Dε(u) where D is a

material stiffness tensor relating stress and strain.

This paper provides only a description of the 2D optimised code, there-

fore a description of the 3D element spaces and respective mesh is omitted.

The polygonal finite element mesh T is homogeneous in element type and is

in general unstructured. Two element types are defined here, the triangle

and quadrilateral, however since only one element type is present in a mesh

both types are referred to as K. The polygonal mesh T is comprised of el-

ements K which are either the image of the reference triangle or quadrilat-

eral under an affine elemental mapping FK : K̂ → K. The homogeneous

discontinuous Galerkin finite element space for triangle elements is defined as

Wp(T ) = {w ∈ [L2(Ω)]d : ∀K ∈ T ,w|K ∈ Pp(K)} and for quadrilateral ele-

ments as Wp(T ) = {w ∈ [L2(Ω)]d : ∀K ∈ T ,w|K ∈ Qp(K)}. Where Pp(K) is

the space of polynomials on K of degree less than or equal to 1 and Qp(K) is

the space of polynomials on K less or equal to p in each dimension.

We denote by F(K) the set of the three elemental faces for the triangle, or

as the set of the four elemental faces for the quadrilateral, of an element K. If

the intersection F = ∂K+∩∂K− of two elements K+,K− ∈ T is a segment, we

call F an interior face of T . The set of all interior faces is denoted by FI(T ).

Analogously, if the intersection F = ∂K ∩ ∂Ω of an element K ∈ T and ∂Ω is

a segment, we call F a boundary face of T .

The SIPG method for the approximation of the model problem (1) is now

introduced in the bilinear form where the homogeneous Dirichlet boundary con-

ditions on ∂ΩD are applied strongly. Find the displacement uh ∈ Wp(T ) such
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that a(uh,w) = l(w) for all w ∈Wp(T ), where

aK(uh,w) =
∑
K∈T

(σ(uh), ε(w))K −
∑

F∈FI(T )

〈{σ(uh)}, JwK〉F

−
∑

F∈∪FI(T )

〈JuhK, {σ(w)}〉F +
∑

F∈FI(T )

β〈p2
Fh
−1
F JuhK, JwK〉F ,

(2)

and

l(w) =
∑

F∈FN (T )

〈gN ,w〉F . (3)

β is a penalty term for linear elastic SIPG defined in [19], hf is this size of an

element face, and

{v} = v
∣∣∣
F+
· n+ − v

∣∣∣
F−
· n+, (4)

JvK =
1

2

(
v
∣∣∣
F+

+ v
∣∣∣
F−

)
(5)

where the element faces of K+ and K− on an intersection F ∈ FI(T ) are

respectively referred to as F+ and F−. Additionally for convenience (·, ·) and

〈·, ·〉 are used, where (a, b)Ω =
∫

Ω
ab and 〈a, b〉∂Ω =

∫
∂Ω
ab.

2.2. Matrix form of the SIPG method

Now that the weak form of the problem has been described it is possible

to express the stress, strain and displacements in (2) as function of nodal dis-

placements, shape functions and their derivatives, and material stiffness. Once

expressed, each term in the bilinear form can be reformulated as a set of matrix

multiplications which can be used to compute the stiffness matrix for SIPG.

The first step to achieving the matrix formulation is decomposing the element

displacements uh into a matrix of element shape functions Nn and their corre-

sponding coefficients un such that uh = Nnun where

Nn =

N1 0 N2 0 . . . Nnen 0

0 N1 0 N2 . . . 0 Nnen

 , (6)

un = [u1, v1, . . . , unen, vnen]T , nen is the number of element nodes, and, u and v

are respectively the displacements in the x and y directions of the Cartesian co-

ordinate system. Similarly the test function can be represented as w = Nnwn.
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As the small strain tensor is a function of uh, the strain can also be expressed

as a set of matrix multiplications ε = LNnun with the additional term

L =


∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x ,

 (7)

as the small strain partial differential matrix operator [15]. From hyperelasticity

the Cauchy stress is simply expressed as σ = Dε = DLNnun, where D is the

plane stress or strain stiffness matrix. Substituting the matrix forms of the

stress, strain and displacement into (2), and setting

Bn = LNn =


∂N1

∂x 0 . . . ∂Nnen

∂x 0

0 ∂N1

∂y . . . 0 ∂Nnen

∂y

∂N1

∂y
∂N1

∂x . . . ∂Nnen

∂y
∂Nnen

∂x

 , (8)

gives,

aK(uh,w) =
∑
K∈T

(DBnun,Bnwn)K −
∑

F∈FI(T )

〈{DBnun}, JNnwnK〉F

−
∑

F∈∪FI(T )

〈JNnunK, {DBnwn}〉F +
∑

F∈FI(T )

β〈p2
Fh
−1
F JNnunK, JNnwnK〉F .

(9)

The test function term in the Neumann boundary condition (3) is also expressed

as a matrix multiplication

l(w) =
∑

F∈FN (T )

〈gN ,Nnwn〉F . (10)

Each term in the bilinear form can now be reformulated into a set of matrix

multiplications by setting (10) equal to (9), multiplying out the brackets and

dividing by wn to give∑
F∈FN (T )

∫
F

NTgN =
∑
K∈T

∫
K

BT
nDBnun −

∑
F∈FI(T )

∫
F

(C1 +C2 +C3 +C4

+D1 +D2 +D3 +D4 +E1 +E2 +E3 +E4)

=
∑
K∈T

KCGun +
∑

F∈FI(T )

KLFun

=(KK +KF )Un = KUn

(11)
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where (KK+KF ) is the global stiffness matrix, K, comprised of the global

element stiffness matrix and the face stiffness matrix respectively. Un is vector

containing all the nodal displacements for all K ∈ T such that with respect to

the mesh topology Un =
∑
K∈T un(K). The remaining terms in (11) in their

full form are

C1 = B+T

nDn
+TN+

nu
+
n /2 = MC1u

+
n , (12)

C2 = − B+T

nDn
+TN−nu

−
n /2 = MC2u

−
n , (13)

C3 = B−T

nDn
+TN+

nu
+
n /2 = MC3u

+
n , (14)

C4 = − B−T

nDn
+TN−nu

−
n /2 = MC4u

−
n , (15)

D1 = N+T

nn
+DB+

nu
+
n /2 = MD1u

+
n , (16)

D2 = N+T

nn
+DB−nu

−
n /2 = MD2u

−
n , (17)

D3 = − N−T

nn
+DB+

nu
+
n /2 = MD3u

+
n , (18)

D4 = − N−T

nn
+DB−nu

−
n /2 = MD4u

−
n , (19)

E1 = β
p2

hF
N+T

n N+
nu

+
n = ME1u

+
n , (20)

E2 = − β
p2

hF
N+T

n N−nu
−
n = ME2u

−
n , (21)

E3 = − β
p2

hF
N−Tn N+

nu
+
n = ME3u

+
n , (22)

E4 = β
p2

hF
N−Tn N−nu

−
n = ME4u

−
n . (23)

The superscripts + and − in equations (12) to (23) correspond to variables

existing respectively in K+ and K−. The variable n+ is a matrix of normal

components to F+, its form for the SIPG linear elastic 2D problem is

n+T =

nx 0 ny

0 ny nx

 . (24)

Last the set M is defined as M = {MC1, MC2, MC3, MC4, MD1, MD2,

MD3, MD4, ME1, ME2, ME3, ME4} which is the set of partial stiffness

matrices which when integrated over a single face F , and assembled together

with respect to the element topology of K+ and K−, produce the local SIPG

face stiffness matrix KLF for the face F .
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2.3. Vectorising the SIPG face integration

In Section 2.2 the matrix formulation of the SIPG method was expressed in

(11). Traditionally from here the SIPG local face stiffness matrices are produced

by computing the local stiffness for each element, K, and face, F , individually.

However the size of the loops in such an algorithm is proportional to the size

of the problem, i.e. the number of elements and faces. As loops in MATLAB

are significantly slower than compiled code an algorithm with this structure is

unacceptable to use for large problems [3]. The approach used in this paper to

speed up the computation of the global stiffness is to reformulate each partial

stiffness matrix in (11) so that each matrix can be computed in a vectorised

blocked algorithm.

A vectorised calculation is where multiple results for a scalar equation are

calculated simultaneously. This is achieved by providing the inputs to a scalar

equation as vectors and only performing entry-wise operations in the code. The

current form of the partial stiffness matrices in (11) can not integrated in a

vectorised algorithm since the result of each partial stiffness matrix can only be

found through matrix operations. To calculate the integral of a partial stiffness

matrix in a vectorised algorithm the matrices in M need to multiplied out to

give a resultant single matrix with entries comprising of only scalar equations.

This allows an entry in a matrix to be integrated for all faces simultaneously.

This removes the necessity to have a loop, that loops over all faces. The result

is the size of the for loops in the algorithm are no longer dependent on the

size of the problem. However, the Gauss point integration loop still exists,

additionally two more loops are added to loop over the local nodal element

combinations. These three loops are not dependent on the size of the problem

and in general, expect for small problems, smaller in comparison to the number

of elements in the mesh. Therefore the speed up provided by having these loops

to allow vectorisation for large problems is significantly more than the loss of

speed inherent with MATLAB loops.

The method for reformulating each partial stiffness matrix in equations (12)

to (23) is the same, here the integral matrix term MC2 from (13) is used as an
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example ∑
F∈FI

(∫
F

MC2

)
u− = −1

2

∑
F∈FI

(∫
F

B+TDn+TN−
)
u−. (25)

The vector u− is omitted in the integral as it is the solution to the linear elastic

problem and so is unknown.

To reformulate MC2 the shape functions and the derivatives, N− and B+,

are expanded into their full form so MC2 becomes,

MC2 =



∂N+
1

∂x 0
∂N+

1

∂y

0
∂N+

1

∂y
∂N+

1

∂x

...
...

...

∂N+
nen

∂x 0
∂N+

nen

∂y

0
∂N+

nen

∂y
∂N+

nen

∂x


Dn+

N−1 0 . . . N−nen 0

0 N−1 . . . 0 N−nen

 . (26)

The form of B+ and N− are repeated down the rows and along the columns

respectively so MC2 can therefore be rewritten in the condensed form

MC2 =

nen∑
i=1

nen∑
j=1

∂N
+
i

∂x 0
∂N+

i

∂y

0
∂N+

i

∂y

∂N+
i

∂x

Dn+

N−j 0

0 N−j

, (27)

where i and j are respectively the local finite element nodes numbers for elements

K+ and K− who’s shape functions pre-and-post multiplied MC2. The material

stiffness matrix D is either acting in plane strain or stress and so is represented

as

D =


A B 0

B A 0

0 0 C

 . (28)

When multiplied out (27) becomes

Mr
C2 =

nen∑
i=1

nen∑
j=1

[
N−j (A

∂N+
i

∂x
n+
x + C

∂N+
i

∂y
n+
y ) N−j (B

∂N+
i

∂x
n+
y + C

∂N+
i

∂y
n+
x )

N−j (B
∂N+

i
∂y

n+
x + C

∂N+
i

∂x
n+
y ) N−j (A

∂N+
i

∂y
n+
y + C

∂N+
i

∂x
n+
x )

]
. (29)

Mr
C2 ≡ MC2, however for the sake of clarity the reduced 2-by-2 matrix form

of MC2 is redefined. An equivalent matrix exists for all the partial stiffness
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matrices in M . The new set Mr is now defined and contains the equivalent

2-by-2 matrix forms of matrices in the set M , denoted with the superscript r,

such that Mr = {Mr
C1, Mr

C2, Mr
C3, Mr

C4, Mr
D1, Mr

D2, Mr
D3, Mr

D4, Mr
E1,

Mr
E2, Mr

E3, Mr
E4}. All the entries in MC2 are now represented by 4 scalar

equations which are looped over the indices (i,j).

3. Code Assembly

The complete code layout is summarised by Algorithm 1, and correlates to

lines of Linear2D DG.m, the optimised SIPG .m script provided by [18]. The

algorithm contains three stages:

1. Area integral: lines 1-5. MATLAB code: lines 22-64.

2. SIPG face integral: lines 6-11. MATLAB code: lines 93-310.

3. Sparse storage: lines 12. MATLAB code: lines 311-350.

In stage 2 the SIPG face integral computes the local face stiffness matrix KLF

for all faces in the mesh. Stage 2 dominates the number of lines in the code due

to having 12 terms to evaluate rather than just one like in stage 1 (11). In stage

3 the local face stiffness matrices are assembled into a sparse global stiffness

matrix completing the algorithm. The optimised SIPG area integral is not dis-

cussed as it is identical to the optimised CG area integral in [3] expect that the

elements do share degrees of freedom. This paper focuses on the novel imple-

mentation of the blocked vectorised integration of the partial stiffness matrices

in M to produce the global face stiffness matrix KF . When considering the

fast vectorised computation of the SIPG face terms in (11) there are six main

aspects to address: Optimising the CPU cache reuse (blocking), the structure

of the vectorised algorithm, memory allocation, reducing the number of BLAS

operations, generating variables for the blocked algorithm, and the reference

Gauss point locations. In the following sections each of these points will be

addressed in turn.

Section 2.3 demonstrated that the matrices in M could be represented by a

repeated 2-by-2 matrix of scalar equations looped over the nodal indices (i,j).
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Algorithm 1 Complete Code layout.

1: for Area block do

2: for Area Gauss blocks do

3: Area integral

4: end for

5: end for

6: for SIPG face block do

7: for Gauss point loop do

8: SIPG face integral set-up: Figure 3

9: SIPG face integral: Figure 1

10: end for

11: end for

12: Sparse storage: Figure 5

Arranging the partial stiffness matrices in M into their equivalent form in Mr

means that each partial stiffness matrix is constructed from entries, each of

which are scalar equations that are applicable to all finite elements in the mesh.

Reformulating the matrices in M into the form in Mr allows the integral of

each entry in the partial stiffness to be computed for all faces simultaneously

in a vectorised algorithm; the schematic for such an algorithm in MATLAB is

represented in Figure 1. The following subsections use the matrix Mr
C2 as an

example.

3.1. Blocking

When the CPU performs a BLAS operation the best performance is achieved

when all the data required for the operation resides in the lowest level of cache,

as this is fastest accessed. However when the data size is too large to reside

entirely in the cache, sections are stored on higher levels of CPU cache or the

RAM, both of which are slower to access. The technique for maximising the

vector size, with the condition that the data for a BLAS operation resides in

the cache memory, is called blocking. A vector integral calculation for an entry
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in a partial stiffness matrix can exceed the CPU cache size. In the case where

the cache memory is exceeded the set of faces F(T ) is split into blocks of faces,

defined as SIPG face blocks. The vector calculation for a matrix entry is now

performed for each block in turn so the cache reuse is maximised, reducing the

overall run time. This process is dictated by the for loop on line 2, Figure 1,

which runs through all the SIPG face blocks in the mesh.

3.2. Structure

The structure of the algorithm which generates the SIPG local face stiffness

matrix is described in Figure 1. It is characterised by four for loops appear-

ing on lines 2, 3, 6, and 11. The first loop, loops through all the SIPG face

blocks. The second loop is the Gauss point loop which numerically integrates

the partial stiffness matrices in Mr to generate the local face stiffness matrix

(11) for all faces in the SIPG face block. The final two loops go through all

nodal combinations (i, j) in the matrices of the set Mr which when integrated

form the local face stiffness matrices in (11).

3.3. Reducing the number of BLAS operations

It is possible to take advantage of the structure of the matrices in the set

Mr to reduce the number of BLAS operations. As an example, the entry (1,1)

of Mr
C2 can be split into two components; a component which varies with row

number i represented in Figure 1 as C2t 11 on line 9, and one with column

number j. All entries of Mr
C1, Mr

C2, Mr
C3, and Mr

C4 can be split into two

components in the same way. The component which is a function of i requires

more BLAS operations and is calculated outside the inner node loop (line 9),

Figure 1. The i component is then multiplied with the j component and added

to glob pn on line 14. This reduces the number of BLAS calls, the computation

time, and time associated with calling the routine.

An equivalentMr
D2 matrix can be constructed forMD2, (11). UnlikeMr

C2,

the components of entries in Mr
D2 which are a function of column number re-

quire more BLAS operations than those which are a function of row number. As
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an example, the entry (1,2) of Mr
D2 can be split into two components; a compo-

nent which varies with column number j2 represented in Figure 1 as D2t 12 on

line 10, and one with row number i2. The column index j2 is defined on (line

7) and the row index i2 is defined on (line 12), Figure 1. The multiplication

of the column and row dependent variables, as with Mr
C2, still occurs in the

inner loop (line 14), Figure 1. Equivalently all entries of Mr
D1, Mr

D2, Mr
D3,

and Mr
D4 can be split into two components.

The number of BLAS calls can be reduced further by utilising the symmetry

of the global stiffness matrix so that only the upper triangular components of

the local stiffness matrices need to be calculated. The for loop nodal indices

(lines 6 and 11 of Figure 1) are therefore restricted to this part of the matrix.

However, in order to keep the size of the node index loops the same between

Mr
C2 and Mr

D2, j2 and i2 of Mr
D2 are looped through in reverse order (lines

7 and 12 of Figure 1). Lastly, the MATLAB indices j2 and i2 refer to variables

in Mr
D1, Mr

D2, Mr
D3 and Mr

D4, and the, i and j, indices refer to variables in

Mr
C1, Mr

C2, Mr
C3, Mr

C4, Mr
E1, Mr

E2, Mr
E3 and Mr

E4.

The loop indices, i and j, correspond to the node number of elements in

the local matrix. The assembly of all matrices in M for a face F results in a

symmetric matrix, therefore only the upper triangular entries of each matrix

in M need to be computed, reducing the number of BLAS calls. For a nodal

combination (i,j) the partial stiffness matrices in Mr will provide a two-by-two

matrix for the degrees of freedom that exist at these nodes. When considering

nodes on the leading diagonal, i.e. when i==j, only the upper triangular com-

ponents of the matrices in Mr are required. An if statement is present (line 15

of Figure 1) so all the entries in a matrix of Mr are computed only if i<j, and

the lower triangular components are omitted if i==j.

To complete the global stiffness matrix formulation, the transpose of the

global matrix is added to itself. To avoid doubling values on the leading diago-

nals of the local matrix, diagonal terms of the M r matrix are divided by 2 when

i==j by half(i,j). half(i,j) is a simple script added which returns a value 0.5

if i==j and 1 otherwise.
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3.4. Memory allocation

Memory for variables which increase in size during the nodal loops are pre-

allocated, this prevents reallocation of the variables on the RAM which reduces

the run time. The partial stiffness matrices in Mr can be split into four sets.

Each set can be summed together to form

Gs =
∑
F∈FI

∫
F

MCs +MDs +MEs where s = 1 . . . 4. (30)

For the faces F all the components of a set, for example s = 1 ,

G1 =
∑
F∈FI

∫
F

MC1 +MD1 +ME1 (31)

reside in the same location in the global stiffness matrix, therefore only one

storage variable needs to be preallocated for MC1 MD1 and ME1. In Fig-

ure 1 the storage variable glob 2 is defined for G2 on line 1, Figure 1, for all

F ∈ F(T ). Performance improvements where found when a second temporary

storage variable was used during the local matrix calculation, glob pn defined

on line 4, which corresponded to all faces in the current SIPG face block for the

set G2. Once integration is completed for the current SIPG face block, glob pn

is stored into glob 2 on line 21 of Figure 1.

The variable glob pn is a three dimensional array; the first dimension corre-

sponds to the face numbers in the SIPG block, the second and third dimensions

respectively correspond to the degrees of freedom of the finite element that

pre-and-post-multiplied the partial stiffness matrix. As an example the local

degrees of freedom of the entry (1,1) of Mr
C2 are a function of node numbers i

and j. The degrees of freedom are provided by the variables Ai and Aj, they are

used to steer the entry (1,1) into the appropriate second and third dimension of

glob pn (line 14 of Figure 1). Equivalently entry (1,2) of Mr
D2 is a function of

the node numbers i2 and j2. Here the degree of freedom numbers Bi and Bj+1

store entry (1,2) into the appropriate position in glob pn (line 16 of Figure 1).
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3.5. Generating variables for blocked algorithm

When integrating an entry of a partial stiffness matrix simultaneously for

multiple SIPG faces, the shape function and their derivatives for the scalar

equation for that entry must be in vector form. To compute a local SIPG

face stiffness matrix, KLF , information is required from both the K+ and K−

elements sharing a face. During mesh generation the face connectivity for all

faces in the mesh F(T ) are stored in the face connectivity matrix etpl face

where a column correlates to face number in F(T ), Figure 2b.

The script represented in Figure 3 runs on line 5 of Figure 1. The true

representation of first two for loops, the block and Gauss point integration

loop (lines 1 and 4 of Figure 3), is in Figure 1, however these loops are shown

in Figure 3 for clarity. The third loop corresponds to the local element face

number fn. This is required as local shape function values, Nr, and their local

derivatives, dNr, are unique to a local element face.

To compute global shape function derivative terms, dNx p and dNy p, for

multiple elements simultaneously, only one local face can be considered at time.

Therefore manipulation of etpl face is required to only consider SIPG faces in

the current block and current local face number. etpl face contains the face

information for all faces in F(T ). However as discussed in Section 3.1 the faces

are split into SIPG face blocks which are considered one at a time during the

vectorised computation. The information for the faces in the current SIPG face

block is selected from etpl face and stored in etpl face block by the index

block index. Additionally the shape functions and their derivatives can only

be computed for one local face number, fn, at time governed by the face loop

on line 5 of Figure 3. Therefore the face information for elements K+ with the

current face number fn is stored in etpl face block fn on line 7.

The rows of dNx p, and dNy p, correspond to the same ordering of elements

in etpl fac block(:,1). The columns correspond to a shape function number

which is selected by i, j, i2 or j2 in Figure 1. Their computation occurs in

several large matrix operations. First the Jacobian components Jxp and Jyp are
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computed on lines 10-11, through

 ∂x1
∂ξ

∂x2
∂ξ
· · · ∂xnfb

∂ξ

∂x1
∂η

∂x2
∂η
· · · ∂xnfb

∂η


︸ ︷︷ ︸

Jxp

=

 ∂N1
∂ξ

∂N2
∂ξ
· · · ∂Nnen

∂ξ

∂N1
∂η

∂N2
∂η
· · · ∂Nnen

∂η


︸ ︷︷ ︸
dNr(indx dNr(fn,gp),:)


x1
1 x2

1 · · · xnfb1

x1
2 x2

2 · · · xnfb2

...
... · · ·

...

x1
nen x2

nen · · · xnfbnen


︸ ︷︷ ︸

coord xp

, (32)

where the subscript nfb corresponds to the number of DG faces in the block.

The Jacobian determinant and its inverse are computed in an explicit manner

on lines 12-14. The global shape function derivatives for the current face, fn,

are calculated on lines 15-16, using

∂N1

∂x1

∂N2

∂x1
· · · ∂Nnen

∂x1

∂N1

∂x2

∂N2

∂x2
· · · ∂Nnen

∂x2

...
... · · ·

...

∂N1

∂xnfb

∂N2

∂xnfb
· · · ∂Nnen

∂xnfb


︸ ︷︷ ︸

dNx p(index p,:)

=



∂ξ
∂x1

∂η
∂x1

∂ξ
∂x2

∂η
∂x2

...
...

∂ξ
∂xnfb

∂η
∂xnfb


︸ ︷︷ ︸

invJxp

∂N1

∂ξ
∂N2

∂ξ · · · ∂Nnen

∂ξ

∂N1

∂η
∂N2

∂η · · · ∂Nnen

∂η


︸ ︷︷ ︸
dNr(indx dNr(fn,gp),:)

. (33)

The result is stored into dNx p and dNy p with index p, this ensures the element

ordering remains consistent with etpl face block.

The shape functions are only dependent on their local position and therefore

local value Nr. The values are stored into the matrix Np, again with index p to

ensure consistent element ordering with etpl face block.

The algorithm in Figure 3 is only applicable to K+ elements but with a few

simple changes can be for K− elements: line 6 change etpl face block(:,3) to

etpl face block(:,4), line 8 change etpl face block fn(:,1) to etpl face block fn(:,2),

line 15 and 16 change dNx p and dNy p to dNx n and dNy n and lastly line 17 change

Np to Nn. Gauss points along a face for K− elements are considered in reverse

order so that they align with K+ Gauss points in the global domain; MATLAB

code: lines 153-154.

3.6. Reference Gauss point locations
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For each local face, fn, the Gauss point locations in the reference frame are

hard coded into the algorithm. Their positions on a face are used to generate

local shape functions and their derivatives. Each face in the reference frame is

numbered as shown for a triangle element, Figure 4a, and quadrilateral element,

Figure 4b. The Gauss points on F+ are numbered clockwise whilst on F− they

are anticlockwise. This ensures that the Gauss points for two connected elements

align in the global domain.

The face integrals are performed with respect to the reference local face

coordinate ζ ∈ [−1, 1]. To determine the shape functions and shape function

derivative values from ζ, it is necessary to convert from the reference line domain

to reference element domain, coordinates ξ ∈ [0, 1] and η ∈ [0, 1], with

ξ =
(ζ + 1)(ξa − ξb)

2
+ ξb (34)

and

η =
(ζ + 1)(ηa − ηb)

2
+ ηb. (35)

Here, a refers to the most clockwise vertex existing at the end of the face, and b

the previous vertex. As an example on the triangular element, Figure 4a, face 2,

a = A and b = B but for face 1 would be, a = B and b = C. Using the values of

ξ and η, mapped from ζ, the shape functions and the reference shape functions

derivatives can be determined for each Gauss point location on each face. The

face calculations use standard Gauss quadrature weights and locations.

3.7. Sparse Storage

The summation of all local face stiffness matrices forms a global stiffness

matrix, KF in (11). The global numbering for the degrees of freedom along the

rows and columns of the local face matrices correspond to their row and column

position in the global face stiffness matrix KF .

In Figure 1 glob 2 stores all components ofG2 from (31). Equivalent storage

variables exist for the remaining subscripts see Table 3. To store glob 2 into a
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Partial stiffness matrices Face term row column∑
F∈FI

∫
F
MC1 +MD1 +ME1 → glob 1 pos i pos j∑

F∈FI

∫
F
MC2 +MD2 +ME2 → glob 2 pos i neg j∑

F∈FI

∫
F
MC3 +MD3 +ME3 → glob 3 neg i pos j∑

F∈FI

∫
F
MC4 +MD4 +ME4 → glob 4 neg i neg j

Table 3: Storage variables and their associated row and column degree of freedom numbers.

The row and column degrees of freedom, i and j, have a prefix pos and neg. pos and neg
correspond to pre-or-post multiplication of N+, or B+, and N−, or B−.

global stiffness matrix it is first rearranged into a vector form with the MAT-

LAB function reshape, line 4 of Figure 5. The new data structure of glob 2 is

described in Table 4. When steering glob 1, glob 2, glob 3 or glob 4 into global

pos i neg j glob 2 rs

1 1 glob 2(1,1,1)

1 2 glob 2(1,1,2)
...

...
...

1 ndof glob 2(1,1,ndof)
...

...
...

ndof ndof glob 2(1,ndof,ndof)

ndof+1 ndof+1 glob 2(2,1,1)

ndof+1 ndof+2 glob 2(2,1,2)
...

...
...

tndof tndof glob 2(nf,ndof,ndof)

Table 4: Reshaping of glob 2 into a vector form glob 2 rs for MATLAB function sparse.

face matrix KF (line 13) the row numbers correspond to the finite elements’

degrees of freedom, that pre-multiplied the partial stiffness matrices, of glob 1,

glob 2, glob 3 or glob 4. The column numbers represent the degrees of freedom

20



Element type # area Gauss points # face Gauss points

Constant strain triangle 1 2

Bi-linear quadrilateral 4 2

Bi-quadratic quadrilateral 9 3

Table 5: The number of Gauss points required for the area and face integral for different

element types.

of finite elements that post-multiplied.

After all the stiffness matrices are stored into the global sparse matrix, the

sparse matrix is transposed and summated (line 14), completing the global

stiffness matrix.

4. Blocking and numerical analysis

This section demonstrates the efficiency gain obtained when using vec-

torised blocked scripts to generate all the SIPG local face stiffness matrices

(11). All computations were performed in a native MATLAB environment us-

ing double precision float accuracy, the backward slash operator ‘\’ is used to

solve any linear system of equations. The .m file was run from a terminal using

MATLAB rather than from the MATLAB GUI. All meshes were structured and

homogeneous in element type, they were constructed from either, four noded

bi-linear quadrilateral elements with linear basis functions in each direction,

eight noded bi-quadratic quadrilateral elements with quadratic basis functions

in each direction, or three noded constant strain triangular elements. For all

elements the degrees of freedom existed on the nodes. The number of Gauss

points for the area and face integral is displayed in Table 5.

Timing experiments on computers are susceptible to a lack of precision and

accuracy, this is caused by both the computer performing background tasks and

components fluctuating in temperature. When testing a range of SIPG face

block sizes, the order of the block sizes was randomised and tested, this process

was repeated.
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Component Computer 1 Computer 2

Family AMD A10-series Haswell

Frequency 3.8 GHz AMD A10-5800K 3.60 GHz Intel Core i7-4790

No. cores 4 (no multithread) 8 (no multithread)

L2 cache 2× 2Mb 4× 256 Kb

RAM 8 GB 16 GB

OS Ubuntu 14.04.1 Ubuntu 15.04

MATLAB vers. R2014a R2014b

Table 6: Computer specifications for blocking experiments.

All blocking experiments were performed on both computers specified in

Table 6. Numerical analysis verification and speed tests, Section 4.4, were per-

formed only using Computer 1.

4.1. Variables of vectorised multiplication

MATLAB incorporates LAPACK, which calls BLAS, to perform its mathe-

matical computations, it is a library of numerical linear algebra routines written

in Fortran [21]. Arrays in Fortran are stored in column-major order form, this

section investigates the importance of the orientation of variables in MATLAB

when using performing large vector calculations.

A script was written to investigate the speed differences when perform-

ing vector calculations in different array orientations in MATLAB, Figure 6.

Column-major operations occurred on line 7, and row-major operations on line

19. The for loops on lines 1 and 13, loop though a logarithmically distributed

range of vector sizes from 10→ 106. The loops for i and j represent the nodal

loops in the face integration Algorithm represented in Figure 1. The results

are shown in Figure 7. Element-wise multiplication of arrays in column-major

form are consistently and significantly faster than arrays in row-major form.

The memory addresses of variables in the same column vary less than along the

same row. Therefore the find and read time for a variable along a column is
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faster. All calculations, if possible, were therefore made to occur in this format.

4.2. Optimum block size

There is an optimum size of vector for an element-wise vector calculation

which achieves the most floating point operations per second (flops). Manag-

ing element-wise vector operations of lengths larger than the optimum size into

smaller sizes, of optimum length, is a technique known as blocking. The vec-

torised SIPG code described in this paper is designed to blocked. If the blocking

algorithm for the SIPG code is effective a peak in performance corresponding

to the optimum vector calculation length is expected. This section investigates

whether the code has an optimum vector length, what the length is, and the

number of flops achieved for this length.

To determine the performance of the optimised SIPG code, the time to

calculate the linear elastic SIPG stiffness matrix K was tested for different

block sizes. The block size was logarithmically distributed, 10 → 106, and K

consisted of 106 degrees of freedom. The performance in terms of Mflops is

presented in Figure 8 for lines 1-5 and 6-10 of Algorithm 1, the area and face

integrals. The test was preformed on a 2D domain, Ω, where x, y ∈ [0, 1]. The

mesh distribution within Ω is structured with each element having the same

area. The Young’s Modulus was set to 10 Pa and Poisson’s ratio had a value

of 0.2. The tested computer architectures, OS, and MATLAB version used, is

shown in Table 6.

Computer 1 and 2 have a respective theoretical peak performance of 3.04×

109 and 5.7× 109 double precision floating point operations per second (flops).

These peaks correlate to the fastest computation times achieved, shown in Table

7, and thus as their time is smallest are the optimum block sizes to perform the

2D SIPG area and face integrals.

Figure 8 shows computer 1’s fastest performance to generate the area and

face integral was ≈ 500 Mflops for a block size of ≈ 3×104 achieving a ≈ 16% to-
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Fastest area integral (s) Fastest face integral (s)

Computer 1 0.25 1.04

Computer 2 0.11 0.46

Computer 2 (Octave) 0.23 1.75

Table 7: Fastest computation times of the area and face integral for computer 1 and 2,

corresponding to the peak values in Figure 8.

tal efficiency of the theoretical peak performance. Whereas computer 2 achieved

a higher ≈ 1000 Mflops for both the area and face integral corresponding to an

efficiency of 17.5%. As an optimum block size was achieved for the both the area

and face integral Figure 8 demonstrates a correct implementation of a vectorised

blocked algorithm to compute the SIPG global stiffness matrix with comparison

to [3]. The algorithm worked correctly on both computer architectures.

In comparison to an unoptimised code. Computer 1 took respectively 10.2

s and 21.2 s to compute the area and face integrals, whereas Computer 2 took

5.9 s and 17.91 s. Comparing the speed of the optimised code in Table 7 to

the unoptimised code, computer 1 achieved a speed increase of 51 times for the

area integral and 20 times for the face integral with a total speed increase of

24 times. The total speed increase from pure vectorisation is 13.7 times with

blocking being 1.8 times faster than pure vectorisation. Computer 2 achieved a

speed increase of 54 times for the area integral and 39 times for the face integral

with a total speed increase of 41 times. The total speed increase from pure

vectorisation is 23 times blocking being 1.8 times faster than pure vectorisation.

It is noted that for both computer architectures in Figure 8 that the block

Mflop performance is still decreasing when the block size exceeds that of the

number of area integrals and face integrals. This suggest that for larger problems

the performance gain from block is going to be more substantial.

At the peak performance the cache reuse is maximised. After the peak the

proportion of data lying outside the lowest level of CPU becomes larger and so

the performance decreases. The performance is still decreasing as the block size
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exceeds the number of area and face integrals, marked by the vertical lines on

Figure 8. This indicates that for larger problems the advantage of blocking over

purely vectorised code is going to become larger but also indicates the cache

reuse is being maximised.

Computer 1’s cache is larger than computer 2, as larger variables can reside

in the lowest level cache the optimum block size for peak performance is therefore

also larger. This can also be seen in Figure 7.

A speed run on Computer 2 using Octave version 3.8.2 was also performed

to verify that the code was effective in both MATLAB and Octave. Figure 8

demonstrated that a peak in performance was achieved for both the area and

face integral. Similar to the tests performed in MATLAB, once the peak was

reached the performance continued to decrease and only stabilised once the

block size exceed the number of elements and faces. The optimal performance,

in comparison to MATLAB, was also slower with the area and face integrals

corresponding to a loss in performance of ≈ 2.1 and ≈ 3.82 times. Despite

being slower, the speed up for the vectorised blocked when compared to an

unoptimised code for the area and face integral was ≈ 113 and ≈ 41 times,

much greater than that achieved with MATLAB.

The sparse formulation time was ≈ 15s for computer 1 and ≈ 9 s for com-

puter 2. A small investigation into whether blocking arrays whilst using native

MATLAB function sparse had any influence on the storage time, but it was

found that only with computers with limited ram, (4Gb), yielded any perfor-

mance improvement. As highlight in [3, 10] using non-native MATLAB varia-

tions of the sparse command can significantly increase performance.

4.3. Algorithm validation

To validate the correct implementation of FEA code for a linear set of equa-

tions, an eigenvalue convergence test can be performed. The test involves a 2D

domain, Ω, where x, y ∈ [0, 1]. The mesh distribution within Ω is structured

with each element having the same area. Homogeneous Dirichlet boundary con-

ditions are applied on ∂Ω ≡ ∂ΩD. The stiffness material matrix (28) is unusually
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defined as A = 1, and, B and C = 0. This uncouples the degrees of freedom

so that the stiffness matrix contains two 2D Poisson problems added together

with a doubled mass coefficient. The smallest eigenvalue of the problem is π2.

Last the SIPG penalty term is set as β = 10, see (2).

An undamped dynamic system of equations for linear elasticity modelled

using SIPG is

(K − λ2
1A)Un = 0, (36)

where K is the global stiffness matrix, A is the mass matrix, [15], and λ2
1 is the

first natural frequency squared. The computeted convergence rates were close

to the analytical convergence rates for all elements, as shown in Figure 9, [14].

4.4. Hole in plate verification

To demonstrate that the optimised 2D DG algorithm converges to correct

solutions for linearly elastic problems, as well as to demonstate the perfomance

gains using an optimised SIPG code, a plane stress analysis of an infinite plate

with a hole at its centre subjected to a uniaxial tensile stress is now considered,

[22]. Here the performance of an optimised area integral as present by [3] is also

analysed in conjunction with the optimised SIPG face integral presented here.

The solution to the infinite problem is provided by [23]. The infinite problem

is truncated at the boundary by using the stress solution as Neumann boundary

conditions on ∂Ω. The reduced problem setup is provided by Figure 10. The

analytical stress solution is

σxx = σ∞

[
1− a2

r2

(
3

2
cos(2θ) + cos(4θ)

)
+

3a4

2r4
cos(4θ)

]
, (37)

σyy = σ∞

[
−a

2

r2

(
1

2
cos(2θ)− cos(4θ)

)
− 3a4

2r4
cos(4θ)

]
, (38)

and,

σxy = σ∞

[
−a

2

r2

(
1

2
sin(2θ) + sin(4θ)

)
+

3a4

2r4
sin(4θ)

]
, (39)

where θ and r are polar coordinates and a is the hole radius see Figure 10.
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A schematic of the problem is shown in Figure 10, with sides of length l = 10

m and hole radius a = 1 m. The material is modelled in plane stress with a

Young’s modulus of 103 Pa, Poisson’s ratio of 0.2, with an applied far field stress

of σ∞ = 102.

For this problem all three element types are used: The constant strain tri-

angle, the bi-linear linear quadrilateral, and the bi-quadratic quadrilateral. An

example of their respective meshes is shown in Figures 11a and 11b. For the

constant strain triangle element and bi-linear quadrilateral element the meshes

have the same number of nodes along the radius and the circumference. The bi-

quadratic quadrilateral element has the same number of element vertex nodes

along the circumference and radius. Along the circumference the nodes are

equally spaced in terms of θ. Along the radius, r, a scaling factor, sf , is applied

to prevent distorted elements. The ||u − uh||L2(Ω) error between the analyti-

cal solution for the displacement u, [23], and the computed displacement uh is

calculated from

||u− uh||L2(Ω) =

√∑
K∈Ω

∫
K

|u− uh|2. (40)

This error is used in Figures 12a and 12b to validate the convergence rates for

different element types, [14], as well as to compare performance gains between

the optimised and non-optimised codes.

Convergences rates of 2.1, 2.0 and 4.1 were achieved for the constant strain

triangle, and for the linear and quadratic quadrilaterals using the optimised

SIPG code which are very similar to their analytical counterparts 2, 2 and

4, [14]. This demonstrates correct implementation of the optimised code for

multiple elements types for a linear elastic problem.

For the speed investigation computer 1 was used, the block size of 3 × 104

was used for all computations. For all elements the performance gain of the

optimised code against the non-optimised code improves with problem size,

Figure 12a. The initial poor performance improvement was because at a low

element number the number of BLAS calls was similar for both codes. The

highest performance gain of ≈ 90 was achieved by the order 1 triangle elements,
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the lowest performance gain of ≈ 9 was achieved by the order bi-quadratic

quadrilateral elements. For both quadrilateral elements the rate of performance

gain with problem decreases. For Triangular elements the rate of performance

gain remains constant.

The ratio between the number of matrix calculation BLAS calls between the

optimised and non optimised codes is similar to that of the performance gain

for large problems. For the quadrilateral element, an error of ||u− uh||L2(Ω) ≈

4 × 10−2 has a BLAS call ratio ≈ 10 and a performance gain of ≈ 10 for both

the area and face integral. The same can be said for the linear quadrilateral

when considering an error of ||u − uh||L2(Ω) ≈ 4 × 10−2. The SIPG algorithm

has a performance gain for the area and face integral of ≈ 36 and ≈ 27 with a

corresponding BLAS call ratio of ≈ 36 and ≈ 27.

However for the triangular element this correlation breaks down. For a

||u − uh||L2(Ω) ≈ 3 × 10−2 the BLAS call ratios for the area and surface are

24.3, and, 12 respectively. This is far below the performance gain in Figure 12a.

This is likely due to the optimised triangle BLAS call number of approximately

500 where as for the quadrilateral optimised, and all unoptimised, codes BLAS

calls exceed 5000. There is no correlation between the computational time and

BLAS call number, this would indicate that the speed of the optimised for the

triangle codes is longer dictated by the BLAS overhead, whereas the optimised

quadrilateral codes are.

4.5. 3D verification

Here a unit sided cube exist in a reference 3D Cartesian coordinate system

where [x, y, z] ∈ R3. The cube is modelled using the SIPG method described in

Section 2.1. Roller boundary conditions exist on all faces except where z = 1;

here a displacement of dw = −0.25 m is applied in the z direction. The material

has a Young’s modulus of 1 Pa and Poisson’s ratio of 0.2.
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Figure 13: (a) Compression of a unit cube with roller boundary conditions. (b) Mflops

performance of lines 1-5 and 6-10 of Algorithm 1 for different block sizes for a 3D SIPG

problem with ≈ 106 degrees of freedom. Optimum performance times of 4.1 s and 29.6 s were

achieved for the volume and surface integral respectively.

The displacements u, v, w correspond to the directions of x, y, z. The ana-

lytical solution to the constant stress problem is u, v = 0 and w = z × dw. Any

mesh discretisation would achieve the correct solution to machine precision, here

a homogeneous 5 × 5 × 5 mesh of tri-linear hexahedral elements are used, the

result is shown in Figure 13a. The problem run is of a unit cube consisting

of a homogeneous distribution of linear hexahedral elements. The volume and

surface integrals require 8 and 4 gauss points respectively.

As shown in Figure 13b, it is also possible to block vectorised 3D SIPG code

for both volume and surface integrals. For the both computers there is a peak in

performance at a block size of ≈ 104. The peak corresponds to the cache reuse

being maximised. After the peak, the drop in performance corresponding to not

all data, required for a BLAS operation, residing in the cache. Similar to Section

4.2 the performance is still still decreasing once the block size becomes larger

than the number of volume and surface integrals, highlighting the importance

of blocking for larger problems.

The fastest runtime achieved for the volume and surface integral by computer

1 was respectively 4.1 s and 9.2, computer 2 achieved a run time of 1.4 s and
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3.9 s. The total runtime to generate the global stiffness matrix was 29.3 s and

20.2 s for computer 1 and 2. Profiling reviled the MATLAB function sparse,

necessary to generate the global stiffness matrix, took the majority of the time

18 s and 13 s for computer 1 and 2.

5. Conclusion

This paper for the first time has presented an efficient blocked vectorised

algorithm for producing SIPG face stiffness terms in a native MATLAB envi-

ronment for linear elasticity for a range of elements in both 2D and 3D. Op-

timisation was achieved by: (i) maximising the CPU cache reuse by changing

the vector size for the BLAS operations; (ii) storing vectors in a column-major

form; (iii) ensuring all matrix calculations were as large as possible and (iv)

reducing the number of calculations by only considering symmetric terms.

The block length optimisation results demonstrate a clear optimal block

length, which is consistent between all integral types and problem types. The

peaks coincide with a maximisation of the cache reuse. Additionally a num-

ber of different verification techniques have been used to demonstrate correct

implementation of both linear systems in both 2D and 3D.

The optimal block length for the hardware used in the study was found to

be at ≈ 3×104 corresponding to a total CPU usage of ≈ 16%, similar to results

found in literature. All codes were able to compute the global stiffness matrix

for a 106 degrees of freedom system in under 30 s.

In the linear elastic 2D performance gain study, in Section 4.4, it was shown

that the gain continues to increase with problem size. It was also shown that the

performance gains were dependent on element type, with triangular elements

achieving gains excess of 50 times. There was also a correlation between gains

and the ratio of BLAS calls for the quadrilateral code. This suggests that opti-

mised quadrilateral code still is still subject to a bottle neck from the BLAS call

overhead. This was not the case for the triangular code which had significantly

fewer BLAS calls.
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The script could be optimised further by using the MATLAB’s parallel func-

tion parfor and incorporating GPUs into the calculation. The final scripts are

designed to be a black box, taking in element topology and outputting the global

stiffness matrix for a SIPG problem.

Appendix A. List of variables

Name Dimensions Description

Ai 1 The degree of freedom row positioning of entry

(1,1) of partial stiffness matrices Mr
C1, Mr

C2,

Mr
C3, Mr

C4, Mr
E1, Mr

E2, Mr
E3, and Mr

C4, for

current i.

Aj 1 The degree of freedom column positioning of en-

try (1,1) of partial stiffness matrices Mr
C1, Mr

C2,

Mr
C3, Mr

C4, Mr
E1, Mr

E2, Mr
E3, and Mr

C4, for

current j.

Bi 1 The degree of freedom row positioning of entry

(1,1) of partial stiffness matrices Mr
D1, Mr

D2,

Mr
D3, and Mr

D4, for current i2.

Bj 1 The degree of freedom column positioning of en-

try (1,1) of partial stiffness matrices Mr
D1, Mr

D2,

Mr
D3, and Mr

D4, for current j2.

bl index [1,nel block] An index for selecting rows of etpl face and

glob 2 which are in the current SIPG face block

loop.

Block n 1 Current SIPG face block number.

C2t 11 [nel block,1] Vector of entry (1,1) of Mr
C2, which vary with i,

for all faces in the current SIPG face block loop.

coord Nnodes,2 Coordinates of all nodes in the mesh.
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coord xp [sum(index p),1] Nodal x-coordinates of all elements in the current

SIPG face block with local face number fn. Their

order is dictated by etpl face(:,1).

coord yp [sum(index p),1] Nodal y-coordinates of all elements in the current

SIPG face block with local face number fn. Their

order is dictated by etpl face(:,1).

D2t 12 [nel block,1] Vector of entry (1,2) of Mr
D2, which vary with j2,

for all faces in the current SIPG face block loop.

det [sum(index p),1] Jacobian determinant for all K+ elements in the

current SIPG face block loop with local face num-

ber fn.

dNr [nf*ngp*2,nen] Reference shape function derivatives for all Gauss

points for all local element faces.

dNx p [nel block,ndof] Global shape function derivatives, with respect to

x, for all F+ faces in the current loop.

dNy p [nel block,ndof] Global shape function derivatives, with respect to

y, for all F+ faces in the current loop.

ed [nels,ndof] Steering matrix matrix ∀K ∈ T . Row number

corresponds to element, column number to the

global degree of freedom.

ed p [ tot f,ndof] Steering matrix of local stiffness matrices to

global, for degrees of freedom of K+ elements with

order etpl face(:,1).

ed n [tot f,ndof] Steering matrix of local stiffness matrices to

global, for degrees of freedom of K− elements with

order etpl face(:,2) into global stiffness matrix.

etpl [nels,nen] Element topology matrix of all elements in the

mesh.

etpl face [tot f,7] Description of the SIPG faces in the mesh.
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etpl face block [sum(index p),7] Columns of etpl face for SIPG faces in the cur-

rent block number.

etpl face block fn [nel block,7] Columns of etpl face block for SIPG faces with

local positive face number K+.

fn 1 Current face number

glob pn [bl num f,ndof,ndof] Temporary storage variables for all SIPG faces

matrices pre-and-post multiplied by a + and −

element respectively.

glob 2 [tot f,ndof,ndof] Storage variable for G2.

glob 2 rs [tot f∗nndof,1] glob 2 rs reshaped into a vector form

gp 1 Current Gauss point number in the loop

i 1 Row number for partial stiffness matrices: Mr
C1,

Mr
C2, Mr

C3, Mr
C4, Mr

E1, Mr
E2, Mr

E3, and Mr
C4.

i2 1 Row number for partial stiffness matrices: Mr
D1,

Mr
D2, Mr

D3, and Mr
D4.

index p nel block,1 Logical variable to select columns of

etpl face block with the face number fn.

1 indicates same fn, 0 otherwise.

indx dNr [1,2] Index to select rows of dNr for a specific fn and

gp.

indx Nr 1 Index to select row of Nr for a specific fn and gp.

int W [nel block,1] Gauss face integral weight and Jacobian determi-

nant for all SIPG faces in the current block loop.

invJxp [sum(index p),2] Row 1 of inverse Jacobian matrix for all K+ el-

ements in the current SIPG face block loop with

local face number fn.

invJyp [sum(index p),2] Row 2 of inverse Jacobian matrix for all K+ el-

ements in the current SIPG face block loop with

local face number fn.
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j 1 Column number for partial stiffness matrices:

Mr
C1, Mr

C2, Mr
C3, Mr

C4, Mr
E1, Mr

E2, Mr
E3, and

Mr
C4.

j2 1 Column number for partial stiffness matrices:

Mr
D1, Mr

D2, Mr
D3, and Mr

D4.

jxp [2,sum(index p)] Column 1 of Jacobian matrix for all K+ elements

in the current SIPG face block loop with local face

number fn.

jyp [2,sum(index p)] Column 2 of Jacobian matrix for all K+ elements

in the current SIPG face block loop with local face

number fn.

K [max(ed(:)),max(ed(:))] Global stiffness matrix.

ndof 1 Total number of degrees of freedom for one ele-

ment.

nen 1 Number of nodes for one element.

ngp 1 Number of face Gauss points.

neg i tot f∗nndof Row degrees of freedom for all local stiffness ma-

trices pre-multiplied by a K− element, corre-

sponding to global storage vectors glob 3 rs and

glob 3 rs.

neg j tot f∗nndof Column degrees of freedom for all local stiffness

matrices post-multiplied by a K− element, corre-

sponding to global storage vectors glob 2 rs and

glob 3 rs.

nndof 1 Total number of entries in local element matrix

(ndof∗ndof).

Nr [nf*ngp,el nodes] Local face shape functions.

Np [nel block,1] Shape functions for all K+ element faces in the

current block.

num blocks 1 Number of SIPG face blocks.
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num faces 1 Number of SIPG faces in a block.

nx [nel block,1] Normal x component to interior faces in block.

ny [nel block,1] Normal y component to interior faces in block.

pen 1 SIPG penalty values for linear elasticity.

pos el [sum(index p),1] List K+ elements in SIPG face block loop with

face number fn.

pos i tot f∗nndof Row degrees of freedom for all local stiffness ma-

trices pre-multiplied by a K+ element, corre-

sponding to global storage vectors glob 1 rs and

glob 2 rs.

pos j tot f∗nndof Column degrees of freedom for all local stiffness

matrices post-multiplied by a K+ element, corre-

sponding to global storage vectors glob 1 rs and

glob 3 rs.

nel block 1 Total number of faces in the block.

nnodes 1 Total number of nodes in the mesh.

nels 1 Total number of elements in the mesh.

tot f 1 Total number of interior faces.

tndof 1 Total number of degrees of freedom in mesh.
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1 glob 2=zeros(tot num faces,ndof,ndof);

2 for Block n = 1:num blocks % MATLAB code: lines 93-310.

3 for gp = 1:ngp % MATLAB code: lines 125-299.

4 glob pn=zeros(bl num f,ndof,ndof);

5 % Variable generation for current block Figure 3.

6 for i = 1:nen % MATLAB code: lines 175-297.

7 j2=(nen+1)-i;

8 Ai=(i-1)∗2; Bj=(j2-1)∗2;

9 C2t 11=((A.∗dNx p(:,i).∗nx)+(C.∗dNy p(:,i).∗ny)).∗int W;

% Components of the remaining entries which vary in 'i' of:

MC1, MC2, MC3, and MC4

% are also computed here.

10 D2t 12=((B.∗dNy p(:,j2).∗nx)+(C.∗ dNx p(:,j2).∗ny)).∗int w;

% Components of the remaining entries which vary in 'j2' of:

MD1, MD2, MD3, and MD4

% are also computed here.

11 for j = i:nen

12 i2=(nen+1)-j;

13 Aj=(j-1)∗2; Bi=(i2-1)∗2;

14 glob pn(:,Ai,Aj)=Nn(:,j).∗C2t 11.∗half(i,j)+glob pn(:,Ai,Aj);

% Computations of all components of:

% glob pp, glob pn, glob np and glob nn occur here.

15 if i<j

16 glob pn(:,Bi,Bj+1)=Np(i2).∗D2t 12+glob pn(:,Bi,Bj+1);

17 end

18 end

19 end

20 end

21 glob 2(bl index,:,:)=glob pn;

22 end

Figure 1: Vectorised calculation schemetic of entry (1,1) in MC2 and (1,2) in MD2.
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Figure 2: (a) Example of 3 elements in a 2D DG mesh. Arrows indicate the outward normal

direction, values in a box the element number and values on the element edge the local face

number. (b) The transpose of the matrix etpl face for DG faces a and b on Figure 2a.

nx and ny are the outward normal components, and h is the length of the face, (K+) is the

positive element number with face (f+e ) and (K−) is the negative element number with face

(f−e ).
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1 for Block n = 1:num blocks % MATLAB code: lines 93-310.
2 etpl face %defined in Figure 2b

3 etpl face block = etpl face(:,bl index)
4 for gp = 1:ngp % MATLAB code: lines 125-299.
5 for fn = 1:num faces % MATLAB code: lines 127-170.
6 index p = etpl face block(:,3)==fn;
7 etpl face block fn = etpl face block(:,index p);

K+ % Elements for current SIPG face block and local face number
8 pos el = etpl face block fn(:,1);

% Vector of x (coord xp) and y (coord yp)
% coordinates for pos el

9 [coord xp,coord yp] = coord(etpl(pos el,:),:);

% Jacobian calculation for pos el (32)

10 Jxp = dNr(indx dNr(fn,gp),:)∗coord xp(index p,:);
11 Jyp = dNr(indx dNr(fn,gp),:)∗coord yp(index p,:);

% Vectorised determinant and calculation [3]

12 det = (Jxp(1,:).∗Jyp(2,:))-(Jxp(2,:).∗Jyp(1,:));

% Vectorised inverse Jacobian calculation
13 invJxp = [ det.∗(Jyp(2,:))',-det.∗(Jyp(1,:))'];
14 invJyp = [-det.∗(Jxp(2,:))', det.∗(Jxp(1,:))'];

% Global shape function derivative calculation (33)

15 dNx p(index p,:) = invJx p∗dNr(indx dNr(fn,gp),:);
16 dNy p(index p,:) = invJy p∗dNr(indx dNr(fn,gp),:);

% Shape functions storage
17 Np(index p,:) = repmat(Nr(indx Nr(fn,gp),:)...

,sum(index p),1);
18 % Calc. for dNx n, dNy n and Nn. MATLAB code: lines 152-168
19 end
20 end

% Vectorised integral weight calculation
21 int W=2.∗pen./etpl face block(:,end);
22 end

Figure 3: An algorithm for generating variables for multiple DG faces simulataneously. The

element topogly matrix, etpl, is arranged so the rows correspond to an element number and

the columns a node number. The coordinate matrix coord is arranged so that the rows

correspond to a node number, the first column the x-coordinate and the second column the

y-coordinate.
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(a) (b)

(c)

Figure 4: K+ gauss point ordering and face ordering for both the constant strain triangular

element (a) and bi-linear quadrilateral element (b), and bi-quadratic quadrilateral element

(c). ξ and η are the coordinates in the reference element domain, ζ is the coordinate in the

reference line domain and g# is the a gauss point number specific to a face number. Note for

a face on a negative element the positions of g1 and g2 will be reversed.
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1 tot f=size(etpl face,2); %total number of DG faces

2 ndof=(nen∗2); % number of degrees of freedom

3 nndof=(nen∗2)ˆ2; % number of degrees of freedom (ndof) squared

% reshaping the global storage matrix into a vector, Table 4.

4 glob 2 rs = reshape(reshape(glob 2,tot f,nndof)',tot f∗(nndof),1);

5 ed p=ed(etpl face(1,:),:); %steering matrix for + element dof

6 ed n=ed(etpl face(2,:),:); %steering matrix for - element dof

% steering vectors pos i, pos j, neg i and neg j, Table 4

7 pos i = reshape(repmat(ed p,1,ndof)',1,tot f∗nndof);

8 ed pve = reshape(ed p',1,ndof∗tot f);

9 pos j = reshape(repmat(ed pve,ndof,1),1,tot f∗nndof);

10 neg i = reshape(repmat(ed n,1,ndof)',1,tot f∗nndof);

11 ed nve = reshape(ed n',1,ndof∗tot f);

12 neg j = reshape(repmat(ed nve,ndof,1),1,tot f∗nndof);

% Global stiffness matrix sparse storage

13 k = k - sparse(pos i,neg j,glob 2 rs);

14 k=k+k'; % Completing the global stiffness matrix formulation

Figure 5: Segment of Matlab script for storing glob 2 into a sparse matrix, where ed is a

matrix describing the global degree of freedom numbering for each element. MATLAB code:

lines 311-350
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1 for s=ceil(logspace(1,6))

2 a = rand(s,1);

3 column major = zeros(s,6,6);

4 tic

5 for i = 1:6

6 for j = 1:6

% Column major vector calculation

7 column major(:,i,j)=column major(:,i,j)+a.∗a;

8 end

11 end

9 toc

10 clear column major a

12 end

13 for s=ceil(logspace(1,6))

14 row major = zeros(6,s,6);

15 b = rand(1,s);

16 tic

17 for i = 1:6

18 for j = 1:6

% Row major vector calculation

19 row major(i,:,j)=row major(i,:,j)+b.∗b;

20 end

21 end

22 toc

23 clear row major b

24 end

Figure 6: A MATLAB script to investigate how the orientation of vector entry-wise multipli-

cations is affected by array orientation.
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Figure 11: The element mesh distribution for the problem in Figure 10 with triangle elements

(a) and quadrilateral elements (b).
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Figure 12: (a): A performance comparison between optimised and non-optimised scripts

against error for the hole in an infinite plate problem. (b): L2 convergence rates for linear

triangle, and, linear and quadratic quadrilateral.
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