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Abstract

This pr�ecis is aimed as a practical field guide to situations in which shear banding might be expected in complex fluids subject to an

applied shear flow. Separately for several of the most common flow protocols, it summarizes the characteristic signatures in the measured

bulk rheological signals that suggest the presence of banding in the underlying flow field. It does so both for a steady applied shear flow

and for the time-dependent protocols of shear startup, step stress, finite strain ramp, and large amplitude oscillatory shear. An important

message is that banding might arise rather widely in flows with a strong enough time dependence, even in fluids that do not support band-

ing in a steadily applied shear flow. This suggests caution in comparing experimental data with theoretical calculations that assume a

homogeneous shear flow. In a brief postlude, we also summarize criteria in similar spirit for the onset of necking in extensional filament

stretching. VC 2016 The Society of Rheology. [http://dx.doi.org/10.1122/1.4961480]

I. INTRODUCTION

Many complex fluids show shear banding, in which a state

of initially homogeneous shear flow becomes unstable to the

formation of coexisting bands of differing shear rate, with

layer normals in the flow-gradient direction. See the sketches

inset in Fig. 1. (This pr�ecis concerns only this case of

“gradient banding”; for a discussion of “vorticity banding,”

see [1,2].) First observed in wormlike micellar surfactants in

the mid 1990s [3], it has since also been seen in lyotropic

lamellar phases [4], triblock copolymers [5], star polymers

[6], carbopol gel [7], clays [8,9], emulsions [9], and (subject

to ongoing controversy [10,11]) entangled monodisperse lin-

ear polymers [12,13]. For reviews, see [2,14–16].

To date, the majority of studies have focused on the case

of steadily applied shear flow, with banding as the ultimate

steady state response. However, the last 5–10 years have

seen a growing realization that banding might also arise

rather widely in flow protocols with a strong enough time

dependence, even in fluids that do not support banding in

steady shear [16–24].

In startup of steady simple shearing flow (shear startup),

for example, the (near ubiquitous) presence of an overshoot

in the shear stress startup signal has been identified as a pos-

sible trigger for the formation of shear bands, at least tran-

siently, en route to a steady flowing state [7,8,13,16–34]. A

declining time-dependent viscosity has been similarly identi-

fied as a trigger for banding following the imposition of a

step stress [16–18,25–27,29,35–38]. In these two protocols,

the time dependence is transient, persisting typically for a

few strain units as a steady flow is established out of an ini-

tial rest state. Accordingly, any bands must themselves be

transient and heal back to homogeneous flow in the final

steady state (unless the fluid also has banding as its ultimate

steady state response). In soft “glassy” materials with slug-

gish relaxation timescales, however, these startup bands

might persist long enough to be mistaken for the ultimate

flow response of the material for any practical purpose,

despite being technically transient [16,20].

Other flow protocols have sustained time dependence:

large amplitude oscillatory shear (LAOS) is a notable exam-

ple [39]. In the mindset of the previous paragraph, one might

intuitively view a strain-imposed LAOS experiment (hereaf-

ter abbreviated as LAOStrain), in some range of frequencies

at least, as a repeating process of forward then backward

startup runs. Any banding associated with the response of

the same fluid to startup of steady shear flow might then be

anticipated to recur in each half cycle of LAOS. Banding

would then be an integral, sustained feature of LAOS, even

if the fluid would not support banding in steadily applied

shear [19,40].

The aim of this pr�ecis is to summarize criteria for, and

signatures of, the onset of banding, separately for each flow

protocol [17]. It is offered as a field guide to situations in

which banding might be expected in complex fluids and soft

solids. An important by-product is also to suggest that band-

ing might arise quite generically in flows with a strong

enough time dependence, even in materials that do not sup-

port banding in steady state.

For each flow protocol in turn, we give a criterion [17] for

the onset of banding in terms of a characteristic signature in

the shape of the relevant bulk rheological response function

for that protocol, e.g., stress versus strain in shear startup. As

a starting point for a hydrodynamic stability calculation, this

response function is first calculated for a “base state” in

which the flow is assumed to stay homogeneous. A linear

stability analysis then reveals the point at which this base

state first becomes unstable to banding, and gives an onset

criterion in terms of the functional shape of the response

function associated with that base state. However, because

the flow is by definition homogeneous before it bands, these

onset criteria can also be applied directly to the functional
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shape of the experimentally measured rheological response

function. [This concept is explained more fully after Eq. (3)

below.]

For anyone not wishing to read the rest of the paper, the

signatures are summarized at a glance for steady applied

shear flow in Figs. 1 and 2. The signatures for the transiently

time-dependent flows of shear startup, step stress, and finite

strain ramp are likewise summarized in Figs. 3–5, respec-

tively. For LAOS, with its sustained time dependence, we

sketch in Fig. 6 the regions of the plane of applied strain

rate amplitude and cycle frequency in which banding is

anticipated.

Once significant banding develops, it, in general, changes

the shape of the response function compared to that calcu-

lated within the assumption of homogeneous flow. This pro-

vides a note of caution to the endeavor of benchmarking new

constitutive models by comparing homogeneous calculations

with experiment in any of the widespread situations where

banding might arise.

Most theoretical work to date in this area has been on

models of linear entangled polymeric fluids (polymer solu-

tions and melts, and wormlike micelles) [17,18]; and of soft

glassy materials (foams, dense emulsions, dense colloids,

microgels, etc.) [16,20–23], which typically show a yield

stress and rheological aging. However, it is hoped that the

criteria might apply universally. These two classes are exem-

plary only and were selected for study because they are the

most familiar to this author. Indeed, this pr�ecis is highly

selective and focused mainly on the author’s own work.

Work by others to further generalize or delineate the regimes

of applicability of these criteria would be very welcome.

II. SHEAR BANDING IN STEADY IMPOSED FLOWS

We consider first the long-time response of a fluid to a

steadily applied shear flow. In the interests of definite vocab-

ulary, we shall use the term “constitutive curve” to denote a

material’s underlying stationary relation rð _cÞ between shear

stress and shear rate, calculated within the assumption that

the flow remains spatially uniform with the shear rate every-

where equal to _c. Although stationary, however, states on

this curve may not be stable against banding. Where shear

bands form, we term the steady state relation between shear

stress and shear rate the composite “flow curve,” with the

relevant shear rate now being the spatially averaged value

across the cell, i.e., the relative wall velocity normalized by

the gap size, often termed the “apparent shear rate.” In the

absence of banding, these two curves coincide.

A. Steady state bands

A state of initially homogeneous shear flow is known to

be linearly unstable in any regime where the fluid’s underly-

ing constitutive curve has negative slope [41]

dr
d _c

< 0; (1)

see Fig. 1(a). Shear bands then form, and the steady state com-

posite flow curve displays a characteristically flat plateau [42],

Fig. 1(b). In a curved flow cell, this plateau will in fact have a

slight positive slope [43]. (Indeed, taking into account intrinsic

heterogeneity in the flow field due to device curvature is an

important step in benchmarking constitutive models, even in

the absence of true banding.) In the windows of shear rate

within the steady state banding regime, but either side of the

linearly unstable regime, an initially homogeneous flow is

metastable to banding [44]. In this regime, in a slow strain rate

sweep at least, a finite amplitude perturbation to an initially

homogeneous flow is required to initiate banding. Possible

sources include initial heterogeneities following sample prepa-

ration, mechanical noise in the rheometer, or true thermal

noise. (In a shear startup at such shear rates, a linear instability

can arise during that time-dependent startup process. However,

we defer further discussion of these time-dependent phenom-

ena to Sec. III A below.)

In two-component viscoelastic fluids (solutions), spatial

variations in the flow field are in general dynamically cou-

pled to variations in the concentration field / [45–52]. This

provides a positive feedback mechanism that enhances a flu-

id’s tendency to form shear bands [53–55], giving a modified

onset criterion of the general form

dr
d _c
þ C _c/ < 0: (2)

In this inequality, C _c/ is a flow-concentration coupling term.

Its full form is given in Eq. (4.20) of [53] and is rather com-

plicated. However, in essence, its numerator comprises the

derivative of shear stress with respect to concentration, mul-

tiplied by the derivative of a normal stresslike variable with

respect to shear rate. Its denominator comprises (in essence)

the (bare) osmotic modulus minus the derivative of a normal

stresslike variable with respect to concentration. The overall

effect of this coupling is such that the regime in which an ini-

tially homogeneous flow is predicted to be linearly unstable

to the formation of shear bands extends slightly beyond the

dotted region in Fig. 1(a).

More importantly, flow-concentration coupling can also

render a weakly sloping but monotonic constitutive curve

unstable to banding [see Fig. 1(c)]. This was first explored in

the context of polymeric fluids [53–55]. It has recently been

studied again in polymers [56,57], and also applied to yield

stress colloidal fluids [58,59]. The signature of concentration

coupling in the steady state composite flow curve is an

upward slope in the “plateau” of the banding regime. For

strong coupling, this can be quite pronounced, as sketched in

Fig. 1(d). For weak coupling, it may go unnoticed.

The sketches in Fig. 1 pertain to ergodic fluids with fixed,

finite stress relaxation timescales. However, shear banding

also arises widely in nonergodic soft glassy materials [16],

which have a yield stress rY associated with sluggish and

often aging stress relaxation timescales. (Throughout, we use

the term yield stress to denote the limiting shear stress

obtained as _c ! 0 in a slow strain rate sweep down the flow

curve.) In this case, the constitutive curve’s high viscosity

branch lies vertically up the r axis, as sketched in Fig. 2.
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The band associated with this branch is then unsheared, and

coexists with a flowing band of nonzero shear rate on the

other flow branch [9,60], as sketched in the inset to Fig. 2(b).

Otherwise, the comments of this section generally apply.

B. Oscillatory and chaotic shear bands

The discussion so far has assumed that a fluid’s ultimate

response to a steadily applied shear will be a state of steady

flow. In some cases, however, oscillations or even chaotic

fluctuations can arise [61,62]: not transiently, but as the ulti-

mate response of the material, sustained as long as the flow

remains applied. Spatiotemporally oscillating and chaotic

shear bands were explored in [63–65]. We do not discuss

them further here.

III. SHEAR BANDING IN TRANSIENTLY
TIME-DEPENDENT FLOWS

We now turn to protocols in which the applied flow is

itself inherently time dependent. In this section, we consider

situations in which that time dependence is transient in

nature: arising either during a process whereby a steady flow

is established out of an initial rest state (in shear startup or

following the imposition of a step stress), or after a finite

strain ramp as the system relaxes back to equilibrium. For

the remainder of this pr�ecis, we ignore concentration cou-

pling, deferring to future work a study of its effects in time-

dependent flows.

A. Shear startup

A common flow protocol consists of taking a sample that

is initially at rest and with any residual stresses well relaxed,

then at some time t¼ 0 suddenly jumping the strain rate to

some value _c that is held constant thereafter. Measured in

response to this is the shear stress startup signal rðtÞ as a

function of the time t (or accumulated strain c ¼ _ct) since

the inception of the flow. This typically evolves as sketched

in Fig. 3, with an initial regime of linear elastic response in

which the stress rises proportionally with the strain, followed

FIG. 1. Triggers and signatures of shear banding in a steadily applied shear flow. Left panels (a) and (c) show underlying constitutive relations between shear

stress and shear rate, calculated within the assumption of a homogeneous shear flow. In (a), a state of initially homogeneous shear flow is linearly unstable, in

the regime of negative constitutive slope, to the formation of shear bands. The steady state flow curve (b) then has a characteristic stress plateau in the shear

banding regime. The presence of flow-concentration coupling would extend the window of linear instability in (a). It can also render a purely monotonic consti-

tutive curve linearly unstable to banding, as shown in panel (c). The signature of concentration coupling in the ultimate banded state is then an upward slope in

the stress plateau, as shown in panel (d). Line key: in the underlying constitutive curves (a) and (c), the thick solid lines denote homogeneous flow states that

are linearly (though not necessarily absolutely) stable against shear banding, while the thick dotted lines denote homogeneous flow states that are linearly

unstable to the formation of shear bands. In the flow curves (b) and (d), the thick solid lines represent steady flowing states (which are shear banded in some

regimes as described above) while the thin solid lines represent the underlying constitutive curves, copied from (a) and (c).
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by an overshoot at a strain c¼O(1), then a final decline to a

steady state value on the flow curve at the given strain rate.

In [17], it was argued that the presence of an overshoot in

this startup signal is generically indicative of a strong ten-

dency to form shear bands, at least transiently during the

startup process. Accordingly—though in sketch form only

(we discuss corrections and caveats below)—the criterion

for the onset of banding in startup is

dr
dc

< 0; (3)

as indicated by the dotted line in Fig. 3.

This criterion (3) was derived by first calculating the

stress signal associated with an underlying time-evolving

homogeneous base state startup flow, artificially imposing

(for the purposes of that preliminary calculation) the con-

straint that the flow must remain homogeneous. Performing

a linear stability analysis for the dynamics of heterogeneous

fluctuations about this time-evolving base state then shows

that it first becomes unstable to the formation of shear bands

just after the stress overshoot. In this way, an overshoot in

the startup signal associated with that underlying time-

evolving base state is predicted to act as a trigger to banding.

These considerations can then be applied to real data by rec-

ognizing that before any banding arises in any given experi-

ment, the flow is (by definition) homogeneous and so

accords with the base state of the homogeneous calculation.

We thus recognize that the criterion (3) can also be applied

directly to the experimentally measured stress startup signal.

A common misconception is that it is instead the onset of

banding that causes the stress drop. While it is true that once

significant banding develops, it in general reduces the stress

compared to that calculated assuming homogeneity, thereby

accentuating the drop, the primary direction of causality (at

least in all the models this author has studied to date) is the

opposite: the onset of banding is triggered by the stress drop,

not vice versa.

As noted above, this discrepancy between the stress signal

of the homogeneous base state and that of the full shear

banded flow should provide a note of caution to the common

practice of benchmarking new constitutive models by com-

paring experimental startup data with calculations that

assume the flow to remain homogeneous.

In any fluid for which the ultimate constitutive response

also admits steady state banding as in Sec. II A above, these

bands that form during startup will persist to steady state. In

fluids that do not support steady state banding, the startup

FIG. 2. Triggers and signatures of shear banding in a steadily applied shear flow in a yield stress fluid. Left panel (a) shows an underlying constitutive relation

between shear stress and shear rate, calculated within the assumption of a homogeneous shear flow. A state of initially homogeneous shear flow is linearly

unstable in the regime of negative constitutive slope to the formation of shear bands. The steady state flow curve (b) then has a characteristic stress plateau in

the shear banding regime. Compared with the corresponding sketch for ergodic fluids in Fig. 1, the low-shear branch of the constitutive curve lies vertically up

the stress axis in (a) and the corresponding band in (b) is unsheared. (As discussed in the text, concentration coupling is also possible in these yield stress mate-

rials, but we have not sketched it separately.) Line key: as in Fig. 1.

FIG. 3. Typical shear stress response in shear startup. The region of linear

instability to the formation of shear bands is sketched as dotted. Depending

on whether the same fluid also supports steady state bands at the flow rate in

question, according to the sketches in Fig. 1, these startup bands either per-

sist to steady state or heal back to homogeneous flow. (In the former case,

the line should be dotted even at long times.)
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bands instead heal back to homogeneous shear. Indeed, in

this case, the tendency to form bands persists only tran-

siently. With this in mind, it is important to note that not

only must condition (3) be satisfied, but the banding instabil-

ity must also be strong enough for long enough to ensure that

observable banding can develop before homogeneous flow is

recovered. Clearly, a more pronounced stress overshoot is

more likely to give rise to more strongly observable banding.

Despite technically being transient, however, in soft

glasses with sluggish relaxation timescales, the bands may

persist long enough to be mistaken for the ultimate flow

response of the material [16,20]. Soft glasses are also pre-

dicted to exhibit a strong age dependence: a sample that is

older and more solidlike before the flow commences shows a

stronger overshoot [30,66–69], and is predicted to show

more pronounced startup bands [16,20].

Intuitively, then, the startup banding just described is

triggered as the material “yields” and starts to flow, posto-

vershoot. However, it is important to note that while the

stress drop and associated banding may indeed arise from

actual yielding, i.e., increasing plasticity, as in a soft glass

[16,20], it can equally stem from falling elasticity. The latter

scenario is predicted [17–19,24] by the Rolie-poly model

[70] of linear polymers at shear rates exceeding the inverse

reptation time sd but less than the inverse chain stretch relax-

ation time sR. [A small correction to Eq. (3) in this context is

however discussed below.] In this regime, the stress startup

curve is a unique function of strain, independent of strain

rate, but nonetheless sufficiently nonlinear to show an over-

shoot. Although the coincidence of the criterion (declining

stress as a function of accumulated strain) for banding insta-

bility in both these scenarios of plastic yielding and falling

elasticity is highly suggestive of common physics, further

work is needed to elucidate this fully.

Evidence to date for banding associated with stress over-

shoot in startup can be summarized as follows. It has been

seen experimentally in polymeric fluids including wormlike

micelles [25,26] and linear polymers [13,27–29]; and in soft

glassy materials including carbopol gel [7,30], Laponite clay

[31,71], a non-Brownian fused silica suspension [34], and

waxy crude oil [69]. Molecular simulations have captured it

in polymers [31,72], a model colloidal gel [73], and molecu-

lar glasses [32,74,75]. A model foam displayed it in [76,77].

Linear stability analysis and nonlinear simulations predict it

in the Rolie-poly model of polymers [17–19,24], the soft

glassy rheology (SGR) and fluidity models of soft glasses

[16,20,78], shear transformation zone (STZ) model of amor-

phous elastoplastic solids [21,22,79], a mesoscopic model of

plasticity [23], and a model of polymer glasses [33].

With the aim of providing a unified understanding of all

these observations, a theoretical criterion for the onset of

banding in startup was derived analytically in [17] on the

basis of a constitutive model written in a highly generalized,

though still differential, form. It was shown to indeed be

closely associated with stress overshoot, consistent with the

evidence summarized in the previous paragraph. It also

showed full quantitative agreement with numerical calcula-

tions in the Rolie-poly model [18].

However, to make progress analytically, the calculation

allowed for only two viscoelastic variables: the viscoelastic

shear stress rv and one component of normal stress n.

Specifically, for this case of simple shear flow, it considers a

force balance condition for a total shear stress r ¼ rv þ g _c
comprising a viscoelastic contribution rv and a Newtonian

solvent stress g _c. Generalized constitutive dynamics for the

viscoelastic stresses are then prescribed as _rv ¼ f ð _c; rv; nÞ
with _n ¼ gð_c; rv; nÞ, with n a normal stress variable. The

functions f and g are left unspecified in the interests of gener-

ality, but include stress relaxation on a timescale s. More

generally still, however, more viscoelastic variables besides

rv and n should be included (as will usually arise after

extracting componentwise equations for a fully tensorial

constitutive model in shear). Examples include the second

normal stress (even in a single mode description); or contri-

butions to the stress from additional modes with faster relax-

ation times.

Accordingly, the status of Eq. (3) more generally remains

unclear: it does not appear to apply in a straightforward way

in the Giesekus model, for example, [18]. However, Eq. (3)

does correctly predict the onset of banding instability during

startup in the Rolie-poly model [18] (with a small correction

discussed below) and in models of soft glasses [16,20],

including the SGR model (which, being of integral form,

effectively has infinitely many viscoelastic modes); and

accords well with the evidence from experiment and molecu-

lar simulation described above.

Taken together, then, the evidence to date for banding

triggered by overshoot appears widespread and quite con-

vincing. It suggests that experimentalists should be alert to

possible banding in any startup experiment where the stress

signal shows a strong overshoot; and that theorists should

exercise caution in benchmarking homogeneous calculations

against experiment.

As just described, the criterion derived in [17] is closely

associated with the overshoot in the stress startup curve, as

written in Eq. (3). In fact, the full formula [Eq. (20) in the

Supplementary Material of [17]] contains not only the slope

of the stress with respect to strain but also a smaller correc-

tion term involving the curvature: the instability technically

first sets in just before overshoot, as the stress signal curves

down after the initial regime of linear elasticity. This agrees

fully with numerics in the Rolie-poly model [18], though in

practical terms only modest bands with weakly differentiated

shear rates arise before the overshoot.

The discussion in this section has focused on a single

startup experiment in which the shear rate is discontinuously

jumped from zero to some constant value. Similar effects

have also been explored experimentally [80] in fast upward

shear rate sweeps in soft glasses.

B. Step stress

We consider now a previously undisturbed sample subject

at some time t¼ 0 to the imposition of a shear stress that is

held constant thereafter. Typically measured in response to

this is the creep curve cðtÞ, often reported as its time-

differential _cðtÞ. In many cases, this shows an initial regime
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of slow creep in which the strain rate progressively declines,

followed by a more rapid yielding process in which the strain

rate increases to attain its final steady state on the flow curve

(see Fig. 4).

In [17], it was shown that the criterion for instability to

banding is that this differentiated creep curve obeys

d2 _c
dt2

=
d _c
dt
> 0: (4)

A material is therefore predicted to be unstable to forming

shear bands, at least transiently, if its differentiated creep

curve simultaneously slopes upward and curves upward as

a function of time. See the dotted regime in Fig. 4.

(Simultaneous downward slope and curvature are also pre-

dicted to initiate banding, but this author does not know of

any instances of such response.)

As in shear startup discussed above, this criterion is

derived by first calculating the creep response of an underly-

ing base state in which the sample is assumed to remain

homogeneous, then performing a linear stability analysis to

determine the condition under which that base state first

becomes unstable to banding. And, by arguments analogous

to those just after Eq. (3), because the flow is by definition

homogeneous before it bands, Eq. (4) can also be applied to

the experimentally measured creep curve.

As in shear startup, then, banding is predicted to arise as

the material starts to “yield” toward a flowing state after a

regime of initially more solidlike response. In the models of

polymeric fluids that this author has studied to date, such a

scenario arises to most pronounced effect at imposed stresses

just above the local maximum in a nonmonotonic constitu-

tive curve of the form in Fig. 1(a), or in the region of weak

positive slope in a monotonic curve as in Fig. 1(c) [18]. In

the SGR model, which has a monotonic constitutive curve, it

arises most strongly for imposed stresses just above the yield

stress [16,17], and is more pronounced in a sample aged into

a more solidlike state before the stress is applied.

In all cases studied to date, these bands heal back to

homogeneous flow in the ultimate steady state, consistent

with the fact that steady state banding can only be accessed

under conditions of imposed strain rate. (Recall that the flow

curve is a flat function of strain rate in the banding regime, at

least in the absence of concentration coupling.) In soft

glasses with sluggish relaxation times, however, they can

persist a very long time, particularly for initially well aged

samples subject to imposed stresses only just exceeding the

yield stress [16,17].

Evidence to date for banding after a step stress can be

summarized as follows. It has been seen experimentally in

polymers [27,29,36], wormlike micelles [25,26,35], carbopol

gel [37,81], carbon black [38,82], and a colloidal glass [83].

Particle-based simulations of molecular glasses have captured

it [84]. Linear stability calculations and direct numerical sim-

ulations have demonstrated it in the Rolie-poly and Giesekus

models of polymers [18], though as a weaker effect in the lat-

ter model. Stochastic simulations have confirmed it as a

strong, age-dependent phenomenon for imposed stresses just

above the yield stress in the SGR model [16,17].

More universally, the criterion (4) was derived within a

constitutive model written in highly general, though still dif-

ferential form [17]. In contrast to its counterpart (3) for

startup, which is subject to the caveat discussed in Sec. III A,

the derivation of Eq. (4) placed no limitations on the number

of dynamic viscoelastic variables present in the constitutive

description. Accordingly, it should even apply to constitutive

models of integral form (which can be cast in differential

form with infinitely many dynamical variables). This is con-

sistent with the observation of banding following a step

stress in the SGR model, which indeed has a constitutive

equation of integral form [16,17].

On the basis of the evidence just summarized, we suggest

that the criterion (4) for instability to shear banding follow-

ing the imposition of a step stress might apply universally to

all materials.

C. Rapid finite strain ramp

We now turn to the protocol that is sometimes called

“step strain,” but is in practice a fast finite strain ramp: a pre-

viously undisturbed material is subject after some time t¼ 0

to a linearly increasing strain c ¼ _ct. Once some accumu-

lated strain c0 is reached, the strain rate is set to zero, and the

strain remains constant at c ¼ c0. Measured in response is

the stress as a function of the time (or accumulated strain)

during the ramp itself, then the stress decay as a function of

time as the system relaxes back to equilibrium postramp (see

Fig. 5).

During the ramp itself, the stability properties of an ini-

tially homogeneous base state to the onset of banding are the

same as in shear startup because the two protocols are the

same in this regime. However, we focus here on ramps that

most closely approximate the notion of a step strain, and are

therefore sufficiently fast that no meaningful banding has

time to develop during the ramp (even if a homogeneous

shear is technically unstable to banding during it). Our

FIG. 4. Typical evolution of the time-differentiated creep response curve

following the imposition of a step stress. The regime of linear instability to

banding is shown as dotted.
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interest is instead in whether any appreciable banding arises

during the stress relaxation postramp.

In [17], we showed that a state of initially homogeneous

shear will be unstable toward starting to form bands after the

ramp ends if the stress as a function of accumulated strain

just before the ramp ended had negative slope. See the dotted

line in the left part of Fig. 5. In other words, criterion (3)

applies, interpreted in the manner just discussed. (Caveats

about the number of dynamical variables in the generalized

constitutive model used to derive the criterion do not apply

post ramp. Other, milder assumptions are discussed in

[17,18].)

Numerical studies of the Rolie-poly model of polymers

and wormlike micelles are consistent with this prediction

[18,19,85]. For a ramp rate _c in the range 1=sd < _c < 1=sR,

the stress shows an overshoot during the ramp at a critical

strain of O(1). Provided this strain is exceeded, instability to

banding will ensue postramp. See the lower curve in Fig. 5.

In contrast, for ramp rates _c > 1=sR, the development of

chain stretch causes linear elastic response during the ramp

itself, stabilizing the system against banding immediately

postramp. See the upper curve in Fig. 5. However, that stabi-

lizing stress then quickly decays on a timescale of OðsRÞ,
leaving the sample in a state as if no stretch had developed

in the first place, and therefore susceptible to banding. (In

fact, that is only true if an effect known as “convective con-

straint release” [86,87] is not too strong.) The Rolie-poly

model thus predicts transient banding as the sample relaxes

back to equilibrium after a rapid strain ramp. This is consis-

tent with early theoretical intuition [88], and with experi-

mental observations in polymers [89–96] and wormlike

micelles [25].

In the SGR and fluidity models of soft glasses, the stress

rises linearly during a fast strain ramp and decays relatively

slowly after it: Eq. (3) is not satisfied, and no banding is pre-

dicted. (This is however still consistent with the prediction

of banding in shear startup at more modest flow rates, as

discussed in Sec. III A above.) Indeed, this author does not

know of any experimental observations of banding after step

strain in soft glasses.

IV. BANDING IN PERPETUALLY TIME-DEPENDENT
FLOWS

We turn now to an imposed flow that is perpetually time

dependent: LAOS [39]. Our remarks here will be brief: a

longer manuscript by this author and coworkers has been

submitted to the same issue of this journal [40].

We focus mainly on LAOStrain with an imposed strain

rate _cðtÞ ¼ c0x cosðxtÞ ¼ _c0 cosðxtÞ such that any given

experimental run is prescribed by the strain rate amplitude _c0

and cycle-frequency x, or equivalently the strain amplitude

c0 and x. (Expressed in units of the fluid’s inverse intrinsic

relaxation time, _c0 and x are often, respectively, termed the

Weissenberg and Deborah number.) Typically, after many

cycles, a pseudosteady state (often called an “alternance

state”) is attained in which the fluid’s response is invariant

from cycle to cycle, t! tþ 2np=x. We focus on that

regime, discarding any earlier cycles in which the response

is still settling to the flow. Our aim is to understand in what

regimes of applied _c0 and x banding might arise, and to

sketch these in the plane of _c0;x, noting that any coordinate

pair in this plane refers to a single LAOS experiment at the

given amplitude and frequency. To do so, it is helpful to con-

sider first the dynamics of an underlying base state flow that

is (artificially) assumed to remain homogeneous.

In a LAOS experiment performed at a low frequency

x! 0, the fluid will slowly explore its underlying stationary

constitutive curve as the strain rate sweeps progressively up

and down (over both positive and negative values) during a

cycle. In this way, the so-called viscous Lissajous-Bowditch

curve (i.e., the stress signal plotted parametrically as a func-

tion of strain rate round the cycle) is expected to have the

same form as the fluid’s underlying constitutive curve [Figs.

1(a) and 1(c)]. If this is nonmonotonic, shear banding might

then be expected in any low-frequency LAOS experiment

that has a strain rate amplitude _c0 ¼ c0x sufficiently large to

enter the banding regime, according to the criterion (1) for

banding in steady shear.

At higher frequencies, we might instead expect a

LAOStrain experiment to (loosely) correspond to a repeating

sequence of forward and backward shear startup runs. In any

LAOS experiment of sufficiently large strain amplitude c0,

the elastic Lissajous-Bowditch curve of stress plotted para-

metrically as a function of strain might then be expected to

show overshoots reminiscent of those in the stress startup

curve associated with a single startup run. These overshoots

might further be expected to trigger banding in each half of

the cycle, according to a criterion resembling (3) for banding

in startup. This should hold whether or not the stationary

constitutive curve that determines the fluid’s response to a

steady flow (or a low-frequency LAOS run) is nonmonotonic

or monotonic.

This intuition was confirmed numerically in the Rolie-

poly model of polymers and wormlike micelles in [19,40].

The region of the _c0;x plane in which shear banding was

found is sketched in Fig. 6(a) for a fluid with a nonmono-

tonic constitutive curve. This shows banding at low fre-

quency x! 0, consistent with the fact that such a fluid also

supports banding in steady shear flow. It also shows banding

FIG. 5. Typical evolution of the shear stress with strain during a rapid strain

ramp, then decay of the stress as a function of the time postramp. Regimes

of linear instability to banding are sketched as dotted. Data taken from cal-

culations performed with the Rolie-poly model [18].
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at high frequencies, reminiscent of banding in a fast shear

startup, in each half cycle of the elastic Lissajous-Bowditch

curve. For a fluid with a monotonic constitutive curve [Fig.

6(b)], the regime of low frequency banding is absent, as

expected. Importantly, however, the regime of high frequency

banding remains. In both Figs. 6(a) and 6(b), this regime of

banding eventually closes off at very high x once the solvent

stress swamps the polymer contribution (data not shown).

A thorough study of the effects of model parameter values

was conducted in [40]. As expected, a stronger tendency to

banding, over larger regions of the _c0;x plane, was found

for decreasing values of solvent viscosity g, decreasing lev-

els of convective constraint release, and increasing entangle-

ment number. Indeed, moving these parameter values too far

in the opposite direction can eliminate banding. This is to be

expected: a large Newtonian viscosity swamps nonlinear vis-

coelasticity, for example.

While the details of Figs. 6(a) and 6(b) are likely to be

model dependent, these findings could have wider signifi-

cance in suggesting that banding might arise quite generi-

cally in flows with a strong enough sustained time

dependence, even in fluids that do not support bands in

steady flow.

Depending on the degree of shear banding that arises, the

Lissajous-Bowditch curves of the banded flow state can

differ quite significantly from those of the base state calcu-

lated within the assumption of a homogeneous flow. Indeed,

in some cases, shear bands can persist around the entire

cycle. This should lend caution to attempts to develop rheo-

logical fingerprints within theoretical calculations that

assume the flow to remain homogeneous. Theoretical studies

that do account for banding in LAOStrain can be found in

[19,40,97,98].

As explored further in [40], shear banding is also pre-

dicted to arise in polymers subject to LAOStress.

Our discussion of LAOS has so far concerned ergodic flu-

ids such as polymers and wormlike micelles, with finite stress

relaxation timescales. Work by Rangarajan Radhakrishnan

with this author concerning LAOStrain in the SGR model of

soft glasses is also currently under review. As noted above,

this model has a yield stress and a constitutive curve that rises

monotonically beyond it, precluding true steady state band-

ing. In view of this, and the preceding discussion, we might

likewise expect the SGR model to respond homogeneously to

an imposed LAOStrain experiment at low frequency x! 0.

However, the SGR model also displays rheological aging:

in the absence of flow, its stress relaxation timescales

increase as a function of the sample age. An applied flow can

then halt aging and restore an effective sample age set by the

inverse flow rate. As a result, the response of the SGR model

to a low frequency LAOStrain comprises a complicated

sequence of processes in which it alternately ages into a sol-

idlike state during the low shear phase of the cycle, then

yields via a stress overshoot and associated banding in the

high shear phase. In retrospect, this is not surprising: an

aging material has no characteristic relaxation timescale

against which to compare the frequency x of the applied

flow. In view of this, and more broadly, shear banding may

prove an integral feature of the response of soft glassy mate-

rials to imposed flows of arbitrarily slow time variation, even

in the absence of true zero-frequency banding.

Experimentally, shear banding has been observed during

LAOS in polymer solutions [89,99], dense colloids [100], car-

bon black gels [101,102], foams [103], non-Brownian poly-

methyl methacrylate (PMMA) suspensions [104], and also in

wormlike micellar surfactants that are known to shear band in

steady state [105–107].

V. CONCLUSIONS

In this pr�ecis, we have summarized criteria for shear

banding in steady and time-dependent flows of complex flu-

ids and soft solids. These criteria were derived analytically

within a constitutive model written in a highly generalized

(though still differential) form, and are supported by experi-

mental observations, particle-based simulations, linear stabil-

ity analysis, and numerical solutions of several widely used

constitutive models in the exemplary contexts of polymeric

fluids (polymers and wormlike micelles) and soft glassy

materials (dense emulsions, dense colloids, microgels, etc.).

While the evidence supporting the picture presented here is

therefore quite convincing, we nonetheless now consider any

caveats and uncertainties that remain.

FIG. 6. Shear banding in LAOStrain. Shaded areas indicate the regimes of

shear rate amplitude _c0 and cycle frequency x in which shear banding might

be expected in a LAOStrain experiment with an imposed strain rate
_cðtÞ ¼ _c0 cosðxtÞ, for a polymeric fluid with a nonmonotonic underlying con-

stitutive curve [panel (a)] and a monotonic constitutive curve [panel (b)]. Data

are taken from calculations in the Rolie-poly model of polymeric fluids [40].
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Our most important caveat concerns the generality of the

stress overshoot criterion for banding in shear startup.

Although indeed derived in a constitutive model written in a

generalized form, to make progress analytically, this allowed

for only two dynamical viscoelastic variables. As things

stand, the status of the criterion more generally is not

completely clear. For example, it appears not to apply in a

straightforward way in the phenomenological Giesekus

model of polymers. It does, though, convincingly hold in the

Rolie-poly model of polymers, and in the fluidity and SGR

models of soft glasses. Its verification in the SGR model

seems an important result in this context because that model’s

constitutive equation is of integral form, and so effectively

has infinitely many dynamical variables. Nonetheless, future

work would be welcome to try to generalize the criterion fur-

ther, and to delineate more fully its regimes of applicability.

The criteria put forward for the other time-dependent pro-

tocols (step stress and during the stress relaxation following

a fast strain ramp) are not subject to any limitations concern-

ing the number of dynamical variables. Milder assumptions

made in their derivations are discussed in the original papers

[17,18].

While the criteria presented predict the onset of instability

to the formation of bands, that instability must obviously be

strong enough and persist for long enough in any time-

dependent protocol to ensure that observable bands arise

before the homogeneous base state regains stability. (Put

more technically, instability is characterized in the calcula-

tion by a positive eigenvalue, which must remain positive

and of large enough amplitude for long enough to ensure

noticeable banding [24].) Clearly, for the example of startup,

stronger stress overshoots are more likely to give observable

banding. Weaker ones instead give transient instability and

enhanced spatial fluctuations, but without leading to macro-

scopically observable bands (consistent with the absence of

banding altogether in the regime of slow startup flows where

overshoots are absent).

Our calculations to date have assumed the inertialess limit

of creeping flow. In this limit, the eigenvector governing the

onset of shear rate heterogeneity d _c has the form d _c ¼
�drv=g where rv is the shear component of the viscoelastic

stress, and g is the viscosity of the background Newtonian

solvent, and/or any viscoelastic modes fast enough not to be

ascribed their own dynamical evolution. For most materials,

this background viscosity is very small, predicting a strong

degree of heterogeneity in the flow field, d _c, compared to

that in the viscoelastic stress, drv. This predicts potentially

rather violent banding that may, ultimately, be tempered by

inertia. While order of magnitude estimates suggest this

should not be an important effect, concrete calculations are

in progress to check this in more detail.

In polymeric fluids, numerical studies have so far mainly

focused on the Rolie-poly model [70]. This is microscopi-

cally sophisticated enough to incorporate the dynamical pro-

cesses of reptation, chain stretch, and convective constraint

release, while also being simple enough to allow numerical

progress. However, it contains only a single reptation mode

and a single stretch relaxation mode. Work is in progress to

check the effects of multiple relaxation modes, in

unbreakable polymers, on the effects discussed. In wormlike

micelles (which are sometimes called “living polymers” due

to their reversible breakage and recombination dynamics), a

single mode description should already capture most of the

physics (because breaking narrows the relaxation spectrum).

Indeed, it would be interesting to perform a comprehensive

study of time-dependent flows in wormlike micelles over the

full phase diagram of concentration, including regimes of

both nonmonotonic and monotonic underlying constitutive

curves.

Finally, although the effects of flow-concentration cou-

pling are well understood in situations of steady state band-

ing [53–55], their role in the time-dependent phenomena

discussed above remains to be clarified.

The author hopes that this pr�ecis will provide a helpful

guide to situations in which shear banding might be expected

in complex fluids and soft solids subject to steady and time-

dependent flows. Future work by other authors would be wel-

come to verify the criteria suggested here, to generalize them

further, and/or to delineate any regimes in which they might

break down. This seems particularly important for the case of

shear startup, where it has been more difficult than in other

protocols to obtain a universal criterion free of some caveats.

VI. POSTLUDE: CRITERIA FOR NECKING IN
EXTENSIONAL FILAMENT STRETCHING

This section summarizes work by David Hoyle with this

author currently under review at the Journal of Rheology, in

manuscripts “Criteria for extensional necking in complex

fluids and soft solids: imposed Hencky strain rate protocols”

and “Criteria for extensional necking in complex fluids and

soft solids: imposed tensile stress and force protocols.”

Having focused on shear flow so far, we now conclude

with a brief postlude concerning extensional flows. In partic-

ular, we consider the phenomenon of necking in a cylindrical

filament (or planar sheet) subject to stretching, as sketched in

Fig. 7. Here, a state of initially homogeneous flow, in which

the filament is extending and thinning in a uniform way

along its length, gives way to a heterogeneous state with a

higher extension rate and more pronounced thinning in some

part of the sample. A comparison between the sketches in

Figs. 1 and 7 suggests an analogy between shear banding and

FIG. 7. Sketch of necking in extensional filament stretching. A cylindrical

filament is seen here side-on.
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extensional necking: the relevant deformation field (shear

rate in Fig. 1 and extension rate in Fig. 7) becomes heteroge-

neous in both cases.

With that analogy in mind, in [108,109], together with the

manuscripts with Hoyle under review, we developed criteria

for the onset of necking, separately for the flow protocols of

step tensile stress, step tensile force, and startup of constant

Hencky strain rate. As before, these were derived by study-

ing the linearized dynamics of small heterogeneous perturba-

tions, which are the precursors of a neck, about a state of

initially homogeneous extensional flow. Also as before, they

are expressed in terms of characteristic signatures in the

shapes of the relevant underlying rheological response func-

tion for the given protocol. We now briefly summarize them,

referring the reader to [108,109], and the manuscripts with

Hoyle under review, for a more detailed discussion, and for

comprehensive citation of the motivating literature, which is

beyond the scope of this article.

Throughout, we consider a highly viscoelastic filament in

which bulk stresses dominate surface tension. We also

neglect flow-concentration coupling. Also throughout, the

symbol rE denotes the true (and in general time evolving)

tensile stress (the time-evolving tensile force divided by the

time-evolving cross-sectional area of the filament). It does

not denote the so-called engineering tensile stress, which is

simply the tensile force divided by the (constant) initial

cross-sectional area of the filament as measured at the start

of the run.

By analogy with our discussion of shear banding above, a

useful underpinning concept is that of the stationary homo-

geneous constitutive relation between the tensile stress rE

and the Hencky strain rate _�, calculated by (artificially)

assuming that a filament can attain a state in which the stress

and strain rate are linked by this time-independent relation,

with all the flow variables remaining homogeneous along the

filament. Performing a linear stability analysis (at the level

of a slender filament approximation) for the dynamics of

small heterogeneous perturbations about an initially homoge-

neous and stationary state on this constitutive curve, with the

wavevector of the perturbations along the length of the fila-

ment, then reveals instability to necking in any regime where

this constitutive curve has positive slope

drE

d _�
> 0: (5)

This tells us that a state of initially homogeneous extensional

flow, in which the filament is drawing out and thinning in a

uniform way along its length, cannot be maintained in any

regime where the underlying extensional constitutive curve

is positively sloping (see Fig. 8). Given that most materials

indeed have a positively sloping extensional constitutive

curve, this suggests that most materials will neck when

stretched, which is indeed consistent with experience. An

interesting prediction, however, is that of stability against

necking in any regime of negative extensional constitutive

slope. See the inset of Fig. 8. Note the stark contrast to the

corresponding result for shear banding, in which instability

is predicted for negative constitutive slope, Eq. (1).

While the calculation just discussed provides useful intui-

tion, in practice, it is not usually possible to prepare a filament

in a state of steady uniform extensional flow on the constitu-

tive curve because such a flow is usually unstable, as just

shown. In practice, one must compute the stability properties

of a filament in which stretching was recently commenced.

We therefore now consider in turn the three common proto-

cols of step tensile stress, step tensile force, and startup of

constant Hencky strain rate. The results that we shall discuss

were obtained in analytical calculations performed within

highly generalized constitutive descriptions, and confirmed

numerically in several models of polymer dynamics [110]

(the Oldroyd B, Giesekus, fene-CR, Rolie-poly [70], and

pom-pom [111] models), and in tensorial versions of the SGR

and fluidity models of soft glasses [109].

A. Step stress

We consider first a filament subject at some time t¼ 0 to

the switch-on of a constant tensile stress rE, which is held

constant thereafter. (For times t< 0, the sample was unde-

formed with all internal stresses well relaxed.) In this case,

calculations in the polymer models listed above show that

the strain rate quickly attains its steady state value on the

extensional constitutive curve before any appreciable neck-

ing develops. The criterion

drE

d _�
> 0 (6)

for necking thereafter then applies, as sketched in Fig. 8.

B. Step force

Consider now a filament subject at some time t¼ 0 to the

switch-on of a constant tensile force F, which is held con-

stant thereafter. In this protocol, typically, the sample attains

a state of flow on the underlying homogeneous constitutive

FIG. 8. Underlying stationary constitutive relation between tensile stress

and Hencky strain rate, calculated within the assumption of a homogeneous

extensional flow. A state of initially homogeneous extensional flow is line-

arly unstable, in the regime of positive constitutive slope, to the formation of

a neck. As described in the text, this result also determines the necking

dynamics following the imposition of a tensile stress. Solid line denotes sta-

bility; dotted line denotes instability.
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curve, then progressively sweeps up this curve as the stress

necessarily increases in time to maintain constant force as

the cross-sectional area thins. Criterion (6) for the onset of

necking then applies to good approximation.

C. Constant Hencky strain rate

We consider finally the case of a filament that is initially

at rest and with any residual stresses well relaxed, subject at

some time t¼ 0 to the switch-on of a Hencky strain rate to

some value _� that is held constant thereafter. (By this, we

mean that the nominal Hencky strain rate as averaged along

the filament is held constant. Once necking arises, the true

Hencky strain rate will vary along the filament’s length. As

long as the filament remains uniform, however, these nomi-

nal and true rates coincide.) Measured in response is the ten-

sile stress startup signal rEðtÞ as a function of the time t (or

accumulated strain � ¼ _�t) since the inception of the flow. In

[108], we showed in the polymer models listed above that

the filament will be unstable to necking if

d2rE

d�2
< 0; (7)

that is, if the tensile stress shows downward curvature as a

function of the accumulated Hencky strain (see Fig. 9).

In some models (the Rolie-poly model without chain

stretch, the pom-pom model with saturating chain stretch,

and the SGR and fluidity models), an additional mode of

instability is possible, given by

dFel

d�
< 0: (8)

(Indeed this mode can also arise, relatively rarely, under con-

ditions of constant imposed tensile stress or tensile force.)

This derivative needs careful interpretation. It is calculated

by evolving the full dynamics of any model up to some strain

�, then in the next increment of strain over which the deriva-

tive of the tensile force F is calculated, disabling the model’s

relaxational dynamics and evolving only the elastic loading

terms. As far as we are aware, this is the closest counterpart

in viscoelastic materials of the original Considère criterion,

dF=d� < 0, for necking in solids [112]. It is important to

note, however, that Eq. (8) does not coincide with the origi-

nal Considère criterion, which in general fails to correctly

predict the onset of the necking instability. Indeed, it is

unclear whether it is possible to access the elastic derivative

of Eq. (8) experimentally apart from the limit of infinite

extension rate, where relaxational dynamics become unim-

portant and Eq. (8) simply coincides with the original

Considère criterion. (In polymer models, the onset of this

mode also appears related to the presence of a very flat

region in the underlying constitutive curve at the strain rate

in question, although more work is needed to explore this

suggestion fully.) Necking in the elastic limit of viscoelastic

models was also discussed in [113].

It is hoped that the criteria just summarized will provide a

useful field guide to the onset of necking instability in fila-

ment stretching. A fuller discussion of them can be found in

[108,109], together with the manuscripts with Hoyle cur-

rently under review.
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