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ABSTRACT
Telescopes with a wide field of view (greater than 1◦) and small apertures (less than 2 m) are
workhorses for observations such as sky surveys and fast-moving object detection, and play an
important role in time-domain astronomy. However, images captured by these telescopes are
contaminated by optical system aberrations, atmospheric turbulence, tracking errors and wind
shear. To increase the quality of images and maximize their scientific output, we propose a
new blind deconvolution algorithm based on statistical properties of the point spread functions
(PSFs) of these telescopes. In this new algorithm, we first construct the PSF feature space
through principal component analysis, and then classify PSFs from a different position and
time using a self-organizing map. According to the classification results, we divide images
of the same PSF types and select these PSFs to construct a prior PSF. The prior PSF is then
used to restore these images. To investigate the improvement that this algorithm provides for
data reduction, we process images of space debris captured by our small-aperture wide-field
telescopes. Comparing the reduced results of the original images and the images processed
with the standard Richardson–Lucy method, our method shows a promising improvement in
astrometry accuracy.
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1 IN T RO D U C T I O N

In the era of time-domain astronomy, a large amount of data from ce-
lestial objects are obtained at multiple wavebands every day. These
data are used to study temporally changing astronomical objects
(Wang et al. 2009). Due to different temporal scales, continuous
observations are required (Grindlay et al. 2012; Kelly et al. 2014).
In the optical band, telescopes with wide fields of view and small
apertures are an appropriate choice (Burd et al. 2005), because the
wide field of view provides wide sky coverage, and because using
small apertures reduces the manufacturing cost of multiple tele-
scopes located at different sites (increasing temporal and sky cov-
erage) (Kaiser et al. 2002). However, increasing the field of view
of these telescopes will increase optical design complexity, and in-
troduce additional refractive components (Ackermann, Mcgraw &
Zimmer 2010).

For wide-field small-aperture telescopes, different factors, such
as the dispersion of refractive material, misalignment of com-
ponents during observation and imperfect optical surfaces, will
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introduce significantly more complex and serious aberrations
than those of ordinary reflector telescopes, such as the classical
Cassegrain telescope with a small field of view (Wilson 1996).
Moreover, as these telescopes are generally working as robotic tele-
scopes with no active or adaptive optics systems (Babcock 1953;
Mast & Nelson 1982), atmospheric turbulence and thermal and
gravity deformation of the telescope mirror or lens will further re-
sult in dynamical aberrations (Smith 2000; Lemaitre 2009). These
aberrations will lead to spatial and temporal variations in telescope
optical quality, and introduce highly variable point spread functions
(PSFs) in different parts of different images (Jee & Tyson 2011;
Chang et al. 2012). These PSF variations will result in a distorted
final image, reducing the effective resolution and signal-to-noise
ratio (SNR) of faint objects, which can become undetectable. As-
trometric and photometric precision is also reduced.

To increase image quality, we need to reduce the side effects
due to the variable PSFs. Image deconvolution is a well-established
post-processing method that does not require any instrumental mod-
ification or change to observing strategy, and it can be used with
historical data (Starck, Pantin & Murtagh 2002). When the PSF
of the whole optical system is known, deconvolution recovers the
original image with some regularized conditions and for example,
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has shown impressive results in processing images captured by the
Hubble Space Telescope (Adorf, Hook & Lucy 1993). For optical
ground-based telescopes, due to the atmospheric turbulence, PSFs
of different images are highly variable and it is hard to get an
effective PSF for deconvolution. For these images, blind deconvo-
lution was proposed to simultaneously recover the original image
as well as the PSF (Ayers & Dainty 1988; Bertero & Boccacci
2000; Desiderà & Carbillet 2009; Prato et al. 2013). However, to
reduce computational complexity, the PSF is assumed to be spatial-
invariant in these methods. This assumption does not match the
reality for most ground-based observations, because aberrations
due to atmospheric turbulence and those from the optical system
are different for different field directions (Lukin 1995). Under these
circumstances, dividing the image into small regions, where the
PSFs are assumed to be invariant, and applying blind deconvolution
in these small regions is a direct solution. Based on this method,
an algorithm called PATCH is proposed (Ciliegi et al. 2014), which
shows promising results for processing images captured by tele-
scopes equipped with adaptive optics systems. Astrometry and pho-
tometry results are improved after blind deconvolution (La Camera
et al. 2015).

However, for images captured by wide-field small-aperture tele-
scopes, it is hard to apply the PATCH method for two reasons:
first, the small area inside which the PSF is assumed to be in-
variable is several arcsecs (Britton 2006) but it is equivalent to
only several pixels in the wide-field images, which is too small
for restoration. Secondly, the low CCD sampling rate smooths the
differences between PSFs and expands the size of the PSF-uniform
area but it is not clear how much the size increases. These facts
make it hard to set a suitable size for PATCH. A convenient way
is to assume that the PSFs are spatial-invariant and to deconvolve
the images with a spatial-invariant artificial PSF and conventional
algorithm (Fors et al. 2010; Sun & Zhao 2014; Núñez et al. 2015).
However, the restoration results are unstable in these algorithms,
because the initial PSF is chosen according to experience. If the
differences between PSFs in the whole image and the artificial
PSF are small, it is possible for conventional deconvolution to find
a PSF that will increase image quality. However, as the PSF has
many pixels, there are complex non-linear relations between the
quality evaluation of the image and PSF. The optimization algo-
rithms in conventional deconvolution algorithms mainly use linear
space (Sun & Yuan 1997), hence the quality of the restored im-
ages varies dramatically. To improve blind deconvolution results,
we should use an initial guess for a PSF that is close to the PSFs
in the whole image and use an appropriate PSF search method for
blind deconvolution.

The aforementioned PSF projection technique can also be seen as
PSF regularization. There are two such methods. The first method
is modelling the PSF with parameters according to the physical pro-
cess of the imaging system (Jia, Cai & Wang 2014). However, due
to complicated aberrations in wide-field telescopes and the com-
plexity of initial PSF parameter tuning, this method is not practical
for image restoration. The second method is modelling the PSF
according to its statistical properties. To ensure that this model is
numerically stable and can properly represent different PSF pat-
terns, a large number of diversely distributed PSFs are required
(Theodoridis & Koutroumbas 2008). For wide-field small-aperture
telescopes, because there are a large number of stars distributed
diversely in each frame of an image and there are a large number of
images captured continuously with almost the same exposure time,
it is possible to generate the PSF manifold space from these data
through a statistical method for PSF projection.

In this paper, principal component analysis (PCA) will be used
for PSF projection. PCA is a generalized multivariate data analysis
method that minimizes the mean square error of the whole data set,
showing promising properties for data packaging and dimension
reduction (Vidal, Ma & Sastry 2016). It is applied to decomposed
and reconstructed PSFs in different fields of view for both space
and ground-based telescopes (Lupton et al. 2001; Jee et al. 2007;
Jee & Tyson 2011). We classify all the PSFs represented by the PCA
components with unsupervised learning (Haykin 2010). According
to the classification results, images will be divided into different
cubes and one frame of the images in each cube will be used to
compute a mean PSF, which will be used as a prior PSF. A modified
version of scaled gradient projection (SGP) based blind deconvo-
lution (Prato et al. 2013) with the prior PSF will then be used to
restore the image.

In Section 2, we will discuss the concept and method of our
techniques. In Section 3, we will process a series of images from
three of our telescopes and show the improvement in astrometry
accuracy. In Section 4, we will discuss the shortcomings of our
method and anticipated future work.

2 BA S I C P R I N C I P L E A N D M E T H O D

The physical process of imaging in wide-field small-aperture tele-
scopes can be expressed by

I (x, y) = [O ∗ PSF(x, y)]Pixel(x,y) + N (x, y). (1)

O is the original image, I is the observational image and ∗ stands for
convolution. PSF(x, y) is the PSF of the whole optical system and
since the PSF is spatially variable, it is different for different (x, y).
[]Pixel(x,y) is the discretization process and it also includes the pixel
response function of pixel (x, y). N(x, y) is noise from the CCD, shot
noise and sky background. When only I(x, y) is known and N(x, y)
and O are partly known, blind deconvolution can restore O(x, y)
through optimization under some regularization conditions.

Optimization is also a search process, and blind deconvolution
can be viewed as a problem of finding an optimal point in the
manifold space spanned by all the possible vectors of the PSF
and the image. The regularization conditions restrict the dimension
and the geometric property of the manifold space. The dimension
and geometric properties of the manifold space will lead to different
levels of problem complexity.

Since the PSF is directly related to the physical process of imag-
ing and because the physical and geometrical optics of imag-
ing have already been previously studied (Fischer et al. 2000;
Gonzalez & Woods 2002), regularization of a PSF with imaging
theory is a commonly used technique (Campisi & Egiazarian 2016).
However, unlike diffraction-limited images, PSFs obtained by wide-
field small-aperture telescopes are highly variable, under-sampled
and strongly affected by the sky background (Popowicz & Smolka
2015) and CCD noise (Popowicz et al. 2016). Under these circum-
stances, the size of the PSF is discretized to just a few pixels, which
makes the pixel response function much more important than for
diffraction-limited images. The low spatial sampling, as well as the
high sky background noise, make the wings of the PSF unrecog-
nizable. To generate a PSF model for PSF regularization with blind
deconvolution, we need to take these effects into consideration and
furthermore we also need to calibrate every detector pixel to provide
an accurate PSF model (Piotrowski et al. 2013). Such a calibration is
impractical for our telescopes, because the instruments have already
been commissioned and the data collected.
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Figure 1. Monte Carlo simulation of the PSF of stars with different mag-
nitudes. The left-hand panel shows a star with a magnitude of 8, the middle
panel shows a star with a magnitude of 10 and the right-hand panel shows
a star with a magnitude of 13. The sky background has a magnitude of 15.
The x- and y-axes in these figures are in pixels and the total number of pixels
in each of these directions is 40.

Another method for PSF regularization considers PSFs to be im-
ages with specific structure, and models the PSFs according to their
statistical properties. In this method, to keep the model statistically
effective, a large number of diversely distributed PSFs are required
to include all possible modes. For the telescopes we used to collect
our data, a large field of view and large number of images will
provide a large number of diversely distributed PSFs in the final im-
ages. The low CCD sampling rate will smooth the high-order spatial
variation in PSFs, which will increase statistical effectiveness and
reduce the number of required modes for PSF representation as
well. In this paper, out of all the statistical description methods,
we select PCA for its computational simplicity. For real applica-
tions, large numbers of PSFs that satisfy certain conditions will be
subtracted from all the observational data or telescope calibration
data, depending on the observation mode, and PCA will be used
to construct a manifold space with these PSFs. In the manifold
space, PSFs presented by the PCA basis in different images will
be clustered with a self-organizing map (SOM) (Kohonen 1982).
According to the cluster results, images with the same type of PSFs
will be divided into small regions. The mean PSF of the same type
of PSFs (i.e. of each small clustered region) will be used as the
prior PSF for this region and we will use a modified SGP method
to restore images.

We will discuss the PSF selection in Section 2.1, the genera-
tion of the PSF feature space in Section 2.2, PSF classification
in Section 2.3, and PSF regularization and blind deconvolution in
Section 2.4.

2.1 PSF selection for feature generation

Because there is a large number of stars in the final images from
wide-field telescopes and the images of these stars are just point
sources before they are modulated by the atmosphere, telescope
and camera, it is possible to use them to extract information about
the PSFs of the whole image system. In most optical observations,
besides the aberrations induced by atmospheric turbulence and the
optical system, the main factors that affect the PSF shape are the
sky background noise, CCD pixel scale and the depth of the CCD
full well limitation. The shapes of PSFs should be the same if there
are enough pixels in images of stars that are not saturated and the
SNR is high enough, and they can be used as a reference PSF like
the ordinary PSF shown in Figs 1 and 2.

However, for our applications, due to the low CCD sampling rate
(several arcsecs per pixel), high background noise and complicated
aberrations in the telescopes, there are very few bright stars that can
be used as reference PSFs, as shown in Fig. 3. When there are not
enough stars with a high SNR, we will select stars with a relatively
low SNR as references. In this circumstance, it is important to notice

Figure 2. The 1D curve of the PSFs in Fig. 1. The peak values of the PSFs
are normalized for demonstration. As can be seen, when a star is too bright,
the peak of the PSF will be flattened due to saturated pixels and when the
star is too dim, the wing of the PSF will not be observable due to the high
background.

Figure 3. One frame of images from our telescopes. For better display, the
grey-scale in this figure is adjusted with the IRAF zscale algorithm in DS9
(Smithsonian Astrophysical Observatory 2000). Star 1 has a SNR of 22.31,
star 2 has a SNR of 5.23 and star 3 has a SNR of 72.83. We set the SNR as
(S − B)/σ , where S is the mean pixel value of the investigated star image,
B is the mean grey-scale value of the background image and σ is the noise
level. The full well depth for our CCD is 16 383 and the maximal value in
the image is around 11 000 (the bright stripe is a defect caused by the high
frame rate of the CCD during observation). To get better blind deconvolution
results, we should select PSFs by considering the SNR of stars as well as
the number of stars with these PSFs. Generally, star 1 will be selected as
the PSF reference, because it has a relatively high SNR and there are lots of
stars with SNR close to that of star 1.
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Figure 4. The 1D curve of the PSFs in Fig. 3. The peak values of the PSFs
are normalized for demonstration. Most reference stars in our observational
data have a 1D curve like star 1. When comparing the PSFs of different stars,
we find that their shapes are approximately modified by the background
noise.

that stars with a different magnitude will show different shapes even
though the their optical PSFs are the same, mainly due to the high
background noise as shown in Fig. 4. Based on our experience, we
will select stars with a relatively high SNR, moderate magnitude
(the differences in the magnitudes of these stars are limited to 3 mag
and the number of stars in this scale is the most) and regular shape
(we remove stars with extraordinary ellipticity).

Note that the PSFs can be obtained by two methods according
to different observation modes. For sidereal-tracking observations,
the PSFs can be obtained directly from the observation data while
for other object-tracking observations (such as space debris obser-
vations), the PSFs can be obtained by telescope calibration observa-
tions (through an observation towards the North Pole with the same
exposure time used for the wide-field observations).

2.2 PSF feature generation with PCA

When a large number of PSFs are obtained with the method men-
tioned in Section 2.1, a classical PCA method can be used for feature
generation. Assuming we get N PSFs with M × M pixels, we will
stretch these PSFs into a vector and generate a PSF data matrix S
with M × M columns and N rows. N should be much larger than
M × M to maintain numerical stability and statistical effectiveness.
The PSF data matrix is decomposed by singular value decomposi-
tion and then we obtain:

S = UWVT, (2)

where W is the singular value matrix and U is the PCA basis matrix
(each row of U is an orthogonal PCA basis). We order the diagonal
elements in W in descending order and calculate the Laplacian of
these elements. According to the Laplacian, the components with
values greater than a predefined factor (0.001 for this paper) will
be selected for PSF presentation, because the relative weight of the
effective patterns will decay quickly while the noise pattern will
vary slowly. When the noise patterns dominate, the differences in
the weight of these patterns will be small and the Laplacian will be
close to zero. For wide-field small-aperture telescopes, because of

Figure 5. The first 30 PCA components for the PSF basis with a size of 11
× 11 pixels. This figure shows the contributions of the first 10 components.
The cumulative weight of the first 10 components is 88.68 per cent which
shows that with only 10 components we can present most of the PSFs with
small error.

the low CCD sampling rate and high noise level, the effective PSF
pattern will be much smaller than for larger telescopes. As shown
in Fig. 5, for ordinary observation data the number of principal
effective components is around or less than 10. When the number
of reference PSFs is not enough, we can relax the constraint on
the star magnitude and use EMPCA for feature generation (Bailey
2012).

2.3 PSF classification with SOM

With the PCA basis generated by the method discussed in
Section 2.2, all the PSFs we subtracted from images can be pre-
sented with greatly reduced dimensions. For blind deconvolution,
these PSFs represented by the PCA components are good starting
points to use for PSF difference detection and we can divide images
according to the PSF classification results. However, as the num-
ber of PSFs is large and classification of these PSFs is a NP-hard
problem, it is difficult to classify these PSFs through direct methods.

Classification with large data sets is a common problem in unsu-
pervised machine learning and there are a large number of methods
and techniques. In this paper, we choose SOM as the classification
method for PSFs because it generates a topographic map of the
high-dimensional data, making it easier to interpret in lower dimen-
sions. As we change the dimension of the low-dimension space,
it will be easier to discover the continuity of PSFs in the spatial
and temporal domain. SOM is widely applied in data classifica-
tion with high dimensions, such as star and galaxy classification
(Maehoenen & Hakala 1995; Miller & Coe 1996), light curve clas-
sification (Brett, West & Wheatley 2004; Carrasco Kind & Brunner
2014; Armstrong et al. 2016) and object selection (Geach 2012).

For PSF classification, SOM will map the PSFs using many
parameters in the data cube (a cube that includes all the extracted
PSFs distributed in the space and time coordinates) to a predefined
number of types. In our algorithm, we will classify PSFs with SOM
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into a number of different types and calculate the Davies–Bouldin
(DB) index for each classification, as defined by:

DB = 1

n

n∑
i=1

max
j �=i

(
σi + σj

d(ci, cj )

)
, (3)

where n is the number of clusters, ci and cj are the centres of two
clusters, σ is the average distance of all the elements in a cluster
to its centre and d(ci, cj) is the distance between the centres of
two clusters. We will select a PSF with a small DB index and an
appropriate number of clusters (generally less than 10) as the PSF
cluster with the best results.

With the PSF cluster results, we will be able to give the positions
(spatial coordinates for images and temporal coordinate for different
frames) of different PSFs with different labels. With these labels, we
can calculate the fraction of different PSFs in each image. If most
of the PSFs (more than 80 per cent) in one frame or in continuous
frames of images have the same label, these images will be grouped
as one class of images and the mean PSF will be used as the prior
PSF. If there are clusters with PSFs with different labels, these stars
will be used as a seed and we will grow the seeded region to generate
index images (Adams & Bischof 1994). The index images have the
same size as the original images and the values of the pixels in the
images are the index number grown from the seeds. Then images
or a part of images with the same index will be cut and the mean
PSF of the same class will be used as the prior PSF. If the PSFs are
highly mixed and no cluster exists, the mean PSF of all the PSFs
will be used as the prior for blind deconvolution of all the images.

Different situations for the classification results are shown in
Figs 6, 7 and 8. In Fig. 6, the PSFs change continuously in the
spatial/temporal domain. The upper right part of different images
will be cut into a group and the rest will be cut into another group.
In Fig. 7, different types of PSFs are highly mixed together and
the mean PSF of all the PSFs will be used for blind deconvolution
of all the images. In Fig. 8, a slice of images (from the 9th to
the 14th) will be divided from the whole data cube and we will
use the mean PSF of these images for blind deconvolution and the
mean PSF for the rest of the data cube for deconvolution of the
remaining images.

2.4 SGP-based blind deconvolution algorithm for images with
a low spatial sampling rate

SGP-based blind deconvolution was proposed for processing im-
ages obtained by telescopes with an adaptive optics system. This
method uses three constraints for the PSF: the non-negativity, nor-
malization and Strehl ratio. The non-negativity and normalization
constraints are used in our algorithm. However, the Strehl ratio con-
straint is not practical for wide-field telescopes if their apertures are
too big, because one pixel in the final image is more than several
arcsecs, which is much larger than the Airy disc of the telescope
and the seeing disc. So, we modify the original SGP algorithm and
set the Strehl ratio limit to 1. Besides, during real applications, we
find that there are overfittings of the PSFs after many iterations and
early stopping of the iteration is recommended. The best number of
iterations is of an order of magnitude around 10 depending on the
data quality. When the data quality is good, the image quality will
increase when the number of iterations is less than 1000 (1000 is
the maximal number of iterations we defined in the function though
the image quality may increase if the number of iterations is more
than 1000). When the noise level is high, the image quality will stop
increasing when the number of iterations is more than 10. For the

Figure 6. PSF classification results for spatially and temporally continu-
ously variable PSFs. There are 40 000 PSFs in 500 frames of images. For
clarity, classification with two kinds is shown. The upper panel is a 3D data
cube and the bottom panel is the 3D data cube projected to spatial coor-
dinates. Each frame of these images can be cut into two small images and
the mean PSF of these two parts will be used as the prior PSF for blind
deconvolution.

robustness of our deconvolution results, we set 10 as the maximal
number of iterations.

3 A PPLI CATI ON AND RESULTS

3.1 Observation instruments and data

To test the performance of our algorithm, we obtained a series of
images utilizing three of our small-aperture telescopes. These tele-
scopes are dedicated to surveying space debris and measuring the
corresponding positions. Since space debris comprises fast-moving
near-Earth objects, the observing strategy and reduction algorithms
are like those adopted for asteroids and comets. However, the rel-
ative angular velocity of space debris is generally high (maximum
around several arcmins per second) and image degradation is crit-
ical, due e.g. to the low SNR caused by limited exposure time,
under-sampling and the influence of tracking errors. Hence, space
debris is suitable for testing our technique and investigating the
improvement of image restoration. Additionally, some objects (e.g.
those for laser ranging and navigation) have an ephemeris with ex-
tremely high accuracy (Zhang et al. 2012). They have a position
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Figure 7. PSF classification results for random variable PSFs. Theew are
40 000 PSFs in 500 frames of images. For clarity, classification with two
kinds is shown. The upper panel is a 3D data cube and the bottom panel is
the 3D data cube projected to spatial coordinates. For these images, different
kinds of PSFs are mixed together and we will use the average of all the PSFs
as the prior PSF for blind deconvolution.

accuracy better than 0.02 arcsec, thus they can be taken as reference
positions for astronomical calibrations.

In our application, two GPS satellites with COSPAR (Committee
on Space Research) IDs 1996-019A and 2004-009A were observed.
During observations, the telescope tracked the object, thus the ob-
ject appeared at the centre of the whole frame. For one of these
observations, continuous images of one object were obtained. A
series of these continuous images is called an arc. We obtained 14
arcs including more than 1000 raw CCD images in total. While ac-
quiring the calibration data for blind deconvolution, the observing
strategy was alternated. In detail, the calibration data of telescope A
were obtained while the telescope was pointing to the North Pole,
since it was not able to work robustly under sidereal-tracking mode.
The calibration data of telescopes B and C were acquired while the

Figure 8. PSF classification results for temporally continuously variable
PSFs. There are 10 000 PSFs from observations from February 10 to March
12, 2014. For clarity, classification with two kinds is shown. The upper
panel is a 3D data cube and the bottom panel is the 3D data cube projected
to temporal-spatial coordinates. In this case, observation data from the 9th
day to the 14th day will be cut into a group and the rest of the data will be
cut into another group. The mean PSF for these days will be used as the
prior PSF for blind deconvolution.

telescopes were sidereal-tracking. The details of these telescopes
are listed in Table 1.

3.2 Astrometry results and discussion

3.2.1 Data process and astrometric precision estimation

Once the raw images were obtained, the sources were extracted
with the 2D modified moment algorithm (Stone 1989), then these
sources were cross-matched with the Tycho2 catalogue (Høg et al.
2000). The equatorial coordinates of the target (one of the two
GPS satellites) were derived from the astronomical calibration.
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1956 P. Jia et al.

Table 1. Parameters of our telescopes. The exposure time for these tele-
scopes is 2000 ms.

Telescope name Diameter Field of view Frame size Pixel scale

Telescope A 450 mm 1.9◦ × 1.9◦ 1024 × 1024 6.68 arcsec
Telescope B, C 500 mm 4.4◦ × 4.4◦ 2048 × 2048 7.73 arcsec

Table 2. Comparison of astrometric errors for background stars for dif-
ferent telescopes before and after deconvolution with different methods.
Original is the data before deconvolution, Richardson–Lucy is the data af-
ter Richardson–Lucy deconvolution with a Gaussian PSF and SGP-PCA is
the data after deconvolution with our method. The PSF size used here is
11 × 11 pixels and the number of iterations in the deconvolution is 10.
The number of background stars is the number we obtained for astrometry
estimation.

Telescope Deconvolution Number of background stars Overall
algorithm rms residual

(arcsec)

Original 47503 0.4735
A Richardson–Lucy 47458 0.3850

SGP-PCA 47896 0.3947

Original 384619 0.5179
B Richardson–Lucy 393549 0.4779

SGP-PCA 389885 0.5436

Comparing the measured equatorial coordinates with those derived
from the ephemeris, residuals of measurement were obtained. Fi-
nally, we took the root mean square (rms) values of all the residuals
in one arc as the accuracy of the data reduction.

As discussed in Pascu & Schmidt (1990), the astrometry accuracy
of the target depends on the astrometry accuracy of the background
stars. In this section, we calculated the astrometry accuracy im-
provement of the background stars as another test of our method
and also as error source analysis for the astrometry results of the
target, although there were a large number of reference stars in each
frame of our data, which reduced the error caused by the background
stars.

We list the astrometry results for two of our telescopes in Table 2.
Original is the original astrometry accuracy. Richardson–Lucy is
the astrometry accuracy of data processed by Richardson–Lucy
deconvolution with a prior Gaussian PSF of 11 × 11 pixels and
2 pixels full width at half-maximum (FWHM), which was pro-
posed by Núñez et al. (2015). This method improved space debris
observation. SGP-PCA is the astrometry accuracy of data processed
by our method.

For different telescopes, according to the classification results of
the calibration data, different PSF models were used in our method.
For telescope A, PSFs of different kinds were randomly distributed
(as shown in Fig. 7) and we used the mean PSF as the prior PSF. For
telescope B, we found a strong time-dependent variation of PSFs in
the whole image as shown in Fig. 12, which indicates that there are
some temporal variations of the PSFs in the data from telescope B.
However, as the calibration data and observation data were not
obtained simultaneously, we could use only the mean PSF from
the calibration data as the prior PSF. We processed the data with
the methods discussed above and obtained the astrometry results of
background stars shown in Table 2.

According to these results, we found:

(1) Both the Richardson–Lucy method and the SGP-PCA method
can increase the astrometry accuracy of background stars, when the

Table 3. Original astrometry accuracy for each arc of observation data from
telescope A.

Arc ID rms residual of RA rms residual of Dec Overall rms residual
(arcsec) (arcsec) (arcsec)

1 1.5715 0.7110 1.7249
2 0.8474 0.4891 0.9784
3 1.5617 0.7737 1.7428
4 1.0673 0.6325 1.2407
5 1.7723 0.6928 1.9029
6 1.0525 0.6512 1.2377
7 1.7924 0.8084 1.9662
8 1.2793 0.5859 1.4071
9 0.9578 0.4507 1.0585
10 2.4581 1.1745 2.7243
11 1.2513 0.7591 1.4635
12 2.1774 1.0684 2.4254
13 1.5027 1.2844 1.9768
14 1.6743 1.1869 2.0523

prior PSF is correct. The astrometry accuracy difference is only
3 per cent for data from telescope A processed by different methods
while these methods increase the astrometry accuracy by about
16 per cent.

(2) When the PSF is highly variable, an incorrect PSF model will
lead to worse results than those obtained from a simplified universal
PSF model.

(3) The astrometry accuracy of background stars can reach better
than 0.55 arcsec, which will provide a reliable reference for the
astrometry of targets.

3.2.2 Results and Discussion

Although a source of astrometry errors, in Section 3.2.1, we found
that the background stars can provide a reliable astrometry reference
for targets. In this section, we will show the astrometry improvement
for targets for data processed by different methods.

First, we processed data from telescope A. The original astrome-
try accuracy of the target is shown in Table 3. The rms values of the
right ascension (RA) and declination (Dec) residuals are between
0.8 and 2.5 arcsec and the overall rms residuals range between
0.97 and 2.5 arcsec. We used the Richardson–Lucy method with a
Gaussian PSF (different size and FWHM of 2 pixels) to process data
from telescope A. As shown in Table 4, with the same number of
iterations, the astrometry accuracy increases as the size of the PSF
increases. The mean astrometry accuracy increases 10.65 per cent
with a PSF of 5 × 5 pixels and 16.07 per cent with a PSF of 11 × 11
pixels. According to this result, a PSF with a size of 11 × 11 pixels
should be used for the Richardson–Lucy method and the number of
iterations for the Richardson–Lucy method should be 10.

For the SGP-PCA method, as shown in Table 5, with the same
number of iterations (10 times), the astrometry accuracy increases
as the size of the PSF increases: from about 7.58 per cent with a PSF
of 5 × 5 pixels to 41.32 per cent with a PSF of 11 × 11 pixels. Be-
cause PSFs with different sizes will be expanded to give processed
images with the same size in SGP, the time difference between de-
convolutions with different PSFs is small. We process images with
PSFs of 11 × 11 pixels.

With a PSF of 11 × 11 pixels, we tested the astrometry accuracy
increment with data processed by SGP-PCA method with different
numbers of iterations, as shown in Table 6. In this table, we found
that the astrometry accuracy will increase as the number of iterations
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Table 4. Overall astrometry accuracy in each arc of observation data
from telescope A, before and after Richardson–Lucy deconvolution with a
Gaussian PSF (FWHM of 2 pixels).

PSF size
Arc ID 11 × 11 pixels 9 × 9 pixels 7 × 7 pixels 5 × 5 pixels Original

(arcsec) (arcsec) (arcsec) (arcsec)

1 1.4611 1.4641 1.4710 1.5319 1.7249
2 0.7494 0.7498 0.7551 0.7605 0.9784
3 1.3752 1.3802 1.4142 1.4423 1.7428
4 0.9868 0.9896 1.0014 0.9942 1.2407
5 1.6534 1.6562 1.6808 1.7166 1.9029
6 0.9793 0.9883 0.9745 0.8965 1.2377
7 1.6248 1.6340 1.6865 1.7301 1.9662
8 1.3435 1.3366 1.3593 1.4383 1.4071
9 1.0219 1.0147 1.0289 1.0031 1.0585
10 2.2278 2.2965 2.4069 3.0291 2.7243
11 1.1914 1.1982 1.2514 1.3440 1.4635
12 1.9851 1.9972 2.1272 2.2968 2.4254
13 1.6687 1.7149 1.6429 1.6470 1.9768
14 1.7459 1.7431 1.7886 1.8970 2.0523

Table 5. Overall astrometry accuracy in each arc of observation data from
telescope A, before and after deconvolution with our method (with 10
iterations).

PSF size
Arc ID 11 × 11 pixels 9 × 9 pixels 7 × 7 pixels 5 × 5 pixels Original

(arcsec) (arcsec) (arcsec) (arcsec)

1 0.5875 0.6972 1.0784 1.6174 1.7249
2 0.5887 0.6387 0.7704 0.9120 0.9784
3 0.8417 0.7995 0.8999 1.4658 1.7428
4 0.7203 0.8012 0.8712 1.0963 1.2407
5 0.7685 0.8053 1.1836 1.7635 1.9029
6 0.7752 0.7372 0.9516 1.2406 1.2377
7 0.8254 0.8928 1.2379 1.8494 1.9662
8 0.6606 0.9060 1.1677 1.4303 1.4071
9 1.4380 0.7234 0.8860 1.1163 1.0585
10 0.8718 1.4012 1.7931 2.2140 2.7243
11 1.6219 0.9451 1.0687 1.3662 1.4635
12 1.5962 1.5113 1.6443 2.3032 2.4254
13 1.4782 1.4782 1.4883 1.8130 1.9768
14 1.2512 1.2524 1.4741 1.9025 2.0523

Table 6. Overall astrometry accuracy in each arc of observation data from
telescope A with our method with a PSF size of 11 × 11 pixels.

Number of iterations
Arc ID 1000 300 100 10 Original

(arcsec) (arcsec) (arcsec) (arcsec)

1 1.4053 1.0133 0.7127 0.5875 1.7249
2 0.7271 0.6515 0.5679 0.5887 0.9784
3 1.5310 1.3280 1.1190 0.8417 1.7428
4 0.9837 0.7299 0.6401 0.7203 1.2407
5 1.3322 0.7034 0.5895 0.7685 1.9029
6 1.9272 1.4620 1.1256 0.7752 1.2377
7 1.4067 0.9412 0.7636 0.8254 1.9662
8 0.6976 0.7222 0.7503 0.6606 1.4071
9 0.6537 0.6567 0.6443 1.4380 1.0585
10 1.8519 1.2367 1.2333 0.8718 2.7243
11 1.1947 0.9122 0.8218 1.6219 1.4635
12 2.1617 1.5094 1.8185 1.5962 2.4254
13 2.6351 1.5181 1.8425 1.4782 1.9768
14 1.9851 1.2285 1.2920 1.2512 2.0523

Figure 9. Astrometry accuracy for images restored with different methods
for telescope A. SGP-PCA is our method, Original is the original image,
Richardson–Lucy is the standard Richardson–Lucy method with a Gaussian
PSF as the prior and SGP-Gauss is the SGP method with a Gaussian PSF as
the prior. The size of the PSF we used in image restoration is 11 × 11 pixels.

increases. However, the astrometry accuracy will drop when the
number of iterations is in excess of a certain number. This is due to
the overfitting of the PSFs. Depending on the SNR of the image, the
number of iterations when the astrometry accuracy stops increasing
is around 10 to 300. According to this result, we will use 10 iterations
for SGP-PCA in real applications for robustness.

To show the improvement in astrometry accuracy with our
method, the overall residuals in different arcs processed by dif-
ferent methods are shown in Fig. 9. We also tested the SGP method
with a Gaussian PSF as the prior PSF to complete the testing of
our method. We labelled astrometry results from these data as
SGP-Gauss. In this figure, we found that our method can provide
at least 2 times improvement of astrometry accuracy than the other
methods. The astrometry results from Richardson–Lucy method
show the same trend with the original data, which indicates that the
Richardson–Lucy method is more stable. The SGP-Gauss method
gives the worst astrometry results, which indicates the importance
of the prior PSF for our method.

This problem is notable for telescopes B and C, as shown in
Figs 10 and 11. For telescopes B and C, the astrometry accuracy
did not increase with our method or the Richardson–Lucy method,
and in some arcs, the astrometry accuracy became even worse. We
believe this is partly due to the image rotation of the telescope for the
calibration data and partly due to different observation conditions
between the observation data and the calibration data. The PSF
classification results for telescope B in Fig. 12 show a very strong
time-dependent variation of the PSFs in the whole image, which
indicates that there are some temporal-variations of the PSFs in
telescope B that are very serious and real-time calibration data are
required. For telescope C, the classification results are similar. The
results for telescopes B and C and that of SGP-Gauss method in
telescope A indicate the importance of the calibration data in the
SGP-PCA method.
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Figure 10. Astrometry accuracy for images restored with different methods
for telescope B. SGP-PCA is our method, Original is the original image,
Richardson-Lucy is the standard Richardson–Lucy method with a Gaussian
PSF as the prior and SGP-Gauss is the SGP method with a Gaussian PSF as
the prior. The size of PSF we used in image restoration is 11 × 11 pixels.

Figure 11. Astrometry accuracy for images restored with different methods
for telescope C. SGP-PCA is our method, Original is the original image,
Richardson–Lucy is the standard Richardson–Lucy method with a Gaussian
PSF as the prior and SGP-Gauss is the SGP method with a Gaussian PSF as
the prior. The size of the PSF we used in image restoration is 11 × 11 pixels.

Compared with the classical Richardson–Lucy method, the SGP-
PCA method seeks a higher improvement in astrometry accuracy
at the risk of errors due to an incorrect prior PSF. For this reason,
the calibration data require detailed analysis before being applied
in SGP-PCA and it is better to update the calibration data between
observations.

4 C O N C L U S I O N S A N D F U T U R E WO R K

In this paper, a new SGP-PCA deconvolution method is pro-
posed. Our method identifies the PSF difference with SOM before

Figure 12. PSF classification results for the calibration data of telescope
B. There are four classes of PSFs in this figure. A strong time-dependent
variation can be observed.

blind deconvolution and sets an appropriate prior PSF for SGP-
based blind deconvolution. This method can increase astrometry
accuracy promisingly if the calibration data are adequate. To im-
prove our method further, future work includes: (1) detailed anal-
ysis of a method of obtaining calibration data including cleaning
of the calibration data, (2) a new PSF subtraction and normaliza-
tion method that will be able to reduce magnitude difference effects
in PSF classification to increase sample PSF coverage and (3) a
density-based PSF classification algorithm with better computation
efficiency and better performance for cluster detection.
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