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Abstract

Gaussian process emulator with separable covariance function has been utilized ex-
tensively in modeling large computer model outputs. The assumption of separability
imposes constraints on the emulator and may negatively affect its performance in
some applications where separability may not hold. We propose a multi-output
Gaussian process emulator with a nonseparable auto-covariance function to avoid
limitations of using separable emulators. In addition, to facilitate the computation
of nonseparable emulator, we introduce a new computational method, referred to as
the Full-Scale approximation method with block modulating function (FSA-Block)
approach. The FSA-Block approach is very flexible and can apply to partially sep-
arable covariance models. We illustrate the effectiveness of our method through
simulation studies and compare it with emulator with separable covariances. We
also apply our method to a real computer code of the carbon capture system.
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1 Introduction

The computer model plays a crucial role in scientific research for studying
behaviors of complex systems through computer experiments. In the context
of Uncertainty Quantification (UQ), a key question of interest is to examine
how computer model outputs change with different configurations of input
parameters controlling physical variables, initial or boundary conditions, and
so on. Although a computer model with a fine resolution is desired since it often
produces more accurate simulations, it can be computationally prohibitive to
produce a large number of fine resolution simulation runs at different input
values, especially for computer models with high resolutions. This motivates
the use of computationally inexpensive surrogate models to facilitate learning
of response surface.

Gaussian process models were first used in [1] and [2] for building surrogate
models for computer experiments. [3] later applied Gaussian process emula-
tors for uncertainty quantification under the Bayesian framework. Covariance
function is a key ingredient in such models since it determines the dependence
structure of the Gaussian process. In the context of Gaussian process emula-
tors, the most widely accepted auto-covariance function is usually stationary
and separable in each input dimension; the cross-covariance among outputs
is also assumed to be separable for mathematical tractability. For example,
[4] proposed a stationary multi-output Gaussian process emulator based on
separable cross-covariance. Also based on separable cross-covariance, [5] gen-
eralized the work in [6] to a Bayesian Treed Multivariate Gaussian process
model, accounting for both the nonstationarity and the multivariate features
of the data.

The assumption of separability allows fitting Gaussian process model in each
input dimension separately. The separability structure of covariance function
can alleviate the computational demand because it reduces the dimension of
the covariance matrices that need to be inverted. One such example is in
[7], where they introduced a multi-output separable Gaussian process model
assuming the auto-covariance function of each output is separable in input,
space and time. Then by making use of the properties of Kronecker prod-
uct, the inverse of the covariance matrix of one output can be decomposed
into the Kronecker product of inverses of an input covariance, a purely spa-
tial covariance, and a purely temporal covariance, all of which typically have
reduced dimensions so that data likelihood can be evaluated efficiently. Al-
though the separable auto-covariance model has the aforementioned merits,
it suffers from several limitations. First, it is lack of flexibility to allow for
interactions between different types of correlations. [8] pointed out that if a
stationary spatio-temporal covariance function is separable, then the tempo-
ral dependence structure can not vary spatially and the spatial dependence
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structure can not vary temporally. However, in spatio-temporal statistics, the
space-time interaction effect is often of particular interest. Such a limitation is
also encountered by the separable emulator; the dependence structure of one
input dimension is not allowed to change with other input dimensions. Second,
the separable covariance function also has implications on conditional inde-
pendence of outputs [9]. For instance, given a stationary bivariate Gaussian
process f(·, ·) with a separable covariance function, it can be shown that f(ξ, t)
and f(ξ′, t′) are independent given f(ξ, t′). A more comprehensive discussion
of separable model can be found in [10].

Since the separable covariance may be restrictive in some cases, it is often de-
sirable to consider a more general class of nonseparable auto-covariance model-
s. In spatio-temporal statistics, much work have been done to construct flexible
classes of nonseparable auto-covariance functions in space and time [8,11,12].
Typically the nonseparable space-time model has a parameter β ∈ [0, 1], re-
ferred to as the spatio-temporal interaction parameter, and the model reduces
to be separable when β = 0. More sophisticated nonseparable covariance mod-
el of three or higher input dimensions can be constructed following the work
by [13], where they extended methods in [11] to propose a nonseparable cross-
covariance model for multivariate random fields. Motivated by these work in
spatial statistics, we develop a flexible class of nonseparable auto-covariances
for uncertainty quantification of computer models.

For computations, it is well known that the Gaussian process model scales
badly with sample size n, requiring O(n3) order of computations. Therefore
without assuming any structures of the covariance function, e.g. the separa-
bility, the computations for the emulator with nonseparable auto-covariance
models can be prohibitive when n is large. To overcome the computation-
al bottleneck, we introduced the Full-Scale approximation (FSA) approach
to reduce computations [14,15], which applies to both separable and non-
separable covariance structure. The FSA approach combines the ideas of the
Gaussian predictive process [16] and covariance tapering [17] to provide a sat-
isfactory approximation of the original covariance, under both large and small
dependence scales of the data. Its computational complexity is linear with n,
reducing the computations significantly.

The major contributions of this paper have two folds: first we propose to use
flexible classes of nonseparable auto-covariance functions for each computer
output to model the interaction effect among input, space and time. Second,
we introduce the FSA approach to provide efficient computations for nonsepa-
rable Gaussian process emulator. Since the FSA approach applies to any given
covariance structure of a computer model output, it can also be combined with
separable model to further reduce computational cost in the case when cer-
tain input dimensions have large sample sizes for simulation accuracy. In this
paper, we illustrate our method assuming a stationary covariance function for
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each computer model output. We remark that our computational approach
directly applies to nonstationary covariance functions as well.

The rest of this paper is organized as follows: in Section 2, we describe the
multi-output Gaussian process model for computer code outputs; the discus-
sions of nonseparable auto-covariance functions and the FSA approach are
also given in Section 2. In Section 3, we describe Bayesian inference of model
parameters and prediction. In Section 4, we compare the proposed nonsep-
arable model with separable models through some simulation examples. In
Section 5, we use our proposed method to analyze the computer code outputs
of the regenerator device of a carbon capture unit. The potential extensions
and some concluding remarks are given in Section 6.

2 Methodology

We consider a physical problem with input domain Xξ ⊂ Rkξ , spatial domain
Xs ⊂ Rks and temporal domain in an interval Xt = [0, T ], where kξ, ks are the
dimensions of the input and spatial domain. The input domain Xξ is usually
assumed to bounded and can thus be considered as a compact subset of Rkξ

while the spatial domain Xs and time domain Xt are often assumed to be
intervals on Rks × R+.

In computer simulations, spatial and temporal domain are often fixed while
simulations are run at a set of samples from the input domain. Therefore, we
can represent the whole domain as a tensor product of the input, spatial, and
temporal domain. For an input parameter ξ ∈ Xξ, the computer simulation
returns the (multi-output) response on a given (a priori known) set of ns
spatial points (s1, . . . , sns)

T and nt time steps (t1, . . . , tnt)
T . A single choice

from the input domain ξ generates a multi-output response data which can
be represented as a (nsnt) × q matrix, where q is the number of the output
variables of a computer simulation.

Let n = nξnsnt denote for the total sample size. We define xi = (ξi, si, ti),
denoting for an input, space and time point for i = 1, · · · , n. For modeling rea-
sons we represent the output as a q multivariate response f(xi) = f(ξi, si, ti) ∈
Rq. For simplicity, we call the input domain, spatial domain, and temporal do-
main as input, space, and time respectively throughout this paper. And we
will collectively denote input of f(·) by x = (ξ, s, t) and the domain of x by
X = (x1, · · · ,xn).
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2.1 Multivariate Gaussian process regression model

We model f(x) as a q-dimensional Gaussian process:

f(·)|B,θ = Nq(µ(·;B),Γ(·, ·;θ)), (1)

where µ(·;B) is the mean function and Γ(·, ·;θ) is the covariance function of
the q-dimensional Gaussian process f(x). A typical choice of the mean function
µ(·;B) is the linear regression model: µ(x) = hT (x)B, where h(x) is formed
by m basis functions evaluated at x and B is a m × q unknown regression
coefficients matrix. For covariance function Γ(·, ·;θ), if the cross-covariance
is separable [18], then Γ(·, ·;θ) = ρ(·, ·;θ)Σ, where Σ is the covariance ma-
trix that models the cross-dependence structure of q distinct components of
f(·), and ρ(·, ·;θ) is the auto-correlation of each component. In this work we
will assume the cross-covariance among multivariate components and auto-
correlation within each component are separable for simplicity. More general
nonseparable cross-covariance models can be constructed following the work
in [19].

Let Y = (fT (x1), f
T (x2), · · · , fT (xn))T be the n × q computer model output

matrix, H = (h(x1), . . . ,h(xn))T ∈ Rn×m be the design matrix, and R =
[ρ(xi,xj)]i,j=1:n ∈ Rn×n be the correlation matrix at a given set of n points
X . The data likelihood function is given by the following matrix normal
distribution

Y |B,Σ,θ∼Nn×q(HB,R,Σ), (2)

∝ |R|−q/2|Σ|−n/2 exp
(
−1

2
tr
(
Σ−1(Y −HB)TR−1(Y −HB)

))
.

To evaluate the above likelihood function, we need to compute the determinant
and inverse of the n × n matrix R. When n is very large, the computation
burden can often lead to failures in calculating these quantities. In Section
2.3, we will introduce a covariance approximation method to facilitate the
computations for likelihood evaluations.

Squared exponential kernel function is one classical choice of the separable
auto-correlation function ρ(·, ·),

ρ(x,x′) = exp

− kξ∑
i=1

(ξi − ξ′i)2

φ2
i

−
ks∑
j=1

(sj − s′j)2

c2j
− (t− t′)2

a2

 ,
where φi, ci and a are dependence range parameters of input, space and time
respectively. Since ρ(xi,xj) = ρξ(ξi, ξj)ρs(si, sj)ρt(ti, tj), it assumes the sepa-
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rability in input, space and time. When computer model outputs are generated
on a nξ × ns × nt regular grid of input,space and time and data are ordered
properly, we have R = Rξ ⊗ Rs ⊗ Rt, where Rξ = [ρξ(ξi, ξj)]i,j=1,...,nξ , Rs =

[ρs(si, sj)]i,j=1,...,ns , Rt = [ρt(ti, tj)]i,j=1,...,nt . Since R−1 = R−1ξ ⊗R−1s ⊗R−1t and
|R| = |Rξ|nsnt|Rs|nξnt|Rt|nξns , the computations of evaluating the likelihood
can be greatly reduced when n is very large.

Although the computer model is deterministic, a small variance term τ 2δx=x′

is usually added to ρ(x,x′;θ) for numerical stability, where δ is the Kronecker
delta function. This small variance term is also referred to as the “nugget”
effect in spatial statistics, accounting for the measurement error. We incorpo-
rate the nugget effect parameter τ 2 in θ throughout the paper for simplicity.
For auto-correlation model that is separable in input, space and time, three
nugget terms τ 2ξ δξi=ξj , τ

2
s δsi=sj , and τ 2t δti=tj are added to ρξ(·, ·), ρs(·, ·), and

ρt(·, ·) respectively. Adding nuggets in this way can preserve the separability
so that fast computations can still be achieved.

2.2 Nonseparable auto-correlation models

Although the separable auto-correlation model is easy to construct and leads
to reduced computational costs, it may be too restrictive in some applications
due to its implications on the covariance dependence structures. Take a com-
puter model output f(·, ·) with two dimensional input parameters (ξ, t) as an
example, the separable covariance implies that

Corr((f(ξ, t), f(ξ′, t′))|f(ξ, t′)) = 0,

under the Gaussian process assumption [9,10]. This implication on conditional
correlation may be too restrictive in some applications. Besides, the separa-
bility structure also implies that

Corr(f(ξ, t), f(ξ, t′)) = ρt(t, t
′),

which means the correlation structure of dimension t can not vary over the
dimension ξ. [10] showed that process f(ξ, t) has a separable covariance func-

tion if and only if f(ξ, t) =
∞∑
i=1

∞∑
j=1

Zi,jf
(1)
i (ξ)f

(2)
j (t), where Zi,j are random

variables such that E(Zi,j) = 0 and E(Zi,jZi′,j′) = δi=i′δj=j′ , in which δ is the
Kronecker delta function. [10] also gives more comprehensive discussions of
the implications of separable covariance function for emulation.

Therefore, the nonseparable auto-covariance model may be preferred when
these implications are not true for the dataset. We propose to use the nonsep-
arable covariance functions [8,11,12] for the Gaussian process emulator, since
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they are more general and include separable covariance functions as special
cases. One example of nonseparable correlation functions in input and time is

ρ(x,x′) =

(
|v|2α

a
+ 1

)− kξ
2

exp

−
√∑kξ

i=1 |ui|2/φ2
i(

|v|2α
a

+ 1
)β/2

 , (3)

where ui = |ξi− ξ′i|, v = |t− t′|; a > 0 is dependence range parameter in time,
φi > 0 is dependence range parameter for ith input dimension, α ∈ (0, 1] is the
smoothness parameter and β ∈ [0, 1] is the input-time interaction parameter.
When β = 0, it reduces to the separable case. More sophisticated nonseparable
model in input, space and time can be constructed following the work in [13].
Following [13], a totally nonseparable correlation model in input, space and
time ρ(x,x′) is

ρ(h,u, v) =

(
a1

(
‖u‖2

(a4|v|α4 + 1)β4

)α1

+ 1

)−β1kξ/2
(a2|v|2α2 + 1)−β2ks/2

×(a3‖h‖2α3 + 1)−β3/2(a4|v|2α4 + 1)−β4ks/2 exp

− c1‖h‖2γ1(
a1
(

‖u‖2
(a4|v|2α4+1)β4

)α1

+ 1
)β1γ1


× exp

(
− c2‖u‖2γ2

(a2|v|2α2 + 1)β2γ2
− c3|v|2γ3

(a3‖h‖2α3 + 1)β3γ3

)
, (4)

where h = |ξ − ξ′|,u = |s − s′| and v = |t − t′|; ci > 0, γi ∈ (0, 1] for
i = 1, 2, 3 and aj > 0, αj ∈ (0, 1], βj ∈ [0, 1] for j = 1, . . . , 4. α1, . . . , α4 and
γ1, γ2, γ3 can be interpreted as smoothness parameters; a1, . . . , a4 and c1, c2, c3
are scale parameters; β1, . . . , β4 are interaction parameters, modeling the two-
way and three-way interactions among input, space and time. If we fix the
smoothness parameters γj = 0.5, j = 1, 2, 3, then it is more clearly to see that
βj’s determine the interaction effects. Although the model (4) is very flexible,
it involves too many unknown model parameters. In this paper, we will focus
on the nonseparable auto-correlation model between two components of input,
space and time, with similar form to (3).

2.3 FSA-Block approximation

Since the computations of R−1 and |R| in (2) become expensive or even in-
feasible when n is large, we need to employ some computational techniques to
overcome the computation bottleneck. There are several existing paradigms
to facilitate computations of the Gaussian process model, here we resort to
covariance matrix approximation technique which gains its popularity recent-
ly. Popular covariance approximation models include the Gaussian predictive
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process [16,20], the fixed rank kriging model [21], and the covariance tapering
[17,22], to name a few.

In this work we propose to use the Full-Scale Approximation with Block mod-
ulating function (FSA-Block) to speed up computations [14,15]. It consists of
a summation of a reduced rank covariance and a sparse covariance with the
block diagonal structure. This approach combines the merits of both reduced
rank and sparse covariances without adding much computational complexity.

In the following we will describe the FSA-Block approach for a Gaussian pro-
cess with zero mean, unit variance and a correlation function ρ(·, ·). The
FSA-Block approximation is motivated from the Karhunen-Loéve orthogo-
nal expansion (K-L expansion) of the Gaussian Process, which decomposes a
covariance function as:

ρ(x,x′) =
∞∑
i=1

λiψi(x)ψi(x
′), (5)

where λi are the eigenvalues of the process, ψi(x) are the corresponding or-
thonormal eigenfunctions; the eigenvalue-eigenfunction pairs are solutions to
the integral equation

∫
D ρ(x, t)ψi(t)dt = λiψi(x).

The leading terms in (5) are often assumed to capture the main feature of
the covariance and thus the residual terms are typically dropped from the
expansion to yield a reduced rank approximation of the covariance. Although
increasing rank can preserve more complete information about the fine scale
covariance pattern, computations become more expensive. Motivated from the
decomposition in (5), we give a more careful treatment of the covariance that
can preserve most information present in both the leading reduced rank terms
and the residual covariance yet still achieves computational efficiency.

Solving the integral equation for K-L expansion is typically a challenging task.
We use the Nyström discretization [23], a numerical method for solving inte-
gral equations, to approximate the reduced rank part of the K-L decomposi-
tion. Consider a set of knots X ∗ = {x∗1, . . . ,x∗n∗}. Let R∗∗ denote the n∗ × n∗
correlation matrix whose (i, j) entry is ρ(x∗i ,x

∗
j). Let {u(n∗)

i } and {λ(n
∗)

i } be
the eigenvectors and the eigenvalues for the correlation matrix R∗∗. The Nys-
tröm approximation of the leading n∗ eigenfunctions and eigenvalues for the
correlation kernel ρ(x,x′) are

ψi(x) ≈
√
n∗

λ
(n∗)
i

ρ(x,X ∗)u
(n∗)
i , λi ≈

λ
(n∗)
i

n∗
, for i = 1, · · · , n∗.

It can be further proved that the Nyström approximation method leads to a
reduced rank correlation
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ρpp(x,x
′) = ρ(x,X ∗)R−1∗∗ ρ

T (x′,X ∗),

where ρ(x,X ∗) = [ρ(x,x′)]x′∈X ∗ . Using the reduced rank model derived from
the Nyström approximated correlation, ρ(x,x′)−ρpp(x,x′) remains to be pos-
itive semi-definite following the Schur complement property in linear algebra.
We approximate it by multiplying the residual correlation with a modulating
function K(x,x′), that is, ρε(·, ·) = (ρ(·, ·) − ρpp(·, ·))K(·, ·). The modulating
function has to be chosen to ensure ρε(x,x

′) is positive semi-definite. We also
assume it has the property of having zero entries for a large proportion of
possible location pairs (x,x′) so that ρε(·, ·) evaluated on X is a sparse ma-
trix. One specific choice of K(·, ·) is the block modulating function. Given a
partition of observed locations ∪Ki=1Bi = {x1, . . . ,xn} = X , it is defined as

Kblock(x,x′) =

 1 if x,x′ ∈ Bi, i = 1, . . . , K;

0 Otherwise.

If observations are grouped together within each Bi, the ρε(·, ·) on X yields
a block-diagonal matrix whose inverse can be computed easily.

The FSA-Block method approximates the parent correlation function ρ by the
sum of ρpp(·, ·) and an approximated residual correlation function ρε(·, ·):

ρ†(x,x′) = ρpp(x,x
′) + ρε(x,x

′),

which is still a valid correlation function. Under this correlation approxima-
tion, R is approximated by R† = Rnn∗R

−1
∗∗ R

T
nn∗+Rε, where Rnn∗ = ρ(X ,X ∗)

and Rε = ρε(X ,X ). The Sherman-Woodbury-Morrison inversion formula
yields

R†−1 =R−1ε −R−1ε Rnn∗(R
T
nn∗R

−1
ε Rnn∗ +R∗∗)

−1RT
nn∗R

−1
ε . (6)

Thus R†−1 involves the calculations of inverses of a block diagonal matrix Rε

and a n∗ × n∗ matrix RT
nn∗R

−1
ε Rnn∗ + R∗∗. If we choose n∗ and block size to

be small, the computations of R−1 using R†−1 can be greatly reduced. Indeed,
the computational complexity of calculating R†−1 is O(nn∗2 + nn2

B), where
nB is the average block size. The determinant of R† can also be computed
efficiently using Sylvester’s determinant theorem

|R†| = |Rε||R∗∗|−1|R∗∗ +RT
nn∗R

−1
ε Rnn∗|. (7)

So instead of computing the determinant of a big n× n matrix, we only need
to compute the determinants of a n∗×n∗ matrix and a block-diagonal matrix.

9



As described above, fast computations can be achieved using the FSA-Block
approach. The correlation function of the FSA-Block approach is

ρ†(x,x′) =

 ρ(x,x′) if x,x′ ∈ Bi, i = 1, . . . , K;

ρpp(x,x
′) otherwise.

Therefore, the correlation within blocks are preserved exactly and the corre-
lation across blocks are approximated by that of the predictive process part.
Since the FSA-Block approach provides a general way of approximating any
given covariance functions without further restrictions on the parent covari-
ance structures, it also applies to the separable auto-covariance model in which
computations in certain dimensions are infeasible due to large sample sizes
in those dimensions. For example, if learning the response on a highly fine-
resolution spatial grid is desirable in certain studies, the FSA-Block approach
can be applied only to a spatial correlation function to facilitate computations.

3 Bayesian inference of model parameters and prediction

3.1 Prior specifications

For the multivariate Gaussian process regression model, the unknown param-
eter set is {B,Σ,θ}. We assume the prior distributions of {B,Σ} and θ are
independent, namely π(B,Σ,θ) = π(B,Σ)π(θ). For π(B,Σ), we assign a non-
informative conjugate prior

π(B,Σ) ∝ |Σ|−
q+1
2 . (8)

The prior specification of π(θ) depends on the specific form of the covari-
ance function. Customarily, the inverse-gamma prior can be assigned on the
nugget τ 2; the input (spatial/temporal) range parameter can be assigned with
a reasonably informative prior, e.g. an uniform prior with its support specified
according to the belief of the practical input (spatial/temporal) dependence
range of the computer model outputs; for the smoothness parameter, a uni-
form prior with a reasonable support reflecting prior information about the
smoothness of the process can be assigned.

If a model parameter has a closed-form full conditional distribution, we draw
its posterior samples using the Gibbs sampler; otherwise we draw its posteri-
or samples using the Metropolis-Hasting (M-H) algorithm [24]. A log-normal
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distribution or a truncated normal distribution centered at the current value
can be used as the proposal distribution in the M-H algorithms.

3.2 Posterior distributions of model parameters

By using the conjugate prior in (8), it is easy to see the posterior conditional
distributions of B and Σ have the following closed-forms:

B|Y,Σ,θ ∼ Nm×q(B̂gls, (H
TR−1H)−1,Σ), (9)

Σ|Y,B,θ ∼ IW(n, (Y −HB)TR−1(Y −HB)), (10)

where Nm×q stands for the matrix-normal distribution, IW stands for the

Inverse Wishart distribution, and B̂gls is the generalized least squares estima-

tor of B, i.e., B̂gls = (HTR−1H)−1HTR−1Y . We can integrate out B or Σ in
(9) and (10) respectively to improve the mixing of posterior samples [4,25].
Specifically, by integrating out Σ, we obtain

B|Y,θ ∼ Tm×q(B̂gls, (H
TR−1H)−1/ν, (Y TR−1Y − B̂T

gls(H
TR−1H)B̂gls), ν),

where T stands for a matrix-t distribution with degrees of freedom n−m−q+1;
similarly by integrating out B,

Σ|Y,θ ∼ IW(n−m,Y TR−1Y − B̂T
gls(H

TR−1H)B̂gls).

Since p(θ|Y ) does not have a closed-form, we need the Metropolis-Hasting
algorithm to obtain posterior samples of θ. By integrating out B and Σ

p(θ|Y ) ∝ π(θ)|R|−
q
2 |HTR−1H|−

q
2 |(Y −HB̂gls)

TR−1(Y −HB̂gls)|−
n−m

2 ,

(11)

When sample size n is large, we can replace R in (9), (10), and (11) with the
FSA-Block approximated correlation matrix R† introduced in Section 2.3, and
then apply the inversion formula (6) to efficiently calculate the inverse of R†.

3.3 Prediction

The Bayesian predictive distribution provides a natural measure on the func-
tion space of surrogate models. At a new point xp, the predictive distribution
has its mean
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E(f(xp)|B,θ, Y ) = hT (xp)B +Rp,nR
−1(Y −HB) (12)

and variance

Var(f(xp)|B,Σ,θ, Y ) = (1−Rp,nR
−1RT

p,n)⊗ Σ, (13)

where Rp,n = [ρ(xp,x)]x∈X is the 1×n correlation vector. When n is too large
so that R−1 is computationally prohibitive, we can again apply the FSA-Block
approximation method to approximating R with R† whose inversion can be
done efficiently using (6).

In uncertainty quantification, the mean response surface of each output aver-
aged over input space as well as its corresponding error bar are of key interest.
We can obtain a sample of the mean response of the ith output by integrating
out the input parameters ξ in xp in (12),

M i
p = h̄TpBi + R̄pR

−1(Yi −HBi), (14)

where Yi = (fi(x1), . . . , fi(xn))T , Bi = (B1i, . . . , Bmi)
T , h̄p =

∫
h(xp)p(ξ)dξ,

R̄p =
∫
Rp,np(ξ)dξ, and p(ξ) is the joint density of input variables. The co-

variance of M i
p is

V i
p =

∫
E(fi(xp)|Bi,θ, Yi)E(fi(xp)|Bi,θ, Yi)

Tp(ξ)dξ −M i
pM

iT
p . (15)

When the above integrations don’t have close-forms, the Monte Carlo method
on a dense grid of the input space can be used to approximate them.

4 Numerical results

4.1 2-input and 1-output example

We use a simulation example to show that the nonseparable covariance model
can outperform the separable model in some cases. We consider the following
function to generate output data,

f(x1, x2) = x1 exp
(
−
√
x21 + x22

)
,

where the inputs x1, x2 ∈ [−6, 6]. In this case f(x1, x2) 6= f1(x1)f2(x2), and
hence the separable covariance model may not be adequate according to the
theory in [10].
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We then use a Gaussian process model (1) with constant means as a surrogate
to fit the simulated function values. We consider the following nonseparable
covariance model [11],

C(f(x1, x2), f(x′1, x
′
2)) =

σ2(
v2α

a
+ 1

) exp

− u2

c
(
v2α

a
+ 1

)β
 , (16)

where u = |x1− x′1| and v = |x2− x′2|. We also consider two separable models
for comparisons; (a). the covariance model as in (16) but with the interaction
parameter β = 0 (denoted by “Sep”), and (b). the commonly used squared ex-
ponential covariance model (denoted by “Sqexp”). A fixed small nugget effect
τ 2 = 10−6 was added to the covariance function for numerical stability. We
experimented with different sample sizes n for the training set. We also fixed
a prediction set and evaluate the mean squared prediction errors (MSPE) to
compare the prediction performance of different covariance models. Specifical-
ly, the training sets were n = 200, 500 function values evaluated at locations
selected by Latin Hypercube Sampling (LHS). The prediction set was fixed to
be 100 function values evaluated at hold-out locations selected by LHS. Uni-
form priors with a reasonable support were assigned to the dependence range
parameters a and c; the uniform prior on [0, 1] was assigned to the smoothness
parameter α and interaction parameter β in (16). We collected 6000 posterior
samples after a burn-in period of 1000 iterations. Then the posterior means
of model parameters were plugged in (12) to obtain prediction results. The
parameter estimation and prediction results are summarized in Table 1.

Table 1
Posterior means and MSPEs.

a c α β B0 σ2 MSPE

n = 200 Nonsep 3.728 4.633 1.000 0.641 −0.001 0.0061 1.67 · 10−5

Sep 2.978 3.711 1.000 0 −6.59 · 10−5 0.0053 3.67 · 10−5

Sqexp 1.105 1.984 − − −4.28 · 10−4 0.0033 3.88 · 10−5

n = 500 Nonsep 2.693 2.314 0.990 0.721 2.30 · 10−4 0.0039 4.28 · 10−7

Sep 2.246 1.987 0.979 0 3.28 · 10−5 0.0033 1.57 · 10−6

Sqexp 0.933 1.016 − − 3.31 · 10−5 0.0023 9.58 · 10−6

First we observed that in both experimental cases, the posterior mean esti-
mates of β of the nonseparable model are far from zero, indicating the existence
of the interaction effect. Also for both cases, the nonseparable model outper-
forms the separable models in terms of the prediction. For relatively large
sample size n = 500, the estimation of β becomes more accurate (posterior
variance reduces from 0.021 to 0.008) and the prediction results of the nonsep-
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arable model are obviously better than those of the two separable covariance
models.

4.2 Krainchnan-Orszag three-mode problem

In this example, we consider the system of ordinary differential equations with
respect to t as in [26],

dy1
dt

= y1y3,

dy2
dt

= −y2y3,

dy3
dt

= −y21 + y22,

subject to stochastic initial conditions y1(0) = 1, y2(0) = 0.1ξ1, y3(0) = ξ2,
where ξi ∼ U(−1, 1), i = 1, 2. This problem has 2 input variables and 3 out-
puts. It is of interest because the response has a discontinuity line at ξ1 = 0,
inducing a nonstationary response surface in input space. Here we applied
the stationary nonseparable covariance model to this problem with a rela-
tively large sample size n to obtain reasonable prediction results. However
the Bayesian inference is computationally intensive due to large sample size,
hence the FSA-Block approach was applied to the nonseparable model for
computational efficiency.

The training set was obtained at 600 input points selected by Latin Hypercube
Sampling on a time grid T = 1, 2, . . . , 10. We considered the validation set of
a 31 × 31 input grid on time points 11 and 12, which allows us to assess
prediction performance in both input and time scenario. The multivariate
Gaussian process model in (1) with constant means were used to fit for each
output yi(t), i = 1, 2, 3. The nonseparable auto-correlation function considered
was the model in (3) with kξ = 2, and the same two separable models as
in the previous simulation study were used for comparison purpose. A fixed
nugget τ 2 = 10−6 was added to the covariance model to improve numerical
stability. When implementing the nonseparable model, we applied the FSA-
Block approach with 20 input knots selected by LHS at each time grid point (in
total 200 knots) and 30 blocks created by K-means clustering algorithm. The
prior specifications of model parameters were similar to those in the previous
example. After a burn-in period of 1000 iterations, we collected 6000 posterior
samples for inference. The posterior means of model parameters were plugged
in (12) to obtain the predictive response surface.

Table 2 shows the parameter estimations and prediction results of the three
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Table 2
Posterior means of model parameters and MSPEs. MSPE results for each output
are displayed as the format of (y1(t), y2(t), y3(t))

nξ = 600 Nonsep Sep Sqexp

a 3.306 1.315 1.265

c1 5.748 6.540 4.608

c2 21.648 22.796 16.351

α 0.999 0.999 −

β 0.996 0 −

B10 0.478 0.461 0.474

B20 −0.106 0.002 −0.006

B30 −0.044 −0.209 −0.197

Σ11 0.296 0.505 0.312

Σ12 0.007 −0.001 0.0003

Σ13 −0.017 −0.047 −0.033

Σ22 1.257 1.187 0.768

Σ23 0.108 0.114 0.072

Σ33 1.567 1.729 1.107

MSPEsp&t (0.078, 0.233, 0.610) (0.090, 0.247, 0.674) (0.092, 0.290, 0.594)

covariance models. The posterior mean of β by the nonseparable model is
very close to 1, suggesting that modeling the interaction between input and
time may be beneficial. The separable model (3) with β = 0 produced pa-
rameter estimates close to those from the nonseparable model, except for a
much smaller estimate of the time dependence parameter. In terms of the pre-
diction, the nonseparable model obviously outperforms the separable models
for y1(t), y2(t), with slightly inferior performance to the squared exponential
model for y3(t).

We then checked the predictive input surface of each output by the nonsep-
arable model at selected time points, and the results are shown in Figure 1,
Figure 2 and Figure 3, respectively. We randomly chose the results at time
points 5 and 10 for illustrations. For y1(t) and y2(t), the predictive input sur-
faces by the nonseparable model are very close to the true response surfaces in
general, but the prediction errors are high around ξ1 = 0 for y3(t) at time point
10. Figure 4 shows the MSPE surfaces of 3 outputs in input space by averag-
ing MSPEs over time, and it is more clear that the prediction errors of y3(t)
peaked at ξ1 = 0. Recall that here the computer model outputs have a dis-
continuous point at ξ1 = 0. Therefore, the stationary covariance function may
not be adequate to model this nonstationary feature. In order to have better
prediction results, we need more observations sampled around ξ1 = 0 for the
stationary covariance models or consider a nonstationary covariance model.
We also checked the predictive input surfaces of 3 outputs by the 2 separable
models, and the results are similar to the nonseparable model results.
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Fig. 1. Predictive surface of input space of y1 at time points 5 and 10 using the
nonseparable model.
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Fig. 2. Predictive surface of input space of y2 at time points 5 and 10 using the
nonseparable model.

The predictive mean time curve is also of crucial interest, which shows the
shape of the mean response curve averaged over input space. We obtained
the predictive mean response curve of t for each output over 100 LHS selected
input points. Then predictions were done at 50 equidistant time steps in [0, 10]
and it was repeated for 100 times to obtain the error bars of the predictive
mean time curve. To calculate the mean of a sampled response curve, we used
the method in (14). The results of computer code outputs at integer time grid
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Fig. 3. Predictive surface of input space of y3 at time points 5 and 10 using the
nonseparable model.

Fig. 4. The MSPEs averaged over time by the nonseparable model.

were used as baselines. Figure 5 shows the predictive mean curves for y1(t)
and y3(t) as a function of time, as well as their corresponding 95% confidence
intervals using the nonseparable model. We can see that the error bars of the
predictive mean curves are tight and can cover the true means of the computer
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code outputs, indicating the effectiveness of the nonseparable model.
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Fig. 5. The predictive mean curve in time by the nonseparable model. The blue
line is the predictive mean curve of time; the dash lines are corresponding 95%
confidence intervals; the red dots are the means of the computer code outputs.

4.3 Flow through porous media example

We use this example to show the effectiveness of our method in modeling
large computer code outputs. The proposed Gaussian process surrogate model
was applied to a petroleum reservoir simulation of a much larger data size.
The object is a two-dimensional, single phase, steady flow through a random
permeability field. The spatial domain Xs = [0, 1]2, representing an idealized
oil reservoir. The pressure p and the velocity fields of the flow u are of key
interests and they are connected via Darcy law: u = −K∇p in Xs, where K
is the permeability tensor. The pressure p satisfies −∇ · (K∇p) = f in Xs,
where f may be used to model the injection/production wells. One specific
choice of f is

f(s) =


−r, if|si − w/2| < w/2, for i = 1, 2,

r, if|si − 1 + w/2| < w/2, for i = 1, 2,

0, otherwise.
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There are two wells at the lower-left and upper-right corners of the spatial
domain, with r and w specifying well rates and well sizes respectively (r =
10 and w=1/8 in this case). After specifying the permeability tensor K and
imposing certain boundary conditions, the pressure p and the velocities u can
be solved numerically.

Specifically, K is assumed to be isotropic Kij = Kδij and modeled by a log-
Gaussian process: K(s) = exp(G(s)), where δ is the Kronecker delta function
and G(·) ∼ GP(mG, CG(·, ·)). The covariance function CG(·, ·) is the separa-
ble exponential covariance. The truncated Karhunen-Loève expansion on G(·)
gives its finite dimension representation

K(ξ; s) = exp

(
mG +

p∑
k=1

wkψk(s)

)
,

where wk are uncorrelated standard Gaussian random variables and ψk(s) are
eigenfunctions of the exponential covariance function CG(·, ·). Then uniform
variables ξk = Φ(wk) ∼ U([0, 1]) are treated as input variables. More details
of this example can be found in [7]. In this example, we truncate G(·) after
p = 50 terms.

The training set is on a 24 × 32× 32 input-spatial grid, so the total training
data has 24576× 3 observations. The nonseparable model considered here is

ρ(x,x′) =
(
|du|2α + 1

)−1
exp

−
√
|h1|2/c21 + |h2|2/c22
(|du|2α + 1)β/2

 , (17)

where du =

√
kξ∑
i=1

u2i
φ2i
, ui = |ξi − ξ′i|, hj = |sj − s′j| for i = 1, . . . , kξ and j = 1, 2.

A small nugget effect τ 2 = 10−6 was fixed during the parameter estimation
step. We applied the FSA-Block approach with 200 knots selected by LHS
and 100 blocks created by K-means algorithm to the nonseparable model,
making computations of model implementation feasible. After the parameter
estimation step, the posterior means of model parameters were plugged in (12)
to make predictions at a finer 100× 64× 64 input-spatial grid. We considered
the separable model in (17) with β = 0 and the squared exponential model
for comparisons. Although this problem has a high-dimensional input space
(50 input variables), we experimented using the first kξ = 3 input variables
(corresponding to first 3 leading terms in the K-L expansion of G(·)). We also
experimented using a larger number of input variables (kξ = 5), but there are
only slight differences for the prediction performances. So we focused on the
smaller dimension kξ = 3 case.

Table 3 gives the parameter estimation results of different models as well as
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MSPEs. For the nonseparable model, the posterior mean estimates of β is close
to 1, implying modeling the interaction effect may be beneficial. Figure 6 shows
the predictive mean response surfaces in spatial domain by the nonseparable
model, using the first 3 input variables. We can see the spatial patterns of
the predictive mean response surfaces are very similar to the Monte Carlo
estimates using the computer model outputs, which can be viewed as the true
values. Figure 7 gives the error bars of the predictive response surfaces in
spatial domain.

Table 3
Posterior means of model parameters and prediction results of each output compo-
nent.

nξ = 24 Nonsep Sep (τ2 = 0.01) Sqexp (τ2 = 0.01)

φ1 5.564 9.689 25.722

φ2 95.443 11.111 34.041

φ3 142.046 47.540 76.473

c1 1.265 0.686 0.724

c2 1.258 0.222 0.420

α 0.083 0.0938 −

β 0.999 0 −

B10 −0.478 0.1038 −0.177

B20 −0.550 −0.0033 −0.498

B30 −0.026 0.0002 0.003

Σ11 0.0086 0.0099 10.758

Σ12 0.0015 0.0016 2.946

Σ13 2.8× 10−5 2.9× 10−5 0.0164

Σ22 0.0084 0.0036 8.491

Σ23 3.9× 10−5 2.6× 10−5 0.056

Σ33 0.0001 0.0001 0.139

MSPEsp (0.0035, 0.0036, 0.1030) (0.0029, 0.0028, 0.1030) (0.0033, 0.0035, 0.1030)

For the separable models, we also used kξ = 3 in order to do fair comparisons
with the nonseparable model. When we fixed a small nugget τ 2 = 10−6 for the
input and spatial covariance parts, the estimates of parameters of the two sep-
arable models had relatively large variances, due to the numerical instability.
Especially for the squared exponential model assuming infinite smoothness in
input space, it yielded estimates of mean parameters with very large variances
(over 106) and can not obtain reasonable prediction results. Then we increased
τ 2 = 0.01 suggested in [7] for these separable models and the results are shown
in Table 3. The prediction results of the separable model with β = 0 are bet-
ter than those of the nonseparable model, this may be because a covariance
function separable in input and space was used in the log-normal process to
model the permeability field K, which might lead to certain level of separa-
bility in input and space for the outputs. Besides, the usage of full correlation
model without any approximations for the separable model may also attribute
to better prediction results. However, we remark that although the squared
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Fig. 6. Predictive mean surfaces by the nonseparable model versus the Monte Carlo
estimates based on 24 input points. Upper panels: velocity in y-direction uy; middle
panels: velocity in x-direction ux; lower panels: pressure p.

exponential separable model produced reasonable prediction results, the esti-
mates of variance are in general fairly large compared with the data scales.
In contrast, the nonseparable model with the FSA-Block approximation does
not suffer much with the numerical stability problem, this may be because the
correlations cross data blocks are approximated well by that of the predictive
process of reduced rank.

5 The regenerator of a carbon capture unit

In this Section, we applied the nonseparable Gaussian process surrogate model
to a real example from the regenerator of a carbon capture unit. A carbon
capture unit provides an alternative solution for limiting the carbon dioxide
(CO2) emissions. All carbon capture units contain an absorber device and a
regenerator device. The solid sorbent particles capable of reacting with the
CO2 gas are looped through these two devices. In the absorber, the exhaust

21



Predictive standard deviation of y(1)

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(a) Error bar of uy

Predictive standard deviation of y(2)

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0.02

0.04

0.06

0.08

(b) Error bar of ux

Predictive standard deviation of y(3)

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0.005

0.01

0.015

0.02

0.025

(c) Error bar of the pressure p

Fig. 7. Predictive standard deviations by the nonseparable model.

flue gas from a power plant reacts with the solid sorbent particles and its CO2

component is trapped. Then after further processing steps, the cleaned exhaust
flue gas is released into the atmosphere and the depleted sorbent particles
are transferred to the regenerator. In the regenerator, the reverse chemical
reaction is done to release CO2 from the depleted sorbent particles for further
processing (i.e. liquefaction and sequestration for long-term storage) and the
regenerated sorbent particles are recycled back to the absorber. Since the bulk
of the energy penalty is related to the regenerator, its efficiency is of crucial
interests.

Recently, [27] developed a computational fluid dynamics (CFD)-based mod-
el for the fluid dynamics of the regenerator. The flow of sorbent particles is
characterized by the density of solid volume fraction, which is sensitive to the
system operating conditions such as the particle diameter dp (with unit micro
meters, µm) and the scaled velocity vg/umf of gas injected at the bottom inlet
(dimensionless; details see [28]), denoted by (dp, vg/umf ). Figure 8 shows the
solid volume fractions for 2 input points at a given time. It is clear that both
the value and the spatial pattern of the solid volume fractions can change
drastically for different input points. If the intermediate solid volume fraction
values in [0.2, 0.4] are more likely to result in better efficiency of the regener-
ator device, then the input point (150, 4.3) is superior to (350, 4) according to
figure 8, since it has a larger proportion of intermediate solid volume fractions.
Specifying the operation conditions in favor of a certain range of solid volume
fractions needs a number of computer simulations. The CFD-based simula-
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tions are very time-consuming, taking days to complete one simulation under
parallelled computing system. So it is challenging to run a large number of
simulations to study the behaviors of the sorbent distribution under different
operating conditions. Therefore, the Gaussian process model is used instead
as an effective tool for the uncertainty quantification purpose [5].

Spatial image at time 271 for input (150,4.3)
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Fig. 8. Images of the solid volume fractions at time 271 for 2 input points.

The computer model outputs are the solid volume fractions over a time peri-
od, ranging from 0 to 0.6083. We focused on solid volume fraction values in
(0.1, 0.6], since without much knowledge of the reaction kinetics, we expect
that the intermediate values are more likely to result in better performance of
the regenerator [5]. We focused on the discrete distribution of the solid vol-
ume fractions created using 5 equal length bins (0.1, 0.2], · · · , (0.5, 0.6], aiming
to check effects of the distribution of the solid volume fractions on the reac-
tion kinetics. Denote the response vector by f(ξ, t) = (π1, π2, · · · , π5)T , it was
treated as a function of 2 input variables (dp and vg/umf ), as well as time t.

The training data set was on a 46×101 input-time grid, and we randomly held
out 4 input points on the same time grid for evaluating model performances.
The Gaussian process regression model (1) with constant means was fitted to
this data and the nonseparable correlation function was the same as in the
Section 4.2. The FSA approach with 15 blocks and 300 knots were applied to
the full model to speed up computations. The results of the same two separable
models as in previous studies were again included for comparisons.

The parameter estimation and prediction results are summarized in Table 4.
The posterior mean estimate of the input-time interaction parameter β of the
nonseparable model is very close to 1, indicating the existence of the interac-
tion effect. The nonseparable model and the separable model (3) with β = 0
have close estimates of the smoothness parameter α, which is not surpris-
ing since it is related to the process properties in time dimension. Besides,
all three correlation models produced a large estimate of the range parame-
ter in dp dimension and a small estimate of the range parameter in vg/umf
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dimension, indicating that the computer code outputs are more sensitive to
the vg/umf variable. In terms of prediction, the nonseparable model with the

Table 4
Posterior means of model parameters and the overall MSPEs.

nξ ∗ nt = 4646 a c1 c2 α β B10 B20 B30 B40 B50

Nonsep 15.131 92.993 0.943 0.638 0.993 0.095 0.120 0.138 0.178 0.236

Sep 6.263 485.10 6.791 0.586 0 0.104 0.134 0.087 0.110 0.252

Sqexp 1.147 499.280 7.349 − − 0.105 0.136 0.086 0.106 0.257

Σ11 Σ12 Σ13 Σ14 Σ15 Σ22 Σ23 Σ24 Σ25 Σ33

Nonsep 0.0020 −0.0003 −0.0001 0.0048 −0.0054 0.0038 −0.0001 0.0199 −0.0224 0.0037

Sep 0.0088 −0.0037 −0.0010 −0.0002 0 0.0119 −0.0061 −0.0008 0.0001 0.0172

Sqexp 0.0209 −0.0081 −0.0022 −0.0009 −0.0001 0.0277 −0.0132 −0.0021 −0.0004 0.0392

Σ34 Σ35 Σ44 Σ45 Σ55 MSPE

Nonsep 0.0120 −0.0151 0.3009 −0.3310 0.3677 0.0011

Sep −0.0086 −0.0011 0.0233 −0.0140 0.0191 0.0017

Sqexp −0.0194 −0.0030 0.0615 −0.0401 0.0548 0.0018

FSA approximation approach outperforms the two separable models. Specif-
ically, the nonseparable model has the same prediction performance as the
separable models for π1, π2, π3, but it has smaller MSPEs (0.0022, 0.0013) for
π4 and π5, compared with (0.0032, 0.0033) by the separable model (3) with
β = 0 and (0.0034, 0.0036) by the squared exponential model. Figure 9 shows
the predictive probabilities by the nonseparable model and the real computer
code results, for the hold-out set of 4 input points. We can observe that the
predictive probabilities are close to the real data results in general. Figure 10
shows the predictive mean input surfaces of 5 probabilities by the nonsepa-
rable model, where the predictions were made on a dense 70 × 70 input grid
at time points t = 270, 271, . . . , 280. Based on these predictive mean surfaces
of the input space, particular input regions can be found to improve the effi-
ciency of the regenerator unit. For example, if the intermediate solid volume
fractions in (0.3, 0.4] would result in better efficiency of the regenerator unit,
then we may pay special attention to the high probability area of the predic-
tive mean surface of π3. So in this case, from figure 10, dp ∈ (150µm, 250µm)
and vg/umf ∈ (4, 8) would be good choices of operating conditions. Other
predictive mean surfaces of probabilities may also be useful for specifying the
values of input variables that can result in good efficiency of the regenerator.

6 Concluding remarks

In this paper, we extended the commonly used separable covariance Gaus-
sian process surrogate models by using a more flexible nonseparable auto-
covariance function, which includes separable model as a special case. The
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Fig. 9. The left panels are predictive distributions of solid volume fractions under
different combinations of dp and K = vg/umf ; the right panels are corresponding
computer code results.

nonseparable model has the advantage of not only modeling dependence with-
in each dimension in input, space and time but also interactions in dependence
among them. This model can relax the restrictions imposed by separable mod-
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Fig. 10. Predictive mean input surfaces of 5 probabilities by the nonseparable model.

els on the conditional and marginal properties of a Gaussian process [10], and
hence has broader applications especially in cases where the assumption of
separability is problematic.

We also introduced a new computational method, referred to as the full-
scale approximation with block modulating function approach (FSA-Block),
to achieve fast computations when applying the nonseparable model to large
computer code outputs. We illustrated the effectiveness of the nonseparable
model with the FSA-Block approach through various simulation examples and
a real data set from the computer code of the regenerator device of a carbon
capture system.

The FSA-Block approach introduced in this paper does not depend on the
separable structure of the covariance matrix and hence can be used flexibly in
various ways. For example, when the covariance function is partially separable
and there are lots of observations in certain nonseparable dimensions, we can
apply the FSA-Block approach only to the nonseparable part to facilitate
computations. Besides, for large computer code outputs, it can enjoy better
numerical stability than using the separable full covariance models, since the
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cross-correlations within each output are approximated by the results of the
predictive process part of reduced dimension. Although we focused on the
stationary auto-covariance functions in this paper, this computational method
can also apply to nonstationary covariance functions such as the nonstationary
model in [29], where spatial regions have different dependence structures.

In this paper, we considered a separable cross-covariance structure among dif-
ferent outputs. A nature extension is to build a totally nonseparable emulator
with both a nonseparable auto-covariance function and a nonseparable cross-
covariance. The Linear Model of Coregionalization (LMC) [30,31,19] and the
cross-covariance functions based on latent dimensions [13] may be applied to
relax the separable cross-covariance assumption. Investigations on new compu-
tational methods are also problems of interest to facilitate the more demanding
computational needs of the totally nonseparable model.
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