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Abstract

In leptonic flavour models with discrete flavour symmetries, couplings between flavons and leptons

can result in special flavour structures after they gain vacuum expectation values. At the same time,

they can also contribute to the other lepton-flavour-violating processes. We study the flavon-induced

LFV 3-body charged lepton decays and radiative decays and we take as example the A4 discrete

symmetry. In A4 models, a Z3 residual symmetry roughly holds in the charged lepton sector for the

realisation of tri-bimaximal mixing at leading order. The only processes allowed by this symmetry

are τ− → µ+e−e−, e+µ−µ−, and the other 3-body and all radiative decays are suppressed by small

Z3-breaking effects. These processes also depend on the representation the flavon is in, whether

pseudo-real (case i) or complex (case ii). We calculate the decay rates for all processes for each case

and derive their strong connection with lepton flavour mixing. In case i, sum rules for the branching

ratios of these processes are obtained, with typical examples Br(τ− → µ+e−e−) ≈ Br(τ− → e+µ−µ−)

and Br(τ− → e−γ) ≈ Br(τ− → µ−γ). In case ii, we observe that the mixing between two Z3-covariant

flavons plays an important role. All processes are suppressed by charged lepton masses and current

experimental constraints allow the electroweak scale and the flavon masses to be around hundreds of

GeV. Our discussion can be generalised in other flavour models with different flavour symmetries.
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1 Introduction

A series of solar [1], atmospheric [2], accelerator [3] and reactor [4] neutrino oscillation experiments have

proven that neutrinos have masses and mix. The mixing is described by the so-called Pontecorvo-Maki-

Nakagawa-Sakata (PMNS) matrix [5], which is parametrised by [6]

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23


1 0 0

0 eiα21/2 0

0 0 eiα31/2

 , (1)

in which cij ≡ cos θij and sij ≡ sin θij . The three mixing angles have been measured to a good accuracy.

Their current best-fit and ±1σ values from a global analysis of the available data [7] are given by

sin2 θ12 = 0.308+0.013
−0.012 , sin2 θ23 = 0.574+0.026

−0.144 (0.579+0.022
−0.029) , sin2 θ13 = 0.0217+0.0013

−0.0010 (0.0221+0.0010
−0.0010)(2)

for the normal (inverted) ordering of neutrino masses, m1 < m3 (m1 > m3). We notice that the

atmospheric angle θ23 and solar angle θ12 are rather large, with θ23 possibly being maximal, and the

reactor angle θ13 takes a value around 0.1, θ13 ∼ 9◦.

The origin of this distinct mixing structure remains unexplained. Discrete flavour symmetries have

been widely used to address these questions. It is assumed that at some high energy scale, there exists

an underlying discrete flavour symmetry, Gf, which unifies the three flavours together. The tetrahedral

group A4 [8], which is the smallest group containing 3-dimensional irreducible representations, is the

most famous example of this type. There are other commonly-used groups, such as S4 [9], A5 [10], ∆(48)

[11], and ∆(96) [12]. At a lower energy scale, the flavour symmetry is broken, leading to nontrivial flavour

mixing. Most models are built in the framework of the so-called “direct” or “semi-direct” approaches

[13]. In these cases, different residual symmetries, Gl and Gν , subgroups of Gf, are preserved in the
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charged lepton and neutrino sectors, respectively after the whole flavour symmetry Gf breaking. By

choosing different Gl and Gν , special flavour structures arise. In the direct approach, the mixing matrix

is fully determined by Gl and Gν up to Majorana phases and column or row permutations of the PMNS

matrix. In the semi-direct approach, Gl and Gν cannot fully determine flavour mixing and an accidental

symmetry is necessary. For instance, in models based on A4, the tri-bimaximal (TBM) mixing pattern

[14], which predicts s12 = 1/
√

3, s23 = 1/
√

2 and s13 = 0, can be realised in the semi-direct approach

[15, 16, 17]. The residual symmetries are chosen to be Gl = Z3 and Gν = Z2, while an additional

Z ′2 symmetry, not belonging to A4, arises accidentally in the neutrino sector. In models of S4, the

residual Z3, Z2, Z
′
2 all belong to S4, so TBM can be obtained in the direct approach [18, 19]. S4 can

predict another mixing pattern, the bimaximal mixing one (s12 = s23 = 1/
√

2, s13 = 0) [20] by choosing

Gl = Z4 [21]. Some other mixing patterns can be arranged using larger groups in the direct approach,

for instance, the golden-ratio mixing (s12 =
√

2/
√

5 +
√

5, s23 = 1/
√

2, s13 = 0) [22] predicted by

A5 [23, 24] and the Toorop-Feruglio-Hagedorn mixing (s12 = s23 =
√

2/
√

4 +
√

3, s13 = 1/(3 +
√

3))

predicted by ∆(96) [12]. It should be noted that the predicted values of θ13 in all these mixing patterns

is not in agreement with the data. This suggests that small corrections should be introduced and the

residual symmetries should be slightly broken.

A common approach to realise the breaking of Gf is to introduce flavons, new scalars that couple

to fermions and have non-trivial properties under the flavour symmetry. These scalars get vacuum

expectation values (VEVs), leading to the spontaneous breaking of the flavour symmetry and leaving

residual symmetries in the charged lepton and neutrino sectors, respectively. At least two flavon multi-

plets, one for charged leptons and the other for neutrinos, have to be introduced to guarantee different

residual symmetries in the two sectors. The well-known and simplest case is the realisation of TBM

in A4 models [15, 16, 17, 25]. In models with larger symmetry groups, more flavon multiplets may be

needed for model constructions [19, 21, 23, 11, 26].

The slight breaking of the residual symmetries can be provided by additional interactions of flavons.

The latter may be directly from higher-dimensional operators in the couplings between flavons and

leptons [13, 27]. In our recent paper [25], we observe that cross coupling between neutrino and charged

lepton flavons can shift the VEVs from their original Z3 and Z2 symmetric values. In the models based

on A4, we studied in detail the modification to the TBM flavour mixing pattern, in particular conserving

the origin of non-zero θ13 and Dirac-type CP violation.

The interactions of flavons and leptons, in addition to ensuring special Yukawa structures in the

lepton sector, may also contribute to other processes and in particular lead to lepton-flavour-violating

(LFV) processes. Most flavour models assume that the flavour symmetry is broken at a very high scale

such that these processes are too suppressed to be observed. However, the scale of flavour symmetry is

not known and could be much lower than commonly considered. An electroweak-scale flavour symmetry

has recently been discussed [28], see also [29]. For instance, some flavons are formed by multi-Higgs

(SU(2)L scalar doublets), their VEVs must be below the electroweak scale. If the scale and the flavon

masses are sufficiently low, there would be some testable signatures, especially in charged LFV decay

channels. Measuring these processes would provide important clues to identify the origins of leptonic

flavour mixing.

The LFV decays of charged leptons induced by flavons can be divided into two classes: those

preserving the residual symmetry in the charged lepton sector and those breaking it. In A4 models,

the only processes allowed by the Z3 residual symmetry are τ− → µ+e−e−, τ− → e+µ−µ−, and all

other 3-body and radiative decays are forbidden [30, 31]. The latter can take place if the Z3 sym-
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metry is broken [32], but are typically suppressed due to the consistency with oscillation data, as

shown later. Current experimental bounds of the branching ratios of LFV τ 3-body decays τ− →
µ+e−e−, e+µ−µ−, µ+µ−µ−, e+e−µ−, µ+µ−e−, e+e−e−, and ratiative decays τ− → µ−γ, e−γ are in

general around 10−8, measured by Belle [33] and BaBar [34], respectively. The upper limit of the µ

3-body decay µ− → e+e−e− decay is 1.0×10−12 at 90 % C.L., from the SINDRUM experiment [35]. The

most stringent measurement is µ− → e−γ in the MEG experiment, with branching ratio ∼ 4.2× 10−13

at 90% C.L. [36]. A MEG upgrade (MEG II) is envisaged to reach the upper limit of the branching ratio

to 4× 10−14 in the near future [37]. One may expect these experiments provide important constraints

to the scale of flavour symmetry.

In this paper, we develop a generic method to analyse charged LFV processes in models with discrete

flavour symmetries. For definiteness, we choose to work on models based on A4, which we review in

section 2. In section 3, we give a model-independent discussion of charged LFV processes induced by

flavons. We derive the expressions of leading flavon contributions to Z3-preserving LFV processes and

specify different Z3-breaking effects contributions to Z3-breaking processes. Since the latter are strongly

dependent upon the model construction, we list two models and analyse them in detail in section 4.

These models, which have been constructed in Ref. [25], are very economical and consistent with current

oscillation data.

2 Flavour mixing in the A4 symmetry

2.1 Residual symmetries and tri-bimaximal mixing

For definiteness, we assume the flavour symmetry is the tetrahedral group A4, which is the group of even

permutations of four objects. It is generated by S and T with the requirement S2 = T 3 = (ST )3 = 1,

and contains 12 elements: 1, S, ST , TS, STS, T 2, ST 2, T 2S, TST , S, T 2ST , TST 2. It is the smallest

discrete group which has a 3-dimensional irreducible representation 3. In addition, it has three 1-

dimensional irreducible representations: 1, 1′ and 1′′. The Kronecker product of two 3-dimensional

irreducible representations can be reduced as 3×3 = 1 + 1′+ 1′′+ 3S + 3A, where the subscripts S and

A stands for the symmetric and anti-symmetric components, respectively.

We work in the Altarelli-Feruglio basis [16], where T is diagonal. T and S are respectively given by

T =

 1 0 0

0 ω2 0

0 0 ω

 , S =
1

3

−1 2 2

2 −1 2

2 2 −1

 . (3)

This basis is widely used in the literature since the charged lepton mass matrix invariant under T is

diagonal in this basis. The products of two 3-dimensional irreducible representations a = (a1, a2, a3)T

and b = (b1, b2, b3)T can be expressed as

(ab)1 = a1b1 + a2b3 + a2b3 ,

(ab)1′ = a3b3 + a1b2 + a2b1 ,

(ab)1′′ = a2b2 + a1b3 + a3b1 ,

(ab)3S =
1

2

 2a1b1 − a2b3 − a3b2

2a3b3 − a1b2 − a2b1

2a2b2 − a3b1 − a1b3

 , (ab)3A =
1

2

 a2b3 − a3b2

a1b2 − a2b1

a3b1 − a1b3

 . (4)

We assume that A4 is preserved at high energy scale and broken at some lower scale, which we refer

to as the scale of flavour symmetry. In the charged lepton and neutrino sectors, residual symmetries Z3

and Z2, which are subgroups of A4, are preserved, respectively. The generators of Z3 and Z2, T and S
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respectively, generate the full symmetry A4. The invariance of the charged lepton mass matrix under

Z3 and that of the neutrino mass matrix under Z2 satisfy

TMlM
†
l T
† = MlM

†
l , SMνS

T = Mν . (5)

S

T

Figure 1: The tetrahedral group A4 as the full flavour symmetry and its subgroups Z3 = <T> and

Z2 = <S> as residual symmetries in the charged lepton and neutrino sectors, respectively.

In order to induce the flavour symmetry breaking, we introduce two flavon triplets ϕ, χ in the

charged lepton and neutrino sectors, respectively. We consider two cases with different representation

properties:

i. The flavons are pseudo-real triplets of A4. In this case, the three components of ϕ satisfy ϕ∗1 = ϕ1

and ϕ∗2 = ϕ3 in the Altarelli-Feruglio basis. This is an economical case introducing as few degrees

of freedom beyond the Standard Model as possible.

ii. The flavons are complex triplets of A4. This case has been used more widely than case i due to

the consistency with supersymmetric and multi-Higgs flavour models and can be regarded as a

simplification of these models.

The representation properties of flavons will have important consequences for LFV processes, as will be

discussed later.

In order to preserve Z3 and Z2, the flavon VEVs should be invariant under the transformations of

T and S, respectively, i.e.,

T 〈ϕ〉 = 〈ϕ〉 , S〈χ〉 = 〈χ〉 . (6)

The non-vanishing solutions for the above equation are given by

〈ϕ〉 = (1, 0, 0)T
vϕ√
n
, 〈χ〉 = (1, 1, 1)T

vχ√
3n

. (7)

Here, n = 1, 2 for cases i and ii, respectively, and vϕ and vχ stand for the overall size of the VEVs and

can be treated as A4-breaking scale. Without loss of generality, we assume vϕ, vχ > 0.

The Lagrangian terms for generating lepton masses are represented by some higher-dimensional

operators. The electroweak lepton doublet `L = (`eL, `µL, `τL)T is often arranged to belong to a 3 of

5



A4, and the right-handed charged leptons eR, µR and τR belong to singlets 1, 1′ and 1′′, respectively.

The relevant Lagrangian terms are given by 1

− Ll =
ye
Λ

(`Lϕ)1eRH +
yµ
Λ

(`Lϕ)1′′µRH +
yτ
Λ

(`Lϕ)1′τRH + h.c. ,

−Lν =
y1

2ΛΛW

(
(`LH̃H̃

T `cL)3Sχ
)
1

+
y2

2ΛW
(`LH̃H̃

T `cL)1 + h.c. . (8)

Here, the Higgs H belongs to 1 of A4. Λ is a new scale higher than vϕ, vχ. It may be a consequence of

the decoupling of some heavy A4 multiplet particles. To generate tiny Majorana neutrino masses, we

apply the traditional dimension-5 Weinberg operator (`LH̃H̃
T `cL) and ΛW is the related scale, which

may be different from Λ. After the flavons get the VEVs in Eq. (7), we obtain the lepton mass matrices

Ml =

 ye 0 0

0 yµ 0

0 0 yτ

 vvϕ√
2nΛ

, Mν =

 2a+ b −a −a
−a 2a −a+ b

−a −a+ b 2a

 , (9)

where v = 246 GeV is the VEV of the Higgs H, a ≡ y1vχv
2/(4
√

3nΛΛW) and b ≡ y2v
2/2ΛW. At leading

order, Ml is diagonal and Mν is diagonalised by the unitary matrix

UTBM =


2√
6

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3
− 1√

2

 (10)

and have eigenvalues m1 = |3a+ b|, m2 = |b| and m3 = |3a− b|. This gives rise to s13 = 0, s12 = 1/
√

3

and s23 = 1/
√

2, i.e., the so-called TBM mixing pattern.

2.2 The breaking of the residual symmetries

The TBM mixing has been excluded since it predicts a vanishing θ13. To be consistent with neutrino

oscillation data, corrections of order < 0.1

s13 =
r√
2
, s12 =

1 + s√
3
, s23 =

1 + a√
2
, (11)

must be included. In the Standard Model, TBM is modified by radiative corrections which break the

residual symmetries. However, such corrections are too small to produce an O(0.1) θ13. Couplings

with different flavon multiplets provide another origin for flavour mixing corrections. In the charged

lepton sector, a direct origin of Z3-breaking corrections is the interrupt of the flavon triplet χ. And in

the neutrino sector, the Z2-breaking origin is from ϕ. They may contribute to the Yukawa couplings

directly through higher-dimensional operators or indirectly through the shifts of the VEVs induced by

cross couplings in the flavon potential. After these corrections are included, the PMNS mixing matrix

is parametrised as

UPMNS = U †l UTBMUνPν , (12)

where Ul and Uν are unitary matrices representing corrections in the charged lepton sector and neutrino

sector, respectively, and Pν is a diagonal phase matrix to render positive neutrino masses. In this paper,

1Note that terms such as (`Lχ)1′τRH and
(
(`LH̃H̃

T `cL)3Sϕ
)
1

cannot be forbidden by A4. These terms modify the

mixing structures and should be forbidden at leading order. In concrete models, it can be required by introducing additional

discrete Abelian symmetry, which will not be discussed here.
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as we focus on the charged lepton sector, we assume corrections from the neutrino sector to be negligible,

i.e., Uν − 1� Ul − 1. Then, the mixing matrix can be simplified to UPMNS = U †l UTBMPν .

We consider corrections from higher-dimensional operators in the charged lepton sector, which are

written in the following form:

− δLl =
(
`Lχe

)
1
eRH +

(
`Lχµ

)
1′′
µRH +

(
`Lχτ

)
1′
τRH + h.c. , (13)

where

χe ≡
∑
m,n

ym,ne

Λm+n
(ϕmχn)3 , χµ ≡

∑
m,n

ym,nµ

Λm+n
(ϕmχn)3 , χτ ≡

∑
m,n

ym,nτ

Λm+n
(ϕmχn)3 , (14)

with m, n sum for m+ n > 2. ym,ne,µ,τ are dimensionless complex coefficients. For m+ n = 2, we obtain

the following combinations of VEVs

〈(ϕχ)3S 〉 ∝ (2,−1,−1)T , 〈(ϕχ)3A〉 ∝ (0, 1,−1)T , (15)

and 〈(χχ)3〉 vanishes at this order. For m+ n = 3, we get another direction of VEV combinations

〈(ϕϕ)1χ〉 ∝ 〈(χχ)1χ〉 ∝ (1, 1, 1)T . (16)

One can prove that any other Z3-breaking combinations of the flavon VEVs must have the directions

belonging to one of the aboves. After including these corrections, we obtain the most general form

〈χe〉 ∝ (1, εe2, εe3) , 〈χµ〉 ∝ (1, εµ2, εµ3) , 〈χτ 〉 ∝ (1, ετ2, ετ3) . (17)

Another type of correction comes from the vacuum shift of ϕ due to the Z3-breaking couplings

between ϕ and χ. The most general VEVs of ϕ takes the form

ϕ = (1, εϕ2, εϕ3)T vϕ , (18)

where εϕ2 and εϕ3 stand for the vacuum shift of ϕ. To calculate the exact expressions of the shifts,

we expand the flavon potential around the Z3-invariant VEV 〈ϕ〉 = (1, 0, 0)T vϕ and separate it in the

Z3-preserving part V0(ϕ) and the Z3-breaking part V1(ϕ). V0(ϕ) would result from the self couplings of

ϕ, e.g.,
(
(ϕϕ)3(ϕϕ)3

)
1
, and some trivial cross couplings with the other flavons, e.g., (ϕϕ)1(χχ)1, after

A4 breaking. The Z3-breaking V1(ϕ) include the cross couplings with other flavon multiplets whose

VEVs do not respect the Z3 symmetry, e.g., (ϕϕ)1′′(χχ)1′ with 〈χ〉 only preserving Z2. In the two cases

for ϕ we are considering, we can obtain the expressions of the shifts.

• In case i, where ϕ is a pseudo-real triplet, the most general Z3-preserving and Z3-breaking terms

that are relevant to the vacuum shift at first order are given by

V
(2)

0 (ϕ) =
1

2
m2
ϕ1
ϕ2

1 +m2
ϕ2
ϕ∗2ϕ2 ,

V
(1)

1 (ϕ) = ε1v
3
ϕϕ
∗
2 + h.c. , (19)

respectively, where the real parameters mϕ1 , mϕ2 are the masses of ϕ1 and ϕ2, respectively and

ε1 is a complex dimensionless parameter. The accidential Z ′2 symmetry can be recovered if ε1

is real. V
(2)

0 (ϕ) is invariant under the transformation ϕ2 → ω2ϕ2, which is required by the Z3

symmetry. The minimisation of V
(2)

0 (ϕ) + V
(1)

1 (ϕ) leads to εϕ2 = ε∗ϕ3 = εϕ with εϕ defined by

εϕ ≡ −ε1v
2
ϕ/m

2
ϕ2

.

7



• If ϕ is a complex scalar, i.e., case ii, the relevant terms of ϕ are modified to

V
(2)

0 (ϕ) =
1

2
m2
ϕ1
h2

1 +m2
ϕ2
ϕ∗2ϕ2 +m2

ϕ3
ϕ∗3ϕ3 + (m2

ϕ2ϕ3
ϕ2ϕ3 + h.c.) ,

V
(1)

1 (ϕ) = ε1v
3
ϕϕ
∗
2 + ε′1v

3
ϕϕ
∗
3 + h.c. , (20)

where mϕ1 , mϕ2 , mϕ3 are real and mϕ2ϕ3 , ε1 and ε′1 are in general complex. The phase of mϕ2ϕ3

is unphysical and can always be rotated away by an overall phase redefinition of the flavon ϕ.

h1 is the real component of ϕ1, ϕ1 ≡ (vϕ + h1 + ia1)/
√

2, and the pseudo-real scalar a1 becomes

an unphysical massless Goldstone particle after A4 breaking to Z3. From Eq. (20), we derive the

vacuum shifts

εϕ2 = −
ε1m

2
ϕ3
− ε′1m2

ϕ2ϕ3

m2
ϕ2
m2
ϕ3
−m4

ϕ2ϕ3

v2
ϕ , εϕ3 = −

ε′1m
2
ϕ2
− ε1m

2
ϕ2ϕ3

m2
ϕ2
m2
ϕ3
−m4

ϕ2ϕ3

v2
ϕ . (21)

After considering the direct corrections to Yukawa couplings from higher-dimensional operators and

the indirect corrections from the flavon vacuum shift, the charged lepton mass matrix becomes non-

diagonal:

Ml =

 ye yµ(εµ3 + εϕ3) yτ (ετ2 + εϕ2)

ye(εe2 + εϕ2) yµ yτ (ετ3 + εϕ3)

ye(εe3 + εϕ3) yµ(εµ2 + εϕ2) yτ

 vvϕ√
2Λ

, (22)

leading to the mixing matrix

U †l =

 1 −(εµ3 + εϕ3) −(ετ2 + εϕ2)

ε∗µ3 + ε∗ϕ3 1 −(ετ3 + εϕ3)

ε∗τ2 + ε∗ϕ2 ε∗τ3 + ε∗ϕ3 1

 . (23)

As eL, µL and τL take different Z3 charges, their mixing leads to the breaking of the Z3 symmetry.

Neglecting the corrections of Uν , this can be recast in terms of the mixing angles given by

sin θ13 =
1√
2
|ετ2 − εµ3 + εϕ2 − εϕ3| ,

sin θ12 =
1√
3

[
1− Re(ετ2 + εµ3 + εϕ2 + εϕ3)

]
,

sin θ23 =
1√
2

[
1 + Re(ετ3 + εϕ3)

]
. (24)

The Dirac phase at leading order is given by

δ = −Arg
{
ετ2 − εµ3 + εϕ2 − εϕ3

}
, (25)

and the Majorana phases cannot be determined. In a specific model, these corrections may not be

independent with each other due to additional assumptions, and sum rules of mixing angles and the

Dirac phase could appear.

3 Charged lepton flavour violation in flavour models

We now focus on the analysis of LFV decays of charged leptons mediated by flavons, including 3-body

decays l−1 → l+2 l
−
3 l
−
4 and radiative decays l−1 → l−2 γ. All charged LFV processes mediated by flavons in
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A4 flavour models can be divided into two parts: those consistent with the Z3 residual symmetry and

those violating it. The only allowed Z3-preserving LFV decays are τ− → µ+e−e− and τ− → e+µ−µ−.

We only focus on charged LFV processes induced by flavons. Namely, these LFV processes originate

from the couplings between flavons and charged leptons that generate charged lepton masses and give

rise to special flavour structures 2.

Flavon fields couple to charged leptons, as shown in Eq. (8) with subleading-order corrections shown

in Eq. (13). These couplings are suppressed by charged lepton masses. After the flavour symmetry

breaking, the flavon fields gain VEVs, masses and mixing, from the potential V (ϕ). Generically, one

can write out the effective operators of the 3-body LFV decay l−1 → l+2 l
−
3 l
−
4 after the breakings of the

flavour symmetry and the electroweak symmetry as

L(6) =
∑
Pi

C l4l2l3l1P4P2P3P1
(l4P4 l2P2)(l3P3 l1P1) + C l3l2l4l1P3P2P4P1

(l3P3 l2P2)(l4P4 l1P1) , (27)

where Pi = L,R (for i = 1, 2, 3, 4) and the coefficients C l4l2l3l1P4P2P3P1
, C l3l2l4l1P3P2P4P1

are functions of charged

lepton and flavon mass parameters. Later we will see that due to choices of representations eR ∼ 1,

µR ∼ 1′, τR ∼ 1′′ and the large hierarchy me � mµ � mτ , the contribution corresponding to P1 = L

is subleading in the A4 models and can be neglected in our discussion. Ignoring charged lepton masses

in the final states, we derive the decay width of l−1 → l+2 l
−
3 l
−
4 as

Γ(l−1 → l+2 l
−
3 l
−
4 ) ≈

ηm5
l1

3(16π)3

[∣∣C l4l2l3l1LRLR

∣∣2 +
∣∣C l3l2l4l1LRLR

∣∣2 − Re
(
C l4l2l3l1LRLR (C l3l2l4l1LRLR )∗

)
+
∣∣C l4l2l3l1RLLR

∣∣2 +
∣∣C l3l2l4l1RLLR

∣∣2 − Re
(
C l4l2l3l1RLLR (C l3l2l4l1RLLR )∗

)]
, (28)

where η = 1, 2 for l3 = l4, l3 6= l4, respectively and ml1 is the mass of l1. As for the radiative decay

l−1 → l−2 γ, its amplitude is generically written as ul2Γl2l1µ ul1ε
µ∗ [39] with

Γl2l1µ = iσµνq
ν(Al2l1L PL +Al2l1R PR) , (29)

where RL,R = (1∓ γ5)/2, and the coefficients Al2l1L , Al2l1R are dependent upon charged lepton and flavon

mass parameters. We mention that also due to choices of representations of eR, µR, τR and the large

hierarchy of charged lepton masses, Al2l1L � Al2l1R . Thus, the decay rate can be expressed as

Γ(l−1 → l−2 γ) =
m3
l1

16π
|Al2l1R |

2 . (30)

3.1 Z3-preserving LFV charged lepton decays

From the Lagrangian terms in Eq. (8), we can write the couplings between flavon and charged leptons

explicitly. In the Altarelli-Feruglio basis, they are given by

Leff
l =

me

vϕ
( eLeR ϕ1 + µLeRϕ2 + τLeRϕ3)

√
n

2In the most general case, dimension-6 operators

C1

Λ′2
(`Lγµ`L)1′(`Lγ

µ`L)1′′ ,
C2

Λ′2
(
(`Lγµ`L)3(`Lγ

µ`L)3
)
1
,

C3

Λ′2
(`Lγµ`L)1′′(eRγ

µµR) ,

C4

Λ′2
(`Lγµ`L)1′(eRγ

µτR) ,
C5

Λ′2
(eRγµµR)(eRγ

µτR) ,
C6

Λ′2
(µRγµeR)(µRγ

µτR) . (26)

cannot be forbidden by A4 and the electroweak symmetry, and allow the Z3-preserving LFV decays. Assuming Ci ∼ O(1),

the experimental constraint to the scale Λ′ is Λ′ > 15 TeV [38]. However, they are not essential to generate lepton mass

matrices with flavour structures, and thus will not be discussed in this paper.
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+
mµ

vϕ
(µLµRϕ1 + τLµRϕ2 + eLµRϕ3)

√
n

+
mτ

vϕ
( τLτR ϕ1 + eLτRϕ2 + µLτRϕ3)

√
n+ h.c. . (31)

The Z3 symmetry corresponds to the invariance under the transformation

(eL, eR, ϕ1)→ (eL, eR, ϕ1) , (µL, µR, ϕ2)→ ω2(µL, µR, ϕ2) , (τL, τR, ϕ3)→ ω(τL, τR, ϕ3) . (32)

Namely, eL, eR, ϕ1 are invariant under Z3, τL, τR, ϕ3 are covariant under Z3 with a charge 1, and µL,

µR, ϕ2 are covariant under Z3 with a charge 2 (or equivalently, contravariant under Z3 with a charge

1). In the case of transfer momentum much lower than the scale of flavour symmetry and flavon masses,

one can integrate out ϕ1, ϕ2, ϕ3, and derive the effective 4-fermion interactions. While the Z3-invariant

flavon ϕ1 induces flavour-conserving processes, the Z3-covariant flavons ϕ2 and ϕ3 are the main sources

for charged LFV processes. As e, µ and τ take different Z3 charges in A4 models, it is easy to prove

that the only allowed processes are τ− → µ+e−e− and τ− → e+µ−µ−. The other 3-body decay and all

radiative decay modes are forbidden at this level [30].

In case i, we recall that ϕ is a pseudo-real triplet, ϕ∗1 = ϕ1, ϕ∗2 = ϕ3. As shown in Eq. (19), ϕ1

and ϕ2 have different masses m2
ϕ1

and m2
ϕ2

, and the Z3 symmetry forbids the mixing between them at

leading order. The 4-fermion interactions mediated by ϕ1 and ϕ2 are given by

Lϕ1 =
1

m2
ϕ1

[me

vϕ
ee+

mµ

vϕ
µµ+

mτ

vϕ
ττ
]2
,

Lϕ2 =
1

m2
ϕ2

[me

vϕ
(µLeR + eRτL) +

mµ

vϕ
(τLµR + µReL) +

mτ

vϕ
(eLτR + τRµL)

]
×
[me

vϕ
(eRµL + τLeR) +

mµ

vϕ
(µRτL + eLµR) +

mτ

vϕ
(τReL + µLτR)

]
. (33)

The above Lagrangian terms are compatible with the flavour triality [30], which gives rise to the LFV

decay modes τ− → µ+e−e− and τ− → e+µ−µ− and their charged-conjugate processes. These are

the only 3-body LFV charged lepton decays allowed by the Z3 symmetry. In Model I, operators for

τ− → µ+e−e− and τ− → e+µ−µ− can be expressed as

mµmτ

v2
ϕm

2
ϕ2

(eLµR)(eLτR) ,
mµmτ

v2
ϕm

2
ϕ2

(µReL)(µLτR) , (34)

respectively, with both coefficients CeµeτLRLR and CµeµτRLLR suppressed by µ and τ masses. We just list

the leading contribution here. Terms such as (eRµL)(eLτR) and (µReL)(µRτL) are also allowed, but

sub-leading, suppressed by memτ
v2ϕm

2
ϕ2

or
m2
µ

v2ϕm
2
ϕ2

, and will not be considered in the following. Then, we get

approximatively equal branching ratios of these two processes

Br(τ− → µ+e−e−) ≈ Br(τ− → e+µ−µ−) , (35)

both suppressed by
(mµmτv2
m2
ϕ2
v2ϕ

)2
. If we assume the scale of flavour symmetry vϕ and flavon masses to

be around the electroweak scale v = 246 GeV, the branching ratios will be smaller than 10−11. One

highlighted feature is that both Z3-preserving processes have the same branching ratios. This is because

eLτRϕ2 and µLτRϕ3 have the same coefficient as shown in Eq. (31), and ϕ2 is the complex conjugate

of ϕ3. Essentially, it is a consequence of the Z3 symmetry remaining from the breaking of A4 and the

economical choice of the pseudo-real presentation of ϕ.
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In case ii, as ϕ is a complex triplet of A4, the mixing between the Z3-covariant flavons ϕ2 and ϕ∗3
should be considered in the Z3-preserving processes. As shown in Eq. (20), the Z3 symmetry cannot

forbid the off-diagonal mass term m2
ϕ2ϕ3

(ϕ2ϕ3 + h.c.). We need to go into the mass basis ϕ′2 and ϕ′3
with mass eigenvalues mϕ′2

and mϕ′3
, thanks to the rotation:(
ϕ′2
ϕ′∗3

)
=

(
cϑ −sϑ
sϑ cϑ

)(
ϕ2

ϕ∗3

)
, (36)

with sϑ ≡ sinϑ, cϑ ≡ cosϑ and tan 2ϑ = 2m2
ϕ2ϕ3

/(m2
ϕ3
− m2

ϕ2
), −45◦ < ϑ 6 45◦. Then, integrating

the massive scalars out, we obtain the coefficients of the 4-fermion processes τ− → µ+e−e− and τ− →
e+µ−µ− as

CeµeτLRLR =
mµmτ

v2
ϕ

(
sin 2ϑ

m2
ϕ′3

− sin 2ϑ

m2
ϕ′2

)
, CµeµτRLLR =

mµmτ

v2
ϕ

(
2s2
ϑ

m2
ϕ′2

+
2c2
ϑ

m2
ϕ′3

)
, (37)

respectively. Compared with case i, where the coefficients of (eLµR)(eLτR) and (µReL)(µLτR) are the

same, the coefficients in case ii are in general different. This feature could be used to establish if ϕ is in a

pseudo-real or complex representation if future experiments observe the signatures. We emphasise that

since the mixing between ϕ2 and ϕ∗3 is in general large, even maximal, branching ratios for both channels

should be at the same level, both proportional to mµmτ . The above equation reduces to Eq. (34) in the

limit m2
ϕ′2
→ ∞ and ϑ → 45◦, or m2

ϕ′3
→ ∞ and ϑ → −45◦. Only in the limit ϑ → 0, τ− → µ+e−e− is

suppressed, as discussed in [32].

3.2 Z3-breaking LFV charged lepton decays

The Z3-breaking LFV processes have three sources, depending on their connection with flavour mixing.

One is the mixing of charged lepton mass eigenstates, characterised by εµ3 + εϕ3, ετ2 + εϕ2 and ετ3 + εϕ3

in the last section. The left-handed charged lepton mass eigenstates are superpositions of eL, µL and

τL, which obviously break the Z3 symmetry: eL

µL

τL

→ Ul

 eL

µL

τL

 . (38)

There is also mixing of the right-handed charged leptons eR, µR and τR, but their mixing is suppressed

by both εϕ and the hierarchy of charged lepton masses 3, and thus can be safely neglected. Charged

LFV processes induced by this effect is easy to be calculated.

The other two are related to the Z3-breaking property of the flavon triplet ϕ. When the vacuum

shift results in the mixing between charged leptons, it also results in the mixing and mass corrections of

different components of ϕ. The mixing between the Z3-invariant flavon ϕ1 and the Z3-covariant flavons

ϕ2 and ϕ3, and the mass splitting of the two real degrees of freedom for each Z3-covariant complex

flavons contribute to LFV processes.

To calculate the mass corrections to and the mixing of ϕ, we expand the Z3-preserving potential

V0(ϕ) to the third order and the Z3-breaking potential V1(ϕ) to the second order around the Z3-invariant

3This is due to the typical feature in A4 models that eR, µR and τR are always arranged as singlets 1, 1′, 1′′ of A4.
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VEV 〈ϕ〉 = (1, 0, 0)T vϕ. Taking a pseudo-real flavon triplet as an example, the Z3-preserving terms are

expressed as

V
(3)

0 (ϕ) =
1

3
k1vϕϕ

3
1 + k2vϕϕ1ϕ

∗
2ϕ2 +

1

3
vϕ(k3ϕ

3
2 + k∗3ϕ

∗3
2 ) . (39)

Here, k1, k2 are real, required by the Hermiticity of the potential. If the potential is renormalisable, k3

is also real, since all the renormalisable A4-invariant combinations of ϕ, including (ϕϕ)1,
(
(ϕϕ)3Sϕ

)
1
,

(ϕϕ)1′(ϕϕ)1′′ ,
(
(ϕϕ)3S (ϕϕ)3S

)
1
, are real. Once higher-dimensional operators are included in the po-

tential, e.g., λ
(
(ϕϕ)1′

)3
+ λ∗

(
(ϕϕ)1′′

)3
, k3 can be complex. Since the vacuum is shifted, a small mass

term which splits the masses of two components of the complex ϕ2 and a mixing term between ϕ1 and

ϕ2 can be generated by the cubic couplings proportional to k2 and k3 in Eq. (39), respectively. After the

flavon VEV shifts from 〈ϕ〉 = (1, 0, 0)T vϕ to 〈ϕ〉 = (1, εϕ, ε
∗
ϕ)T vϕ, the cubic term V

(3)
0 (ϕ) will contribute

a small mass term for the flavons

δV
(2)

0 = εϕv
2
ϕ(k2ϕ1ϕ

∗
2 + k3ϕ

2
2) + h.c. . (40)

The quadratic terms of V1(ϕ) can also generate such mass terms. In general, they are given by

V
(2)

1 (ϕ) = ε2v
2
ϕϕ1ϕ

∗
2 + ε3v

2
ϕϕ

2
2 + h.c. , (41)

where ε2 and ε3 are in general complex parameters. V
(2)

1 (ϕ) obviously can originate from cross couplings

between ϕ and χ, including the renormalisable terms, i.e., (ϕχ)1,
(
(ϕϕ)3Sχ

)
1
, (ϕϕ)1′′(χχ)1′ , and the

higher-dimensional terms, i.e.,
((

(ϕϕ)3S (ϕϕ)3S
)
3S
ϕ
)
1
, [(ϕϕ)1′ ]

2(χχ)1′ . The ε2 and ε3 terms can give

another mass term, splitting masses of the two components of ϕ2 and mixing of ϕ1 and ϕ2, respectively.

We include the contributions from δV
(2)

0 (ϕ) and V
(2)

1 (ϕ), as well as the leading order result V
(2)

0 (ϕ).

The two Z3-breaking effects of ϕ mentioned above can be discussed analytically. The first one is the

mixing between the Z3-invariant (ϕ1) and Z3-covariant flavons (ϕ2). To rotate it to the mass eigenstates

of flavons, we need do the following transformation:

ϕ1 → ϕ1 +
(
ε∗ϕ1ϕ2

ϕ2 + εϕ1ϕ2ϕ
∗
2

)
,

ϕ2 → ϕ2 − εϕ1ϕ2ϕ1 , (42)

where

εϕ1ϕ2 =
(k2εϕ + ε2)v2

ϕ

m2
ϕ2
−m2

ϕ1

. (43)

The second one is the mass splitting of the two components of the complex scalar ϕ2:

m2
h2,a2 = m2

ϕ2
(1± 2|εh2a2 |) . (44)

with the two components h2 and a2 defined by

h2 =
1√
2

(
ϕ2 exp(i

θh2a2
2

) + ϕ∗2 exp(−iθh2a2
2

)
)
,

a2 =
−i√

2

(
ϕ2 exp(i

θh2a2
2

)− ϕ∗2 exp(−iθh2a2
2

)
)
, (45)

εh2a2 = k3εϕ + ε3 and θh2a2 being the phase of εh2a2 .
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Branching ratios for the Z3-breaking charged LFV processes can be derived after including the three

Z3-breaking sources: the correction to the mixing of charged leptons, the correction to the mixing of

flavons and flavon mass splitting. For the pseudo-real triplet flavon in case i, these three effects are

analytically listed in Eqs. (38), (42) and (44). For the complex triplet flavon in case ii, the flavon

potential is more complicated and it is hard to extract the general analytical expressions for the later

two Z3-breaking sources. By imposing additional assumptions, e.g., some Abelian symmetries, can

simplify the flavon potential and also the Z3-breaking sources. This scenario will be discussed in the

second model in the next section.

4 Z3-breaking LFV charged lepton decays in concrete models

In this section, we will study Z3-breaking LFV charged lepton decays in two models. These models have

been proposed and the phenomenology of their flavour mixing has been studied in detail in Ref. [25].

After a brief introduction of these models, we will calculate contributions of flavons to the Z3-breaking

processes and discuss the experimental constraints. For more details about the model constructions and

properties of flavour mixings in both models, we refer to [25].

4.1 Model constructions

The flavour symmetry is assumed to be A4×Zϕ2 ×Z
χ
4 in both models, with field contents listed in Table

1. One right-handed neutrino triplet N and two flavon triplets ϕ, χ and one flavon singlet η of A4 are

introduced. The singlet η is used to obtain the correct neutrino mass spectrum. The only difference

between these two models is that the flavon multiplets in Model I are pseudo-real representations of A4

(case i), while all flavon multiplets in Model II are in complex representations (case ii).

Fields `L eR, µR, τR N H ϕ χ η

A4 3 1,1′,1′′ 3 1 3 3 1

Zϕ2 1 −1 1 1 −1 1 1

Zχ4 i i i 1 1 −1 −1

Table 1: Transformation properties of fields in the flavour symmetry A4 × Zϕ2 × Z
χ
4 .

Model I

The most general renormalisable flavon potential of ϕ invariant under the symmetry is written as

V (ϕ) =
1

2
µ2
ϕ(ϕϕ)1 +

1

4

[
f1

(
(ϕϕ)1

)2
+ f2(ϕϕ)1′(ϕϕ)1′′ + f3

(
(ϕϕ)3S (ϕϕ)3S

)
1

]
, (46)

in which all the coefficients µ2
ϕ and f1,2,3 are real. Once the relations µ2

ϕ < 0 and f2 > f3 > −f1 are

required, we can derive the VEV 〈ϕ〉 in Eq. (7). The masses of ϕ1 and ϕ2 are given by

m2
ϕ1

= 2(f1 + f3)v2
ϕ , m2

ϕ2
= (f2 − f3)v2

ϕ . (47)

With replacements ϕ → χ and fi → gi in Eq. (46), we get the potential of χ. By assuming a different

relation g3 > g2 > −g1, we obtain the VEV 〈χ〉 in Eq. (7). All the cross couplings between ϕ and χ are
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expressed as

V (ϕ, χ) =
1

2
ε1(ϕϕ)1(χχ)1 +

1

4

[
ε2(ϕϕ)1′′(χχ)1′ + h.c.

]
+

1

2
ε3
(
(ϕϕ)3S (χχ)3S

)
1
, (48)

where ε1 and ε3 are real and ε2 is complex, and the ε2 term is the only term that will break the Z3

residual symmetry at first order. The relation of ε2 and ε1 in Eq. (19) is given by ε1 = 1
2ε2v

2
χ/v

2
ϕ. The

ε3 term will contribute to the breaking of Z2 in 〈χ〉. By assuming the VEV vχ to be significantly higher

than vϕ, e.g., |vχ| & 2|vϕ|, this contribution can be neglected.

The Lagrangian generating lepton masses is the same as in Eq. (8). Here, we assume the contribution

from higher-dimensional operators to be negligible and all the correction to TBM come from one single

complex parameter εϕ. In this case, the mixing parameters are simplified to [25]

sin θ13 =
√

2|εϕ sin θϕ| ,

sin θ12 =
1√
3

(
1− 2|εϕ| cos θϕ

)
,

sin θ23 =
1√
2

(
1 + |εϕ| cos θϕ

)
,

δ =

{
270◦ − 2|εϕ| sin θϕ , θϕ > 0 ,

90◦ − 2|εϕ| sin θϕ , θϕ < 0 .
(49)

From the above expression, we see that both θ13 and δ originate from the same source, the imaginary

part of ε2, and almost-maximal CP violation is predicted, with δ +
√

2θ13 ≈ 90◦, 270◦. In addition,

there are sum rules of mixing angles

r2 + s2 = 4|εϕ|2 , s+ 2a = 0 . (50)

As shown in Ref. [25], this scenario is compatible with current neutrino oscillation data in the case

r � s, which results in |εϕ| ≈ r/2 ≈ 0.1, or equivalently, |εϕ| ≈ θ13/
√

2.

Model II

In this model, the flavon multiplets are in complex representations. The potential for ϕ is altered to

V (ϕ) = µ2
ϕ(ϕ̃ϕ)1 + f1

(
(ϕ̃ϕ)1

)2
+ f2(ϕ̃ϕ)1′(ϕ̃ϕ)1′′ + f3

(
(ϕ̃ϕ)3S (ϕ̃ϕ)3S

)
1

+f4

(
(ϕ̃ϕ)3A(ϕ̃ϕ)3A

)
1

+ f5

(
(ϕ̃ϕ)3S (ϕ̃ϕ)3A

)
1
, (51)

where fi are real and ϕ̃ = (ϕ∗1, ϕ
∗
3, ϕ
∗
2) also transforms as a 3 of A4. Terms related to the antisymmetric

combination (ϕ̃ϕ)3A are included due to the complex property of ϕ. After ϕ gets the VEV 〈ϕ〉 =

(1, 0, 0)T vϕ/
√

2 and A4 is broken to Z3, ϕ1, ϕ2 and ϕ3 get masses with mass eigenvalues

m2
ϕ1

= 2(f1 + f3)v2
ϕ , m2

ϕ′2
,m2

ϕ′3
=

(
2f2 − 5f3 + f4 ±

√
(2f2 + f3 − f4)2 + 4f2

5

)
v2
ϕ

4
. (52)

The mixing angle ϑ is given by cot 2ϑ = 2f5/(2f2 + f3 − f4) 4. The potential of χ can be obtained

with the replacements ϕ → χ, and fi → gi in Eq. (51). In order to achieve the successful breaking of

4As mentioned in the last section, the convention −45◦ 6 ϑ 6 45◦ is used. This is equivalent to that in [25], in which

both −90◦ 6 ϑ 6 90◦ and the mass ordering mϕ′
2
6 mϕ′

3
are required.

14



A4 → Z3 and Z2 in charged lepton and neutrino sectors, respectively, the following conditions must be

satisfied:

f1 + f3 > 0 , 2f2 − 5f3 + f4 > 0 , 2(f2 − f3)(f4 − 3f3)− f2
5 > 0 ,

g1 + g2 > 0 , 3g3 − 6g2 + g4 > 0 , 4(g2 − g3)(3g2 − g4)− g2
5 > 0 . (53)

The cross couplings between ϕ and χ are given by

V (ϕ, χ) = 2ε1(ϕ̃ϕ)1(χ̃χ)1 +
[
ε2(ϕ̃ϕ)1′′(χ̃χ)1′ + h.c.

]
+ 2ε3

(
(ϕ̃ϕ)3S (χ̃χ)3S

)
1

+2ε4
(
(ϕ̃ϕ)3A(χ̃χ)3A

)
1

+ 2ε5
(
(ϕ̃ϕ)3S (χ̃χ)3A

)
1

+ 2ε6
(
(ϕ̃ϕ)3A(χ̃χ)3S

)
1
, (54)

in which ε2 is complex and ε1, ε3, ε4, ε5 and ε6 are real parameters, which we assume to be small.

Here, the ε2 term is the only one that modifies the VEV of ϕ at first order. Taking into account its

contribution of this term, we finally obtain the corrections to the VEVs, see Eq. (18),

εϕ2 = (1− κ)εϕ , εϕ3 = (1 + κ)ε∗ϕ (55)

with

εϕ = −
ε2v

2
χ

[
(m2

ϕ′3
+m2

ϕ′2
)− (m2

ϕ′3
−m2

ϕ′2
) sin 2ϑ

]
4m2

ϕ′3
m2
ϕ′2

, κ =
(m2

ϕ′3
−m2

ϕ′2
) cos 2ϑ

(m2
ϕ′3

+m2
ϕ′2

)− (m2
ϕ′3
−m2

ϕ′2
) sin 2ϑ

. (56)

When the mixing between ϕ2 and ϕ3 is maximal, sin 2ϑ = ±1, κ vanishes, and we get the same structure

of the VEV shift as in Model I. Furthermore, εϕ takes the value −ε2v2
χ/(2m

2
ϕ′3

) and −ε2v2
χ/(2m

2
ϕ′2

) for

ϑ = 45◦ and −45◦, respectively.

The Lagrangian terms led to lepton masses is also Eq. (8), the same as Model I. Since the κ-

related asymmetric correction is included in the VEV 〈ϕ〉, the expressions for the mixing parameters

are modified, approximating to [25]

sin θ13 = |εϕ|
√

2κ2 cos2 θϕ + 2 sin2 θϕ ,

sin θ12 =
1√
3

[
1− 2|εϕ| cos θϕ

]
,

sin θ23 =
1√
2

[
1 + (1 + κ)|εϕ| cos θϕ

]
,

δ = Arg
{[
− i sin θϕ − κ cos θϕ

][
1− i|εϕ|(2 + κ) sin θϕ

]}
. (57)

The combination of κ and the real part of ε2 provides new sources for θ13 and CP violation. It can

induce sizable θ13 while not affecting CP conservation in some specific region of the parameter space

[25]. In the case of maximal mixing between ϕ2 and ϕ3, cos 2ϑ = 0, leading to κ = 0, we recover

θ13 =
√

2|εϕ sin θϕ| and nearly maximal Dirac-type CP violation, the same result as in Model I.

4.2 Z3-breaking LFV charged lepton decays in Model I

We now discuss the Z3-breaking charged LFV processes induced by the cross couplings between ϕ and χ

in Model I. The mixing and mass splitting of different components of ϕ induced by ε2 can be expressed

in terms of εϕ1ϕ2 = cεϕ and εh2a2 = εϕ with c = (m2
ϕ2

+ m2
ϕ1

)/(m2
ϕ2
− m2

ϕ1
). As all the Z3-breaking

effects are essentially dependent upon εϕ, we expect all the LFV charged lepton decay modes to be

suppressed by |εϕ|2, or equivalently, suppressed by r2 + s2 = 2s2
13 + (1−

√
3s12)2.
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The effective 4-fermion operators for τ− → µ+µ−e− after integrating out ϕ1 and ϕ2 are given by

− 2εϕ
mµmτ

v2
ϕ

[
1

m2
ϕ1

(µµ)(eLτR) +
1

m2
ϕ2

(µRµL)(eLτR) +
1

m2
ϕ2

(eLµR)(µLτR)

]
. (58)

Here, we have considered all contributions of order εϕmµmτ/v
4
ϕ. They include those due to the mixing

of left-handed charged leptons eL, µL, τL and to the mixing between flavons ϕ1 and ϕ2. The effective

4-fermion interaction relevant for τ− → µ+µ−µ− and τ− → e+e−µ− are given by

−2ε∗ϕ
mµmτ

v2
ϕ

[
1

m2
ϕ1

(µµ)(µLτR) +
1

m2
ϕ2

(µRµL)(µLτR)

]
,

−2ε∗ϕ
mµmτ

v2
ϕ

1

m2
ϕ2

(µReL)(eLτR) , (59)

respectively. From Eqs. (58) and (59), we obtain simple relations of the non-zero effective coefficients

of the 4-fermion interactions of these processes

(CµµµτLRLR)∗ = CµµeτLRLR = −2εϕ
mµmτ

v2
ϕm

2
ϕ1

,

(CµeeτRLLR)∗ = CeµµτLRLR = −2εϕ
mµmτ

v2
ϕm

2
ϕ2

,

(CµµµτRLLR)∗ = CµµeτRLLR = (CµµµτLRLR)∗ + (CµeeτRLLR)∗ , (60)

and the other coefficients will not contribute to the decays at leading order. These simple relations

result in sum rules for the branching ratios of the τ LFV decays

2(Bµ+µ−e− − 2Bµ+µ−µ−)2 + (5Be+e−µ− + 10Bµ+µ−µ− − 6Bµ+µ−e−)Be+e−µ− = 0 ,

Be+e−µ− ≈ 2(r2 + s2)Br(τ− → µ+e−e−) , (61)

where Bµ+µ−e− , Bµ+µ−µ− , Be+e−µ− are branching ratios of τ− → µ+µ−e−, τ− → µ+µ−µ− and τ− →
e+e−µ−, respectively. In the limit mϕ1 � mϕ2 , we get Bµ+µ−e− ≈ 2Bµ+µ−µ− � Be+e−µ− , and on the

contrary, we have Bµ+µ−e− ≈ 4Bµ+µ−µ− ≈ 2Be+e−µ− .

For the processes τ− → e+e−e− and µ− → e+e−e−, coefficients for the related operators are

CeeeτLRLR = CeeeτRLLR = −2εϕ
memτ

v2
ϕ

(
1

m2
ϕ1

+
1

m2
ϕ2

)
,

CeeeµLRLR = CeeeµRLLR = −2ε∗ϕ
memµ

v2
ϕ

(
1

m2
ϕ1

+
1

m2
ϕ2

)
, (62)

both suppressed by the electron mass. Taking vϕ ∼ mϕ1 ∼ mϕ2 around the electroweak scale, we obtain

branching ratios smaller than 10−16 and 10−18, respectively, far below the current experimental upper

limit. The Z3-breaking terms will also contribute to the channels τ− → µ+e−e− and τ− → e+µ−µ−.

They are subleading, generically suppressed by εϕ, and will not be considered here.

The radiative decay l−1 → l−2 γ is allowed after the flavon cross couplings are included. We calculate

them in detail in the Appendix and we show the results here. For τ− → e−γ, there are two main

contributions: one is due to the mixing between eL and τL and the other to the mixing between Z3-

invariant and Z3-covariant flavons ϕ1 and ϕ2. After the transformation in Eqs. (38) and (42), we obtain

the corresponding operators 5:

mτ

vϕ
[eLτR (ϕ2 − ε̃ϕϕ1) + ττ (ϕ1 + ε̃ϕϕ

∗
2)] , (63)

5We just keep the terms directly to the process. Some Hermitian terms not relevant to l−1 → l−2 γ are not given here.
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where ε̃ϕ = (1 + c)εϕ = 2εϕm
2
ϕ2
/(m2

ϕ2
−m2

ϕ1
). For τ− → µ−γ, the main sources are the mixing between

µL and τL and the one between ϕ1 and ϕ2. Operators related to these contributions are

mτ

vϕ

[
µLτR

(
ϕ∗2 − ε̃∗ϕϕ1

)
+ ττ

(
ϕ1 + ε̃∗ϕϕ2

)]
(64)

For µ− → e−γ, the main contributions come from the mixing between µL and τL, the mixing between

eL and τL, and the mass splitting between h2 and a2. ϕ1 is not involved in this channel. After going

into the charged lepton mass basis and replacing ϕ2 by e−iθϕ/2(h2 + ia2)/
√

2 in Eq. (72), the relevant

operators are

e−i
θϕ
2

√
2

mτ

vϕ
eLτR

[
(1− |εϕ|)h2 + i (1 + |εϕ|) a2

]
+
e−i

θϕ
2

√
2

[mτ

vϕ
τRµL +

mµ

vϕ
τLµR

][
(1 + |εϕ|)h2 + i (1− |εϕ|) a2

]
. (65)

In the above equation, we keep the term τRµL at the mτ/vϕ level but keep τLµR at the mµ/vϕ one. The

reason is that the former contribution is proportional to mµ and the latter contribution is proportional

to mτ , as shown in Eq. (79) of the Appendix.

Starting from the effective couplings in Eqs. (63), (64) and (65), and following the calculation in the

Appendix, we finally arrive at

AeτR =
ieε̃ϕmτ

(4π)2v2
ϕ

[F (ϕ2)− F (ϕ1)] ,

AµτR =
ieε̃∗ϕmτ

(4π)2v2
ϕ

[F (ϕ2)− F (ϕ1)] ,

AeµR =
−2ieε∗ϕmµ

(4π)2v2
ϕ

m2
τ

m2
ϕ2

(
log

m2
τ

m2
ϕ2

+
7

3

)
, (66)

where

F (ϕi) =
m2
τ

m2
ϕi

(
log

m2
τ

m2
ϕi

+
4

3

)
. (67)

We emphasise that we have taken account of all three contributions from the mixing of charged leptons,

the mixing between Z3-invariant and Z3-covariant flavons ϕ1 and ϕ2, and the mass splitting between

two components of the Z3-covariant flavon ϕ2, as shown in Eqs. (38), (42), and (44), respectively. As

mentioned in the last subsection, we prove in the Appendix that Al2l1L � Al2l1R is satisfied in all three

channels, as imposed by the structure of charged lepton mass matrix. Here, one more sum rule for

branching ratios is satisfied:

Br(τ− → e−γ) ≈ Br(τ− → µ−γ) . (68)

Taken the scale of the flavour symmetry to be at the electroweak scale, the branching ratio of

τ− → e−γ and τ− → µ−γ are in general less than 10−11, at least 3 orders of magnitude below the

current experimental upper limits. The µ− → e−γ channel has been measured most precisely and gives

the strongest constraint on the model. In Fig. 2, we show regions of vϕ and mϕ2 allowed by current

experiments and testable at the near future experiments. The current upper limit of the branching ratio

is 4.2 × 10−13, measured by the MEG experiment [36]. By fixing the flavon VEV vϕ = v/
√

2, v, 2v =

17



175, 246, 492 GeV, we obtain the lower limit of the ϕ2 mass: mϕ2 > 700, 500, 200 GeV, respectively.

The MEG II experiment will reach the upper limit of the branching ratio to 4×10−14 in the near future

[37]. This experiment has the potential to prove the scale of flavour symmetry around electroweak scale

or push it to a higher scale.

Current allowed region

Future allowed region

200 400 600 800 1000
100

200

300

400

500

600

700

Figure 2: The current and near future constraints on Model I from the µ− → e−γ experiments. |εϕ|
is fixed at 0.1 for generating the reactor angle θ13. The current constraint of the MEG experiment

is set to be Br(µ− → e−γ) < 4.2 × 10−13 [36], and the future constraint of MEG II is set to be

Br(µ− → e−γ) < 4× 10−14 [37].

4.3 Z3-breaking LFV charged lepton decays in Model II

Flavon cross couplings shift the Z3-preserving VEVs and open the Z3-breaking LFV channels. Similar to

Model I, the shift of flavon VEVs in Model II results in three contributions to the Z3-breaking processes.

They are

• the mixing between left-handed charged leptons. To get the Lagrangian in the charged lepton

mass eigenstates, we do the transformation

eL → eL + (1 + κ)ε∗ϕµL + (1− κ)εϕτL ,

µL → µL + (1 + κ)ε∗ϕτL − (1− κ)εϕeL ,

τL → τL − (1 + κ)ε∗ϕeL − (1− κ)εϕµL . (69)

• the mixing between Z3-invariant flavon h1 and Z3-covariant flavons ϕ′2, ϕ′3. It leads to the following

transformation to the flavon mass eigenstates:

h1 → h1 + c12

(
ε∗ϕϕ

′
2 + εϕϕ

′∗
2

)
+ c13

(
εϕϕ

′
3 + ε∗ϕϕ

′∗
3

)
,

ϕ′2 → ϕ′2 − c12εϕh1 + c23|εϕ|ϕ′∗3 ,
ϕ′3 → ϕ′3 − c13ε

∗
ϕh1 − c23|εϕ|ϕ′∗2 , (70)
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in which

c12 =
m2
ϕ′2

+m2
ϕ1

m2
ϕ′2
−m2

ϕ1

m2
ϕ′3

√
2− 2 sin 2ϑ

(m2
ϕ′3

+m2
ϕ′2

)− (m2
ϕ′3
−m2

ϕ′2
) sin 2ϑ

,

c13 =
m2
ϕ′3

+m2
ϕ1

m2
ϕ′3
−m2

ϕ1

m2
ϕ′2

√
2 + 2 sin 2ϑ

(m2
ϕ′3

+m2
ϕ′2

)− (m2
ϕ′3
−m2

ϕ′2
) sin 2ϑ

,

c23 =
2
[
(m2

ϕ′3
+m2

ϕ′2
)2 − 3(m2

ϕ′3
−m2

ϕ′2
)2 cos 4ϑ

]
cos 2ϑ

(m2
ϕ′3
−m2

ϕ′2
)
[
(m2

ϕ′3
+m2

ϕ′2
)− (m2

ϕ′3
−m2

ϕ′2
) sin 2ϑ

] . (71)

• the mass splitting between h′2 and a′2, and that between h′3 and a′3, in which h′2, a′2, h′3 and a′3 are

mass eigenstates of ϕ′2 and ϕ′3 given by

h2 =
1√
2

(
ϕ2 exp(i

θϕ
2

) + ϕ∗2 exp(−iθϕ
2

)
)
, h3 =

1√
2

(
ϕ3 exp(i

θϕ
2

) + ϕ∗3 exp(−iθϕ
2

)
)
,

a2 =
−i√

2

(
ϕ2 exp(i

θϕ
2

)− ϕ∗2 exp(−iθϕ
2

)
)
, a3 =

i√
2

(
ϕ3 exp(i

θϕ
2

)− ϕ∗3 exp(−iθϕ
3

)
)

(72)

The corrected masses of them are respectively given by

m2
h′2,a

′
2

= m2
ϕ′2

(1± c22|εϕ|) , m2
h′3,a

′
3

= m2
ϕ′3

(1± c33|εϕ|) , (73)

with

c22 =
(1− sin 2ϑ)

[
(m2

ϕ′3
+m2

ϕ′2
)2 − (m2

ϕ′3
−m2

ϕ′2
)2(1 + 6(1 + sin 2ϑ) sin 2ϑ)

]
2m2

ϕ′2

[
(m2

ϕ′3
+m2

ϕ′2
)− (m2

ϕ′3
−m2

ϕ′2
) sin 2ϑ

] ,

c33 =
(1 + sin 2ϑ)

[
(m2

ϕ′3
+m2

ϕ′2
)2 − (m2

ϕ′3
−m2

ϕ′2
)2(1− 6(1− sin 2ϑ) sin 2ϑ)

]
2m2

ϕ′3

[
(m2

ϕ′3
+m2

ϕ′2
)− (m2

ϕ′3
−m2

ϕ′2
) sin 2ϑ

] . (74)

The terms 1± c22|εϕ| and 1± c33|εϕ| must be positive to stabilise the vacuum.

Here, we would like to mention two special cases, ϑ = ±45◦:

• In the case ϑ = 45◦, we have c12, c23 and c22 vanish, c13 takes the same value as c in Model I, and

c33 = 2. In this case, h1 and ϕ′∗3 (as well as h′3 and a′3) are identical with ϕ1, ϕ2 (as well as h2 and

a2) in Model I, respectively. There is no εϕ-induced mixing between ϕ′2 and h1, nor that between

ϕ′2 and ϕ′∗3 .

• In the case ϑ = −45◦, we have c13, c23 and c33 vanish, c12 takes the same value as c in Model I,

and c22 = 2. Therefore, h1 and ϕ′2 (as well as h′2 and a′2) are identical with ϕ1, ϕ2 (as well as h2

and a2) in Model I, respectively, and there is no εϕ-induced mixing between ϕ′∗3 and h1, nor that

between ϕ′∗3 and ϕ′2.

After considering the three effects of Z3-breaking, we can repeat the procedure as in Model I to

calculate the LFV charged lepton decays and derive the 4-fermion interactions for τ− → µ+µ−e−,

τ− → µ+µ−µ−, τ− → e+e−µ−, τ− → e+e−e− and µ− → e+e−e−. Here, we list the coefficients that

will contribute to the decays at leading order:

CµµeτLRLR = −εϕ
mµmτ

v2
ϕ

[
1 + κ

m2
ϕ1

+
√

2c12cϑ
∆m2

ϕ′2ϕ1

m2
ϕ1
m2
ϕ′2

+
√

2c13sϑ
∆m2

ϕ′3ϕ1

m2
ϕ1
m2
ϕ′3

+ (1 + κ) sin 2ϑ
( 1

m2
ϕ′2

− 1

m2
ϕ′3

)]
,
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CµµeτRLLR = −εϕ
mµmτ

v2
ϕ

[
1 + κ

m2
ϕ1

+
√

2c12cϑ
∆m2

ϕ′2ϕ1

m2
ϕ1
m2
ϕ′2

+
√

2c13sϑ
∆m2

ϕ′3ϕ1

m2
ϕ1
m2
ϕ′3

+ 2(1− κ)
( c2

ϑ

m2
ϕ′2

+
s2
ϑ

m2
ϕ′3

)]
,

CeµµτLRLR = −εϕ
mµmτ

v2
ϕ

[
2
(c22s

2
ϑ

m2
ϕ′2

+
c33c

2
ϑ

m2
ϕ′3

)]
;

CµµµτLRLR = −ε∗ϕ
mµmτ

v2
ϕ

[
1 + κ

m2
ϕ1

−
√

2c12sϑ
∆m2

ϕ′2ϕ1

m2
ϕ1
m2
ϕ′2

+
√

2c13cϑ
∆m2

ϕ′3ϕ1

m2
ϕ1
m2
ϕ′3

+ (1− κ) sin 2ϑ
( 1

m2
ϕ′3

− 1

m2
ϕ′2

)]
,

CµµµτLRLR = −ε∗ϕ
mµmτ

v2
ϕ

[
1 + κ

m2
ϕ1

−
√

2c12sϑ
∆m2

ϕ′2ϕ1

m2
ϕ1
m2
ϕ′2

+
√

2c13cϑ
∆m2

ϕ′3ϕ1

m2
ϕ1
m2
ϕ′3

− 2(1 + κ)
( s2

ϑ

m2
ϕ′2

+
c2
ϑ

m2
ϕ′3

)]
;

CµeeτRLLR = −ε∗ϕ
mµmτ

v2
ϕ

[
2 + 2κ cosϑ− c22 sin 2ϑ

m2
ϕ′2

+
2− 2κ cosϑ+ c33 sin 2ϑ

m2
ϕ′3

]
(µReL)(eLτR) ;

CeeeτLRLR = −εϕ
memτ

v2
ϕ

[
1 + κ

m2
ϕ1

−
√

2c12cϑ
∆m2

ϕ′2ϕ1

m2
ϕ1
m2
ϕ′2

−
√

2c13sϑ
∆m2

ϕ′3ϕ1

m2
ϕ1
m2
ϕ′3

− (1 + κ) sin 2ϑ
( 1

m2
ϕ′2

− 1

m2
ϕ′3

)]
,

CeeeτRLLR = −εϕ
memτ

v2
ϕ

[
1 + κ

m2
ϕ1

−
√

2c12cϑ
∆m2

ϕ′2ϕ1

m2
ϕ1
m2
ϕ′2

−
√

2c13sϑ
∆m2

ϕ′3ϕ1

m2
ϕ1
m2
ϕ′3

+ 2(1− κ)
( s2

ϑ

m2
ϕ′2

+
c2
ϑ

m2
ϕ′3

)]
;

CeeeµLRLR = −ε∗ϕ
memµ

v2
ϕ

[
1− κ
m2
ϕ1

−
√

2c12sϑ
∆m2

ϕ′2ϕ1

m2
ϕ1
m2
ϕ′2

+
√

2c13cϑ
∆m2

ϕ′3ϕ1

m2
ϕ1
m2
ϕ′3

− (1− κ) sin 2ϑ
( 1

m2
ϕ′2

− 1

m2
ϕ′3

)]
,

CeeeµRLLR = −ε∗ϕ
memµ

v2
ϕ

[
1− κ
m2
ϕ1

−
√

2c12sϑ
∆m2

ϕ′2ϕ1

m2
ϕ1
m2
ϕ′2

+
√

2c13cϑ
∆m2

ϕ′3ϕ1

m2
ϕ1
m2
ϕ′3

+ 2(1 + κ)
( s2

ϑ

m2
ϕ′2

+
c2
ϑ

m2
ϕ′3

)]
, (75)

respectively. Here, ∆m2
ϕ′2ϕ1

≡ m2
ϕ′2
−m2

ϕ1
and ∆m2

ϕ′3ϕ1
≡ m2

ϕ′3
−m2

ϕ1
. All these channels are suppressed

by both εϕ and charged lepton masses strongly dependent upon the mixing between the two Z3-covariant

flavons ϕ2 and ϕ3. In addition, the last two channels τ− → e+e−e− and µ− → e+e−e− are highly

suppressed by the electron mass. From the above effective interactions, one can directly obtain branching

ratios for these channels, which are of the same orders of magnitude as those in Model I.

Finally, we discuss the modification to the branching ratio of l−1 → l−2 γ. The coefficients Al2l1R

corresponding to τ− → e−γ, τ− → µ−γ and µ− → e−γ are respectively given by

AeτR =
ieεϕmτ

(4π)2v2
ϕ

[
−(1 + κ+

√
2c12cϑ +

√
2c13sϑ)F (h1)

+
√

2cϑ(c12 −
√

2sϑ(1 + κ))F (ϕ′2) +
√

2sϑ(c13 +
√

2cϑ(1 + κ))F (ϕ′3)

−
(2cϑsϑ(1 + κ) + 2c2

ϑ(1− κ))m2
τ

6(4π)2m2
ϕ′2

+
(2cϑsϑ(1 + κ)− 2s2

ϑ(1− κ))m2
τ

6(4π)2m2
ϕ′3

]
,

AµτR =
ieε∗ϕmτ

(4π)2v2
ϕ

[
−(1− κ−

√
2c12sϑ +

√
2c13cϑ)F (h1)

−
√

2sϑ(c12 +
√

2cϑ(1− κ))F (ϕ′2) +
√

2cϑ(c13 +
√

2sϑ(1− κ))F (ϕ′3)

−
(2cϑsϑ(1− κ) + 2s2

ϑ(1 + κ))m2
τ

6(4π)2m2
ϕ′2

+
(2cϑsϑ(1− κ)− 2c2

ϑ(1 + κ))m2
τ

6(4π)2m2
ϕ′3

]
,

AeµR =
−2ieε∗ϕmµ

(4π)2v2
ϕ

{
m2
τ

m2
ϕ′2

[
c22c

2
ϑ

(
log

m2
τ

m2
ϕ′2

+
5

2

)
+

1

12
(c22 sin 2ϑ+ 2 cos 2ϑ+ 2κ)

]
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+
m2
τ

m2
ϕ′3

[
c33c

2
ϑ

(
log

m2
τ

m2
ϕ′3

+
5

2

)
− 1

12
(c33 sin 2ϑ+ 2 cos 2ϑ+ 2κ)

]}
. (76)

Here, the analytical result of µ− → e−γ is only valid in the case of small mass difference between h′2 and

a′2 and that between h′3 and a′3, i.e., |c22|, |c33| . 2. Again, ϕ1 does not affect µ− → e−γ. We recover

the results of Model I in the limit ϑ→ 45◦ and m2
ϕ′2
→∞, or in the limit ϑ→ −45◦ and m2

ϕ′3
→∞.
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Figure 3: The current and near future constraints on the mass parameters mϕ′2
and mϕ′3

from the

µ→ eγ experiments. vϕ = 175 GeV is assumed.

We perform the numerical analysis to show how Model II is constrained by current experiments.

τ− → e−γ and τ− → µ−γ are safe for current experimental limit by assuming the flavour symmetry

scale around the electroweak one. Also for Model II, the strongest constraint is also from the µ− → e−γ

searches. In order to avoid the situation where the perturbation theory is not valid, we directly apply

Eqs. (82) and (83) in the Appendix into our numerical calculation. We fix vϕ = v/
√

2 = 175 GeV, vary

the mixing angle ϑ and show the allowed regions of the mass parameters mϕ′2
and mϕ′3

by current and

the expected future experiments in Fig. 3. Some comments follow:

• Masses mϕ′2
and mϕ′3

as low as 200 to 400 GeV are still allowed for some values of ϑ, much lower

than the mass mϕ2 in Model I. This corresponds to the cancellation of contributions of ϕ2 and ϕ3.

• The mass eigenvalues of h′2, a′2 and h′3, a′3 in general deviate from mϕ′2
and mϕ′3

, and the relative

deviations are characterisd by ±c22|εϕ| and ±c33|εϕ|, respectively. Numerically, we have checked

that |c22|, |c33| . 2 hold in most of the allowed parameter space in Fig. 3. Thus, the deviations

of mh′2
, ma′2

from mϕ′2
, as well as those of mh′3

, ma′3
from mϕ′3

, are in general small, and we can

treat mϕ′2
and mϕ′3

as their masses at leading order.
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• We have also checked that in all the allowed parameter space, |c22εϕ|, |c33εϕ| < 1. In other words,

positive masses m2
h′2
, m2

a′2
, m2

h′3
, m2

a′3
> 0 are guaranteed.

• For ϑ = 45◦, c22 vanishes, no mass deviation between h′2 and a′2 arises, and the contributions of

h′2 and a′2 cancel with each other. Thus, there is no constraint on mϕ′2
. The current experimental

upper limit allows the mass of ϕ′3 to be larger than 700 GeV. In the future, a mass smaller than 1

TeV would be ruled out. This is consistent with the results of ϕ2 in Model I in Fig. 2. We have

also checked that for ϑ = −45◦, there will be no constraint on mϕ′3
and the upper limit of the ϕ′2

mass is also around 700 GeV, which is not shown in Fig. 3.

5 Conclusion

Varies of flavour models with discrete flavour symmetries have been proposed to understand the mystery

of lepton flavour mixing. Essential ingredients are flavon fields which couple among themselves and

with leptons. The flavon potential generates special vacuum expectation values for flavons and trigger

flavour symmetry breaking. And the couplings with leptons are responsible for Yukawa couplings with

special flavour structures after the flavons get VEVs. These couplings will unavoidably contribute to

other lepton-flavour-violating processes beyond neutrino oscillations. In this paper, we discuss the LFV

decays of charged leptons induced by these couplings.

All charged LFV processes have the same origin as leptonic flavour mixing, as they originate from

the effective couplings of flavons and couplings between flavons and leptons. For definiteness, we assume

that the flavour symmetry is A4 and lepton flavour mixing is tri-bimaximal at leading order after A4

breaking. The flavon coupling to the charged leptons, ϕ, is a triplet of A4 and its VEV should roughly

preserve a Z3 residual symmetry after A4 breaking. Z3 is phenomenologically necessary for realising

TBM at leading order and has theoretically been realised in a lot of models. Depending on the different

representation properties of ϕ, we consider two cases: i. ϕ is a pseudo-real triplet of A4, an economical

case which introduces as few degrees of freedom as possible to the model, and ii. ϕ is a complex triplet,

a generalised case which can be regarded as a simplification of supersymmetric and multi-Higgs models.

The breaking of A4 → Z3 results in three physical parameters in case i: the scale of flavour symmetry

breaking vφ and flavon masses mϕ1 and mϕ2 . In case ii, the mixing between two Z3-covariant flavons

introduces a mixing angle ϑ, as well as one more flavon mass, which cannot be neglected. It is natural

to assume the flavon masses to be of the same order of magnitude as vϕ.

The only Z3-preserving LFV processes are τ− → µ+e−e−, τ− → e+µ−µ−. They are triggered

by the exchange of Z3-covariant flavons and their branching ratios are dependent upon the flavour

symmetry scale vϕ and the flavon masses. In case i, both channels are mediated by the same flavon ϕ2

and their branching ratios are approximately equal. In case ii, the two branching ratios are in general

different from each other due to the presence of the mixing between the two Z3-covariant flavons. If

their mixing is maximal, the branching ratios are equal again. To be compatible with charged lepton

masses, these processes in both cases are suppressed by ratios of charged lepton masses to the scale of

flavour symmetry, to be exact, suppressed by mµmτ/v
2
ϕ. Once we assume vϕ around the electroweak

scale, their branching ratios are much lower than current experimental limits.

Z3 is not an exact symmetry due to the interrupt with other fields. The breaking of Z3 is also

supported by the phenomenological requirement that TBM must gain corrections to match current

oscillation data. In presence of Z3 breaking, other 3-body LFV decays and all radiative decays forbidden
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by Z3 can take place, but are suppressed by the small Z3-breaking effects. We identify three Z3-breaking

effects: the mixing of charged lepton flavour eigenstates, the mixing between the Z3-invariant and Z3-

covariant flavons, and the mass splitting of the two real degrees of freedom of each Z3-covariant complex

flavons. Under the assumption that the corrections to TBM come mainly from the Z3-breaking effects,

strong relations between mixing angles, especially θ13, with charged LFV processes arise.

Z3-breaking charged LFV processes depend on the explicit structure of a concrete model. We

consider two models in cases i and ii, respectively. These models have been proposed in our former work

[25] and fit well with current oscillation data. We derive analytical expressions for branching ratios of

all processes and numerically check the constraints on the A4-breaking scale and flavon masses for each

model. The results in Model I are quite simple. In special, a sum rule of τ− → µ+µ−e−, τ− → µ+µ−µ−

and τ− → e+e−µ− is obtained and all these processes are suppressed by 2s2
13 + (1−

√
3s12)2 compared

with the Z3-preserving ones. Another relation is Br(τ− → µ−γ) ≈ Br(τ− → e−γ). The most stringent

constraint is from the µ− → e−γ measurement. The main contributions are the mixing of charged

leptons and the mass splitting of the Z3-covariant flavons induced by the breaking of the Z3 symmetry.

In Model I, the only unknown parameters contribute to this process are the scale vϕ and the Z3-covariant

flavon mass mϕ2 . Their allowed parameter space can be derived from the current upper limit for this

process. Setting vϕ around the electroweak scale, we arrive at mϕ2 > 500 GeV. The results in Model II

are strongly dependent upon the mixing between the Z3-covariant flavons. They match with those in

Model I in the limit ϑ = ±45◦ and one of the Z3-covariant flavons decouple from the processes. In both

models, branching ratios of τ− → e+e−e− and µ− → e+e−e− are much weaker than the other processes

due to the suppression of electron mass. The flavon masses and their mixing angle ϑ will influence the

branching ratio. Tuning these parameters, tiny masses, 300-400 GeV, for the Z3-breaking flavons are

allowed by experiment constraints.

In conclusion, we have studied flavon-induced charged LFV processes. These flavons give explanation

to lepton flavour mixing in flavour models and contribute to the other LFV processes beyond neutrino

oscillations. Different from most models assuming the flavour symmetry at very high energy scale to

avoid the strong constraints from charged LFV processes, we have checked that a relatively low-scale

flavour symmetry, not far from the electroweak scale, is consistent with current experiment constraints

from charged LFV processes. The main reason is that since these models give explanation to the

flavour mixing, the couplings between flavons and charged leptons should be reasonably suppressed by

the charged lepton masses. Furthermore, the approximative residual symmetry in the charged lepton

sector, strongly suggested in most flavour models and supported by current oscillation data, can give an

additional suppression factor O(0.01) for most LFV processes of 3-body charged lepton decays and all

radiative decays. The method we developed here for calculating flavon-induced charged LFV processes

can be extended into models with different flavour symmetries, such as S4 and A5.
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A Radiative decays mediated by complex scalars

Some of the scalars in our models (e.g., ϕ2 in Model I, and ϕ′2, ϕ′3 in Model II) are complex scalars.

Their couplings to fermions are strongly dependent upon the chirality of fermions. Thus, the chirality

of fermions should be taken into account carefully when we calculate l−1 → l−2 γ. It is useful for us to

re-express Al2l1L PL +Al2l1R PR in Eq. (29) as

Al2l1L PL +Al2l1R PR = gLLO
l2l1
LL (ϕ) + gRRO

l2l1
RR (ϕ) + gRLO

l2l1
RL (ϕ) + gLRO

l2l1
LR (ϕ) , (77)

where Ol2l1P2P1
(ϕ) (for P1, P2 = L,R) stand for the following loop integral excluding the σµνq

ν part:∫
d4p

(2π)4
PP2

i( 6 p2− 6 p) +mτ

(p2 − p)2 −mτ
γµ
i( 6 p1− 6 p) +mτ

(p1 − p)2 −mτ
PP1

i

p2 −m2
ϕ

, (78)

and gP2P1 are the relevant coefficients. Neglecting subleading terms, we derive the following expression

for Ol2l1P1P2
(ϕ) as

Ol2l1LL (ϕ) =
1

(4π)2

mτ

m2
ϕ

(
log

m2
τ

m2
ϕ

+
3

2

)
PL ,

Ol2l1RR (ϕ) =
1

(4π)2

mτ

m2
ϕ

(
log

m2
τ

m2
ϕ

+
3

2

)
PR ,

Ol2l1RL (ϕ) =
1

(4π)2

ml1

m2
ϕ

× −1

6
PL ,

Ol2l1LR (ϕ) =
1

(4π)2

ml1

m2
ϕ

× −1

6
PR , (79)

For τ− → e−γ, µ−γ, ml1 = mτ . For µ− → e−γ, ml1 = mµ, and thus, OeµLR, O
eµ
RL � OeµLL, O

eµ
RR. These

results are compatible with [39].

In Model I, we use the Lagrangian in Eqs. (63), (64) and (65) to calculate the radiative decays. With

the help of Eq. (79), we derive

AeτL PL +AeτR PR = ieε̃ϕ
m2
τ

v2
ϕ

[
OeτRR(ϕ2) +OeτLR(ϕ2)−OeτRR(ϕ1)−OeτLR(ϕ1)

]
,

AµτL PL +AµτR PR = ieε̃∗ϕ
m2
τ

v2
ϕ

[
OµτRR(ϕ2) +OµτLR(ϕ2)−OµτRR(ϕ1)−OµτLR(ϕ1)

]
,

AeµL PL +AeµR PR = iee−iθϕ
mτ

v2
ϕ

{
mµ

[
OeµRR(h2)−OeµRR(a2)

]
+mτ

[
OeµLR(h2)−OeµLR(a2)

]}
(80)

for τ− → e−γ, τ− → µ−γ and µ− → e−γ, respectively. A direct calculation shows that Ol2τRR(ϕ) +

Ol2τLR(ϕ) = F (ϕ)/mτPR (for l2 = e, µ) and mµO
eµ
RR(ϕ) + mτO

eµ
LR(ϕ) = mµF (ϕ)/mτPR. And using the

approximation

F (h2)− F (a2) = −4|εϕ|
m2
τ

m2
ϕ2

(
log

m2
τ

m2
ϕ2

+
7

3

)
, (81)

we finally obtain the results in Eq. (66).

In Model II, The related Lagrangian terms for τ− → e−γ, τ− → µ−γ and µ− → e−γ are respectively

given by

mτ

vϕ
eLτR

[
− (1 +

√
2c12cϑ +

√
2c13sϑ)εϕh1 +

√
2cϑϕ

′
2 +
√

2sϑϕ
′∗
3

]
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+
mτ

vϕ
τLτR

[
h1 + (c12 −

√
2sϑ)εϕϕ

′∗
2 + (c13 +

√
2cϑ)εϕϕ

′
3

]
+
mτ

vϕ
τRτL

[
h1 + (c12 +

√
2cϑ)εϕϕ

′∗
2 + (c13 +

√
2sϑ)εϕϕ

′
3

]
,

mτ

vϕ
µLτR

[
− (1−

√
2c12sϑ +

√
2c13cϑ)ε∗ϕh1 −

√
2sϑϕ

′∗
2 +
√

2cϑϕ
′
3

]
+
mτ

vϕ
τLτR

[
h1 + (c12 +

√
2cϑ)ε∗ϕϕ

′
2 + (c13 +

√
2sϑ)ε∗ϕϕ

′∗
3

]
+
mτ

vϕ
τRτL

[
h1 + (c12 −

√
2sϑ)ε∗ϕϕ

′
2 + (c13 +

√
2cϑ)ε∗ϕϕ

′∗
3

]
,

e−i
θϕ
2
mτ

vϕ
eLτR

[
(cϑ + (1− κ)|εϕ|sϑ)h′2 + i (cϑ − (1− κ)|εϕ|sϑ) a′2

+ (sϑ − (1− κ)|εϕ|cϑ)h′3 + i (sϑ + (1− κ)|εϕ|cϑ) a′3

]
+ e−i

θϕ
2
mτ

vϕ
τRτL

[
(−sϑ + (1 + κ)|εϕ|cϑ)h′2 − i (sϑ + (1 + κ)|εϕ|cϑ) a′2

+ (cϑ + (1 + κ)|εϕ|sϑ)h′3 + i (cϑ − (1 + κ)|εϕ|sϑ) a′3

]
+ e−i

θϕ
2
mµ

vϕ
τLτR

[
(cϑ − (1− κ)|εϕ|sϑ)h′2 + i (cϑ + (1− κ)|εϕ|sϑ) a′2

+ (sϑ + (1− κ)|εϕ|cϑ)h′3 + i (sϑ − (1− κ)|εϕ|cϑ) a′3

]
. (82)

They results in expressions of Al2l1L PL +Al2l1R PR given by

ieεϕ
m2
τ

v2
ϕ

{
−(1 + κ+

√
2cϑc12 +

√
2sϑc13)

[
OeτRR(h1) +OeτLR(h1)

]
+
√

2cϑc12

[
OeτRR(ϕ2) +OeτLR(ϕ2)

]
− 2sϑcϑ(1 + κ)OeτRR(ϕ2) + 2c2

ϑ(1− κ)OeτLR(ϕ2)
]

+
√

2sϑc13

[
OeτRR(ϕ3) +OeτLR(ϕ3)

]
+ 2sϑcϑ(1 + κ)OeτRR(τ, ϕ3) + 2s2

ϑ(1− κ)OeτLR(ϕ3)
]}
,

ieε∗ϕ
m2
τ

v2
ϕ

{
−(1− κ−

√
2sϑc12 +

√
2cϑc13)

[
OµτRR(h1) +OµτLR(h1)

]
−
√

2sϑc12

[
OµτRR(ϕ2) +OµτLR(ϕ2)

]
− 2sϑcϑ(1− κ)OµτRR(ϕ2) + 2s2

ϑ(1 + κ)OµτLR(ϕ2)
]

+
√

2cϑc13

[
OµτRR(ϕ3) +OµτLR(ϕ3)

]
+ 2sϑcϑ(1− κ)OµτRR(ϕ3) + 2c2

ϑ(1 + κ)OµτLR(ϕ3)
]}
,

ie
mτ

v2
ϕ

{
e−iθϕmµc

2
ϑ

[
OeµRR(h2)−OeµRR(a2)

]
− e−iθϕmτ cϑsϑ

[
OeµLR(h2)−OeµLR(a2)

]
+e−iθϕmµs

2
ϑ

[
OeµRR(h3)−OeµRR(a3)

]
+ e−iθϕmτ cϑsϑ

[
OeµLR(h3) +OeµLR(a3)

]
+ε∗ϕmτ (c2

ϑ − s2
ϑ + κ)

[
OeµLR(h2) +OeµLR(a2)−OeµLR(h3)−OeµLR(a3)

]}
(83)

for τ− → e−γ, τ− → µ−γ and µ− → e−γ, respectively. We express Ol2l1LR (ϕ) and Ol2l1RR (ϕ) in F (ϕ),

expand mh′2
, ma′2

and mh′3
, ma′3

around mϕ′2
and mϕ′3

, respectively, and finally, we obtain Eq. (76).

Compared with Al2l1R , Al2l1L is negligibly small in all three channels. The reason is that eR, µR and

τR are singlets of A4. Each column of the charged lepton mass matrix in Eq. (22) is proportional

to one charged lepton mass. This kind of flavour structure leads to very small mixing of eR, µR and

τR (suppressed by both εϕ and charged lepton mass ratio), and thus terms such as eLτRϕi are highly

suppressed. The feature Al2l1L � Al2l1R is a feature in models where right-handed charged leptons belong

to singlet representations of the flavour symmetry. Considerable mixing among right-handed charged

leptons is possible in some other models. In that case, the contribution of Al2l1L should be included in

the decay l−1 → l−2 γ.
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