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In this paper, we present a calculation of the γ þ j process at next-to-next-to-leading order (NNLO) in
QCD and compare the resulting predictions to 8 TeV CMS data. We find good agreement with the shape of
the photon pT spectrum, particularly after the inclusion of additional electroweak corrections, but there is a
tension between the overall normalization of the theoretical prediction and the measurement. We use our
results to compute the ratio of Zð→lþl−Þ þ j to γ þ j events as a function of the vector boson transverse
momentum at NNLO, a quantity that is used to normalize Zð→νν̄Þ þ j backgrounds in searches for dark
matter and supersymmetry. Our NNLO calculation significantly reduces the theoretical uncertainty on this
ratio, thus boosting its power for future searches of new physics.
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I. INTRODUCTION

One of the primary aims of the LHC’s physics mission
is to search for beyond the standard model (BSM) physics.
A key motivation for BSM physics arises from the
cosmological observations of dark matter (DM). Thus
far, multiple observations have inferred the existence of
DM through its gravitational interactions with baryonic
matter (see Ref. [1] for a recent review); however, to date,
no observation of nongravitational interactions of DM has
been conclusively established. The search for nongravita-
tional interactions of DM is hence an ongoing and exciting
area of active research.
At the LHC the putative DM particle, or any similarly

weakly-interacting BSM state, will not be directly observed
by the LHC detectors. Instead the particle may be pair-
produced in association with jets, that are observed in
copious amounts at the LHC. If the DM particle couples
to the SM through a heavy mediator then the typical
transverse energy of the DM pair will be large, with the jets
accounting for the corresponding recoil in the transverse
plane. Thiswould allow the presence of theDMtobe inferred
froman excess of eventswith largemissing transverse energy
(MET). As a result the METþ jets channel is one of the
most exciting and rich channels in which to search for BSM
effects (for a recent overview see Ref. [2]).
Unfortunately, the standard model (SM) itself also

provides a substantial source of events with large MET.
The largest source of such events is through the production

of a Z boson in association with jets, with the subsequent
decay Z → νν̄. Since the invisible decay forbids the
reconstruction of the invariant mass of the parent Z boson,
this background cannot be easily suppressed by an explicit
mass-window cut. This presents a significant challenge for
METþ jet searches. Thankfully the visible decays of the Z
provide a window through which to study this irreducible
background [3,4]. Decays of the Z boson to light charged
leptons, Z → eþe− and Z → μþμ−, are clean experimental
signatures with excellent resolution. By studying the
impact of artificially not taking into account the visible
leptons, the effect of the transition to MET-based observ-
ables can be easily quantified. However, a secondary issue
arises when using the charged leptons as a tool to measure
the neutrino background. Since the branching ratio for
Z → lþl− is significantly smaller than for Z → νν̄ there
are considerably less Z → lþl− þ jets events than METþ
jets ones. At high vector boson transverse momentum (pV

T ),
exactly the region of most interest, the low statistics of the
Z → lþl− mode limits its utility for estimating the Z → νν̄
background.
In the region of high pV

T , one must, therefore, find an
alternate strategy for calibrating the METþ jets back-
ground. One possibility is to make use of the sample of
γ þ jet events. The photon and Z boson are similar enough
that a comparison of their production mechanisms is useful
and, since one does not have to pay the price of a branching
ratio for the photon, there is a factor of ∼100 more events
at high pT . One can, therefore, measure the ratio of
lþl− þ jets and γ þ jets events at low pT and extrapolate
into the high pZ

T region. A good agreement between theory
and data for this ratio is crucial; only once it has been
demonstrated at lower values of pV

T can the method be
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applied with confidence in the region of limited data at
higher values of pV

T .
Theoretical predictions for the Z þ j and γ þ j processes

have been available at NLO for a long time [5,6]. From
these calculations the theoretical uncertainty associated
with a truncation of the perturbative expansion at this
order may be estimated from the sensitivity of the pre-
dictions to the choice of factorization, renormalization and
(in the case of γ þ j) fragmentation scales. These are
typically in the range of 10%–20%, which has been
sufficient for testing the SM in these channels in the past.
However, as the LHC accumulates more data of this nature
[7–10], the experimental uncertainties are approaching
the level of a few percent and will only decrease further.
In order to achieve a similar level of theoretical precision it
is necessary to include additional perturbative corrections.
For the case of Z þ jet production, NNLOQCD corrections
have been extensively studied by now [11–14]. At this level
of accuracy it is also necessary to include the effect of
NLO electroweak corrections, which are also known for
this process [15–18]. For γ þ jet production, the closely-
related direct photon process has recently been computed at
NNLO in QCD [19] and the NLO EW corrections are
known as well [20].
In this paperwewill provideNNLOpredictions for γ þ jet

production, thus bringing the theoretical prediction to the
same level as for the Z þ jet process. To do so we will make
use of the direct photon calculation of Ref. [19], that has
already been implemented in the Monte Carlo code MCFM,
and explicitly demand the presence of a jet. With this
calculation in hand we will be able to address the main
aim of this paper, which is predicting the lþl− þ jet=γ þ jet
ratio with an accounting of NNLO QCD and leading EW
effects.1 To do so we will also make use of the MCFM
implementation of the NNLO corrections to Z þ jet pro-
duction [12].

II. CALCULATION

A. IR regularization

NNLO calculations require regularization of infrared
singularities that are present in phase spaces with different
numbers of final state partons. In our calculations we use
the N-jettiness slicing approach that was outlined in
Refs. [22,23], based on earlier similar applications to
top-quark decay at NNLO [24]. This method follows a
divide-and-conquer approach to regulating the singularities
in the calculation. A cut on the N-jettiness variable τN [25]
is introduced, where N is the number of jets in the Born
phase space. For the case at hand N ¼ 1. Therefore, we
introduce the following variable

τ1 ¼
XM
k¼1

min
i¼a;b;1

�
2qi · pk

Qi

�
: ð1Þ

Where fpkg defines the momenta of the parton-level
configuration, and fqig represents the set of momenta that
is obtained after application of a jet-clustering algorithm.
The scaleQi is a measure of the jet or beam hardness, which
we take asQi ¼ 2Ei. The labelsa andb refer to the twobeam
partons. Note that if τ1 ¼ 0 then the clustered momenta map
directly onto the Born phase space (i.e. a one-jet configu-
ration). Nonzero values of τ1, therefore, correspond to
configurations with a greater number of partons than the
Born phase space. We introduce a cut choice τcut1 such that
when τ1 > τcut1 the components of the calculation contain at
most single-unresolved infrared singularities. It, therefore,
corresponds to a NLO calculation with an additional parton,
albeit one which must be integrated with an extremely loose
jet requirement. The double-unresolved singularities reside
in the region τ1 < τcut1 , where the application of SCET
[26–30] allows us to write the cross section as follows,

σðτ1 < τcut1 Þ ¼
Z

H ⊗ B ⊗ B ⊗ S ⊗ J þOðτcut1 Þ: ð2Þ

That is, the cross section factorizes into a convolution of
process-independent beam (B) and jet (J ) functions, a soft
function S (which depends on the number of colored
scatterers) and a (finite) process-specific hard function H.
Expansions accurate to Oðα2sÞ, that are relevant for our
calculation, can be found in Refs. [31–35] for the beam, jet
and soft functions, respectively. The hard functions for the
processes we consider in this paper are written in terms of
the two-loop virtual matrix elements that have been calcu-
lated in Ref. [36] andRefs. [37,38] for the γ þ jet andZ þ jet
cases, respectively. Their implementation has been discussed
in Ref. [12] for Z þ j production and in Ref. [19] for direct
photon production, which shares the same hard function as
the photonþ jet case we consider here. A key consideration
within the N-jettiness slicing approach is the choice of τcut1

used for the calculation. As indicated in Eq. (2), the below-
cut factorization theorem receives power corrections that
vanish in the limit τcut1 → 0, but they can have a sizable
impact on the cross section for nonzero values. Therefore, it
is crucial that τcut1 be taken as small as possible, to minimize
the impact of these corrections.2 A general discussion of the
process-specific parts of the direct photon and Z þ jet
calculations in MCFM was presented in Refs [12,19]. For
brevity, we will not reproduce that discussion here, but refer
the interested reader to the original works for further details.
Instead, in this paper we will focus on the validation of both
calculations for the specific phase space selection criteria
employed by the CMS analysis that we will follow.

1Our work, thus, expands upon a recent comparison of
combined NLO QCDþ EW effects and CMS data that was
performed as part of a Les Houches study [21].

2For recent work on reducing the dependence on power
corrections, see Refs. [39,40].
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B. Parameter choices

The usualMCFMEWparameter choice is theGμ scheme,
in which the values ofMW ,MZ and Gμ (the Fermi constant)
are taken as inputs. In this scheme the electromagnetic
coupling is then defined, at leading order, as

αGμ
¼ GμM2

W

ffiffiffi
2

p

π

�
1 −

M2
W

M2
Z

�
ð3Þ

This is an appropriate choice for the description of Z þ j
production, a process that is clearly sensitive to the electro-
weak scale. With the following choice of parameters,

MZ ¼ 91.1876 GeV; ΓZ ¼ 2.4952 GeV;

MW ¼ 80.385 GeV; sin2θw ¼ 0.222897; ð4Þ

the relation in Eq. (3) leads to a value of the electromagentic
coupling,

αjZþj ¼ αGμ
¼ 1=132.232: ð5Þ

For the calculation of γ þ j production, a process that
involves a real photon in the final state, it is not clear that
such a choice is the correct one.3 For on-shell photons a
natural alternative is providedby theαð0Þ scheme inwhich the
coupling is given by the fine-structure constant. Since we
will later include the effects of NLO electroweak contribu-
tions for the γ þ j process that have been computed in this
scheme [20], we choose

αjγþj ¼ αð0Þ ¼ 1=137.036: ð6Þ

We will choose both renormalization (μR) and factori-
zation (μF) scales equal to HT , which is defined event-by-
event to be the scalar sum of the transverse momenta of all
partons, leptons and photons present. When studying the
theoretical uncertainty associated with this choice of scale,
we consider a six-point variation corresponding to,

μR ¼ rHT; μF ¼ fHT; ð7Þ

with r, f ∈ ð1
2
; 1; 2Þ and rf ≠ 1. We use the NNLO CT14

set of parton distribution functions [42] for all predictions,
where αsðMZÞ ¼ 0.118 is taken from the PDF set. Studies
of the associated PDF uncertainty are performed using the
additional 56 eigenvector sets provided through LHAPDF6
[43] and are quoted at the 68% confidence level.

C. Event selection

Our phase space selection criteria are based on those
used in a recent CMS analysis of 8 TeV data [44]. For the

photon plus jets sample we require that the photon satisfies
the following cuts:

pγ
T > 100 GeV; jηγj < 1.4: ð8Þ

Both experimentally and theoretically, photons require
isolation from hadronic activity. On the experimental side,
this reduces unwanted backgrounds from pion decays
and photons that arise from fragmentation processes.
Theoretically, the calculation is simplified if smooth cone
isolation [45] is employed. In that case, one requires that
the photon satisfies

X
phad
T ðRÞ < ϵγp

γ
T

�
1 − cosR
1 − cosR0

�
n ∀ R < R0: ð9Þ

This requirement constrains the sum of the hadronic energy
inside a cone of radius R, for all separations R that are
smaller than a chosen cone size, R0. Cones are defined in
terms of the R variable,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δη2 þ Δϕ2

q
; ð10Þ

where η and ϕ are the pseudorapidity and azimuthal
angle of the particle, respectively. Note that arbitrarily soft
radiation will always pass the condition, but collinear
ðR → 0Þ radiation is forbidden. This removes the collinear
splittings associated with fragmentation functions, at the
cost of no longer reproducing the form of isolation applied
in experimental analyses. In this paper we set ϵγ ¼ 0.025,
R0 ¼ 0.4 and n ¼ 2 in Eq. (9). This matches the parameters
employed in a similar analysis by the BlackHat collabo-
ration [3].4 At NLO we can explicitly quantify the differ-
ence between following this procedure and performing
a calculation that includes the effects of fragmentation.
We shall see later that this difference is small, around a
percent in the photon pT spectrum.
In addition to the photon requirements described above,

we require the presence of at least one jet in the event. Jets
are defined using the anti-kT [47] algorithm with R ¼ 0.5
and satisfy

pj
T > 30 GeV; jηjj < 2.4: ð11Þ

Additionally, we require that photons and jets are separated
by Rγj > 0.5.
For the Z þ j sample we require that the charged leptons

are in the following fiducial volume,

3See for instance the discussion in Sec. IV. E. 2 of Ref. [41].

4We note that these parameters are slightly different to those
used in previous MCFM studies of photonic processes at NNLO
[19,46]. We have compared with the alternative choice ϵγ ¼ 0.1
and found that the cross section only changes by around 1%.
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pl
T > 20 GeV; jηlj < 2.4: ð12Þ

We require that the lepton pair resides in an invariant mass
window close to the Z mass, 71 < mll < 111 GeV, and
that the leptons are isolated from jets, Rlj > 0.5. We also
require that pZ

T > 100 GeV and jyZj < 1.4 to mimic the
photon selection as closely as possible.

D. τcut1 dependence

Before providing NNLO predictions for γ þ j (and
Z þ j) production we first validate our calculation for
the phase space cuts described in the previous section.
Since the N-jettiness slicing method is sensitive to power
corrections it is crucial to validate the calculation for a new
phase space selection. At NNLO, the cross section can be
written as

σNNLO ¼ σNLO þ ΔσNNLO; ð13Þ

where σNLO is the NLO cross section andΔσNNLO represents
the correction that arises at NNLO. In MCFM, σNLO is
calculated using a traditional Catani-Seymour dipole sub-
traction method [48] and only ΔσNNLO is computed using
N-jettiness slicing. Therefore, only ΔσNNLO has a depend-
enceon τcut1 , a sensitivity that is indicated inFig. 1. This figure
shows the ratio ΔσNNLOðτcut1 Þ=ΔσNNLOðτcut1 ¼ 0.06 GeVÞ,
for both of the processes considered in this paper. Since the
cuts have been chosen to emphasize the similarity between
the twoprocesseswe see that, as expected, the dependenceon
τcut1 is also comparable. Below τcut1 ¼ 0.1 GeV the predic-
tions are insensitive to the choice of τcut1 within Monte Carlo
uncertainties which, in this region, are around 5%.5 We will
see that ΔσNNLO=σNNLO is approximately 5%–10% for both
processes, so that the resulting uncertainty on σNNLO due to
power corrections and Monte Carlo statistics is below 1%.
This is perfectly acceptable for phenomenological purposes

and, given the results inFig. 1,we choose τcut1 ¼ 0.08 GeV to
compute the remainder of the results in this paper.

E. Electroweak corrections

Since data sets at the LHC now permit the study of
γ þ jet and Z þ jet events in which the photon or Z boson
carries a transverse momentum approaching 1 TeV, it is
imperative to also account for the effect of electroweak
corrections in theoretical predictions for these processes.
Although these are generically expected to be rather small,
at such high transverse momenta they give rise to Sudakov-
enhanced corrections of the order of 10% or more. These
primarily arise from the contribution of loop diagrams in
which a virtual W or Z boson is exchanged, resulting in
leading logarithms of the form log2ðMV=pTÞ, whose effects
on these processes have been known for some time
[15,16,20]. More recently these effects have also been
computed in the framework of SCET [49,50]. We note that
the effect of photon radiation from leptons is not captured
in any of these calculations.
In this paper we shall make use of the results of

Refs. [16,20] in order to account for electroweak effects.
The impact of the electroweak corrections can be captured
by expressing their effect on the cross section (σEW) as a
fraction of the leading-order result,

ΔEW ¼ σEW
σLO

: ð14Þ

We will treat the EW corrections as factorizing fully with
respect to the QCD ones and simply multiply our NNLO
QCD predictions by 1þ ΔEW. The calculation of σEW is
performed using expressions that are valid in the high-
energy limit and are NNLL accurate; these are specified in
Sec. III. E of Ref. [16] and Sec. III. C of Ref. [20]. We have
checked that this calculation agrees well with the results
presented in Refs. [49,50], up to numerical differences that
are negligible for γ þ j production and are less than 1%
for Z þ j.

III. DIFFERENTIAL PREDICTIONS FOR γ + j

Before arriving at the primary interest of this paper, an
analysis of the Z þ j=γ þ j ratio at NNLO, we first
consider the γ þ j process on its own. As discussed in
the introduction, the Z þ j process has been extensively
studied at NNLO, including detailed phenomenological
analyses [11–14]. No such studies exist for the γ þ j
process at this order and a careful analysis is a prerequisite
to studying the ratio in detail. Therefore, in this section, we
compare the predictions of MCFM for γ þ j production to
CMS data collected at 8 TeV. The fundamental quantity of
interest is the photon transverse momentum spectrum,
which we present in Fig. 2. The correction from NLO to
NNLO is around 10% and the NNLO prediction lies just at
the very top of the scale variation band obtained at NLO.

FIG. 1. The dependence of the NNLO coefficient on the
parameter τcut1 for the processes considered in this paper. The
cuts of the CMS analysis [44] have been applied. To aid visibility,
the values of τcut1 for the γ þ j calculation have been offset
slightly.

5We note that the MC uncertainties are all rescaled by the
central value at τcut1 ¼ 0.06 GeV such that there is no reduction in
uncertainties due to the fact that the plotted quantity is a ratio.
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The NNLO=NLO K-factor is reasonably flat, with a slight
increase at higher pT. The scale variation at NNLO is
significantly reduced compared to that obtained at NLO,
with a typical variation of 2%–3% compared to 8%–10%
at NLO. Although the NNLO prediction lies closer to the
CMS data than the NLO one, both predictions are con-
sistently lower than the experimental measurements.
We now include the effect of electroweak corrections as

discussed above, by rescaling the complete NNLO result by
the change observed in the LO prediction when including
one-loop electroweak effects. We denote this combination
by the shorthand NNLOð1þ ΔEWÞ. Figure 3 shows the
ratio of data and NNLOð1þ ΔEWÞ to the pure NNLO
prediction for the photon pT spectrum. The upper panel
shows the raw ratio, while the lower panel normalizes all
predictions to their central value in thepγ

T ∈ ½100; 111� GeV
bin, allowing us to compare the shape of the predictions.
We note that this procedure results in an overestimate of the
errors on the CMS data, since a normalized distribution
should not be sensitive to the overall luminosity. However,
for the purposes of this comparison this overestimate can
be tolerated. However, a full analysis of the shape of the
distribution measured by the LHC collaborations and a
comparison to its theory counterparts is clearly very desir-
able. The upper panel shows that, by including the EW
corrections, the apparent agreement between theory and data

gets worse. However, the lower panel shows that the shape of
the data and theory predictions are actually in very good
agreement.
We have so far only considered the theoretical uncer-

tainty originating from the choice of scale and demon-
strated that it is significantly reduced at NNLO, by a factor
of two. However there are other origins of theoretical
uncertainty, beyond scale variation, that affect our predic-
tion. We will now consider two other sources of theoretical
uncertainty: the choice of PDFs and the form of the photon
isolation. These may primarily affect the normalization of
the theoretical prediction, or may induce changes in the
shape of the distributions. For PDF uncertainties we will
consider the 68% confidence level uncertainties provided
by LHAPDF6 [43] where, for efficiency, these uncertainties
are computed from the NLO prediction (using NNLO
CT14 PDFs). We have checked that the difference in PDF
uncertainty obtained from LO and NLO calculations using
this set is very small, so that we are confident that this
provides a reliable estimate of the PDF uncertainty for our
NNLO prediction. In order to quantify the effect of the
difference between our isolation prescription and that of
the experimental analysis, we repeat our NLO calculation
using the parton-level version of the experimental isolation
procedure:

Ehad
T < 5 GeV ∀ R < R0: ð15Þ

Here, as in the smooth cone version, R0 ¼ 0.4 and our
calculation employs the GdRG fragmentation functions
[51]. Since the difference between the methods of isolating
the photon could be affected differently at NNLO we

FIG. 2. The photon pT spectrum for γ þ j at the 8 TeV LHC, at
various orders in perturbation theory, compared to CMS data
from Ref. [44]. The lower panel shows the ratio of the data and
the NLO prediction to the NNLO one. The bands indicate the
scale uncertainty on the NLO and NNLO predictions.

FIG. 3. The ratio of the CMS data from Ref. [44] to the NNLO
prediction (with and without including EWeffects) for the photon
pT spectrum. The lower panel normalizes this ratio to the value of
the ratio in the [100, 111] bin.
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should provide a conservative estimate of this effect.
We, therefore, estimate the isolation uncertainty by taking
the difference between the two isolation procedures, multi-
plying by an additional factor of two, and allowing excur-
sions from our central result by this amount on either side.
Our results for the uncertainty in the theoretical prediction

for the photon pT spectrum are presented in Fig. 4. The
uncertainties are normalized to the central value of the
combined NNLO QCDþ NLOEW prediction. We observe
that at NNLO the scale variation and PDF uncertainty are
roughly equal and correspond to a few percent uncertainty.
The PDF uncertainty grows more rapidly as a function of
photon transverse momentum and is largest in the highest
bins (∼5%). The uncertainty stemming from the isolation
procedure is at the level of 2% for lower values of pγ

T but is
significantly smaller in the tail. This is in line with previous
studies of the difference between smooth cone isolation and
the forms used in experimental analyses [19,52]. The total
uncertainty from scales, PDFs and isolation, obtained by
adding the individual uncertainties linearly, ranges from
around 4% at low pγ

T to 9% in the highest bins. Clearly the
large PDFuncertainty can be reduced in the future [53,54], by
taking advantage of calculations such as this one in tandem
with the even bigger γ þ j data sets being accumulated at
the LHC.
The tension that remains between the data and our

theoretical prediction, displayed in the lower panel of
Fig. 4, could have a number of sources. Although we have

endeavored to be thorough, the accounting of theoretical
uncertainty could yet be deficient. On the experimental side,
the normalization of the data could be changed by a host of
factors, including a reduction in the overall luminosity, a
change in the photon efficiency, or an issuewith background
subtraction.6

A further interesting observable to consider is the ratio
of inclusive γ þ 2j to γ þ j production as a function of the
photon transverse momentum. Fixed-order calculations of
this ratio can be broken down into contributions proportional
to the relevant powers of the strong coupling as follows,

R2=1ðpγ
TÞ ¼

α2s
Pn2

k¼0 α
k
sdσ

ðkÞ
γþ2j=dp

γ
T

αs
Pn1

k¼0 α
k
sdσ

ðkÞ
γþj=dp

γ
T

: ð16Þ

In this expression we have made clear that contributions to
the denominator start with one power of αs and those to the
numerator with two. An inclusive calculation of γ þ j
production, such as the one we are considering in this paper,
naturally contains terms in the numerator up to n2 ¼ n1 − 1.
Our NNLO calculation corresponds to n1 ¼ 2 while the
equivalent result from our NLO calculation is given by
n1 ¼ 1. We call these predictions RNNLO

2=1 and RNLO
2=1 , respec-

tively, and compare them to the CMS measurement of the
same ratio in Fig. 5. RNLO

2=1 ðpγ
TÞ does a poor job of describing

the data because it is a LO calculation for this observable and
thus bears all the hallmarks of such a calculation. This is not
only reflected by a general underestimation of the data, but
also by the rather large scale dependence. The corrections to
this ratiowhenmoving toRNNLO

2=1 ðpγ
TÞ are large, around 30%.

The agreement with data is significantly improved and the
scale uncertainty is reduced by a factor of two.
However, from Eq. (16), it is clear that neither of the

predictions presented so far corresponds to a strict expan-
sion of the ratio to a given power of the strong coupling,
due to the fact that the denominator contains an additional
term of one order higher than the numerator. Instead, we
can define alternative predictions, corresponding to
n2 ¼ n1, with RNLO⋆

2=1 given by n1 ¼ n2 ¼ 1. Note that the

alternative definition RNLO⋆
2=1 can be obtained by simply

taking the ratio of two NLO calculations of γ þ 2j and
γ þ j production. This is the procedure already followed by
CMS [44] using the results of Ref. [3]. Since the NNLO
corrections to γ þ 2j production are unknown, and likely
to remain so for some time, it is useful to estimate the
potential impact that they could have on the theoretical
prediction for R2=1. We do so by postulating NNLO
corrections given by,

FIG. 4. A summary of the theoretical uncertainties discussed in
this paper for the photon transverse momentum spectrum. In
order from the top, uncertainties from: scales, PDFs, isolation and
in the total, as described in the main text. The total uncertainty is
obtained by combining linearly those from the sources above.

6We note that the CMS paper [44] indicates a flat 2.6%
luminosity uncertainty over the whole pγ

T range, which is far
below the level of disagreement indicated here.

CAMPBELL, ELLIS, and WILLIAMS PHYSICAL REVIEW D 96, 014037 (2017)

014037-6



dσð2;approxÞγþ2j =dpγ
T ¼ � ½dσð1Þγþ2j=dp

γ
T �2

dσð0Þγþ2j=dp
γ
T

; ð17Þ

where, as indicated, the corrections can be of either sign.
In this way, the NNLO corrections are of the same size
relative to NLO as the NLO ones are to LO. A comparison
of the results for RNLO⋆

2=1 and the two bounding estimates of

RNNLO⋆
2=1 , with both our calculation of RNNLO

2=1 and the CMS
data, is shown in Fig. 6. We see that, as observed already in
Ref. [44], the prediction RNLO⋆

2=1 is in good agreement with
the data for pγ

T < 200 GeV but overshoots it by around
15% at high pγ

T . The range of the estimate RNNLO⋆
2=1 brackets

both the theory predictions RNLO⋆
2=1 and RNNLO

2=1 , as well as the
data, and is of a similar size as the scale uncertainty on
RNNLO
2=1 shown in Fig. 5. In addition, the data suggest that

NNLO corrections to γ þ 2j production might be expected
to be small at high pγ

T . In summary, RNNLO
2=1 provides a fairly

good description of the data, and we believe that the
associated scale uncertainty provides a plausible envelope
for the results of a complete NNLO calculation of this
ratio (RNNLO�

2=1 ).

IV. THE Z=γ RATIO AT NNLO

We are now able to address the principal aim of this
paper, which is improving the theoretical prediction for the
ratio of Z þ j and γ þ j production. We consider the case
where the Z-boson decays to leptons and the two processes
are studied in a similar kinematic regime by application of
the cuts described in Sec. II C. Specifically, we consider
predictions for the quantity,

RO
Z=γðpTÞ ¼

dσOl−lþþjþX=dpT

dσOγþjþX=dpT
; ð18Þ

where pT represents the transverse momentum of the Z
boson or photon. A simple expectation for the behaviour of
this ratio can be obtained by considering only the effect of
the different Z and photon couplings, together with the
effect of the PDFs, in the LO cross section. This neglects
the effect of the Z-boson mass, which should be irrelevant
at large pZ

T , as well as the impact of higher-order correc-
tions. The ratio is then estimated to be [4],

RZ=γ ¼
�
Ru þ

Rd − Ru

1þ Q2
u

Q2
d

hui
hdi

�
½BrðZ → l−lþÞ ×A�; ð19Þ

where Rq is the relevant ratio of quark-boson couplings
squared,

Rq ¼
v2q þ a2q

4sin2θwcos2θwQ2
q
; ð20Þ

and hui (hdi) is the typical up (down) quark PDF at the
value of x probed by a given pV

T , i.e. hxi ¼ 2pV
T=

ffiffiffi
s

p
.

The branching ratio and acceptance factor (A) account for the
Z-boson decay and cuts on the leptons. At high transverse
momentum, pV

T ≫ MZ, x → 1 and hui=hdi → ∞, so that
RZ=γ should slowly approach an asymptotic value fromabove
[3,4]. This argument thus predicts a plateau at high transverse
momentum, which we will observe shortly in our full
prediction. We stress that in our calculation this ratio is
not computed for on-shell Z bosons but includes the decay
into leptons, off-shell effects and the (small) contribution
from virtual photon exchange. Nevertheless, we will refer to
this quantity as RZ=γ , or the Z=γ ratio, as a matter of
convenience.

FIG. 6. The quantity RNLO�
2=1 ðpγ

TÞ, a range of estimates for
RNNLO�
2=1 ðpγ

TÞ computed as discussed in the text, and the CMS
measurements [44]. All quantities are normalized to the theo-
retical prediction RNNLO

2=1 ðpγ
TÞ.

FIG. 5. The quantities RNLO
2=1 ðpγ

TÞ and RNNLO
2=1 ðpγ

TÞ compared to
CMS data from Ref. [44]. The bands indicate the scale un-
certainty on the theoretical predictions.
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When computing this ratio a subtlety arises when trying
to provide an uncertainty estimate based on scale variation.
If the variation is correlated, i.e. one computes the scale
uncertainty using the same scale in both the numerator and
denominator of Eq. (18), then one obtains essentially no
uncertainty on RZ=γðpTÞ, even at NLO. We, therefore,
discard this choice as a useful measure of the theoretical
uncertainty. The alternative that we use instead is to consider
variations of the scale in the numerator and denominator
separately,

dσO;fr;fg
l−lþþjþX=dpT

dσO;r¼f¼1
γþjþX =dpT

and
dσO;r¼f¼1

l−lþþjþX=dpT

dσO;fr;fg
γþjþX =dpT

; ð21Þ

where fr; fg represents the six-point scale variation indi-
cated in Eq. (7). The uncertainty is then defined by the
extremal values of either of these two ratios. In practice, since
the scale-dependence of the two processes is so similar, this
procedure is almost identical to defining the uncertainty in
terms of the variation of either quantity in Eq. (21) alone.
In contrast to the correlated variation, this approach results in
scale uncertainties that, order-by-order, overlap both the data
and the central result of the next-higher order.Moreover,with
this procedure, at NNLO the resulting uncertainty band is of
a size typical of a NNLO prediction and still smaller than the
experimental uncertainties.
Our results for the ratio for the pureQCDNLOandNNLO

calculation are shown in Fig. 7. Themost significant effect of
the NNLO calculation is to decrease the ratio, particularly at
lower values of pT . We have already seen, in Fig. 3, that the
shape of the pγ

T spectrum is significantly improved by the
inclusion of electroweak effects. We, therefore, extend our
prediction for this ratio by taking such corrections into
account, rescaling the individual pT spectra by ð1þ ΔV

EWÞ
as discussed previously. Since the electroweak corrections do
not affect theZ þ j and γ þ j processes in the sameway [20],
this leads to amodification of the prediction for this ratio that
is shown in Fig. 8. Although the effects are minor in the low-
pT region, as expected, they become more important in the
highest bins. There they decrease the ratio by as much as 7%
and thereby improve the agreement with the CMS data.
We now consider a full analysis of the theoretical

uncertainties associated with the calculation of RNNLOþEW
Z=γ ,

using the same procedure as discussed earlier for the photon
pT spectrum. Our results are presented in Fig. 9 where, as
before, the uncertainties are normalized to the central value of
the combinedNNLOQCDþ EWprediction.We see that the
PDF uncertainties essentially cancel, as one might expect
from the nature of the ratio. The dominant uncertainty results
from scale variation, especially at high pV

T . The total
uncertainty is only around 4% in the lowest bins and is
slightly higher, approximately 6%, at high pV

T .
As discussed earlier, the asymptotic behavior of our

prediction for RZ=γ is particularly interesting. In order to
quantify this we follow the CMS analysis [44] and define a
ratio in which the high-pT bins are integrated over

FIG. 7. The quantities RNLO
Z=γ ðpγ

TÞ and RNNLO
Z=γ ðpγ

TÞ, defined
through Eq. (18), compared to CMS data from Ref. [44]. The
bands indicate the scale uncertainty on the theoretical predictions.

FIG. 8. The quantity RZ=γðpγ
TÞ defined in Eq. (18), computed at

NNLO and at NNLO including EW effects, compared to CMS
data from Ref. [44]. The bands indicate the scale uncertainty on
the theoretical predictions.
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Rdilep ¼
σl−lþþjþXðpV

T > 314 GeVÞ
σγþjþXðpV

T > 314 GeVÞ : ð22Þ

The experimental measurement of this quantity by CMS is

RCMS
dilep ¼ 0.0322� 0.0008ðstatÞ � 0.0020ðsystÞ:

Our best theoretical prediction is provided by the
NNLOþ EW prediction shown in Fig. 8, with accompa-
nying uncertainties illustrated in Fig. 9. We find

RNNLOþEW
dilep ð8 TeVÞ
¼ 0.0359þ0.0012

−0.0013ðscaleÞ þ0.0004
−0.0004ðPDFÞ þ0.0006

−0.0006ðisoÞ:
Given the level of the residual uncertainties, this result is in
reasonable agreement with the measured value, RCMS

dilep .
The CMS collaboration has not yet performed a similar

analysis of γ þ j production at 13 TeV. Since such an
undertaking will likely involve a change in the cuts that are
applied, or at least in the binning of the final data, for now
we refrain from performing a detailed study of individual
distributions at this energy. However it is especially
important to predict the ratio RZ=γðpTÞ and, in particular,
its value in the high-pT tail. For this reason we repeat our
above analysis at 13 TeV, with no cuts or input parameters
altered apart from the LHC operating energy.
Our prediction for RZ=γðpTÞ at 13 TeV is shown in

Fig. 10, where we compare predictions at NLO, NNLO and
when combining NNLO QCD and EW effects. As before
(cf. Figs. 7 and 8), we see that the ratio is very similar in all

cases, but that the NNLO prediction has a substantially
smaller uncertainty and the inclusion of EW effects lowers
the ratio at high pT . At 13 TeV, we are further from the
large-x region, for the same range of pγ

T , so that the hui=hdi
ratio in Eq. (19) is smaller. We thus expect that the value of
Rdilep is higher at 13 TeV than at 8 TeV, a supposition that is
borne out by our explicit calculations. We find, for the
asymptotic ratio defined in Eq. (22),

RNNLOþEW
dilep ð13 TeVÞ
¼ 0.0387þ0.0013

−0.0011ðscaleÞ þ0.0004
−0.0004ðPDFÞ þ0.0006

−0.0006ðisoÞ:

FIG. 9. A summary of the theoretical uncertainties discussed in
this paper for the Z=γ ratio, RNNLOþEW

Z=γ . In order from the top,
uncertainties from: scales, PDFs, isolation and in the total, as
described in the main text. The total uncertainty is obtained by
combining linearly those from the sources above.

FIG. 10. The quantities RNLO
Z=γ ðpγ

TÞ, RNNLO
Z=γ ðpγ

TÞ and RNNLOþEW
Z=γ

ðpγ
TÞ, defined through Eq. (18), for the LHC operating at 13 TeV.

The bands indicate the scale uncertainty on the theoretical
predictions.

FIG. 11. A summary of predictions for, and measurements of
Rdilep—defined in Eq. (22)—at 8 and 13 TeV.
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Weconclude this sectionwith a summary of the theoretical
predictions for Rdilep, computed at various orders of pertur-
bation theory, shown in Fig. 11. The improvement in the
precision of the theoretical predictionwhen going fromNLO
to NNLO QCD is clear. It also emphasizes that, after the
inclusion of electroweak effects, there is better agreement
between the best theoretical prediction and the measurement
of CMS [44]. However some tension still remains in the
overall normalization. This could perhaps be relieved some-
what by the use of an alternative electroweak scheme in
which the coupling in the γ þ j process is evaluated at a
higher scale rather than using αð0Þ. This would require
proper inclusion of the appropriate counterterms in the one-
loop EW calculation and such a study is beyond the scope of
this work.

V. CONCLUSIONS

In this paper,wehave presented differential predictions for
γ þ j production at NNLO and compared our predictions to
data taken by the CMS experiment at 8 TeV. We have seen
that NNLO predictions provide a very good description of
the shape of the CMS data, with the inclusion of EWeffects

improving the agreement further still. For thepγ
T distribution,

there is an apparent disagreement between the normalization
of the theoretical prediction and the observed data, but again
the shapes of the theory and data are very similar. We have
used our results to compute several other quantities, notably
the ratio of Z þ j and γ þ j production as a function of the
boson transverse momentum, which is useful for estimating
backgrounds to BSM searches. The agreement between the
theoretical prediction and data for this ratio is satisfactory.
Finally, we have made additional predictions at NNLO
accuracy for future studies of theZ þ j=γ þ j ratio at 13TeV.
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APPENDIX: NUMERICAL RESULTS

Our numerical results for the Z þ j to γ þ j ratio studied in this paper, RZ=γ , are presented in Table I (8 TeV) and Table II
(13 TeV). For each bin of pV

T , we show the value of the ratio computed to NLO and NNLO accuracy, the associated
uncertainty due to scale variation as described in the text, and the EW rescaling factor.

TABLE I. The values of RNLO
Z=γ and RNNLO

Z=γ at 8 TeV (rescaled by a factor of 100), together with the additional

correction that corresponds to including EW effects in both processes. Quoted ranges correspond to the variation in
the central scale by the six-point method described in the text.

pV
T [GeV] RNLO

Z=γ × 100 RNNLO
Z=γ × 100

1þΔZ
EW

1þΔγ
EW

100–111 1.66þ0.23
−0.21 1.59þ0.05

−0.04 0.99

111–123 1.87þ0.27
−0.24 1.81þ0.06

−0.05 0.99

123–137 2.09þ0.31
−0.28 2.01þ0.06

−0.06 0.99

137–152 2.31þ0.35
−0.32 2.23þ0.07

−0.07 0.99

152–168 2.53þ0.4
−0.36 2.45þ0.09

−0.08 0.98

168–187 2.74þ0.44
−0.39 2.67þ0.10

−0.10 0.98

187–207 2.94þ0.49
−0.43 2.85þ0.12

−0.12 0.98

207–230 3.13þ0.53
−0.47 3.05þ0.12

−0.12 0.97

230–255 3.30þ0.58
−0.5 3.2þ0.13

−0.13 0.97

255–283 3.46þ0.62
−0.54 3.41þ0.16

−0.16 0.96

283–314 3.60þ0.67
−0.57 3.46þ0.13

−0.12 0.96

314–348 3.68þ0.7
−0.6 3.65þ0.18

−0.17 0.95

348–386 3.82þ0.76
−0.64 3.84þ0.25

−0.22 0.94

386–429 3.88þ0.77
−0.65 4.01þ0.29

−0.26 0.94

429–476 4.00þ0.83
−0.69 3.95þ0.25

−0.24 0.93

476–528 4.12þ0.89
−0.73 3.94þ0.27

−0.26 0.92

528–586 3.95þ0.86
−0.71 3.92þ0.26

−0.25 0.91

586–800 4.11þ0.96
−0.78 3.98þ0.24

−0.25 0.90
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