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Scalar dark energy fields that couple to the standard model can give rise to observable signatures at the
LHC. In this work, we show that tt̄þmissing energy and monojet searches are suitable probes in the limit
where the dark energy scalar is stable on collider distances. We discuss the prospects of distinguishing the
dark energy character of new physics signals from dark matter signatures and the possibility of probing the
self-interactions of the dark energy sector.
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I. INTRODUCTION

The expansion of the Universe is currently accelerating,
and yet we have no compelling explanation of why this is
happening unless we are prepared to accept the extraor-
dinary degree of fine-tuning associated with the intro-
duction of a cosmological constant. Attempts to further
our understanding typically introduce new scalar fields
either explicitly as quintessence, or implicitly through a
modification of the gravitational sector [1–3]. It is,
therefore, crucial for cosmology to understand what
theoretical properties these scalar fields could have and
to constrain them experimentally while remaining agnos-
tic about the complete solution of the cosmological
constant problem and the source of the acceleration of
the expansion of the Universe.
A lot of attention has been recently focused on the

Horndeski theories, which are the most general theories
describing one scalar field coupled to gravity [4], that have
second-order equations of motion. These theories were first
written down by Horndeski and later independently redis-
covered by Deffayet, Gao, Steer and Zahariade [5].
Insisting on second-order equations of motion guarantees
the absence of ghost degrees of freedom, although it has
also been realized that, if additional constraints are present,
this condition can be relaxed and the theories extended
to the so-called “beyond-Horndeski” theories [6]. The
Horndeski theories provide a complete description of the
possible effects of a new scalar degree of freedom uni-
formly coupled to matter, and constraining these theories is
an important target for upcoming large scale cosmological
surveys including Euclid [7].

Such a dark energy scalar field may arise as part of a
solution to the cosmological constant problem; the question
of why the vacuum fluctuations of standard model fields do
not generate a large effective cosmological constant. Any
solution to this problem must therefore interact to both the
gravitational and matter fields. Therefore, bar any other-
wise compelling reason, we expect that the dark energy
scalar will couple to matter [3]. This is potentially prob-
lematic, because light scalar fields coupled to matter
mediate fifth forces. The stringent experimental constraints
on the existence of such forces can be avoided, either by
imposing a shift symmetry which forbids Yukawa type
interactions with the scalar, or by making the theory
nonlinear and thereby allowing the properties of the fifth
force to vary depending on the environment, an effect
known as screening [3].
The energy scales relevant to dark energy are the

(reduced) Planck mass MP ¼ 2.4 × 1018 GeV controlling
the strength of gravitational effects, and the Hubble scale
today H0 ¼ 1.5 × 10−42 GeV which sets the coherence
scale for dark energy effects. The vast hierarchy between
these two scales is the source of the cosmological constant
problem, which we do not address here, but it also allows us
to build a vast array of intermediate scales by taking
different combinations of the Planck mass and the
Hubble scale. For example, Dvali-Gabadadze-Porrati
(DGP) and Galileon models have higher mass dimension
scalar operators suppressed by the scale ðMPH2

0Þ1=3 ∼
10−22 GeV [8–10]. The invention and widespread adoption
of screening mechanisms to dynamically suppress fifth
forces in intra-solar-system searches [3] also means that
experimental bounds can be met without the energy scale
controlling the strength of the coupling of the scalar to
matter being forced to lie above the Planck scale.
As a result we should ask whether it is possible to detect

the Horndeski model of dark energy on terrestrial scales.
Constraints from laboratory experiments will provide
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important information, complementary to that obtained
from cosmological surveys, and allows us to test theories
of dark energy over the widest possible range of distance
and energy scales.
The LHC probes our understanding of physics at

unprecedented energies and under controlled and repro-
ducible conditions. A large variety of particles, including
ones with heavy masses, are being produced beyond
threshold, resulting in potentially sizeable interactions of
new scalars that couple to standard model (SM) particles
via the energy-momentum tensor. In doing so, the LHC
creates a controlled and nonstatic environment in the sense
that large momentum transfers of physical systems are
probed with sufficient accuracy and statistics. Since inter-
actions of a scalar dark energy candidate with the SM sector
and itself often involve derivative couplings, we can expect
the high momentum transfer events at the LHC to provide
an excellent strategy to constrain such realizations of dark
energy.
In this work wewill survey the modified phenomenology

of LHC processes that are particularly motivated as probes
of dark energy interactions. Before we discuss these
processes in detail in Sec. III A, to make this work self-
contained, we survey effective dark energy models in
Sec. II to introduce the relevant dark energy effective
theory (EFT) interactions. Although different in fundamen-
tal aspects, dark energy phenomenology at the LHC shares
certain aspects with searches for dark matter at colliders.
The potential to pin down the dark energy character
of a potential new physics signal due to different a priori
phenomenology and the expected nonlinear self-
interactions will be discussed in Secs. III B and III C.
We give our conclusions and an outlook in Sec. IV.

II. EFFECTIVE MODELS FOR DARK ENERGY

We consider the effective role that dark energy could
play in collider experiments. Our starting point is a dark
energy scalar field ϕ with a comparably small mass
compared to particle physics scales. We will differentiate
in what follows between theories which respect the shift
symmetry ϕ → ϕþ c, and those that break it.
We assume that ϕ couples to matter universally, in such a

way that matter fields move on geodesics of the Jordan
frame metric

gμν ¼ Aðϕ; XÞ~gμν þ Bðϕ; XÞ∂μϕ∂νϕ ð2:1Þ

where X ¼ 1
2
ημν∂μϕ∂νϕ. We assume that in the collider

environment the Einstein frame metric is simply the
Minkowski metric ~gμν ¼ ημν, which is certainly a reason-
able assumption on earth where Newton’s potential is very
small. We focus on the generic action of a massive scalar
field coupled to matter

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−~g

p �
1

2
~gμν∂μϕ∂νϕ −

m2
ϕϕ

2

2

�
þ Smðψ i; gμνÞ

ð2:2Þ

where the ψ i’s are matter fields and ~g ¼ detð~gμνÞ. Matter
fields are minimally coupled to the scalar ϕ and move on
geodesics of the metric gμν. We will use this generic action
and expand in powers of the derivatives of ϕ. As
Tμν ¼ ð−2= ffiffiffiffiffiffi−gp Þδð ffiffiffiffiffiffi−gp

LmÞ=δgμν, where Lm is the matter
Lagrangian, relating gμν and ϕ through Eq. (2.1) leads to
interaction terms involving the energy momentum tensor of
matter at leading order, and higher-order tensors which are
all functions of the matter fields at higher order in the
expansion. In the following we will make explicit some of
the terms which generically appear in this expansion.
Expanding the coupling functions A and B in powers of

∂μϕ∂νϕ gives a tower of characteristic interactions. In
particular we can write

Aðϕ; XÞ ¼
X
n

anðϕ=MÞ
M4n Xn ð2:3Þ

and

Bðϕ; XÞ ¼
X
n

bnðϕ=MÞ
M4nþ4

Xn ð2:4Þ

where n is a positive integer, and an and bn are dimension-
less functions that become constant and independent of ϕ
when the shift symmetry is imposed.

A. Shift symmetric theories

1. Coupling to matter

Assuming that the model is shift symmetric under ϕ →
ϕþ c the lowest-order interactions between the scalar and
the standard model are through the Lagrangian terms

L1 ¼
∂μϕ∂μϕ

M4
Tν

ν ð2:5Þ

corresponding to a direct conformal coupling with constant
a1, and the disformal coupling

L2 ¼
∂μϕ∂νϕ

M4
Tμν ð2:6Þ

associated with a constant b1. Here Tμν is the energy
momentum tensor of all of the standard model fields. Note
that no coupling between the scalar and photons arises
from L1.
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Higher-order operators can have the following forms:

L3;n ¼
�∂μϕ∂μϕ

M4

�
n
Tν

ν ð2:7Þ

coming from a constant an and

L4;n ¼
�∂αϕ∂αϕ

M4

�
n ∂μϕ∂νϕ

M4
Tμν ð2:8Þ

from the cross term between a constant b1 and a constant
an. Finally, we can have higher-order terms of the form

L5;n−1 ¼
1

M4n ∂α1ϕ∂β1ϕ…∂αnϕ∂βnϕ
2n−1ffiffiffiffiffiffi−gp ∂n−1ð ffiffiffiffiffiffi−gp

Tα1β1Þ
∂gα2β2…∂gαnβn

ð2:9Þ

where n is a positive integer. The form of L5 is derived
in [11].

2. Kinetic terms

Possible kinetic terms for the scalar fall into two classes.
The first, known as PðXÞ, have the form

L6;n−1 ¼
ð∂μϕ∂μϕÞn
M4ðn−1Þ ð2:10Þ

for positive integer n. A particular series of such operators,

L ¼ M4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂μϕ∂μϕ=M4

q
, arises in DBI theories [12],

where the theory possesses an additional (nonlinearly
realized) symmetry which encodes five-dimensional
Lorentz invariance when ϕ is viewed as determining the
position of a D3 brane in five-dimensional Minkowski
space. This extra symmetry allows the field to acquire large
gradients while remaining in the regime of validity of
the EFT.
The second class of kinetic terms are known as the

Galileons, and contain terms with more than one deriva-
tive per field. Around flat space they are invariant (up to
total derivatives) under the symmetry ϕ → ϕþ cþ bμxμ

for constant c and bμ. There are five Galileon operators,
but one is the tadpole and one is the canonical kinetic
term, so there are only three more terms we need to
consider:

L7 ¼
1

M3
∂μϕ∂μϕ□ϕ; ð2:11Þ

L8 ¼
1

M6
∂μϕ∂μϕ½2ð□ϕÞ2 − 2DαDβϕDβDαϕ�; ð2:12Þ

L9 ¼
1

M9
∂μϕ∂μϕ½ð□ϕÞ3 − 3ð□ϕÞDαDβϕDβDαϕ

þ 2DαDβϕDβDγϕDγDαϕ�; ð2:13Þ

where the covariant derivative in our case D ¼ ∂.
It has been shown for both PðXÞ and Galileon theories

that, while the scale M in these operators is the strong
coupling scale controlling self-interactions of the scalar, the
effective field theory description remains valid up to a
higher cutoff scale [13].

B. Breaking the shift symmetry

This set of operators can be extended further if the shift
symmetry is broken and terms depending on the undiffer-
entiated scalar field are allowed. A scalar theory with a
softly broken shift symmetry can still be cosmologically
relevant, however it suffers from issues of fine-tuning,
because it is necessary to keep the mass of the field light
enough that it has a cosmologically relevant Compton
wavelength. If we take n to be a positive integer and N is
the energy scale that enters with ϕ, then each of the
operators L1-L9 can be pre-multiplied by a factor of
ðϕ=NÞn. There are two other possibilities which depend
only on ϕ. Firstly the coupling to matter can take the form

L10;n ¼
�
ϕ

N

�
n
Tμ

μ: ð2:14Þ

For a canonical scalar with an m2ϕ2 potential this form of
the coupling is extremely well constrained by fifth force
searches [14]. But in more complex and nonlinear models,
collider bounds can still provide new information [15,16].
Secondly we can include potential terms for the scalar

L11;n ¼
ϕn

Nn−4 ; ð2:15Þ

where n can be either positive or negative. When n ¼ 1,
this is a tadpole that, as mentioned above, we ignore. When
n ¼ 2 this is a mass term for the scalar, which it will be
helpful to consider separately in what follows.

C. Ghosts

The above list clearly does not include all possible
operators that depend on ϕ and its derivatives. However the
remaining terms will introduce ghost degrees of freedom,
that is fields with negative norms or wrong sign kinetic
terms, leading to instabilities and a violation of unitarity.
These terms have the schematic form

L12;m;n ¼
∂mϕn

Mmþn−4 ð2:16Þ

with m > n > 1 and the derivatives are contracted in a
Lorentz invariant way and can be included in our effective
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field theory as long as they handled with care, as the
instabilities introduced by the ghost only appear at the scale
M assumed to lie close to the cutoff of the theory, at which
our effective treatment breaks down.
The exception to this are the so-called beyond Horndeski

theories which contain nontrivial constraints that remove
the ghost degrees of freedom introduced by these operators.
The nature of these constraints means that they are difficult
to study on an operator by operator basis.

III. COLLIDER PHENOMENOLOGY

We now consider the collider phenomenology of the
operators introduced above by writing

LBSM ¼ LSM þ
X
i

CiLi þ
1

2
m2

ϕϕ
2; ð3:1Þ

with Wilson coefficients Ci, and we limit ourselves to the
lowest nontrivial orders in each operator series. The
production cross sections of a given multiplicity of ϕ
scalars depends on the ratio ∼C2

i =M
2r, where r is the

characteristic scaling of the operators listed above. We will
choose Ci ¼ 1 to report constraints solely expressed by the
scale M, but it should be understood that Ci ≠ 1 are
possible choices, too. As already mentioned, we focus
on light values of mϕ in comparison to typical collider
scales; we adopt mϕ ¼ 0.1 GeV as our benchmark in the
following.
Out of the operators of the previous section, L10 is

special as it enables the prompt decay of ϕ into SM fields if
sufficient phase space is available. This changes the LHC
phenomenology dramatically, also because single ϕ pro-
duction becomes available, only suppressed by ∼N−1, thus
giving rise to a possibly dominant contribution. The mass
mϕ becomes a crucial parameter in this case and there LHC
analysis strategies will be fundamentally different from the
situation when ϕ is stable on collider length scales. We will
not discuss this possibility in detail at this stage but provide
a qualitative discussion in Sec. III D and leave a detailed
analysis of the shift-symmetry breaking phenomenology to
future work.
Not considering L10;11 for the moment, the dominant

phenomenological signature is missing energy as the pair-
produced scalar particles escape detection on collider
scales. In a phenomenological bottom-up approach, such
a signature can be attributed to a plethora of models ranging
from Supersymmetry over general dark matter signatures to
extra dimensions. The operators listed in the previous
section, however, have a significantly modified phenom-
enology due to their particular derivative structure and
characteristic mass suppression, in addition to their relation
to the energy momentum tensor. This also provides an
opportunity to address the inverse problem by directly
investigating the nonlinear structure of the ϕ interactions

and their impact on LHC phenomenology. In the following,
we will identify suitable search channels for the scenarios
discussed in the previous section, extending beyond avail-
able investigations [17], specifically with the aim to
distinguish the leading EFT operators L1 and L2. We will
also investigate the characteristic behavior of nonlinearities
and discuss the prospects to pin down the dark energy
character of a missing energy signature if such an obser-
vation is made at the LHC in the future. We will then come
back to broken shift symmetry operators to discuss their
phenomenological impact. Throughout we use the combi-
nation of FEYNRULES [18], UFO [19], and MADGRAPH5
[20] to simulate the final states.

A. Dark energy signatures at the LHC

Under the assumption that ϕ is stable on collider scales,
the dominant signature is missing energy as the visible
particles recoil against the invisible and pair-produced ϕ
bosons. There is a comprehensive catalogue of missing
energy searches, mostly interpreted in a aupersymmetry or
dark-matter-related context. Channels that have been scruti-
nized recently are mono-boson production in association
with missing energy (e.g., [21–25]) and monojet searches
[26–29]. The latter have been identified as excellent
candidates to constrain disformal couplings ∼Tμν∂μϕ∂νϕ
in [17] motivated by the large momentum transfers that are
probed with sufficient statistics in the monojet signal,
especially for the high missing energy selections of [26].
Turning to the operator of Eq. (2.5), the scaling argu-

ments of the 2ϕþ jet signature still hold, see Fig. 1.1 The
crucial difference between the L1 and L2 couplings lies in

FIG. 1. Shape comparison of the jetþmissing transverse
momentum distribution for conformal and disformal couplings,
Eqs. (2.5) and (2.6).

1For the plots we show in this paper, we use event samples with
50 k unweighted events. This leads to an increase of statistical
uncertainties in the tails of the distributions from a Monte Carlo
perspective.
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the fact that the coupling to the trace of the energy
momentum tensor is tantamount to coupling the ϕ pairs
to all explicit conformal invariance-violating terms in the
standard model, in particular to all mass terms. This results
in an extremely small cross section of the monojet final
states as the quark masses are small and the hadronic cross
section receives a large contribution from massless gluons.
Using CHECKMATE [30] to survey ATLAS and CMS
monojet analyses, we can only set a constraint at 95% con-
fidence level of2 [27,28]

L1 M ≳ 75.4 GeV ðATLASÞ
½2ϕþ jet� M ≳ 66.5 GeV ðCMSÞ: ð3:2Þ

CHECKMATE includes the information about the relevant
backgrounds and we only show signal distributions in our
figures in the following. The reader should understand
these distributions as implicitly offset against a background
which can be determined by the experiments. To this end,
we also suppress the luminosity information in the binned
histograms as the sensitivity will ultimately be determined
by experimental systematics at a given luminosity. The
event counts of the unnormalized plots can directly be
related to the given information by multiplying the histo-
gram with the integrated luminosity.
The observation that L1 is directly related to explicit

mass scales, however, directly motivates top quark
production in association with missing energy. The reason
for this is twofold. First, the top quark is the heaviest
particle in the SM and, as a consequence, will have a large
L1-mediated coupling to the dark energy scalars. Second,
top quark pair production with a total strong interaction-
dominated production cross section of around 900 pb at
13 TeV is far more accessible than the Higgs boson, which
would be motivated as a potential probe of L1 along the
same line of arguments. Indeed, we find that 2ϕþ tt̄
production has a significant cross section for C1 ≠ 0, as
can be seen in Fig. 2, and setting more stringent limits
becomes possible. We find [28,31]

L1 M ≳ 237.4 GeV ðATLASÞ
½2ϕþ tt̄� M ≳ 192.8 GeV ðCMSÞ: ð3:3Þ

This not only motivates tt̄þ pT;mis searches as probes for
dark energy scalars, but in particular the combination of
monojet and top pair þ pT;mis searches can provide a fine-
grained picture of the phenomenology ofL1;2 as wewill see
in the following when we study the effects of L2.
For the monojet signatures, the most constraining 8 TeV

analyses yield [28,29]

L2 M ≳ 693.9 GeV ðATLASÞ
½2ϕþ jet� M ≳ 822.8 GeV ðCMSÞ: ð3:4Þ

While these findings are in agreement with the dark matter
searches [26] recast in [17], we note that the cut scenarios
devised in searches for Supersymmetry [28,29] are slightly
better tailored towards dark energy scalar searches. This
already sheds some light on the possible discrimination of
the nature of a dark energy signature from dark matter
signatures. We will discuss this further below.
The limits on L2 from tt̄þ pT;mis searches are [28,29]

L2 M ≳ 461.2 GeV ðATLASÞ
½2ϕþ tt̄� M ≳ 399.8 GeV ðCMSÞ: ð3:5Þ

As expected, these limits are not as strong as the ones that
are obtained from monojet signatures, as large momentum
transfer configurations in tt̄þ pT;mis have a smaller differ-
ential cross section, leading to a decreased sensitivity of top
pair and missing energy searches compared to monojet
analyses.
Together, the results of Eqs. (3.2)–(3.5) allow us to draw

the conclusion that the leading dark energy interactions can
be constrained by combining tt̄ and monojet searches, with
current constraints ranging in the few hundred GeV regime,
based on the LHC run I analyses provided in CHECKMATE.
These constraints can be expected to be pushed during run
II (100/fb) with further improvements possible during the
LHC high luminosity phase. They provide important
complementary information to other existing searches for
dark energy and we encourage the experimental commu-
nity to perform missing energy searches as outlined above
also in the dark energy context.

B. Comparison with LHC dark matter phenomenology

A question that becomes important in case of a missing
energy-related new physics discovery at the LHC is
pinning down, or excluding its relation to dark energy.
In case of Supersymmetry, we can expect new exotic states
to accompany a missing energy signature in complemen-
tary searches, while in dark matter scenarios, similar to
dark energy, additional degrees of freedom can lie beyond
the kinematic coverage of LHC searches [32–37]. This
prompts us to the question: can we tell a difference
between the leading dark energy interactions and a similar
scalar dark matter scenario? To this end, we show in Fig. 3
the normalized expected pT;mis distributions of the mono-
jet and tt̄þ pT;mis channels for L1 and L2 alongside the
pT;mis spectrum of a simplified dark matter model char-
acterized by

LBSM ⊃ LSM þ 1

2
gϕϕ2Y þ 1ffiffiffi

2
p

X
gif̄ifiY; ð3:6Þ2We only quote the most sensitive search region in the

respective analyses.
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where we consider a scalar mediator Y coupling to SM
fermions fi. We set the mediator mass mY ¼ 1 TeV such
that our comparison is not affected by Y going on-shell.
The masses of dark matter and dark energy scalars are
chosen identical in this comparison (0.1 GeV). Note that
since we show normalized distributions, the value of all
other parameters do not impact this comparison, as they
would only change the normalization of the distributions.
As can be seen from Fig. 3, the energy dependence of a

typical dark matter scenario (motivated through a Higgs
portal interaction for instance) differs from the dark energy
scalar production. While dark energy signatures can be
constrained by adapting dark matter searches, their phe-
nomenology is intrinsically different. This provides a new
avenue to look for physics beyond the standard model

through analyses that are specifically tailored to dark
energy signals, which will likely result in a better sensitivity
than quoted in Eqs. (3.2)–(3.5).

C. Phenomenological tests of higher-order operators

So far we have limited ourselves to the operators L1;2,
i.e., the leading interactions of scalar dark energy with the
SM sector discussed in Sec. II, i.e., Li;1; 3 ≤ i ≤ 5 and
L12;4;3 (focusing on standard propagators). Given the
intrinsic nonlinear structure of scalar dark energy, it is
worthwhile to address the question of whether these
interactions impact the limit setting. Alternatively, if they
turn out to have a significant impact (i.e., for a comparably
low M) we might be able to use collider measurements to
formulate a refined picture of the dark energy nature.
The phenomenology of the higher-order operators intro-

duced in Sec. II can be classified according to the dark
energy scalar multiplicity in the final states. Since they all
lead to the same signature, i.e., they contribute to missing
energy, we may add the respective ϕ multiplicities inco-
herently to the full hadronic final state to include the effects
of the higher-order operators. The number of ϕ fields in a
particular operator dictates the number of effective operator
insertions, which again determines the effective scaling of a
cross section with the scaleM. For instance, L7 describes a
scalar self-interaction and will not contribute to 2ϕ pro-
duction with for our case C10 ¼ 0. However it can be
combined with L1;2 to obtain a 3ϕ final state with a scaling
∼M−7 at the amplitude level. Note, that this way the
interactions L1;2 are probed by one additional off-shell
leg and probe the operators L1;2 in a different way. Again
we set the Wilson coefficients Ci ¼ 1 in the following.
Starting from Fig. 4, we show the effects of combining

different operators and ϕ multiplicities up to four in Fig. 5

FIG. 2. Shape comparison of the tt̄þ transverse momentum
distribution in the presence of conformal and disformal cou-
plings, Eqs. (2.5) and (2.6).

(a) (b)

FIG. 3. Shape comparison of the dark energy scalar pT;mis distribution for (a) 2ϕþ jet and (b) 2ϕþ tt̄ with a scalar mediator of mass
1 TeV. Dark energy and dark matter particle masses are chosen identical (see text), all other parameters only affect the overall
normalization of the distributions.
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for the operator C2, for which we can formulate constraints
in the first place. We chooseM ¼ 700 GeV inspired by our
results of the previous section. From Fig. 4, it becomes
apparent that the only operator that significantly adds 3ϕ in
comparison to 2ϕ production is C7, while C12 has a
negligible effect. In general, for 4ϕ production, while
the energy dependence amongst the different operators
C3;1, C4;1, C5;1, C6, C8, C9 is different (see in particular
Fig. 6), their overall contribution in light of the constraints
obtained in Sec. III A is negligible.
We repeat the same analysis for the tt̄þ pT;mis channel

in Figs. 7 and 8, with scale choice M ¼ 500 GeV
following our discussion in Sec. III A. For compara-
bility, we also choose the same M for the limits from

C1, although the current constraints on M are consider-
ably lower.
The qualitative impact of the higher-order interactions is

analogous to the monojet channel and the comparison of
tt̄þ pT;mis with jetþ pT;mis shows the higher-order oper-
ator’s qualitative behavior as a function of M. As we have
adopted a lower scale than in the jetþ pT;mis channel we
see that operators like L4;1;L5;1 that share similarities with
L2 in terms of their structure of ϕ-derivatives start to
compete with the 2ϕ final state, Fig. 8(a). When limits on
M are weak, this can mean that the higher-order operators
can dominate the phenomenology of a particular missing
energy search. Such a result needs to interpreted with care
as it might correspond to a breakdown of perturbation
theory. In the particular case of L1, however, the tree level
effects can be suppressed by requiring a relatively small
explicit violation of conformal invariance, while the effects
of e.g., L5 are not restricted by an approximate chiral
invariance of LSM (this lead to stronger constraints on L2 in
Sec. III A) and mediate prompt 4ϕ production. If operators
fall into the same category, however, such as L4;n and L5;n,
competing multiplicities signal a poor convergence of the
effective theory. For example, by choosing different ϕ
multiplicities to obtain different loop orders contributing to,
say, the top 2-point function, we can see that different loop
orders start to become equally important, influencing the
top lifetime which is related to the imaginary part of the
2-point function.
While the relative size of the operators depends on a

particular scalar dark energy scenario, better adapted search
strategies as well as increased statistics will push the scale
also for these interactions to ∼700 GeV, which effectively
restores a good behavior in the multiplicity scaling pattern
that we already observe forL2 in Fig. 8(b). In this caseL7 is
the only interaction that still leaves a sizable impact, and
can then be constrained if a new physics discovery exhibits
a dark energy character.

FIG. 4. Missing transverse momentum distribution for the
monojet channel with ϕ multiplicities up to three.

FIG. 5. Missing transverse momentum distribution for the
mono-jet channel with ϕ multiplicities up to four, based on
combining C2 with C7 and the higher order terms C4;1 and C5;1.
The distribution of C5;1 is shown separately for comparison. The
impact of C3;1 is even more suppressed than C4;1 and we do not
include it in the histogram.

FIG. 6. Same as Fig. 5, but based on combining C2 and C7 with
C6;8;9.
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D. On the phenomenology of shift-symmetry
breaking theories

Our analysis so far is valid for coefficient choices C10

that leave the scalar stable on collider distances. If there is a
significant C10 ≠ 0, the phenomenology dramatically
changes as the scalar can be singly-produced and can
decay to lighter hadrons, leptons, or photons. For example,
the operator L10 introduces interaction vertices with fer-
mions fi (where the index describes the fermion gener-
ation) of the form

ð3:7Þ

Depending on the scenario, this can lead to spectacular
signatures that range from (highly) displaced vertices
similar scenarios of hidden valley or supersymmetry (see
[38–42]) to emerging signatures in the different layers of
the detector [43,44]. These signatures are fundamentally
different from the ones that we have discussed so far and a
comprehensive investigation is beyond the scope of this
work.3 Equation (3.7) leads to a partial ϕ decay width into
fermions

(a) (b)

FIG. 7. Same as Fig. 4 expect that we consider the interactions parametrized by C1 (a) and C2 (b) for the tt̄þ pT;mis final state.

(a) (b)

FIG. 8. Same as Fig. 5 expect that we consider the interactions parametrized by C1 (a) and C2 (b) for the tt̄þ pT;mis final state for the
operators C4;1 and C5;1.

3It is, however, worthwhile to remark that since L10;1 effec-
tively describes an interaction of a Higgs boson (i.e., it couples
like a pseudodilaton), the dark energy phenomenology shares the
signatures of light Higgs portal scalars discussed in [43,45] as
well as on-going efforts within the Higgs Cross Section Working
Group [46]. This includes, in particular, the phenomenology of
heavy ϕ bosons in the TeV range.
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Γðϕ → ff̄Þ ¼ 2

π
C2
10

m2
f

N2

ðm2
ϕ − 4m2

fÞ3=2
m2

ϕ

; ð3:8Þ

which leads to a traveled distance through the detector

D ¼ βγ

Γϕ
ð3:9Þ

where Γϕ is the total decay width, which is dominated by
the size of the effective Yukawa interaction ∼C10mf=N if
sufficient phase space is available, i.e., for ϕmasses not too
close to the respective decay threshold. The width is
typically very small, and for a mass of 0.1 GeV we obtain
a total decay width of ∼2 × 10−10 GeV.
The probability of decaying between distances L1 < L2

is then given by

PðL1 ≤ L ≤ L2Þ ¼
Z

L2

L1

dL0 1
D
exp

�
−
L0

D

�
: ð3:10Þ

To get an idea of the resulting phenomenology, we
consider a dark energy scalar with mass mϕ ¼ 20 GeV and
its decay ϕ → bb̄ produced at pT ≃ 100 GeV (the typical
scale of a mono-jet configuration). For this mass choice the
decay is open and enhanced over the other channels. For a
choice C10mb=N ≃ 10−8 we can expect that around 99% of
the produced ϕ bosons will decay inside the detector ≲7 m
(using the transverse CMS dimensions in this particular
case): 54% of decays in the tracker (L≲ 1 m), 41%
inside the electromagnetic and hadronic calorimeters
(1 m≲ L≲ 4 m) and 4% inside the muon detectors
(4 m≲ L≲ 7 m).4 The search strategies in each part of
the detector depends on trigger and selection criteria as well
as on the calibrated performance of each part of the
detector. For instance, fermions are typically stripped off
in the first layers of the muon system, hence a decay ϕ →
bb̄ in that region of the detector would be considered as
noise. On the other hand, decays inside the tracker whose
high resolution enables the search for displaced vertices
makes this part of the parameter space accessible.
The phenomenology strongly depends on the effective and

dominant Yukawa interaction C10mb=N. Increasing
C10mb=N ≃ 5 × 10−8 all particles decay inside the tracker
with 99% of pT ≃ 100 GeV events decay with displaced
vertices, whereas for C10mb=N ≃ 10−6 the ϕ bosons will
decay before leaving a displaced vertex signal. In such a case,
additional reconstruction techniques are available but subject
to detector systematics as well as large QCD backgrounds.
The considerably larger scales that can be probed with

displaced vertex searches (note that this also applies to
different quark flavors and leptons other than the bottom
considered in this example) should allow to probe scales in

the region N ∼ 108 GeV, which will provide comparably
stronger constraints on N than on M. For the latter we lose
sensitivity as soon as the scalar is allowed to decay inside
the detector.5 This provides an interesting and comple-
mentary avenue to look for dark energy scalars on the basis
of existing searches. We leave a more detailed investigation
to future work [47].

IV. SUMMARY AND CONCLUSIONS

The mystery of dark energy is motivation to consider
new physics that is relevant on cosmological scales. In
particular the possibility that light dark energy scalar fields
might exist and interact with the standard model. In this
paper we have surveyed a large class of effective dark
energy interactions and motivated the combination of
monojet and tt̄þ pT;mis analyses to constrain the leading
aspects of dark energy interactions with the SM sector at
the LHC. In passing, we have used the phenomenological
signatures in these channels to obtain the latest LHC
constraints on the dominant dark energy signatures by
recasting existing 8 TeV Supersymmetry and dark matter
analyses. While dark energy signatures share some aspects
of dark matter phenomenology, the dark energy signatures
are in general different, and provide a new phenomeno-
logical avenue to look for well-motivated signs of physics
beyond the SM. In case a new physics discovery is made
that falls in to the category of a scalar dark energy signal,
some aspects of the dark energy scalar’s self-interactions
can be probed by investigating the missing energy depend-
ence of the new physics signal, depending on the particular
dark energy model. In particular, the discrimination from
the competing scalar dark matter interpretation will
become possible. Allowing the presence of shift symmetry-
breaking operators, the sensitivity to shift symmetry-
conserving operators is decreased when scalar decays on
collider scales becomes possible. In such a case searches
for displaced vertices provide an avenue to constrain the
presence of such scalars for relatively large scales.
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