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A Dynamical Mechanism for Large Volumes with Consistent Couplings
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A mechanism for addressing the “decompactification problem” is proposed, which consists of

balancing the vacuum energy in Scherk-Schwarzed theories against contributions coming from non-

perturbative physics. Universality of threshold corrections ensures that, in such situations, the stable

minimum will have consistent gauge couplings for any gauge group that shares the same N = 2 beta

function for the bulk excitations as the gauge group that takes part in the minimisation. Scherk-

Schwarz compactification from 6D to 4D in heterotic strings is discussed explicitly, together with

two alternative possibilities for the non-perturbative physics, namely metastable SQCD vacua and

a single gaugino condensate. In the former case, it is shown that modular symmetries gives various

consistency checks, and allow one to follow soft-terms, playing a similar role to R-symmetry in

global SQCD. The latter case is particularly attractive when there is nett Bose-Fermi degeneracy

in the massless sector. In such cases, because the original Casimir energy is generated entirely

by excited and/or non-physical string modes, it is completely immune to the non-perturbative IR

physics. The separation between UV and IR contributions to the potential greatly simplifies the

analysis of stabilisation, and is a general possibility that has not been considered before.
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I. INTRODUCTION

The Scherk-Schwarz (SS) mechanism is one of the most attractive means of spontaneously breaking supersymmetry

(SSSB) [1, 2]. In the SS mechanism, supersymmetry is broken by compactification with R-symmetry violating

boundary conditions, and from a 4D perspective the inverse volume 1/Rd (where R is used as a generic compactification

scale) plays the role of an order parameter for supersymmetry breaking in the effective field theory. This yields all-

orders control over supersymmetry breaking, and shields dimensionful operators such as the Casimir energy and soft-

terms from the ultra-violet (UV) completion [3–6]. They can then largely be computed as finite Kaluza-Klein (KK)

contributions in an effective extra-dimensional field theory, enhancing predictivity. There are numerous interesting

phenomenological applications, for example in the recent work of refs. [7–12].

In such theories, a volume significantly larger than the fundamental scale, R � `s, is necessary (even if one does

not insist on low scale supersymmetry breaking) if one wishes the reproduce the physics of the traditional field

theory SS mechanism. This is because heavy modes come to dominate over the KK modes in loop processes once the

compactification radius approaches the fundamental length scale (see the discussion in ref. [13]). In the context of non-

supersymmetric string theory for example, “non-physical” proto-gravitons start to be important once R . 2`s. The

necessary separation between the UV completion and the KK scale can be achieved by configurations that interpolate

from supersymmetric theories at large radius to non-supersymmetric ones at small radius [13]. Ideally, one would then

like to treat this as an approximate “moduli space”, and generate a consistent supersymmetry breaking solution at

large volume dynamically. This has been widely discussed in the Scherk-Schwarz context in for example refs. [14–22].

However large volumes are problematic in the context of heterotic string theory. They are felt universally by

the gauge couplings, which are then generally rendered inconsistent at one-loop by the corresponding KK mode

contributions. This is a generic source of tension for the SS mechanism in heterotic strings and indeed any SS set-up

that does not have a “brane” configuration.

To be specific, consider an effective 5D SQCD theory (i.e. one in which only one compactified dimension is

significantly larger than the fundamental scale). Supposing that any other moduli except the radius are already

stabilised at small volumes (so they play no further role in the dynamics or in the magnitude of the gauge couplings)

the expression for the gauge coupling of the effective 4D SQCD theory is

16π2

g2(µ)
= k

16π2

g2
s

+ b ln
M2
s

µ2
+ ∆(R) , (1.1)

where b is the beta function coefficient of the original effective 4D N = 1 theory (in a convention where SU(N)

supersymmetric QCD with F flavours would have b = −3N + F ), and ∆ are the offending threshold contributions

which at large volumes are dominated by the KK sector of the theory,

∆(R) = CRMs − 2b ln(RMs) . (1.2)

The constant C depends on various other parameters and moduli, most importantly on the beta functions of theN = 2

content of the theory. In this preliminary discussion (and in fact right up to the last section) gs will be assumed to

be fixed beforehand: ultimately though it will also be dynamical, being given by the VEV of the axio-dilaton.

There are then two possibilities assuming that C 6= 0. Gauge couplings that have C > 0 are made weaker by the

threshold corrections. Broadly speaking one can interpret this as the contribution from power-law running between the

fundamental scale and the KK scale [23, 24] (although there are various subtleties in mapping extra-dimensional field-

theory to string theory – see for example ref. [6]). At large volume the couplings become tiny and the corresponding

symmetry is to all intents and purposes global. By contrast those couplings that have C < 0 grow stronger at large

radius, from extremely weak values at the fundamental scale. They can in principle become reasonably large, but

then one has to balance the threshold contribution to 1/g2 against its tree-level value. It should be noted that C and

b need not have the same sign, so there is nothing to prevent a theory flowing to stronger coupling at the KK scale,

and then for the effective 4D theory to be IR-free (and vice-versa); to simplify the discussion it will be assumed that

they do have the same sign.

To summarise the difficulty, C > 0 couplings are insignificant at low energy unless the gauge symmetry is localized

in the large volume, implying some kind of brane set-up. On the other hand, C < 0 couplings seem to imply a

fine-tuning of tree-level against radiative corrections, so that they are extremely weak at the string scale, but order

one just at the bottom of the KK tower where they enter the logarithmically running 4D regime. This issue, which
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has become known as the “decompactification problem”, has been discussed in the past in for example in refs. [24–31],

and was eloquently summarized recently in ref. [32]. Special theories are known that circumvent the coupling/volume

sensitivity because they do have C = 0 [29–32], but here it will be of interest to consider more generic models.

The purpose of this paper is to argue that there is in fact a way to realise order one couplings at large volume

dynamically and without fine-tuning, providing a solution to the decompactification problem for a much broader class

of models. The set-up is very general: it requires only that the compact volume is stabilised by balancing a dynamical

transmutation scale, Λe, against a leading order one-loop Casimir energy. This results in a gauge coupling that is

inevitably becoming large precisely where the volume is stabilised. The particular gauge factor that takes part in

the stabilisation may of course be of little further use for phenomenology, depending on the precise non-perturbative

physics behind the appearance of Λe. However the universality in the gauge couplings and their N = 2 threshold

corrections ensures that any gauge group with the same C will also have gauge couplings of order one, with only

logarithmic differences appearing due to the different N = 1 beta functions, b. (Note the gauge group and particle

content do not have to be the same, so for example the content of an N = 2 SU(5) SQCD with 6 flavours has a

C equal to that of N = 2 SU(3) SQCD with 2 flavours.) That such universality exists even in theories that have

supersymmetry broken by the Scherk-Schwarz mechanism has been recently shown in ref. [33]. Meanwhile those gauge

factors with larger or smaller C will become effectively global or strongly coupled and confined, respectively, and will

play little further role in phenomenology.

The configuration that will be studied here is based on the interplay of two competing mildly repulsive and mildly

attractive effects. The first is the aforementioned Casimir energy that arises in compactifications where supersymmetry

is spontaneously broken by the SS mechanism. This typically goes as (N0
f −N0

b )/R4, where R is the compactification

scale along the direction that breaks supersymmetry, and (N0
f −N0

b ) is the nett Fermi-Bose number of the states left

massless by the SS mechanism; choosing it to be positive, it represents a repulsive effect running away to large radius.

The competing effect is a positive contribution to the cosmological constant arising from some non-perturbative

process. We will consider two options: the first is an SQCD sub-sector of the theory which sits in the metastable

supersymmetry breaking minimum of Intriligator, Seiberg and Shih [34] (ISS) and the second is a Yang-Mills gaugino

condensate. Both of these produce terms that are governed by the dynamical scale of the theory, which in turn

depends on the threshold contribution to the effective gauge coupling in eq.(1.1). Assuming that both C and b are

negative, this contribution increases with radius, so it is attractive.

The result is that the theory is driven dynamically to the boundary of the perturbative moduli space and minimised

there, with all gauge couplings that share the same value of C automatically taking values of order one no matter

how small the (universal) string-scale value. It is clear that the resulting large volume is then directly related to the

smallness of the string-scale coupling at the origin.

The next section presents a 5D toy-version of the mechanism, expressed purely in field theory. It emphasises the

general difference between an SS vacuum energy that is broadly the same as the field theoretical one described above,

and the qualitatively different possibility that heavy UV modes in the theory dominate the SS vacuum energy. This

may simply be a result of the volume approaching the string scale, in which case (as mentioned above) the leading

contributions come from non-physical modes, or it may be a result of the massless contributions vanishing in theories

that have (N0
f = N0

b ), in which case the leading contributions come from the lowest lying string excitations. In these

cases the SS vacuum energy cannot be well understood in extra-dimensional field theory, but can be easily calculated

in string theory. Moreover an important and recurring theme is that, because it is UV in nature, the SS vacuum

energy in such cases is completely immune to any non-perturbative physics that one might balance it against in order

to produce a stable compactification. In order to emphasise the distinction, this kind of SS induced vacuum energy

will be referred to as UV-Casimir energy.

Section III collects the necessary ingredients required for the string realisation. One of the reasons for interest in

the ISS mechanism in this context rather than just gaugino condensation will become clear: it allows several checks of

the stringy implementation of non-perturbative supersymmetry breaking, and in the generic SS case it gives a cleaner

separation between the contributions to the potential coming from the SS and ISS mechanisms. The Casimir energy

is calculated in toroidal SS compactifications from 6D to 4D, the residual modular symmetry is discussed and several

new results are presented, on the use of modular invariance to follow the SS induced soft terms, and on a consistency

condition for the stringy implementation of the ISS mechanism.

These results are used Section IV to study stabilisation for generic Casimir energies, and also for the case in which

an exponentially suppressed UV-Casimir balances against a gaugino condensate. Up to this point, the approach is

somewhat modular in that the tree-level coupling gs and also its axionic partner are taken to be fixed parameters in
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order to investigate how the compactification dynamics adjusts to consistently accommodate tiny values. In this last

example all moduli (S, T, U) are treated as dynamical fields. The beauty of UV-Casimir energy becomes evident here,

and it is worth repeating it: because it is blind to IR physics, one can essentially balance two robustly independent

contributions to the vacuum energy that are nevertheless functions of only the three S, T, U moduli. An additional

interesting feature here is that the gaugino condensate scale automatically adjusts to roughly match that of the

UV-Casimir energy.

II. THE MECHANISM IN A 5D NON-MAXIMAL SCHERK-SCHWARZ MODEL

It is convenient to proceed by developing the 5D example of the mechanism outlined in the Introduction, with

the non-perturbative physics being the ISS mechanism. Although it illustrates the principle, it should be regarded

as something of a warm-up exercise to the more stringy implementation in forthcoming sections. In particular, an

important question is whether the soft-terms induced by the SS mechanism can disrupt the supersymmetry breaking

of the ISS mechanism, which is after all written entirely within N = 1 supersymmetric QCD. In the next section,

we shall learn how to treat this question by mapping soft-terms using the modular symmetry of the 6D → 4D

compactification. There we will also consider gaugino condensation as an alternative non-perturbative mechanism.

For the moment we shall solve this issue by invoking non-maximal SS phases.

It will be sufficient to assume that the Scherk-Schwarz action shifts the masses of vector-like pairs of states. (It

could also act on chiral states but it would not qualitatively change the discussion.) The KK masses take the form

(n+qF±)/R, and (n+qB±)/R, where qB± = (±αB+RmD) and qF± = (±αF +RmD), and where mD is an elementary

supersymmetric Dirac mass (a.k.a. µ-term).

There are limitations as to where the mechanism can work in its most naive form. As mentioned above the main

constraint arises from the fact that the results of ISS are derived in 4D N = 1 supersymmetric QCD, whereas this is a

5D setting in which supersymmetry is already partially broken by the SS mechanism. If one wishes to adopt the ISS

results at face-value (with no extra KK modes to complicate things), one can impose a modest energy gap between the

dynamical scale of the the SQCD theory and the mass-scale of the lowest lying KK modes, and in addition between

the two sources of superymmetry breaking to ensure that the ISS analysis is not disrupted by the soft-terms that

are already induced by the SS mechanism. The latter are expected to remain of order αF,B/R throughout (in both

the electric and magnetic SQCD phases), so the ISS results can be used wholesale if this scale is much less than the

supersymmetry breaking induced in the low energy theory of the ISS mechanism. This can be achieved by assuming

non-maximal Scherk-Schwarz phases, αF,B � 1/2. Such non-maximal phases are somewhat artificial in the stringy

Scherk-Schwarz mechanism [15, 20, 35–42] because αF,B are proportional to some linear combination of gauge and

R-charges and can only take discrete values. In some orbifold compactifications, these could be for example 1/5,

but they cannot be arbitrarily small. As mentioned, a more realistic implementation will ultimately require a proper

treatment of the mapping of soft-terms in the SS context, including KK modes, and a properly adjusted ISS picture

to take account of them.

The last constraint is on the elementary supersymmetric Dirac mass required in the ISS mechanism: it should

take values mD � 1/R. It is simple and natural – although not crucial – to take mD also to be induced by the

compactification, so that it too is proportional to 1/R, with constant of proportionality αD = RmD � 1. In this 5D

model therefore, we shall maintain the following hierarchy of scales:

1

R
& Λe �

√
ΛeαD/R�

αF,B
R

. (2.1)

The left-most scale is the bottom of the KK tower, which is taken to be greater than the dynamical scale Λe(R) of

the effective 4D SQCD theory. Meanwhile mD must be smaller than Λe(R) so that states which get a Dirac mass are

not simply integrated out. And finally, on the right, a sufficient condition for the 4D N = 1 ISS analysis to be a good

approximation, is that the scale of effective supersymmetry breaking induced by the Scherk-Schwarz mechanism is

negligible compared to the supersymmetry breaking induced later by the ISS mechanism. These constraints translate

into a condition on ΛeR of

1 & RΛe � αD ,
α2
F,B

αD
. (2.2)

It will be convenient to assume αD ∼ αF,B .
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A. The generic Casimir energy case

The potential may now be determined, beginning with the Casimir contribution. For definiteness let us take N0
b

of the αB and N0
f of the αF to be exactly zero, and the rest to be degenerate with αB = αF = α � 1. The light

theory then has N0
f massless fermions and N0

b massless bosons, with the remainder having mass ∼ α/R. The one-loop

Casimir energy can be computed at the level of the 5D KK theory regardless of any more fundamental UV completion,

because it is dominated by the massless modes and their KK excitations (assuming that the KK levels do not have

equal numbers of fermions and bosons). The simplest method is to Poisson resum the Schwinger integral form of the

Coleman-Weinberg potential;

VC = − 1

16π2
Tr
∑
n

∫ ∞
0

dt

t3
exp

[
−t(n+ qB+)2/R2

]
+ exp

[
−t(n+ qB−)2/R2

]
− exp

[
−t(n+ qF+)2/R2

]
− exp

[
−t(n+ qF−)2/R2

]
, (2.3)

where the trace is over the supermultiplet representations. The insensitivity of the Casimir energy to the UV-

completion is evident here in the fact that there is no need for a UV cut-off on the integral. (In other words a full

string calculation as in ref. [13] would just give additional exponentially suppressed corrections.) Poisson resumming

this expression gives

VC = − 1

16π2
Tr

∫ ∞
0

dtRπ1/2t−7/2
∞∑

`=−∞

e−`
2π2R2/t[cos(2π`qB+) + cos(2π`qB−)

− cos(2π`qF+)− cos(2π`qF−)] , (2.4)

and performing the integral gives

VC = Tr [B(qF+) +B(qF−)−B(qB+)−B(qB−)] , (2.5)

where (in agreement with e.g. [5, 6, 8, 10, 15])

B(x) =
3

64π6R4

(
Li5e

2πix + Li5e
−2πix

)
. (2.6)

Expanding in the α’s gives,

VC =
3ζ(3)

8π4

(N0
f −N0

b )α2

R4
. (2.7)

The second ingredient for the potential is of course the ISS contribution from an SQCD sector. Assuming that

the original theory contains an SU(N) gauge group with F flavours of fundamental/antifundamental pairs of chiral

superfields, the potential comes from the O’Raighfeartaigh superpotential of the magnetic SQCD theory, and takes

the form

WISS = hTr(qΦq̃)− αDΛe
R

Tr(Φ) , (2.8)

where q, q̃ are magnetic quarks, Φ is the F×F bound state meson, and where ignorance about the precise normalization

of Φ has been absorbed into the parameters αD and h 1.

Provided that the number of colours and flavours is such that the SQCD theory is in the free magnetic window,

N + 1 < F ≤ 3N/2, the result is an additional tree-level term in the potential of the form

VISS = Nα2
D

(
Λe
R

)2

. (2.9)

1 More precisely, following ref.[34], if the original SQCD theory has a dynamical scale Λe, a superpotential We = mDQQ̃, and a canonically

normalized meson Φ̂ = γ−1QQ̃/Λe, then WISS ≡
√
γhTr(qΦ̂q̃) −√γmDΛeTr(Φ̂), with the understanding that WISS is to be treated

as a global superpotential. This issue will become important later and will be revisited, when a proper distinction between the physical
and holomorphic scales will be made.
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The total potential is

V = R−4
[
α2ρ(N0

f −N0
b ) + α2

DN (RΛe)
2
]
, (2.10)

where ρ = 3ζ(3)
8π4 ≈ 5× 10−3 � 1.

As an aside, note that for negative Casimir energy the potential can be precisely zero while still satisfying the

conditions in eq.(2.2) for the N = 1 supersymmetric ISS analysis to be valid: indeed a zero potential requires only

(RΛe)
2

=
(N0

b −N0
f )

N
ρ
α2

α2
D

. (2.11)

Conversely, for positive Casimir energy, one may now invoke the R-dependence of Λe using eq.(1.1) to minimize

the potential. Taking k = 1 and setting the dynamical scale of the SQCD theory to be where 1/g2(Λe) = 0 gives

(RΛe)
2

= e
− 16π2

g2
s |b|

+C
b RMs

. (2.12)

It is convenient to define a fiducial coupling g0 (which is of order gs), and a corresponding fiducial scale, µ0, given by

16π2

g2
0

=
16π2

g2
s

+ b ln
M2
s

µ2
0

,

µ2
0

M2
s

=
α2ρ(N0

f −N0
b )

α2
DN

∼ 10−2 . (2.13)

The full potential has a minimum at

RminMs =
b

C

[
4 +W

(
4e−4 µ

2
0

M2
s

e
16π2

|b|g2
s

)]
=

1

|C|
16π2

g2
0

+O(1) , (2.14)

where W is the Lambert W -function (a.k.a. product log). Eq.(2.13) then gives

RminΛe = µ0/Ms. (2.15)

If the parameters are all of similar magnitude, (N0
f −N0

b )/Nc ∼ αD/α ∼ 1, then eq.(2.13) gives RminΛe ∼
√
C ≈

0.07, automatically satisfying the requirement in eq.(2.2) and achieving the desired effect of the QCD theory ending up

with a dynamical scale somewhat below the KK mass-scale, MKK = 1/Rmin, even if 16π2/g2
s ∼ RminMs is chosen to

be huge. In order to satisfy the other constraints of eq.(2.2), under the assumption that αD ∼ αF,B = α one requires

only that α2 � ρ
(N0

f−N
0
b )

N which is relatively easy to achieve. (For example with N = N0
f −N0

b , one requires α . 1/10

which is conceivably possible even within some string orbifold models). The value of the cosmological constant at the

minimum is given by

V (Rmin) = R−4
min

[
2ρα2(N0

f −N0
b )
]

≈ g8
sM

4
s

(16π2)4

[
2ρα2(N0

f −N0
b )
]
. (2.16)

As promised the minimum is automatically balanced to appear at the correct values of Rmin. An example of

the potential is shown in fig. II A for sample values. It is essentially a 1/R4 runaway to large radius until the ISS

contribution takes over where the SQCD gauge coupling is starting to become strong. The minimum is de Sitter,

and of order 10−3M4
KK . Clearly for consistency one would then require some additional R-independent and negative

contribution to bring the final cosmological constant close to zero.

Note that going along implicitly with need to protect the ISS mechanism from the supersymmetry breaking of the

SS mechanism, is of course the converse assumption that the effects of strong coupling in the SCQD sector do not

disrupt the original calculation of the Casimir energy. This assumption is credible because the latter is dominated by

the tower of KK states with masses between MKK and Ms, and above physics occurring at the scale Λe provided that
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the Λe < 1/Rmin constraint is satisfied. This condition can be relaxed in various cases and under various assumptions

which will be made more precise when we come to study the string embedding in later sections.

The form of the potential for R� Rmin is not well determined. In these regions the dynamical scale is larger than

the KK scale (i.e. RΛe(R)� 1) so the sufficient condition in eq.(2.1) is violated. Most probably this implies that the

potential turns over at some point, and the minimum at Rmin is metastable in the R direction as well, with larger

values simply reverting to runaway behaviour. It is not clear how the large radius limit of such theories lifts to the

decompactified 6D theory; most likely it is related to the 4D IR free magnetic dual of the ISS theory, rather than the

original electric SQCD theory.

If one makes the conservative assumption that the minimum derived above is indeed only metastable, it is important

to consider what the tunnelling rate would be to continued runaway along R, in order to confirm that it is sufficiently

small. An estimate requires the normalization of the modulus corresponding to R. In flat space compactifications

derived from string theory the Kähler potential is given by K ∼ − log V where V is the overall compactification

volume. In the present case one can identify V ∼ i
(
TR − T̄R

)
with TR being a holomorphic modulus whose imaginary

part gives R. This would give kinetic terms for R of the form L ⊃ |∂TR|2
R2 so the canonically normalised field is

φR = TR/Rmin. The tunnelling action can then be approximated in the thick wall limit. The advantage of this

physical situation is that the height of the barrier does not appear in the action at leading order, only its width and

the difference ∆V between the vacuum energies of the false and true minima. A crude estimate for the action is then

[43]

SE ∼ 2π2 (∆φR)
4

∆V
, (2.17)

where ∆V = Vfalse−Vtrue = R−4
minα

2
DN (RminΛe)

2
. As this is a sufficient condition, let us adopt a conservative value

for ∆φR, namely the distance in field-space between Rmin and the point where perturbativity breaks down, ΛeR ∼ 1,

or ΛeRmin
ΛeR

= µ0/Ms = e−
C
b ∆RMs . This gives

∆φR ≈ R−1
min

b

C
log

Ms

µ0
, (2.18)

leading to an estimate for the tunnelling action of

SE ∼
2π2

α2

(
Ms

µ0

)2

∼ 103/α2. (2.19)

This is well above the SE & 400 that is required to ensure stability on timescales of the age of the universe (see e.g.

ref. [44] and references therein). Heuristically this is simply a consequence of the fact that the Casimir energy in V

is a one-loop effect (given by ρ), so the potential is much flatter than it is broad.

B. The exponentially suppressed (UV-Casimir energy) case

Models that are non-supersymmetric but nevertheless have equal numbers of massless bosons and fermions (N0
f =

N0
b ) have a one-loop cosmological constant that is exponentially suppressed. Ref. [13] argues that these cases are

particularly interesting due to their enhanced stability properties, and form a better basis for doing phenomenology.

The philosophy in these cases is somewhat different: the general idea is that the exponential suppression appearing

in the vacuum energy also appears in the scale setting the Higgs mass. Therefore the compactification volume (and

consequently the SS supersymmetry breaking scale 1/R) needs to be only so large so as to be able to generate the

necessary suppression, while it is possible to live with supersymmetry breaking that is much larger than the electroweak

scale (the canonical situation with SS breaking). The issue for the present discussion then is how to stabilise with

exponentially small cosmological constant and reasonable coupling, but still with moderately large volume.

As already mentioned, the aspect of these theories that will be of particular relevance is that the only modes that

make a non-vanishing contribution to the vacuum energy have string sized masses, and indeed the leading contribution

to the Schwinger integral comes from a saddle-point at the UV end, t ∼ 1, rather than from the entire integral, as is
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FIG. 1: The 5D potential for α = αD = 0.1, N0
f − N0

b = 10, gs = 3 × 10−2, C = b = −13, Nc = 6. The approximation in

eq.(2.14) gives the minimum at Rmin = 1.35× 105`s. As described in the text, the dynamical scale Λe ≈ 0.09/R is significantly

less than the KK scale at the minimum.

the case for a generic theory. Consequently the contribution to the cosmological constant resulting from the Scherk-

Schwarz mechanism is blind to the IR physics occurring in for example the ISS mechanism, and the two contributions

are physically separated. Indeed the former cannot easily be understood within an effective field theory2.

As already mentioned, to emphasise the distinction these theories will be said (using the terminology in its broad

sense) to have a UV-Casimir energy. An additional advantage in the present context is of course that the volumes

required are much smaller than the generic case, and hence the decompactification problem is less pronounced.

Assuming that the exponential suppression continues beyond one-loop, such cases have to be treated quite differently.

In the present toy model, the ISS mechanism essentially governs the minimisation, and the issue is to ensure that the

contribution to the cosmological constant from the initial SS mechanism is negligible. The 5D case is as follows.

First let us return to the constraints in eq.(2.1). The potential takes the form

V = R−4
[
α2ρ(N1

f −N1
b )(RMs)

2e−4πRMs +Ncα
2
D(RΛe)

2
]
, (2.20)

where N1
f − N1

b counts the fermi-bose non-degeneracy at the first excited string level, α stands again for a generic

Scherk-Schwarz phase, while ρ� 1 is now generically a one-loop suppression factor. As is evident from eq.(2.12) the

SS term dies away rapidly at large radius. The minimum occurs shortly after the second term has its independent

minimum at

RminMs =
4b

C
, (2.21)

so the string scale can be perhaps an order of magnitude higher than the KK scale. It is useful to define σ & 0 as the

final ratio of dynamical to KK scale, i.e. RminΛe = e−σ, so that ultimately

σ =
8π2

|b|g2
s

− 2 . (2.22)

As usual, mD must satisfy the constraints in eq.(2.1), so it lies below Λe but is large enough that m̂DΛe > α2/R2:

1 & e
− 8π2

|b|g2
s

+2 � αD, α
2/αD . (2.23)

Thus for the mechanism to work when the Casimir energy is exponentially suppressed in the 5D→4D theory, the scale

of supersymmetry breaking has to be at most a few orders of magnitude below the string scale with relatively large

2 Conceivably one could try to write down a supergravity theory truncated at the first string excitation level.
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coupling, 8π2/|b|g2
s ∼ 2. In addition αD ∼ α are required to be small. Note that if these constraints are satisfied then

the SS contribution to the cosmological constant is guaranteed to be negligible at the minimum, which was the point

we wished to demonstrate here. The essential advantage of a UV-Casimir energy in this case is that the (relatively)

large volume stabilisation governed by non-perturbative long-range physics has not fed-back into it, so one has the

sort of modularity normally associated with brane configurations.

As an example, taking |C| = 10, |b| = 30, gs = 1/
√

2, one requires α, αD . RΛe ≈ 1/25. We will later see how

to accommodate Λe > MKK in the 6D→4D version; this removes the upper bound in eq.(2.23) allowing maximal SS

phases αD, α ∼ 1.

III. STRING/SUPERGRAVITY EMBEDDING

Let us now collect the components for a more complete implementation within a string compactification, focussing

on a theory compactified to N = 1 in 6D, and then further compactified on an orbifold of T2 down to D = 4.

The discussion begins with a summary of the effective spontaneously broken supergravity theory and then compares

the spectrum to that of the Scherk-Schwarzed string theory (using the framework of ref. [13]). The extension to 6D

introduces modular symmetries that persist (as a congruence subgroup) in the Scherk-Schwarzed theory. It is shown

that both the spectrum and the Casimir energy preserve these symmetries. Their great advantage is that they can be

used to follow soft-terms in the spontaneously broken supergravity theory (taking over the role of the R-symmetry in

global SQCD [45, 46]).

This allows us to consider the theory as a whole, without having to separate supersymmetry breaking scales with

artificially small SS twists as was done in the previous section. In fact we will ultimately find that the SS-induced

soft-terms act to stabilise the minimum so that we do not have to rely on the one-loop metastability of ISS.

A. Spectrum and congruence subgroups in the effective supergravity theory

First let us establish how the Scherk-Schwarz mechanism in a direct string implementation such as that in ref. [13]

maps to the effective supergravity theory. As mentioned, the SS stage of compactification is on an orbifolded T2 torus,

which in the absence of Wilson lines can be described generally by the metric

Gij =
T2

U2

(
1 U1

U1 |U |2
)

; Gij =
1

T2U2

(
|U |2 −U1

−U1 1

)
, (3.1)

where in order to conform with most of the phenomenology oriented SUGRA literature the convention is

iU = U1 + iU2

iT = T1 + iT2 . (3.2)

For reference, untilted tori have U1 = 0, T2 = R1R2, U2 = R2/R1 where Ri is the radius along direction i, and

it will be assumed throughout that R2 > R1. The U1 modulus encapsulates the tilt angle (i.e. U1 = R2 cos θ/R1,

U2 = R2 sin θ/R1) and T2 = R1R2 sin θ is the volume. The nett effect on the spectrum of the Scherk-Schwarz action

can be determined on the string theory side from the shift in the internal momenta, which can in turn be read off the

partition function. The latter contains a factor

Zd,d(G,B) =
1

|η(τ)|2d
∑
n,m

qα
′p2

L/2q̄α
′p2

R/2, (3.3)

coming from the compactified toroidal directions. The momenta depend on the KK numbers m1,2 and winding

numbers n1,2 of the T2 as

p2
L = pLiG

ijpLj

pLj =
1√
2α′

(
mj + (Bjk +Gjk)nk

)
, (3.4)



10

and

p2
R = pRiG

ijpRj

pRj =
1√
2α′

(
mj + (Bjk −Gjk)nk

)
, (3.5)

where the notation throughout is as in ref. [13]. The Scherk-Schwarz action causes a discrete Lorentz rotation and

boost involving the KK and winding numbers and the charge/momentum lattice, Q, of the form

Q → Q− niei

mi → mi + Q · ei −
1

2
ei · ejnj

Bjk ±Gjk → Bjk ±Gjk −
1

4
ej · ek , (3.6)

where ei=1,2 are vectors containing the Scherk-Schwarz action on the R-charges and possibly also gauge charges, and

the dot product refers to the Lorentzian charge lattice. The vectors ei contain the phases αF,B , although one should

note they must leave the world sheet supercurrent and charge lattice invariant, and have to leave a consistent orbifold

projection. It is for these reasons that αF,B are constrained to be discrete.

Specialising to the maximal twist case, the spontaneous supersymmetry breaking arises from half integer values of

the Q · ei shift in the KK numbers. Consider the gravitinos; adding left and right moving contributions, the modes

mi and Q · ei marry with the modes −m and −Q · ei, so that(
m

(m1m2)
3/2

)2

=
1

α′
m̂iG

ijm̂j =
1

4α′

∑
ij

Gij

=
1

α′
1

T2U2

∣∣∣∣(m1 −
1

2
)− (m2 −

1

2
)iU

∣∣∣∣2 . (3.7)

Clearly supersymmetry is restored for all U1 = 2`1−1
2`2−1 in the limit U2 → 0 for integer `1,2. This limit can be achieved

by decompactifying with constant ratio of radii, with the tilt angle going to zero (slower than 1/R1R2 in order for

T2 to go to large volume). An identical mass-shift is induced in the gauginos. From this we can identify the effective

KK scale near a supersymmetric point as M2
KK = U2/T2 = 1/R2

1. (Where necessary factors of α′ are absorbed into

the modulus T to give it dimensions of length squared.)

Continuous Wilson lines shift the KK and winding numbers along with the internal charges in a similar fashion and

these can be related to matter/Higgs fields: the shift induced by the pair of continuous real Wilson lines A1, A2, can

be written

Q → Q + niAi

mi → mi −Q ·Ai

Bjk ±Gjk → Bjk ±Gjk −
1

4
Aj ·Ak . (3.8)

The real shift vectors Ai can be related to a pair of complex fields in the effective supergravity theory, denoted φ, φ′.

To get to this basis, first define complex Wilson lines,

Z = iUA1 −A2 , (3.9)

and then

iφ =
1

2
(Z1 − iZ2)

iφ′ =
1

2
(Z1 + iZ2) . (3.10)

The upper indices refer to basis vectors for the charge lattice. Defining 2P = φ+ φ̄′, useful combinations are (in our
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conventions)

PP̄ =
∑
a

=(Za)2 = (A1 ·A1)
U2

2

4

T2 =
√
G+ PP̄/U2

U =
1

G11

(√
G− iG12

)
, (3.11)

with the T2 redefinition matching the shift in (3.8). Going from Z to φ, φ′ amounts to a change of basis for Q. For

example the current superfield for a U(1) current (under which φ and φ′ must have opposite charges) is given by,

J = |φ|2 − |φ′|2 = i
2

(
Z1Z̄2 − Z2Z̄1

)
, so its generator acts as SO(2) on the Za indices. The Kähler potential depends

on the volume
√
G as

K = − log Y − log 4(T2U2 − PP̄ ) , (3.12)

where 2P = φ+ φ̄′, and where the dilaton combination generally includes a term from the (heterotic) Green-Schwarz

mechanism,

Y = S + S̄ − δGS log 4(T2U2 − PP̄ ) . (3.13)

So far the picture is just that of the standard N = 1 theories, but now we deform the theory with a superpotential

that successfully reproduces the SSSB observed in the string spectrum. As we saw on the string side in eq.(3.7), near

iU = 1 the lightest spin 3/2 state is the zero-KK mode gravitino whose physical mass is

m2
3/2 =

1

4

1

S2T2U2
|1− iU |2. (3.14)

The relation between the Planck scale and string scale is

M2
P = g−2

s α′−1 , (3.15)

which suggests that a superpotential in the spontaneously broken theory that produces the correct spectrum is

WSS =
√

2(1− iU) . (3.16)

It can be verified that near U1 = 1, the rest of the low-lying tree-level string spectrum is successfully generated

by this supergravity theory. Explicitly, in the string spectrum the tree-level gaugino masses are degenerate with the

gravitino: using standard notation, the supercovariant derivative is DiW = Wi+WKi, and the gauge kinetic function

is ftree = S, leading to

mλ =

∣∣∣∣m3/2

2
Re(ftree)

−1K īj∂iftree
Dj̄W̄

W̄

∣∣∣∣ = m3/2 . (3.17)

At one-loop the masses would not be equal in either the field theory or the string theory due to gauge mediation

effects, but we shall see below that the above relation does not suffer large volume corrections.

Continuing the comparison of the spectra, after spontaneous superymmetry breaking all the untwisted scalars in

the NS-NS sector should remain massless at tree-level, while their fermion superpartners pick up a mass equal to

that of the gravitino. The corresponding superfields, φ and φ′, achieve this by appearing to conspire in the Kähler

potential as

K ⊃ − log
(
4T2U2 − |φ+ φ̄′|2

)
= − log 4T2U2 +

1

4T2U2
(|φ|2 + |φ′|2 + φφ′ + φ̄φ̄′) + . . . (3.18)

The tree-level fermion mass terms in the effective theory (which is a “µ-term” if one is thinking of φ,φ′ as Higgses),

are then given by
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µφ = m3/2Z
− 1

2

φ Z
− 1

2

φ′

(
Wij

W
+Kij − Γkij

DkW

W

)
, (3.19)

where

Γkij = Kkk̄∂k̄Kij

Z−1
φ = Z−1

φ′ = 4T2U2 = 1/Kφφ′ . (3.20)

Inserting the supersymmetry breaking superpotential in eq.(3.16) gives

µφ = m3/2

(
4T2U2

Wij

W
− W̄

W

)
. (3.21)

In the absence of any explicit Wij mass terms in the original superpotential, this automatically has the same magnitude

as the gaugino and gravitino masses in accord with the Scherk-Schwarzed string theory spectrum. It is straightforward

to show that S,U, T, φ and φ′ fit into a larger “no-scale” supergravity structure that leaves all the scalars massless at

tree-level (modulo possible variations in the splittings of the matter fields that may arise if e is also embedded into

the gauge groups: in the effective theory this would correspond to turning on scalar “Higgs” VEVs). The conspiring

dimensionful terms correspond to mass-squareds and Dirac masses of magnitude m3/2 for the canonically normalized

states.

The original N = 1 theory has well-known modular symmetries: for completeness the standard SL(2,Z)T and

SL(2,Z)U symmetries of the supersymmetric theory are included in the Appendix. What remains of them after

applying the Scherk-Schwarz mechanism? Due to the spontaneous nature of the breaking it is clear that the Kähler

potential should still respect the full symmetry, as it indeed does, and that the new SSSB superpotential should be

the only source of its breaking. To see its effect on the modular symmetries consider the spectrum: according to

eq.(3.7) the zero-mode KK gravitino need not be the lightest state, depending on the value of U1. If U1 = 2`1−1
2`2−1

then the lightest gravitino is instead the `1, `2 KK mode for all U2 . 1/(2`2 + 1), and the superpotential in the

effective theory would actually be WSS =
√

2((2`1−1)− (2`2−1)iU) near this point. The fact that one has to specify

which mode plays the role of the gravitino in the effective theory is of course just a symptom of the deficiency of the

4D supergravity approximation, which cannot describe the supersymmetry breaking over the whole U moduli-space.

Indeed the explicit breaking of modular symmetry in the superpotential just amounts to a choice of gauge: because

of the original discrete symmetry, there are infinitely many equivalent spontaneously broken theories that one could

write down for the effective supergravity theory related by a subgroup of the SL(2,Z)U transformations. This is

evident from the fact that under transformations of the form

1

4

|1− iU |2

S2T2U2
≡ 1

4

|(d− b)− (a− c)iU |2

S2T2U2
; a, b, c, d ∈ Z, ad− bc = 1, a− c = b− d = 1 mod(1) , (3.22)

the gravitino spectrum is invariant. In fact the entire theory is invariant only under the smaller congruence subgroup

defined by a, d = 1 mod (1) and b, c = 0 mod (1), similar to ref. [33], which will be referred to as Γϑ(2). Under such

transformations, any U in a maximally twisted Scherk-Schwarz theory can be mapped to the fundamental domain

shown in fig. 2. In addition to the cusp at infinity, there is a single representative supersymmetric cusp at iU = 1.

For non-maximal Scherk-Schwarz twists, the fundamental domain will contain more cusps, and there will be several

genuinely distinct supersymmetric vacua (consult ref. [33] for details). Naturally the Casimir energy, when we come

to calculate it, must respect this symmetry.

We will also need an understanding of the one-loop gauge thresholds. Their volume dependence (neglecting the

effects of extra charged massless states) can be written [33]

∆ = −C log
(
T2U2|η(iT )|4|η(iU)|4

)
+ (C − b) log

(
T2U2|ϑ4(iT )|4|ϑ2(iU)|4

)
, (3.23)

where b = 16π2β is the beta function coefficients for the entire massless theory, C = 16π2βN=2 is the N = 2 coefficient,

and η are the usual Dedekind eta functions. The modular functions in this expression are also invariant under Γϑ(2)

transformations; denoting SL(2,Z)U operations by SU ≡ iU → −1/iU and TU ≡ iU → iU + 1, we have

TU : U2|ϑ2(iU)|4 −→ U2|ϑ2(iU)|4 (3.24)

SU : U2|ϑ2,4(iU)|4 −→ U2|ϑ4,2(iU)|4 . (3.25)
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biU

FIG. 2: The fundamental U -modulus domain for a maximally twisted Scherk-Schwarz theory has a supersymmetric cusp at

iU = 1.

Therefore ∆ is invariant under any number of TU moves, but only an even number of SU moves, in accord with the

congruence condition.

Following now the standard route (see for example refs. [47–50]) this allows us to identify the holomorphic gauge

kinetic function of the SQCD as (taking a Kac-Moody level k = 1 for the gauge group),

f = S − C

8π2
log η(iT )2η(iU)2 +

C − b
8π2

log
(
ϑ4(iT )2ϑ2(iU)2

)
, (3.26)

with the gauge coupling being given by

2

g2
= Y = 2<(f)− b

8π2
log(µ2)−

(
b

8π2
+ δGS

)
log(4T2U2) . (3.27)

Note that due to the additional universal terms it is the N = 1 beta function appearing here (i.e. b = −3N + F in

SU(N) gauge theories with N = 1 SQCD and F flavours), and not C.

The holomorphic dynamical scale Λhol can be defined as

Λhol = exp

(
−8π2

|b|
f

)
, (3.28)

and the modular weight of Λhol is given by

nΛ = 8π2 b/8π
2 + δGS
|b|

. (3.29)

The gauge coupling can then be written more succinctly as

1

g2(µ)
= − b

8π2
log

[
µ

|Λhol|(4T2U2)nΛ/2

]
. (3.30)

It will often be useful to leave nΛ implicit, as it is essentially just whatever combination of terms appears in eq.(3.27).

However it can be calculated directly [48]; specialising to SU(N) gauge theories with N = 1 SQCD and F flavours of

quark and anti-quark, it is

|b|nΛ = 2FnQ + F −N . (3.31)

We will see that this equation provides an important consistency condition for the implementation of the ISS mecha-

nism, because it can be derived independently from the matching conditions for the Seiberg duals. Note that it will

be assumed for simplicity throughout that the SL(2,Z)U and SL(2,Z)T weights are degenerate for every field.
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To complete this part of the discussion, one can obtain an asymptotic approximation for the gauge threshold

correction at large volume and in the supersymmetric limit around the representative cusp at iU = 1 (which obviously

breaks the modular symmetry). In the vicinity of the cusp, since limiU→1 η(iU) = 0, it is often convenient to use

SL(2,Z)U modular redefinitions to the cusp at infinity, that is iŨ = −1/(iU − 1) ≈ i/U2, with iŨ → i∞ in the

supersymmetric limit: the standard expansion ϑ4(iŨ)→ 1− 2e−πŨ + . . . then gives,

∆ = −C log
(

4T2Ũ2|η(iT )|4|η(iŨ)|4
)

+ (C − b) log
(

4T2Ũ2|ϑ4(iT )|4|ϑ4(iŨ)|4
)
,

=
π

3
C
(
T2 + Ũ2

)
− b log

(
4T2Ũ2

)
+O(e−πŨ2 , e−πT2) . (3.32)

As in the 5D case, the second term subtracts from 16π2/g(µ)2 the logarithmic running between the lightest KK-mode

MKK = 1/
√

4T2Ũ2 and the string scale, whilst the first term replaces it with a power-law threshold. Under our

assumption that C/b > 0, it is clear that one is prevented from going continuously to the boundary of moduli-space

by the appearance of strong coupling in the QCD theory where π
3C
(
T2 + Ũ2

)
∼ 16π2, and this is precisely the region

in which the minimum is expected to appear.

Returning to the appearance of the large volume dependence in the one-loop gaugino mass, retaining only the

pieces f ≈ S + C
8π2

π
6

(
T + Ũ

)
, eq.(3.17) and a little work shows that the relation mλ = m3/2 holds at one-loop up to

logarithmic corrections, as promised.

B. Calculation of Casimir energy

Next let us determine the cosmological constant for the general 6D → 4D case, essentially repeating the computation

of ref. [13] in the full string theory, but now retaining the full T,U dependence. In particular it will be possible to

check that the result respects the Γϑ(2) symmetry of the congruence subgroup described above.

The required expression is

Λ(4)(T,U) = −1

2

∫
F

d2τ

τ2
2

Z(τ) . (3.33)

Using the result in eq.(3.6), the partition function can be approximated at large volume (T2 � 1) by neglecting the

winding modes and Poisson resumming the KK modes of eq.(3.3), giving

Z0,` =
M2

τ2|η|4
√

detGe−
π
τ2
`iGij`

j

. (3.34)

The main simplifying approximation we are making is to neglect the non-zero winding mode contributions (i.e.

Zn 6=0,`) because they are suppressed by exponential factors when the volume is large. Indeed the largest possible

terms with non-zero winding would come from otherwise massless modes with ni = 1, and would be proportional

to ∼ e−πT2/πT2. This should be compared to the leading ni = 0 contributions which as in ref. [13] have a milder

exponential suppression factor of e−2π
√
T2 . The ni = 0,

∑
i `i =even contributions remain supersymmetric regardless

of the presence or otherwise of Wilson lines (assuming the latter do not themselves break supersymmetry), and

therefore we need only consider `1 + `2 =odd. In addition one can ignore the various twisted sectors of the orbifold

which, being independent of the moduli, are supersymmetric and cannot contribute to Λ. As a further approximation

one may at large volume neglect the non-level matched terms which allows one to express the result entirely in terms

of physical states; the leading contributions being neglected in this latter approximation are from the proto-graviton

state described in ref. [13], and are of order ∼ T2e
−πT2 . In making these approximations one obviously at this point

has to abandon the full SL(2,Z)T modular structure of Λ(T,U), but the Γϑ(2) U -symmetry should remain. We

are henceforth obliged to always work at large T2 (which just affirms the preamble concerning the importance of

interpolation).

The result is an expression for the partition function of the form

Z(τ) ≈ M2

τ2|η|4
1

η8η̄20

∑
`

Z0,`

∑
α,β

e2πi
∑
i `i[e·Q]Zinternal

[
α

β

]
, (3.35)
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where α, β label the sectors along the two cycles of the torus. Written as a sum over the physical states this reduces

to

Z(τ) ≡ T2

τ2
2

∑
`=odd

level=k

(N
(k)
b −N (k)

f )e−
π
τ2
`iGij`

j

e−πτ2α
′m2

k , (3.36)

where (N
(k)
b − N (k)

f ) is the Bose-Fermi non-degeneracy of the states unshifted by the Scherk-Schwarz mechanism at

level k. Inserting into eq.(3.33) this gives a leading contribution to the cosmological constant of

Λ(T,U) =
2

π3

1

T 2
2

(N0
f −N0

b )

[
1

2

∑
`1+`2=odd

U3
2

|`1 + iU`2|6

]
. (3.37)

The sum in the square brackets, which will be referred to as E3(iU), is an Eisenstein series, restricted to odd `1+`2 = 1

mod (1), instead of the canonical (`1, `2) 6= (0, 0). One can easily see that it indeed respects the congruence subgroup

obeyed by the spectrum, and also that it has zeros at the supersymmetric points: indeed since U1 = (2`1 +1)/(2`2 +1)

implies |m1 + U1m2| ≥ 1/(2`2 + 1)∀`1 + `2 mod (1) = 1 , one may smoothly take the U2 → 0 limit of the sum for

precisely these values. In accord with the modular transformation above, there is an infinite number of such “trivial

zeros”, at all odd integer values of U1 as well as fractions with odd numerator and denominator, with the general

structure as one approaches the U2 = 0 line becoming extremely intricate to reflect its modular symmetry, as shown

in fig. 3. (It is not clear if anything interesting happens at irrational values of U1.)

For use in the minimisation let us focus on the Casimir energy around the representative supersymmetric cusp at

iU = 1. The potential near iU = 1 is shown in fig. 3. Clearly the minimisation will take place near |U | = 1 and the

phase of U will be the dynamically important variable. The potential along the unit circle is also shown, along with

the following approximation which can be evaluated in closed form:

E3(iU) ≈ 2
∑
k

U3
2

|2k + iU |6
→ π6U3

2

240
. (3.38)

The N0
f = N0

b case is instead dominated by the leading saddle point. According to eqs.(3.33) and (3.36) we find

Λ(T,U) =
T2

2
(N1

f −N1
b )

∑
`1+`2=odd

(`iGij`
j)−7/4e−2π

√
`iGij`j

=
(N1

f −N1
b )

2
T
−3/4
2 U

7/4
2

∑
`1+`2=odd

e−2π
√
T2/U2|`1+iU`2|

|`1 + iU`2|7/2
. (3.39)

Expanding about iU ≈ 1 the following approximation will be useful:

Λ(T,U) = 2(N1
f −N1

b )T
−3/4
2 U

7/4
2 e−2π

√
T2/U2 (1 +O(iU − 1)) . (3.40)

C. The congruence subgroup method for mapping soft-terms between Seiberg duals

Next we determine how the ISS mechanism is governed by the congruence subgroup. This subsection contains two

new results. First it is shown that the string relation between the modular weights in eq.(3.31) can be derived as

the unique solution to modular invariance in a pair of Seiberg duals, and secondly it is shown that the congruence

subgroup provides a useful means of tracking soft-terms, including the effect of gravity mediation. It is also shown that

the ISS mechanism still operates, with all masses, dynamical scales and so forth being replaced by the corresponding

physical and hence modular invariant quantities. The issue of how KK modes enter into the ISS mechanism will be

addressed in the following subsection.

Recall that in the ISS mechanism, the original electric theory has a Dirac mass superpotential,

Wel = mDQQ̃ , (3.41)
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a) b)

E3(eiθ)

c)

FIG. 3: The Casimir energy E3(iU). In a) we see the self-similarity near the critical line, with the bottom of each valley

corresponding to U1 = (2`1 + 1)/(2`2 + 1) for integer `1, `2, and a different gravitino. Fig. b) shows the vacuum energy around

iU = 1 as a function of ρ, θ where iU = ρeiθ, and fig. c) shows it along the unit circle iU = eiθ. The dashed line is the

approximation E3(iU) ≈ 2
∑
k

U3
2

|2k+iU|6 .

while the magnetic dual has a superpotential

Wmag =
[QQ̃]qq̃

Λ̂
+mD[QQ̃] . (3.42)

The inverse coupling Λ̂ in the superpotential is expected to be of order the strong coupling scale of the theory. One

can determine its modular weight from the requirement that Wmag has weight −1, as does the dynamically induced

superpotential for the SQCD theory,

Wdyn = −Ñ

detF

[
QQ̃
]

Λ̂3N−F

1/Ñ

. (3.43)
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This yields the modular weights of Q and q in terms of the weight of Λ̂:

nq = nΛ̂

2F − 3N

2F
− N

2F

nQ = nΛ̂

3N − F
2F

− F −N
2F

. (3.44)

A nontrivial consistency check is that these expressions are in accord with the string relations in eq.(3.31) in both the

electric and magnetic phases. They are also in accord with the well known matching relation,

Λ−bholΛ̃
−b̃
hol ∼ Λ̂−F , (3.45)

as well as the matching of baryons, (
Q

Λhol

)N
∼
(

q

Λ̃hol

)Ñ
, (3.46)

provided that nΛ̂hol
= nΛhol = nΛ̃hol

, where Λhol and Λ̃hol are the electric and magnetic QCD scales respectively.

Their weights will be referred to collectively as nΛ. The weight of the Dirac mass is then constrained to be

nmD = −nΛ
3N − F

F
− N

F
. (3.47)

As the three scales have the same modular weights, there can be no relative factors of T2 or U2 between them,

and it is natural to assume Λ̂ ∼ Λ̃hol ∼ Λhol. For example, if the fields Q and Q̃ are incorporated into the “no-

scale” structure such that they have weight nQ = −1, then the corresponding modular weights of Λhol and mD are

nΛ = −(N + F )/(3N − F ) and nmD = 1 respectively.

Finally the holomorphic magnetic meson is defined as

Φ =
[QQ̃]

Λhol
. (3.48)

It has weight

nΦ = nΛ

(
3N − 2F

F

)
− F −N

F
. (3.49)

Note that the dependence on nΛ in eq.(3.44) is proportional to the beta function in the respective theory, and at

fixed points the modular weights of fields are proportional to their anomaly-free R-charges in the global theory. Thus

when F ≈ 3N/2 and the magnetic theory is weakly coupled, nq ≈ nΦ ≈ −1/3, which can be interpreted as the

appropriate modular weight for them to become free fields at a Gaussian fixed point. Likewise the weakly coupled

electric theory, when F ≈ 3N , has nQ ≈ −1/3. In addition note that a non-zero value for mD breaks both the

anomaly-free R-symmetry of the global theory, and the modular symmetry.

How are these objects related to their physical counterparts? The physical mass of the quarks is determined by

the Kähler piece, K ⊃
(
|Q|2 + |Q̃|2

)
(4T2U2)nQ , so the canonically normalized quark is Q̂ = Q(4T2U2)nQ/2, while the

physical mass is m̂D = eK/2WQQ̃(4T2U2)−nQ = mD(4T2U2)−(nQ+1/2). Both are modular invariant as they should be.

We must also be careful to distinguish the holomophic scale Λhol from the physical dynamical scale of the theory Λe.

The two are related through the gauge thresholds according to eq.(3.30), which yields

Λe = |Λhol| (4T2U2)
nΛ
2 . (3.50)

Thus the physical scale Λe can be different from the holomorphic one, but note that in principle they can be similar

in size, even at large volume: restoring the explicit radii and tilt dependence, U1 ≈ 1 =⇒ R1 = R2 cos θ, and hence

T2U2 ≈ R2
2 −R2

1. One may always choose R2
2 ≈ R2

1 + c2 where c is an O(1) constant, so that T2U2 ≈ c2. In this limit

the tilt angle is very small, sin θ ≈ c/R2. This will turn out to be the dynamically relevant limit for the minimisation.

In the large T2 and Ũ2 limit, eq.(3.32) gives,

16π2

g2(µ)
=

16π2

g2
s

+
π

3
C
(
T2 + Ũ2

)
− b ln

(
µ24T2Ũ2

)
, (3.51)
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and hence an approximation for Λe,

4T2Ũ2Λ2
e = e

− 16π2

g2
s |b|

+C
b
π
3 (T2+Ũ2)

. (3.52)

Since this approximation is valid only in the specific iU → 1 limit, it is unsurprisingly not modular invariant.

Indeed the physical KK scale is a non-modular invariant quantity, and is given by the splitting in the spectrum,

MKK = 1/
√

4T2Ũ2. As T2Ũ2 ≡ R2
1 it is, unlike T2U2, inevitably large.

The story for the physical magnetic meson is less clear-cut because it is not possible to determine the normalization

precisely. However, given the modular weight of Φ, it is reasonable to adopt an invariant Kähler potential of (up to

irrelevant factors)

K ⊃ |Φ|2(4T2U2)nΦ + . . . (3.53)

Thus we work with a normalized field Φ̂ = Φ/γ, where γ ≡ (4T2U2)−nΦ/2. The canonically normalized field is the

modular invariant combination, Φ̂ = Q̂ ˆ̃Q/Λe. In the free-magnetic window where the ISS mechanism operates,

− 1

3
≤ nΦ . 1 , (3.54)

with the lower limit corresponding to 2F = 3N .

The aspect of SQCD that we wish to address with this technology is the behaviour of the soft supersymmetry

breaking terms that are induced in the original theory by the SS mechanism. In global theories such terms can

be followed, even through regions of strong coupling, using various tools, most notably the R-current superfield, as

described in refs. [45, 46]. For example, properly normalized gaugino masses in the original SQCD electric theory are

mapped to the magnetic dual as

m(mag)
g =

2F − 3N

3N − F
m(el)
g . (3.55)

There is a similar (and related) mapping of mass-squared operators for the squarks and smesons, which in the global

theory looks like

|Q̂|2 + | ˆ̃Q|2 →
(

2F − 3N

3N − F

)[
|q̂|2 + |ˆ̃q|2 − |Φ̂|2

]
. (3.56)

These mappings in softly broken global SQCD theories parametrically suppress the supersymmetry breaking when the

theory is just inside the free magnetic window 2F . 3N .

In a similar fashion, modular symmetry can track the soft-terms in the effective supergravity theory. Due to its

holomorphic nature the gaugino mass mapping is unchanged. But the mapping for the mass-squareds is different.

Indeed a little work shows that a generic canonically normalized matter field ϕ̂ has soft mass-squared terms

m2
ϕ̂ = m2

3/2(1 + 2nϕ) + . . . (3.57)

where the dots indicate loop corrections. Numerical factors in the normalisation obviously cancel out in the physical

mass-squared which depends only on the modular weights (which is why it was safe to ignore them). In the SQCD

supergravity theories, this gives the following mapping of soft-terms:

m2
Q̂

= m2
3/2

[
(3N − F )

F
nΛ +

N

F

]
m2
q̂ = m2

3/2

[
(2F − 3N)

F
nΛ +

F −N
F

]
m2

Φ̂
= m2

3/2

[
−2(2F − 3N)

F
nΛ +

2N − F
F

]
. (3.58)

One concludes that the relation in eq.(3.56) is not valid in the local theory, but that it would hold if one were to add

a universal − 1
3m

2
3/2 constant to all the soft-terms. Combined with the “1” in eq.(3.57), this extra 2

3m
2
3/2 contribution
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is precisely the gravity mediated piece that is removed by the conformal compensator technique of ref. [45]. Here it

is a real physical effect, and leads to an interesting sum-rule,

2m2
q̂ +m2

Φ̂
= m2

3/2 . (3.59)

The right-hand side of this equation – which would be zero in a global theory – arises entirely from gravity mediation.

This sum-rule implies that, in contrast to the global theory, there is now no choice of parameters that restores

supersymmetry in the magnetic theory.

Eq.(3.57) cannot be the whole story for the scalar masses: for example no-scale models have massless scalars that

have nQ = −1. The additional contribution is of course from the cross-term in K ⊃ |Q+ Q̃†|2(4T2U2)nQ . For models

of this form one finds a dimensionful mass-squared operator in the potential for the canonically normalized fields of

the form

Vel ⊃ m2
3/2(1 + nQ)|Q̂+ ˆ̃Q†|2 + . . . (3.60)

The global flavour symmetry is explictly broken as

SU(F )L × SU(F )R × U(1)B × U(1)R → SU(F )V × U(1)B , (3.61)

by the cross term. All D-flat scalar degrees of freedom remain massless when supersymmetry is spontaneously broken,

and imposing these constraints on the magnetic description (as well as the flavour symmetry breaking pattern), fixes

the magnetic Kähler potential to be

Kmag ⊃ |q† + q̃|2(4T2U2)nq + |Φ† + Φ|2(4T2U2)nΦ , (3.62)

with the anti-hermitian part of Φ remaining massless, but the hermitian and trace parts picking up a mass of order

m2
3/2. This gives soft-terms of the form

Vmag ⊃ m2
3/2(1 + nq)|q̂† + ˆ̃q|2 +m2

3/2(1 + nΦ)|Φ̂† + Φ̂|2 , (3.63)

up to normalisation factors that are irrelevant to the physical masses.

Finally with the above information to hand it is possible to check that the relevant physical processes respect the

modular symmetry. For example a superpotential can be written for the canonically normalized fields of the effective

global theory:

Ŵ (Φ̂, q̂, ˆ̃q) = We−〈K〉/2 = hΦ̂q̂ ˆ̃q − m̂DΛeΦ̂ , (3.64)

where h = Λhol/Λ̂ is a modular invariant coupling. The conclusion is that the typical induced physical mass scale in

the ISS minimum is µ̂ =
√
m̂DΛe/h.

Likewise consider the tunneling action in the ISS sector (ignoring the additional soft-terms for Φ when nΦ 6= −1).

Defining εhol =
√
mD/Λhol and setting h = 1, the VEV of the true supersymmetric minima in ISS is determined

exactly:

Φ0 = µholε
(2F−3N)/2N , (3.65)

where µ2
hol = mDΛhol. An estimate for the tunnelling action that takes into account both the factor eK and the

normalization of Φ̂ is then [34]

SE ∼ 2π2Nε
4(2F−3N)/N
hol (T2U2)1+3nΦ . (3.66)

Upon inspection, this expression is the only possible modular invariant combination with the correct functional

dependence on ε (and this could have been used as a short-cut to derive it). Indeed expressing holomorphic parameters

in terms of physical ones, gives simply

SE ∼ 2π2Nε4(2F−3N)/N , (3.67)

where ε =
√
m̂D/Λe.
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D. On Λe > MKK

An important point for the minimisation is that thanks to the remaining congruence subgroup symmetry there is

no longer any reason to prevent Λe > MKK . In particular the matching governed by eqs.(3.41)-(3.46) is still valid in

these regions of parameter space as long as one bears in mind that the matching is between the effective 4D theories

with KK modes integrated out. It is effectively being done at the scale MKK . This fact will allow us to avoid the

upper constraint in eq.(2.1).

Let us comment on this more explicitly. The picture of interest is where the original SQCD becomes strongly

coupled at an energy scale Λe > MKK , when it still contains many light KK modes. The effective 4D field theory

description at this scale would resemble a truncated 6D theory, while the magnetic theory will be some unknown dual

description. The physics of this full theory will be quite messy, so let us see what happens in a toy-model: motivated

by the fact that the extra KK states in the spectrum of the electric theory include additional massive KK quarks with

Dirac mass terms similar to those in eq.(3.41), as per Section II, consider including just these extra states as a set of

∆F flavours with mass m∆F . One can “integrate in” these quarks to find a theory with dynamical scale Λ′hol and

beta function coefficient b′ = b+ ∆F . The scale Λ′hol would then be regarded as the scale for the truncated 6D theory

with its additional ∆F quarks, and its relation to Λhol can be found by holomorphic matching at the scale m∆F :(
Λhol
m∆F

)b
=

(
Λ′hol
m∆F

)b′
. (3.68)

The magnetic equivalent of this situation is very well known: the m∆F operator gives rise to a linear meson term

that via eq.(3.42) induces a Higgsing for the magnetic theory of 〈q · q̃〉 = Λ̂m∆F . Hence the “integrating in” of the

electric theory, corresponds in the magnetic theory to an “unHiggsing” from SU(N) to SU(N + ∆F ), which gives a

new beta function coefficient b̃′ = b̃− 2∆F , and an accompanying matching equation(
Λ̃hol√
Λ̂m∆F

)b̃
=

(
Λ̃′hol√
Λ̂m∆F

)b̃′
. (3.69)

Now, upon inserting eqs.(3.68),(3.69), one finds that the 4D matching in eq.(3.45) derives from the matching equation

of the full theory, namely

Λ
′−b′
hol Λ̃

′−b̃′
hol ∼ Λ̂−(F+∆F ) . (3.70)

The point of this simple exercise is to demonstrate that no explicit powers of T2U2 can enter when one integrates

out modes between MKK and Λe, because that would be in violation of the modular symmetry. In principle volume

factors could have entered in a modular invariant way via the dependence on ∆F ∼ (Λe/MKK)d, but this would have

introduced extra powers of Λ, and it would also have made the relation between the 6D and 4D dynamical scales

singular in the decompactification limit. We conclude that the effective 4D relation in eq.(3.45) derives from the

matching relation in the toy-model with all KK modes present in eq.(3.70), and neither version of the matching can

contain factors of T2 or U2.

One does not expect that this conclusion would change if one were to start with the full 6D theory truncated at Λe,

and its much more complicated magnetic dual (whatever form that may take). Thanks to the modular invariance, the

“integrated in” 6D relation and the “integrated out” 4D relation are equally valid, although the 4D one is obviously

the convenient choice. While it would be interesting to investigate how the 4D duality is embedded in the truncated

6D theory, knowledge of this is not required for the mechanism at hand. In particular, Λhol is indeed just a parameter

that specifies the dynamical scale of the effective 4D field theory when one integrates out all the KK physics, and

Λ̃hol is the relevant dynamical scale for the 4D theory that emerges below MKK , regardless of the relative size of Λhol
and MKK . Note that, if the couplings (i.e. h = Λhol/Λ̂ and friends) are of order unity, the dynamical scales of the

truncated 6D theory are inevitably similar to those of the 4D theory regardless of the volume.



21

IV. STABILISATION IN THE STRING-EMBEDDED THEORIES

A. Generic Casimir energy

With all the necessary ingredients to hand, the minimisation can now be revisited. The generic case is treated in

this subsection. The following subsection considers the UV-Casimir case.

To start with, one can deduce from eq.(3.59) that there are always some mass-squareds of order m2
3/2 in the infra-red

of the ISS theory. It is convenient for the discussion in this and the following subsection to specialise to the weakly

coupled case, and take F ≈ 3N/2 giving nq, nq̃, nΦ ≈ −1/3. This yields positive (physical) mass-squared operators of
2
3m

2
3/2, regardless of nQ and nΛ. Generalisation would be straightforward.

Therefore for the ISS mechanism to work as before (in particular for the rank-condition to be unchanged) one

requires only that µ̂2 = m̂DΛe/h & 2
3m

2
3/2. There is now the additional attractive feature that gravity mediated

contributions act to stabilise the smeson fields around the origin, quenching tunnelling completely. This means one is

able to relax the conditions in eq.(2.1): one may work with Λe > m3/2 ∼MKK which then guarantees that m̂D < Λe
ensuring that the physical states all still remain in the ISS theory. It should be stressed that this does not cause a

problem for the proper functioning of the ISS mechanism. As discussed in the previous section, the matching of the

zero-mode SQCD theories can be done at the scale MKK and goes through as before regardless of the presence of

heavier bulk modes. The magnetic ISS phase and the soft-terms all emerge below MKK with Λe being the appropriate

4D SQCD scale, regardless of the relative size of Λe and MKK , and regardless of what additional states or physics

might appear above the KK scale.

A possible generic difficulty with Λe > m3/2 is rather that the ISS physics could change the original Casimir energy.

One can see this sensitivity explicitly, by for example just removing the KK modes below the scale Λe with an IR

cut-off τ2 < 1/Λ2
e on the Schwinger integral: this adds a term that dominates the contribution from the SQCD

sector when Λe > MKK . One can then see the advantage of the UV-Casimir theories whose cosmological constant

is unchanged by such a cut-off: they automatically have a Casimir energy that is completely shielded from all IR

physics. We take advantage of this feature in the next subsection. By contrast, for the generic case one must assume

that the contribution to the cosmological constant from the ISS sector is swamped by the contribution from all the

other massless degrees of freedom in the theory, that is N
(0)
f − N (0)

b � N
(0)
fISS

− N (0)
bISS

. Given the large number of

states, this assumption is reasonable.

To perform the minimisation, let us consider the case nQ = −1, which recall gives nmD = +1. (It is simple but

not particularly instructive to generalise.) The physical Dirac mass then has the form m̂D = αD
√

4T2U2 where αD
is a continuous parameter that must have weight +1. (Therefore αD represents an explicit breaking of the modular

symmetry much like the Dirac mass in the original ISS scheme is an explicit breaking of the anomaly-free R-symmetry.)

Note that αD has mass dimension 2: henceforth all dimensionful quantities are in units of Ms. It will become clear

that the above choice is consistent with the Dirac mass-term being a free parameter in the superymmetric theory.

Then using eq.(3.38) we have

V = VC + VISS

=
π3

120
(N0

f −N0
b )
U3

2

T 2
2

+Nm̂2
DΛ2

e ,

=
π3

120

(N0
f −N0

b )

T 2
2 Ũ

3
2

+
T2

Ũ2

4Nα2
De
− 16π2

g2
s |b|

+C
b
π
3 (T2+Ũ2)

. (4.1)

Note that strictly speaking one should add the superpotential terms corresponding to the two sources of spontaneous

supersymmetry breaking rather than the vacuum energies, and evaluate the resulting cosmological constant in the

full supergravity theory. However the terms in the superpotential comprise a U dependent part from the Casimir

energy, and a Φ dependent part from the ISS contribution. The terms that are being neglected by not performing a

full treatment can only arise from additional U −Φ mixing terms in the Kähler metric (since FU and FΦ are the only

non-zero F -terms); by flavour symmetry these have extra factors of 〈Φ〉 which are zero at leading order.

The minimisation conditions give

Ũ2 =
3

2
T2 +

15b

2πC
. (4.2)
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Assuming that the volume ends up at T2 � 1 (as will be verified in a moment), one may neglect the second term and

use

T2U2 =
2

3
+O(1/T2) , (4.3)

and hence MKK ≈
√

2/3 T−1
2 . Note that m̂D ≈

√
8/3αD regardless of the eventual scale of supersymmetry breaking.

Therefore αD can indeed be considered to be a parameter of the supersymmetric theory.

The potential becomes

V (T2) =
π3

405

(N0
f −N0

b )

T 5
2

+
8Nα2

D

3
e
− 16π2

g2
s |b|

+C
b

5π
6 T2

. (4.4)

The remaining one-dimensional minimisation can be done analogously to that in the 5D model of Section 2. Using

that notation, the fiducial scale of eq.(2.13) and the T2 VEV are given by

µ2
0 ≈

(
5πC

6b

)5
π3

69

(N0
f −N0

b )

Nα2
D

≈ 4× 10−4

α2
D

(
C

b

)5 (N0
f −N0

b )

N
,

5πC

6b
T2 ≈

16π2

|b|g2
s

+ lnµ2
0 , (4.5)

where, recall, the dynamical scale is then given by Λe
MKK

= µ0 (in string units). As mentioned above, with maximal

SS phases, in order to avoid the SS soft-terms interfering with the ISS mechanism we choose Λe & MKK . From the

above, assuming (N0
f −N0

b ) ∼ N and C ∼ b requires α2
D � 1, which is consistent with m̂D � Ms. Indeed restoring

the string scale we have

Λe
MKK

≈

√
10−3

(
C

b

)5 (N0
f −N0

b )

N
× Ms

m̂D
. (4.6)

Summarising the 6D case then, when gs � 1, the minimum is at

T2 ≈
2

3U2
≈
√

2

3
M−1
KK ≈

96π

5|C|g2
s

, (4.7)

with Λe &MKK . As in the 5D case the potential rises exponentially fast beyond the minimum until Λe surpasses Ms.

A numerical example is shown in fig. (4).

B. UV-Casimir energy balanced against a gaugino condensate

Next we consider the N0
f = N0

b theories. As discussed earlier the Casimir energy in these cases is generated entirely

by UV modes, so it is completely insensitive to the low energy physics. This separation is very interesting in the

current context of balancing competing Scherk-Schwarz induced terms against non-perturbative IR physics, because it

suggests that whatever mechanism is devised will be very robust. Moreover the two contributions to the cosmological

constant may be consistently determined independently even though they necessarily involve the same moduli. In

terms of the Schwinger integral, one can envisage the integrand as having two separate peaks, one at the stringy

UV end and the other at the non-perturbative IR end. Therefore, one may simply add the two terms, which will be

referred to as VUV and VIR, in the cosmological constant. Indeed VUV is computed in the string theory, while VIR
can be computed independently in the low energy effective field theory.

This opens up possibilities for stabilisation with non-perturbative physics that would otherwise be rather difficult

to treat. For example gaugino condensation is now an attractive option for our IR physics rather than the ISS

mechanism. Note that by contrast a standard SS Casimir energy (as considered in the previous section) balancing

against a gaugino condensate would require a treatment of both terms simultaneously because they are functions only
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log10 V (T2, Ũ2) log10 V (T2, Ũ2)

FIG. 4: The potential for b = −100, C = −50, (N0
f − N0

b ) = N = 10, αD = 10−4 and gs = 10−2. The approximation in

eq.(4.5) gives a minimum at T2, Ũ2 = 12064, 18096 (in string units) respectively. As in the 5D case, the minimum lies close

to a boundary in moduli space beyond which the effective field theory theory description breaks down as the dynamical QCD

scale exceeds the string scale. The dynamical scale is Λe ≈ 35MKK but it can be easily brought closer to MKK with different

choices of parameters, while Λe � m̂D over the whole parameter space.

of S, T, U and are not independent; essentially everything in that case would be happening in the IR, so it would be

necessary to determine the full one-loop effective supergravity theory in order to compute the cosmological constant.

To see this in practice, consider a single gaugino condensation contribution to VIR. The minimisation will now be

done with all three fields, properly including the dynamics of the dilaton S itself. However the philosophy is the same,

namely we expect to end up in a stable or metastable minimum that has relatively large S compensated by relatively

large T and Ũ .

The IR contribution to the potential is calculated in supergravity, incorporating the superpotential WSS in eq.(3.16)

for the Scherk-Schwarz background, in addition to the gaugino condensate, that is WIR = WSS +Wgc. The latter is

described by the well-known superpotential

Wgc = dΛ3
hol , (4.8)

where d is a constant, and now

Λhol ≈ e−
8π2

|b| S+C
b
π
6 (T+Ũ) (4.9)

is the holomorphic scale for the pure Yang-Mills theory. Eq.(3.31) with F = 0 and b0 = −3N correctly gives

nWgc
= −1. The approximation refers to T2, Ũ2 � 1 near iU = 1 and as discussed earlier it breaks the modular

symmetries. In the Scherk-Schwarz background, adding WSS then incorporates the effect of the shifted mass spectrum.

We know that the potential without Wgc is entirely flat so one can anticipate that the resulting contribution involves

powers of Wgc.

Some care is required regarding phases: bearing in mind the cosmological constant discussion in Section III B, one

can anticipate that U1 and T1 will ultimately be fixed to zero by VUV , and therefore one does not need to consider

them further. However the phase of the dilaton S1 remains as a free field that is fixed by the gaugino condensate.



24

Using eq.(3.40), the potential is conveniently arranged (at U1 = T1 = 0) as

V = VUV + VIR = 2(N1
f −N1

b )T
−3/4
2 Ũ

−7/4
2 e−2π

√
T2Ũ2 +B

(
|Λ3
hol| −

A

B

)2

− |A|
2

B

A
S2T2

d
=

1

2
√

2

(
1 + log |Λ3

hol|
)

(4.10)

B
S2T2

d2Ũ2

=
1

2
log |Λ3

hol|(log |Λ3
hol| − 1)− π

2

C

b

(
(T2 + Ũ2) log |Λ3

hol| − Ũ2

)
+

(
π

2

C

b

)2

(T 2
2 + T2Ũ2 + Ũ2

2 ) .

The entire S2 dependence is contained within the eK prefactors and the |Λhol| dependence, while S1 simply adjusts

the phase of Λhol so that it comes to rest where it minimises the square with a relative minus sign as shown. The

minimisation with respect to the dilaton is then dominated by the complete square term, which gives the approximation

|Λhol| ≈ A/B
(
1 +O(24π2S2/|b|)

)
≈ 1

2
√

2d

(
π

2

C

b

)−2
1

Ũ2(T 2
2 + T2Ũ2 + Ũ2

2 )
. (4.11)

The error on the right hand side of this equation is due to the eK pre-factor and is negligible when the gauge coupling

at the string scale ends up being weak (as is the case of interest). The A/B term on the right hand side depends only

logarithmically on Λhol; the approximation can be improved by iteration if required but as long as the volume T2 is

large, the zeroth order expression shown on the second line is sufficiently accurate.

The potential is qualitatively different from that in the ISS case because the single gaugino condensate does not by

itself give a minimum in T2 or U2. In fact without the VUV contribution the potential has a runaway to small moduli

(where our approximations break down) or to infinity. With VUV however a minimum is found where the two terms

VUV and VIR balance, giving rise to the novel phenomenon that the non-perturbative low-energy contribution self-tunes

to be of the same order as the exponentially suppressed UV-Casimir energy. A framework in which an exponentially

small UV cosmological constant governs and stabilises non-perturbative IR physics without being disrupted itself

seems of general interest.

An example potential is shown in fig. 5 for a typical set of parameters. In addition the plot shows the line where

VUV = VIR close to the actual minimum. The nett result is a minimum in which all the moduli are stabilised

and Λhol ∼ Ms/10. Notice that the approximation T2 ≈ 2
3 Ũ2 at the minimum still holds. This example takes

N1
f −N1

b = 106 which may seem large, but one should recall that there are very many excitations at the first string

excitation level, and in fact this number is quite typical. Not surprisingly, reducing this number (and increasing d)

moves the minimum closer to the origin, where neglected contributions to VUV such as those from winding modes will

start to become important. Further discussion of the latter along with explicit examples can be found in the recent

work of ref. [58], and it would be interesting to incorporate these additional terms in detail.

V. CONCLUSION

In summary, it is argued that a general means of addressing the decompactification problem dynamically is to

balance non-perturbative physics contributions to the vacuum energy against the Casimir energy in Scherk-Schwarzed

theories. Due to universality in both the threshold corrections and the gauge couplings, the stable minimum will have

consistently large (order one) gauge couplings for any gauge group that shares the same N = 2 beta function for bulk

modes as the gauge group taking part in the minimisation. By contrast gauge symmetries with the wrong-sign beta

function will remain as effectively global symmetries.

Both the ISS mechanism and a single gaugino condensate were considered for the stabilising non-perturbative

physics in the case of compactification from 6D to 4D in heterotic strings. In either case, both the Scherk-Schwarz

contribution and the non-perturbative contribution to supersymmetry breaking can be written as superpotential terms

in N = 1 theories, which spontaneously break supersymmetry.

The ISS mechanism is interesting because it gives novel cross-checks based on the residual modular symmetry of the

theory, and also allows one to handle the supersymmetry breaking from the ISS mechanism and the Scherk-Schwarz

breaking simultaneously. By contrast the gaugino condensate is interesting when the original Scherk-Schwarzed
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V (T2, Ũ2)

FIG. 5: The potential for a single gaugino condensate in a Scherk-Schwarz background, for b = −80, C = −20, (N1
f −N1

b ) = 106

with d = 0.1. The dashed line marks where the IR contribution to the potential is equal to the UV one. In practice the pre-

factors make very little difference to the qualitative form of the potential, but move the minimum along T2 ≈ 2
3
Ũ2.

theory retains Bose-Fermi degeneracy and has exponentially suppressed cosmological constant. An important

aspect of the SS induced cosmological constant in this case is that it is entirely generated by heavy modes and as

such is completely immune to any non-perturbative physics that might be added in the IR to provide a balancing

contribution. It allows very simple treatment of the minimisation which in this case takes place at moderate volume.

A full treatment in this generic set-up (that is, including the stabilisation of the compactification moduli as well as

the original dilaton) was presented. The energetic separation between competing and balancing UV and IR induced

terms in the potential makes stabilisation very robust, and seems to be something that has not been remarked upon

before. It would be of interest to apply the mechanism to explicit examples, such as the models discussed recently in

ref. [58], which has some intriguing overlaps with the work described here.
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Appendix A: The SL(2,Z)U and SL(2,Z)U modular symmetries

The heterotic modular symmetries begin life as subgroups of the exact O(16 + d, d,Z) target-space automorphisms

of the Narain lattice [55–57]. The transformations under SL(2,Z)U and SL(2,Z)U are presented here for reference.

Under SL(2,Z)T , the fields transform as

T → aT − ib
icT + d

,

U → U − ic φφ′

icT + d
,

S → S − δGS log(icT + d) ,

φ, φ′ → φ, φ′

icT + d
, (A1)

with a, b, c, d ∈ Z and ad− bc = 1, while the U -modular transformation SL(2,Z)U is

U → aU − ib
icU + d

,

T → T − ic φφ′

icU + d
,

S → S − δGS log(icU + d) ,

φ, φ′ → φ, φ′

icU + d
. (A2)

Some useful identities under the iT → −1/iT transformation of the SL(2,Z)T modular group for example, are

T + T̄ → T + T̄

|icT + d|2

η(iT )2 → (icT + d) η(iT )2

|η(iT )|4
(
T + T̄

)
→ |η(iT )|4

(
T + T̄

)
, (A3)

so that the Kähler potential K = − log
(
4T2U2 − |φ+ φ̄′|2

)
transforms as K → K + log |icT + d|2. Thus the superpo-

tential has to have weight −1 under SL(2,Z)T,U .
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