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tributions coming from non-perturbative physics. Universality of threshold corrections

ensures that, in such situations, the stable minimum will have consistent gauge couplings

for any gauge group that shares the same N = 2 beta function for the bulk excitations

as the gauge group that takes part in the minimisation. Scherk-Schwarz compactification

from 6D to 4D in heterotic strings is discussed explicitly, together with two alternative

possibilities for the non-perturbative physics, namely metastable SQCD vacua and a single

gaugino condensate. In the former case, it is shown that modular symmetries gives various

consistency checks, and allow one to follow soft-terms, playing a similar role to R-symmetry

in global SQCD. The latter case is particularly attractive when there is nett Bose-Fermi

degeneracy in the massless sector. In such cases, because the original Casimir energy is

generated entirely by excited and/or non-physical string modes, it is completely immune

to the non-perturbative IR physics. Such a separation between UV and IR contributions

to the potential greatly simplifies the analysis of stabilisation, and is a general possibility

that has not been considered before.
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1 Introduction

The Scherk-Schwarz (SS) mechanism is one of the most attractive means of spontaneously

breaking supersymmetry (SSSB) [1, 2]. In the SS mechanism, supersymmetry is broken by

compactification with R-symmetry violating boundary conditions, and from a 4D perspec-

tive the inverse volume 1/Rd (where R is used as a generic compactification scale) plays the

role of an order parameter for supersymmetry breaking in the effective field theory. This

yields all-orders control over supersymmetry breaking, and shields dimensionful operators

such as the Casimir energy and soft-terms from the ultra-violet (UV) completion [3–7].

They can then largely be computed as finite Kaluza-Klein (KK) contributions in an effec-

tive extra-dimensional field theory, enhancing predictivity. There are numerous interesting

phenomenological applications, for example in the recent work of refs. [8–14].

In such theories, a volume significantly larger than the fundamental scale, R � `s,

is necessary (even if one does not insist on low scale supersymmetry breaking) if one

wishes the reproduce the physics of the traditional field theory SS mechanism. This is

because heavy modes come to dominate over the KK modes in loop processes once the

compactification radius approaches the fundamental length scale (see the discussion in
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ref. [15]). In the context of non-supersymmetric string theory for example, “non-physical”

proto-gravitons start to be important once R . 2`s. The necessary separation between the

UV completion and the KK scale can be achieved by configurations that interpolate from

supersymmetric theories at large radius to non-supersymmetric ones at small radius [15].

Ideally, one would then like to treat this as an approximate “moduli space”, and generate

a consistent supersymmetry breaking solution at large volume dynamically. This has been

widely discussed in the Scherk-Schwarz context in for example refs. [16–24].

However large volumes are problematic in the context of heterotic string theory. They

are felt universally by the gauge couplings, which are then generally rendered inconsistent

at one-loop by the corresponding KK mode contributions. This is a generic source of

tension for the SS mechanism in heterotic strings and indeed any SS set-up that does not

have a “brane” configuration.

To be specific, consider an effective 5D SQCD theory (i.e. one in which only one

compactified dimension is significantly larger than the fundamental scale). Supposing that

any other moduli except the radius are already stabilised at small volumes (so they play

no further role in the dynamics or in the magnitude of the gauge couplings) the expression

for the gauge coupling of the effective 4D SQCD theory is

16π2

g2(µ)
= k

16π2

g2
s

+ b ln
M2
s

µ2
+ ∆(R) , (1.1)

where b is the beta function coefficient of the original effective 4D N = 1 theory (in a

convention where SU(N) supersymmetric QCD with F flavours would have b = −3N+F ),

and ∆ are the offending threshold contributions which at large volumes are dominated by

the KK sector of the theory,

∆(R) = CRMs − 2b ln(RMs) . (1.2)

The constant C depends on various other parameters and moduli, most importantly on

the beta functions of the N = 2 content of the theory. In this preliminary discussion (and

in fact right up to the last section) gs will be assumed to be fixed beforehand: ultimately

though it will also be dynamical, being given by the VEV of the axio-dilaton.

There are then two possibilities assuming that C 6= 0. Gauge couplings that have

C > 0 are made weaker by the threshold corrections. Broadly speaking one can interpret

this as the contribution from power-law running between the fundamental scale and the

KK scale [25–29] (although there are various subtleties in mapping extra-dimensional field-

theory to string theory — see for example ref. [7]). At large volume the couplings become

tiny and the corresponding symmetry is to all intents and purposes global. By contrast

those couplings that have C < 0 grow stronger at large radius, from extremely weak values

at the fundamental scale. They can in principle become reasonably large, but then one

has to balance the threshold contribution to 1/g2 against its tree-level value. It should be

noted that C and b need not have the same sign, so there is nothing to prevent a theory

flowing to stronger coupling at the KK scale, and then for the effective 4D theory to be

IR-free (and vice-versa); to simplify the discussion it will be assumed that they do have

the same sign.
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To summarise the difficulty, C > 0 couplings are insignificant at low energy unless the

gauge symmetry is localized in the large volume, implying some kind of brane set-up. On

the other hand, C < 0 couplings seem to imply a fine-tuning of tree-level against radiative

corrections, so that they are extremely weak at the string scale, but order one just at the

bottom of the KK tower where they enter the logarithmically running 4D regime. This

issue, which has become known as the “decompactification problem”, has been discussed in

the past in for example in refs. [28–36], and was eloquently summarized recently in ref. [37].

Special theories are known that circumvent the coupling/volume sensitivity because they

do have C = 0 [34–37], but here it will be of interest to consider more generic models.

The purpose of this paper is to argue that there is in fact a way to realise order one

couplings at large volume dynamically and without fine-tuning, providing a solution to

the decompactification problem for a much broader class of models. The set-up is very

general: it requires only that the compact volume is stabilised by balancing a dynamical

transmutation scale, Λe, against a leading order one-loop Casimir energy. This results in a

gauge coupling that is inevitably becoming large precisely where the volume is stabilised.

The particular gauge factor that takes part in the stabilisation may of course be of little

further use for phenomenology, depending on the precise non-perturbative physics behind

the appearance of Λe. However the universality in the gauge couplings and their N = 2

threshold corrections ensures that any gauge group with the same C will also have gauge

couplings of order one, with only logarithmic differences appearing due to the different

N = 1 beta functions, b. (Note the gauge group and particle content do not have to be

the same, so for example the content of an N = 2 SU(5) SQCD with 6 flavours has a C

equal to that of N = 2 SU(3) SQCD with 2 flavours.) That such universality exists even

in theories that have supersymmetry broken by the Scherk-Schwarz mechanism has been

recently shown in ref. [38]. Meanwhile those gauge factors with larger or smaller C will

become effectively global or strongly coupled and confined, respectively, and will play little

further role in phenomenology.

The configuration that will be studied here is based on the interplay of two competing

mildly repulsive and mildly attractive effects. The first is the aforementioned Casimir

energy that arises in compactifications where supersymmetry is spontaneously broken by

the SS mechanism. This typically goes as (N0
f −N0

b )/R4, where R is the compactification

scale along the direction that breaks supersymmetry, and (N0
f − N0

b ) is the nett Fermi-

Bose number of the states left massless by the SS mechanism; choosing it to be positive, it

represents a repulsive effect running away to large radius. The competing effect is a positive

contribution to the cosmological constant arising from some non-perturbative process. We

will consider two options: the first is an SQCD sub-sector of the theory which sits in the

metastable supersymmetry breaking minimum of Intriligator, Seiberg and Shih [39] (ISS)

and the second is a Yang-Mills gaugino condensate. Both of these produce terms that are

governed by the dynamical scale of the theory, which in turn depends on the threshold

contribution to the effective gauge coupling in eq. (1.1). Assuming that both C and b are

negative, this contribution increases with radius, so it is attractive.

The result is that the theory is driven dynamically to the boundary of the perturbative

moduli space and minimised there, with all gauge couplings that share the same value of C

– 3 –



J
H
E
P
1
1
(
2
0
1
6
)
0
8
5

automatically taking values of order one no matter how small the (universal) string-scale

value. It is clear that the resulting large volume is then directly related to the smallness

of the string-scale coupling at the origin.

The next section presents a 5D toy-version of the mechanism, expressed purely in

field theory. It emphasises the general difference between an SS vacuum energy that is

broadly the same as the field theoretical one described above, and the qualitatively different

possibility that heavy UV modes in the theory dominate the SS vacuum energy. This may

simply be a result of the volume approaching the string scale, in which case (as mentioned

above) the leading contributions come from non-physical modes, or it may be a result of

the massless contributions vanishing in theories that have (N0
f = N0

b ), in which case the

leading contributions come from the lowest lying string excitations. In these cases the SS

vacuum energy cannot be well understood in extra-dimensional field theory, but can be

easily calculated in string theory. Moreover an important and recurring theme is that,

because it is UV in nature, the SS vacuum energy in such cases is completely immune to

any non-perturbative physics that one might balance it against in order to produce a stable

compactification. In order to emphasise the distinction, this kind of SS induced vacuum

energy will be referred to as UV-Casimir energy.

Section 3 collects the necessary ingredients required for the string realisation. One

of the reasons for interest in the ISS mechanism in this context rather than just gaugino

condensation will become clear: it allows several checks of the stringy implementation of

non-perturbative supersymmetry breaking, and in the generic SS case it gives a cleaner

separation between the contributions to the potential coming from the SS and ISS mech-

anisms. The Casimir energy is calculated in toroidal SS compactifications from 6D to

4D, the residual modular symmetry is discussed and several new results are presented, on

the use of modular invariance to follow the SS induced soft terms, and on a consistency

condition for the stringy implementation of the ISS mechanism.

These results are used section 4 to study stabilisation for generic Casimir energies,

and also for the case in which an exponentially suppressed UV-Casimir balances against

a gaugino condensate. Up to this point, the approach is somewhat modular in that the

tree-level coupling gs and also its axionic partner are taken to be fixed parameters in order

to investigate how the compactification dynamics adjusts to consistently accommodate

tiny values. In this last example all moduli (S, T, U) are treated as dynamical fields. The

beauty of UV-Casimir energy becomes evident here, and it is worth repeating it: because it

is blind to IR physics, one can essentially balance two robustly independent contributions

to the vacuum energy that are nevertheless functions of only the three S, T, U moduli.

An additional interesting feature here is that the gaugino condensate scale automatically

adjusts to roughly match that of the UV-Casimir energy.

2 The mechanism in a 5D non-maximal Scherk-Schwarz model

It is convenient to proceed by developing the 5D example of the mechanism outlined in

the Introduction, with the non-perturbative physics being the ISS mechanism. Although

it illustrates the principle, it should be regarded as something of a warm-up exercise to the
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more stringy implementation in forthcoming sections. In particular, an important question

is whether the soft-terms induced by the SS mechanism can disrupt the supersymmetry

breaking of the ISS mechanism, which is after all written entirely within N = 1 supersym-

metric QCD. In the next section, we shall learn how to treat this question by mapping

soft-terms using the modular symmetry of the 6D → 4D compactification. There we will

also consider gaugino condensation as an alternative non-perturbative mechanism. For the

moment we shall solve this issue by invoking non-maximal SS phases.

It will be sufficient to assume that the Scherk-Schwarz action shifts the masses of

vector-like pairs of states. (It could also act on chiral states but it would not qualitatively

change the discussion.) The KK masses take the form (n + qF±)/R, and (n + qB±)/R,

where qB± = (±αB + RmD) and qF± = (±αF + RmD), and where mD is an elementary

supersymmetric Dirac mass (a.k.a. µ-term).

There are limitations as to where the mechanism can work in its most naive form. As

mentioned above the main constraint arises from the fact that the results of ISS are derived

in 4D N = 1 supersymmetric QCD, whereas this is a 5D setting in which supersymmetry

is already partially broken by the SS mechanism. If one wishes to adopt the ISS results at

face-value (with no extra KK modes to complicate things), one can impose a modest energy

gap between the dynamical scale of the the SQCD theory and the mass-scale of the lowest

lying KK modes, and in addition between the two sources of superymmetry breaking to

ensure that the ISS analysis is not disrupted by the soft-terms that are already induced

by the SS mechanism. The latter are expected to remain of order αF,B/R throughout (in

both the electric and magnetic SQCD phases), so the ISS results can be used wholesale if

this scale is much less than the supersymmetry breaking induced in the low energy theory

of the ISS mechanism. This can be achieved by assuming non-maximal Scherk-Schwarz

phases, αF,B � 1/2. Such non-maximal phases are somewhat artificial in the stringy

Scherk-Schwarz mechanism [17, 22, 40–47] because αF,B are proportional to some linear

combination of gauge and R-charges and can only take discrete values. In some orbifold

compactifications, these could be for example 1/5, but they cannot be arbitrarily small. As

mentioned, a more realistic implementation will ultimately require a proper treatment of

the mapping of soft-terms in the SS context, including KK modes, and a properly adjusted

ISS picture to take account of them.

The last constraint is on the elementary supersymmetric Dirac mass required in the

ISS mechanism: it should take values mD � 1/R. It is simple and natural – although

not crucial – to take mD also to be induced by the compactification, so that it too is

proportional to 1/R, with constant of proportionality αD = RmD � 1. In this 5D model

therefore, we shall maintain the following hierarchy of scales:

1

R
& Λe �

√
ΛeαD/R�

αF,B
R

. (2.1)

The left-most scale is the bottom of the KK tower, which is taken to be greater than

the dynamical scale Λe(R) of the effective 4D SQCD theory. Meanwhile mD must be

smaller than Λe(R) so that states which get a Dirac mass are not simply integrated out.

And finally, on the right, a sufficient condition for the 4D N = 1 ISS analysis to be a
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good approximation, is that the scale of effective supersymmetry breaking induced by the

Scherk-Schwarz mechanism is negligible compared to the supersymmetry breaking induced

later by the ISS mechanism. These constraints translate into a condition on ΛeR of

1 & RΛe � αD ,
α2
F,B

αD
. (2.2)

It will be convenient to assume αD ∼ αF,B.

2.1 The generic Casimir energy case

The potential may now be determined, beginning with the Casimir contribution. For

definiteness let us take N0
b of the αB and N0

f of the αF to be exactly zero, and the

rest to be degenerate with αB = αF = α � 1. The light theory then has N0
f massless

fermions and N0
b massless bosons, with the remainder having mass ∼ α/R. The one-loop

Casimir energy can be computed at the level of the 5D KK theory regardless of any more

fundamental UV completion, because it is dominated by the massless modes and their

KK excitations (assuming that the KK levels do not have equal numbers of fermions and

bosons). The simplest method is to Poisson resum the Schwinger integral form of the

Coleman-Weinberg potential;

VC = − 1

16π2
Tr
∑
n

∫ ∞
0

dt

t3
exp

[
−t(n+ qB+)2/R2

]
+ exp

[
−t(n+ qB−)2/R2

]
− exp

[
−t(n+ qF+)2/R2

]
− exp

[
−t(n+ qF−)2/R2

]
, (2.3)

where the trace is over the supermultiplet representations. The insensitivity of the Casimir

energy to the UV-completion is evident here in the fact that there is no need for a UV

cut-off on the integral. (In other words a full string calculation as in ref. [15] would just give

additional exponentially suppressed corrections.) Poisson resumming this expression gives

VC = − 1

16π2
Tr

∫ ∞
0

dtRπ1/2t−7/2
∞∑

`=−∞
e−`

2π2R2/t[cos(2π`qB+) + cos(2π`qB−)

− cos(2π`qF+)− cos(2π`qF−)] , (2.4)

and performing the integral gives

VC = Tr [B(qF+) +B(qF−)−B(qB+)−B(qB−)] , (2.5)

where (in agreement with e.g. [5, 7, 9, 11, 17])

B(x) =
3

64π6R4

(
Li5e

2πix + Li5e
−2πix

)
. (2.6)

Expanding in the α’s gives,

VC =
3ζ(3)

8π4

(N0
f −N0

b )α2

R4
. (2.7)
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The second ingredient for the potential is of course the ISS contribution from an SQCD

sector. Assuming that the original theory contains an SU(N) gauge group with F flavours

of fundamental/antifundamental pairs of chiral superfields, the potential comes from the

O’Raighfeartaigh superpotential of the magnetic SQCD theory, and takes the form

WISS = hTr(qΦq̃)− αDΛe
R

Tr(Φ) , (2.8)

where q, q̃ are magnetic quarks, Φ is the F × F bound state meson, and where ignorance

about the precise normalization of Φ has been absorbed into the parameters αD and h.1

Provided that the number of colours and flavours is such that the SQCD theory is in

the free magnetic window, N + 1 < F ≤ 3N/2, the result is an additional tree-level term

in the potential of the form

VISS = Nα2
D

(
Λe
R

)2

. (2.9)

The total potential is

V = R−4
[
α2ρ

(
N0
f −N0

b

)
+ α2

DN (RΛe)
2
]
, (2.10)

where ρ = 3ζ(3)
8π4 ≈ 5× 10−3 � 1.

As an aside, note that for negative Casimir energy the potential can be precisely zero

while still satisfying the conditions in eq. (2.2) for the N = 1 supersymmetric ISS analysis

to be valid: indeed a zero potential requires only

(RΛe)
2 =

(
N0
b −N0

f

)
N

ρ
α2

α2
D

. (2.11)

Conversely, for positive Casimir energy, one may now invoke the R-dependence of Λe
using eq. (1.1) to minimize the potential. Taking k = 1 and setting the dynamical scale of

the SQCD theory to be where 1/g2(Λe) = 0 gives

(RΛe)
2 = e

− 16π2

g2
s |b|

+C
b
RMs

. (2.12)

It is convenient to define a fiducial coupling g0 (which is of order gs), and a corresponding

fiducial scale, µ0, given by

16π2

g2
0

=
16π2

g2
s

+ b ln
M2
s

µ2
0

,

µ2
0

M2
s

=
α2ρ

(
N0
f −N0

b

)
α2
DN

∼ 10−2 . (2.13)

1More precisely, following ref. [39], if the original SQCD theory has a dynamical scale Λe, a superpo-

tential We = mDQQ̃, and a canonically normalized meson Φ̂ = γ−1QQ̃/Λe, then WISS ≡
√
γhTr(qΦ̂q̃) −

√
γmDΛeTr(Φ̂), with the understanding that WISS is to be treated as a global superpotential. This issue

will become important later and will be revisited, when a proper distinction between the physical and

holomorphic scales will be made.

– 7 –
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The full potential has a minimum at

RminMs =
b

C

[
4 +W

(
4e−4 µ

2
0

M2
s

e
16π2

|b|g2
s

)]
=

1

|C|
16π2

g2
0

+O(1) , (2.14)

where W is the Lambert W -function (a.k.a. product log). Eq. (2.13) then gives

RminΛe = µ0/Ms. (2.15)

If the parameters are all of similar magnitude, (N0
f − N0

b )/Nc ∼ αD/α ∼ 1, then

eq. (2.13) gives RminΛe ∼
√
C ≈ 0.07, automatically satisfying the requirement in eq. (2.2)

and achieving the desired effect of the QCD theory ending up with a dynamical scale

somewhat below the KK mass-scale, MKK = 1/Rmin, even if 16π2/g2
s ∼ RminMs is chosen

to be huge. In order to satisfy the other constraints of eq. (2.2), under the assumption that

αD ∼ αF,B = α one requires only that α2 � ρ
(N0

f−N
0
b )

N which is relatively easy to achieve.

(For example with N = N0
f − N0

b , one requires α . 1/10 which is conceivably possible

even within some string orbifold models). The value of the cosmological constant at the

minimum is given by

V (Rmin) = R−4
min

[
2ρα2

(
N0
f −N0

b

)]
≈ g8

sM
4
s

(16π2)4

[
2ρα2

(
N0
f −N0

b

)]
. (2.16)

As promised the minimum is automatically balanced to appear at the correct values of

Rmin. An example of the potential is shown in figure 1 for sample values. It is essentially a

1/R4 runaway to large radius until the ISS contribution takes over where the SQCD gauge

coupling is starting to become strong. The minimum is de Sitter, and of order 10−3M4
KK .

Clearly for consistency one would then require some additional R-independent and negative

contribution to bring the final cosmological constant close to zero.

Note that going along implicitly with need to protect the ISS mechanism from the

supersymmetry breaking of the SS mechanism, is of course the converse assumption that

the effects of strong coupling in the SCQD sector do not disrupt the original calculation

of the Casimir energy. This assumption is credible because the latter is dominated by the

tower of KK states with masses between MKK and Ms, and above physics occurring at

the scale Λe provided that the Λe < 1/Rmin constraint is satisfied. This condition can be

relaxed in various cases and under various assumptions which will be made more precise

when we come to study the string embedding in later sections.

The form of the potential for R � Rmin is not well determined. In these regions the

dynamical scale is larger than the KK scale (i.e. RΛe(R) � 1) so the sufficient condition

in eq. (2.1) is violated. Most probably this implies that the potential turns over at some

point, and the minimum at Rmin is metastable in the R direction as well, with larger values

simply reverting to runaway behaviour. It is not clear how the large radius limit of such

– 8 –
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theories lifts to the decompactified 6D theory; most likely it is related to the 4D IR free

magnetic dual of the ISS theory, rather than the original electric SQCD theory.

If one makes the conservative assumption that the minimum derived above is indeed

only metastable, it is important to consider what the tunnelling rate would be to continued

runaway along R, in order to confirm that it is sufficiently small. An estimate requires the

normalization of the modulus corresponding to R. In flat space compactifications derived

from string theory the Kähler potential is given by K ∼ − log V where V is the overall

compactification volume. In the present case one can identify V ∼ i
(
TR − T̄R

)
with TR

being a holomorphic modulus whose imaginary part gives R. This would give kinetic terms

for R of the form L ⊃ |∂TR|2
R2 so the canonically normalised field is φR = TR/Rmin. The

tunnelling action can then be approximated in the thick wall limit. The advantage of this

physical situation is that the height of the barrier does not appear in the action at leading

order, only its width and the difference ∆V between the vacuum energies of the false and

true minima. A crude estimate for the action is then [48]

SE ∼ 2π2 (∆φR)4

∆V
, (2.17)

where ∆V = Vfalse − Vtrue = R−4
minα

2
DN (RminΛe)

2. As this is a sufficient condition, let us

adopt a conservative value for ∆φR, namely the distance in field-space between Rmin and

the point where perturbativity breaks down, ΛeR ∼ 1, or ΛeRmin
ΛeR

= µ0/Ms = e−
C
b

∆RMs .

This gives

∆φR ≈ R−1
min

b

C
log

Ms

µ0
, (2.18)

leading to an estimate for the tunnelling action of

SE ∼
2π2

α2

(
Ms

µ0

)2

∼ 103/α2. (2.19)

This is well above the SE & 400 that is required to ensure stability on timescales of the

age of the universe (see e.g. ref. [49] and references therein). Heuristically this is simply a

consequence of the fact that the Casimir energy in V is a one-loop effect (given by ρ), so

the potential is much flatter than it is broad.

2.2 The exponentially suppressed (UV-Casimir energy) case

Models that are non-supersymmetric but nevertheless have equal numbers of massless

bosons and fermions (N0
f = N0

b ) have a one-loop cosmological constant that is exponen-

tially suppressed. Ref. [15] argues that these cases are particularly interesting due to their

enhanced stability properties, and form a better basis for doing phenomenology.

The philosophy in these cases is somewhat different: the general idea is that the expo-

nential suppression appearing in the vacuum energy also appears in the scale setting the

Higgs mass. Therefore the compactification volume (and consequently the SS supersymme-

try breaking scale 1/R) needs to be only so large so as to be able to generate the necessary

suppression, while it is possible to live with supersymmetry breaking that is much larger

than the electroweak scale (the canonical situation with SS breaking). The issue for the
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Figure 1. The 5D potential for α = αD = 0.1, N0
f −N0

b = 10, gs = 3×10−2, C = b = −13, Nc = 6.

The approximation in eq. (2.14) gives the minimum at Rmin = 1.35 × 105`s. As described in the

text, the dynamical scale Λe ≈ 0.09/R is significantly less than the KK scale at the minimum.

present discussion then is how to stabilise with exponentially small cosmological constant

and reasonable coupling, but still with moderately large volume.

As already mentioned, the aspect of these theories that will be of particular relevance

is that the only modes that make a non-vanishing contribution to the vacuum energy have

string sized masses, and indeed the leading contribution to the Schwinger integral comes

from a saddle-point at the UV end, t ∼ 1, rather than from the entire integral, as is the case

for a generic theory. Consequently the contribution to the cosmological constant resulting

from the Scherk-Schwarz mechanism is blind to the IR physics occurring in for example

the ISS mechanism, and the two contributions are physically separated. Indeed the former

cannot easily be understood within an effective field theory.2

As already mentioned, to emphasise the distinction these theories will be said (using

the terminology in its broad sense) to have a UV-Casimir energy . An additional advantage

in the present context is of course that the volumes required are much smaller than the

generic case, and hence the decompactification problem is less pronounced.

Assuming that the exponential suppression continues beyond one-loop, such cases have

to be treated quite differently. In the present toy model, the ISS mechanism essentially gov-

erns the minimisation, and the issue is to ensure that the contribution to the cosmological

constant from the initial SS mechanism is negligible. The 5D case is as follows.

First let us return to the constraints in eq. (2.1). The potential takes the form

V = R−4
[
α2ρ

(
N1
f −N1

b

)
(RMs)

2 e−4πRMs +Ncα
2
D (RΛe)

2
]
, (2.20)

where N1
f − N1

b counts the fermi-bose non-degeneracy at the first excited string level, α

stands again for a generic Scherk-Schwarz phase, while ρ� 1 is now generically a one-loop

2Conceivably one could try to write down a supergravity theory truncated at the first string excita-

tion level.
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suppression factor. As is evident from eq. (2.12) the SS term dies away rapidly at large

radius. The minimum occurs shortly after the second term has its independent minimum at

RminMs =
4b

C
, (2.21)

so the string scale can be perhaps an order of magnitude higher than the KK scale. It is

useful to define σ & 0 as the final ratio of dynamical to KK scale, i.e. RminΛe = e−σ, so

that ultimately

σ =
8π2

|b|g2
s

− 2 . (2.22)

As usual, mD must satisfy the constraints in eq. (2.1), so it lies below Λe but is large

enough that m̂DΛe > α2/R2:

1 & e
− 8π2

|b|g2
s

+2 � αD, α
2/αD . (2.23)

Thus for the mechanism to work when the Casimir energy is exponentially suppressed in

the 5D→4D theory, the scale of supersymmetry breaking has to be at most a few orders of

magnitude below the string scale with relatively large coupling, 8π2/|b|g2
s ∼ 2. In addition

αD ∼ α are required to be small. Note that if these constraints are satisfied then the SS

contribution to the cosmological constant is guaranteed to be negligible at the minimum,

which was the point we wished to demonstrate here. The essential advantage of a UV-

Casimir energy in this case is that the (relatively) large volume stabilisation governed

by non-perturbative long-range physics has not fed-back into it, so one has the sort of

modularity normally associated with brane configurations.

As an example, taking |C| = 10, |b| = 30, gs = 1/
√

2, one requires α, αD . RΛe ≈
1/25. We will later see how to accommodate Λe > MKK in the 6D→4D version; this

removes the upper bound in eq. (2.23) allowing maximal SS phases αD, α ∼ 1.

3 String/supergravity embedding

Let us now collect the components for a more complete implementation within a string

compactification, focussing on a theory compactified to N = 1 in 6D, and then further

compactified on an orbifold of T2 down to D = 4.

The discussion begins with a summary of the effective spontaneously broken supergrav-

ity theory and then compares the spectrum to that of the Scherk-Schwarzed string theory

(using the framework of ref. [15]). The extension to 6D introduces modular symmetries

that persist (as a congruence subgroup) in the Scherk-Schwarzed theory. It is shown that

both the spectrum and the Casimir energy preserve these symmetries. Their great advan-

tage is that they can be used to follow soft-terms in the spontaneously broken supergravity

theory (taking over the role of the R-symmetry in global SQCD [50, 51]).

This allows us to consider the theory as a whole, without having to separate supersym-

metry breaking scales with artificially small SS twists as was done in the previous section.

In fact we will ultimately find that the SS-induced soft-terms act to stabilise the minimum

so that we do not have to rely on the one-loop metastability of ISS.

– 11 –



J
H
E
P
1
1
(
2
0
1
6
)
0
8
5

3.1 Spectrum and congruence subgroups in the effective supergravity theory

First let us establish how the Scherk-Schwarz mechanism in a direct string implementation

such as that in ref. [15] maps to the effective supergravity theory. As mentioned, the SS

stage of compactification is on an orbifolded T2 torus, which in the absence of Wilson lines

can be described generally by the metric

Gij =
T2

U2

(
1 U1

U1 |U |2

)
; Gij =

1

T2U2

(
|U |2 −U1

−U1 1

)
, (3.1)

where in order to conform with most of the phenomenology oriented SUGRA literature the

convention is

iU = U1 + iU2

iT = T1 + iT2 . (3.2)

For reference, untilted tori have U1 = 0, T2 = R1R2, U2 = R2/R1 where Ri is the radius

along direction i, and it will be assumed throughout that R2 > R1. The U1 modulus

encapsulates the tilt angle (i.e. U1 = R2 cos θ/R1, U2 = R2 sin θ/R1) and T2 = R1R2 sin θ

is the volume. The nett effect on the spectrum of the Scherk-Schwarz action can be

determined on the string theory side from the shift in the internal momenta, which can in

turn be read off the partition function. The latter contains a factor

Zd,d(G,B) =
1

|η(τ)|2d
∑
n,m

qα
′p2

L/2q̄α
′p2

R/2, (3.3)

coming from the compactified toroidal directions. The momenta depend on the KK num-

bers m1,2 and winding numbers n1,2 of the T2 as

p2
L = pLiG

ijpLj

pLj =
1√
2α′

(
mj + (Bjk +Gjk)n

k
)
, (3.4)

and

p2
R = pRiG

ijpRj

pRj =
1√
2α′

(
mj + (Bjk −Gjk)nk

)
, (3.5)

where the notation throughout is as in ref. [15]. The Scherk-Schwarz action causes a

discrete Lorentz rotation and boost involving the KK and winding numbers and the

charge/momentum lattice, Q, of the form

Q → Q− niei

mi → mi + Q · ei −
1

2
ei · ejnj

Bjk ±Gjk → Bjk ±Gjk −
1

4
ej · ek , (3.6)
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where ei=1,2 are vectors containing the Scherk-Schwarz action on the R-charges and possibly

also gauge charges, and the dot product refers to the Lorentzian charge lattice. The

vectors ei contain the phases αF,B, although one should note they must leave the world

sheet supercurrent and charge lattice invariant, and have to leave a consistent orbifold

projection. It is for these reasons that αF,B are constrained to be discrete.

Specialising to the maximal twist case, the spontaneous supersymmetry breaking arises

from half integer values of the Q · ei shift in the KK numbers. Consider the gravitinos;

adding left and right moving contributions, the modes mi and Q ·ei marry with the modes

−m and −Q · ei, so that(
m

(m1m2)
3/2

)2
=

1

α′
m̂iG

ijm̂j =
1

4α′

∑
ij

Gij

=
1

α′
1

T2U2

∣∣∣∣(m1 −
1

2

)
−
(
m2 −

1

2

)
iU

∣∣∣∣2 . (3.7)

Clearly supersymmetry is restored for all U1 = 2`1−1
2`2−1 in the limit U2 → 0 for integer

`1,2. This limit can be achieved by decompactifying with constant ratio of radii, with the

tilt angle going to zero (slower than 1/R1R2 in order for T2 to go to large volume). An

identical mass-shift is induced in the gauginos. From this we can identify the effective KK

scale near a supersymmetric point as M2
KK = U2/T2 = 1/R2

1. (Where necessary factors of

α′ are absorbed into the modulus T to give it dimensions of length squared.)

Continuous Wilson lines shift the KK and winding numbers along with the internal

charges in a similar fashion and these can be related to matter/Higgs fields: the shift

induced by the pair of continuous real Wilson lines A1, A2, can be written

Q → Q + niAi

mi → mi −Q ·Ai

Bjk ±Gjk → Bjk ±Gjk −
1

4
Aj ·Ak . (3.8)

The real shift vectors Ai can be related to a pair of complex fields in the effective super-

gravity theory, denoted φ, φ′. To get to this basis, first define complex Wilson lines,

Z = iUA1 −A2 , (3.9)

and then

iφ =
1

2
(Z1 − iZ2)

iφ′ =
1

2
(Z1 + iZ2) . (3.10)

The upper indices refer to basis vectors for the charge lattice. Defining 2P = φ+ φ̄′, useful

combinations are (in our conventions)

PP̄ =
∑
a

=(Za)2 = (A1 ·A1)
U2

2

4

T2 =
√
G+ PP̄/U2

U =
1

G11

(√
G− iG12

)
, (3.11)
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with the T2 redefinition matching the shift in (3.8). Going from Z to φ, φ′ amounts to a

change of basis for Q. For example the current superfield for a U(1) current (under which

φ and φ′ must have opposite charges) is given by, J = |φ|2 − |φ′|2 = i
2

(
Z1Z̄2 − Z2Z̄1

)
,

so its generator acts as SO(2) on the Za indices. The Kähler potential depends on the

volume
√
G as

K = − log Y − log 4(T2U2 − PP̄ ) , (3.12)

where 2P = φ+ φ̄′, and where the dilaton combination generally includes a term from the

(heterotic) Green-Schwarz mechanism,

Y = S + S̄ − δGS log 4(T2U2 − PP̄ ) . (3.13)

So far the picture is just that of the standard N = 1 theories, but now we deform the

theory with a superpotential that successfully reproduces the SSSB observed in the string

spectrum. As we saw on the string side in eq. (3.7), near iU = 1 the lightest spin 3/2 state

is the zero-KK mode gravitino whose physical mass is

m2
3/2 =

1

4

1

S2T2U2
|1− iU |2. (3.14)

The relation between the Planck scale and string scale is

M2
P = g−2

s α′−1 , (3.15)

which suggests that a superpotential in the spontaneously broken theory that produces the

correct spectrum is

WSS =
√

2(1− iU) . (3.16)

It can be verified that near U1 = 1, the rest of the low-lying tree-level string spectrum

is successfully generated by this supergravity theory. Explicitly, in the string spectrum the

tree-level gaugino masses are degenerate with the gravitino: using standard notation, the

supercovariant derivative is DiW = Wi+WKi, and the gauge kinetic function is ftree = S,

leading to

mλ =

∣∣∣∣∣m3/2

2
Re(ftree)

−1K īj∂iftree

Dj̄W̄

W̄

∣∣∣∣∣ = m3/2 . (3.17)

At one-loop the masses would not be equal in either the field theory or the string theory

due to gauge mediation effects, but we shall see below that the above relation does not

suffer large volume corrections.

Continuing the comparison of the spectra, after spontaneous superymmetry breaking

all the untwisted scalars in the NS-NS sector should remain massless at tree-level, while

their fermion superpartners pick up a mass equal to that of the gravitino. The correspon-

ding superfields, φ and φ′, achieve this by appearing to conspire in the Kähler potential as

K ⊃ − log
(
4T2U2 − |φ+ φ̄′|2

)
= − log 4T2U2 +

1

4T2U2

(
|φ|2 + |φ′|2 + φφ′ + φ̄φ̄′

)
+ . . . (3.18)
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The tree-level fermion mass terms in the effective theory (which is a “µ-term” if one is

thinking of φ,φ′ as Higgses), are then given by

µφ = m3/2Z
− 1

2
φ Z

− 1
2

φ′

(
Wij

W
+Kij − Γkij

DkW

W

)
, (3.19)

where

Γkij = Kkk̄∂k̄Kij

Z−1
φ = Z−1

φ′ = 4T2U2 = 1/Kφφ′ . (3.20)

Inserting the supersymmetry breaking superpotential in eq. (3.16) gives

µφ = m3/2

(
4T2U2

Wij

W
− W̄

W

)
. (3.21)

In the absence of any explicit Wij mass terms in the original superpotential, this auto-

matically has the same magnitude as the gaugino and gravitino masses in accord with the

Scherk-Schwarzed string theory spectrum. It is straightforward to show that S,U, T, φ and

φ′ fit into a larger “no-scale” supergravity structure that leaves all the scalars massless at

tree-level (modulo possible variations in the splittings of the matter fields that may arise

if e is also embedded into the gauge groups: in the effective theory this would correspond

to turning on scalar “Higgs” VEVs). The conspiring dimensionful terms correspond to

mass-squareds and Dirac masses of magnitude m3/2 for the canonically normalized states.

The original N = 1 theory has well-known modular symmetries: for completeness the

standard SL(2,Z)T and SL(2,Z)U symmetries of the supersymmetric theory are included

in the appendix. What remains of them after applying the Scherk-Schwarz mechanism?

Due to the spontaneous nature of the breaking it is clear that the Kähler potential should

still respect the full symmetry, as it indeed does, and that the new SSSB superpotential

should be the only source of its breaking. To see its effect on the modular symmetries

consider the spectrum: according to eq. (3.7) the zero-mode KK gravitino need not be the

lightest state, depending on the value of U1. If U1 = 2`1−1
2`2−1 then the lightest gravitino is

instead the `1, `2 KK mode for all U2 . 1/(2`2 + 1), and the superpotential in the effective

theory would actually be WSS =
√

2((2`1 − 1) − (2`2 − 1)iU) near this point. The fact

that one has to specify which mode plays the role of the gravitino in the effective theory

is of course just a symptom of the deficiency of the 4D supergravity approximation, which

cannot describe the supersymmetry breaking over the whole U moduli-space. Indeed the

explicit breaking of modular symmetry in the superpotential just amounts to a choice

of gauge: because of the original discrete symmetry, there are infinitely many equivalent

spontaneously broken theories that one could write down for the effective supergravity

theory related by a subgroup of the SL(2,Z)U transformations. This is evident from the

fact that under transformations of the form

1

4

|1−iU |2

S2T2U2
≡ 1

4

|(d−b)−(a−c)iU |2

S2T2U2
; a, b, c, d ∈ Z, ad− bc = 1, a− c = b− d = 1 mod(1) ,

(3.22)
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biU

Figure 2. The fundamental U -modulus domain for a maximally twisted Scherk-Schwarz theory

has a supersymmetric cusp at iU = 1.

the gravitino spectrum is invariant. In fact the entire theory is invariant only under the

smaller congruence subgroup defined by a, d = 1 mod (1) and b, c = 0 mod (1), similar to

ref. [38], which will be referred to as Γ1(2). Under such transformations, any U in a max-

imally twisted Scherk-Schwarz theory can be mapped to the fundamental domain shown

in figure 2. In addition to the cusp at infinity, there is a single representative supersym-

metric cusp at iU = 1. For non-maximal Scherk-Schwarz twists, the fundamental domain

will contain more cusps, and there will be several genuinely distinct supersymmetric vacua

(consult ref. [38] for details). Naturally the Casimir energy, when we come to calculate it,

must respect this symmetry.

We will also need an understanding of the one-loop gauge thresholds. Their volume

dependence (neglecting the effects of extra charged massless states) can be written [38]

∆ = −C log
(
T2U2|η(iT )|4|η(iU)|4

)
+ (C − b) log

(
T2U2|ϑ4(iT )|4|ϑ2(iU)|4

)
, (3.23)

where b = 16π2β is the beta function coefficients for the entire massless theory, C =

16π2βN=2 is the N = 2 coefficient, and η are the usual Dedekind eta functions. The mod-

ular functions in this expression are also invariant under Γ1(2) transformations; denoting

SL(2,Z)U operations by SU ≡ iU → −1/iU and TU ≡ iU → iU + 1, we have

TU : U2|ϑ2(iU)|4 −→ U2|ϑ2(iU)|4 (3.24)

SU : U2|ϑ2,4(iU)|4 −→ U2|ϑ4,2(iU)|4 . (3.25)

Therefore ∆ is invariant under any number of TU moves, but only an even number of SU
moves, in accord with the congruence condition.

Following now the standard route (see for example refs. [52–55]) this allows us to

identify the holomorphic gauge kinetic function of the SQCD as (taking a Kac-Moody

level k = 1 for the gauge group),

f = S − C

8π2
log η(iT )2η(iU)2 +

C − b
8π2

log
(
ϑ4(iT )2ϑ2(iU)2

)
, (3.26)
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with the gauge coupling being given by

2

g2
= Y = 2<(f)− b

8π2
log(µ2)−

(
b

8π2
+ δGS

)
log(4T2U2) . (3.27)

Note that due to the additional universal terms it is the N = 1 beta function appearing

here (i.e. b = −3N + F in SU(N) gauge theories with N = 1 SQCD and F flavours), and

not C.

The holomorphic dynamical scale Λhol can be defined as

Λhol = exp

(
−8π2

|b|
f

)
, (3.28)

and the modular weight of Λhol is given by

nΛ = 8π2 b/8π
2 + δGS
|b|

. (3.29)

The gauge coupling can then be written more succinctly as

1

g2(µ)
= − b

8π2
log

[
µ

|Λhol|(4T2U2)nΛ/2

]
. (3.30)

It will often be useful to leave nΛ implicit, as it is essentially just whatever combination

of terms appears in eq. (3.27). However it can be calculated directly [53]; specialising to

SU(N) gauge theories with N = 1 SQCD and F flavours of quark and anti-quark, it is

|b|nΛ = 2FnQ + F −N . (3.31)

We will see that this equation provides an important consistency condition for the im-

plementation of the ISS mechanism, because it can be derived independently from the

matching conditions for the Seiberg duals. Note that it will be assumed for simplicity

throughout that the SL(2,Z)U and SL(2,Z)T weights are degenerate for every field.

To complete this part of the discussion, one can obtain an asymptotic approximation

for the gauge threshold correction at large volume and in the supersymmetric limit around

the representative cusp at iU = 1 (which obviously breaks the modular symmetry). In

the vicinity of the cusp, since limiU→1 η(iU) = 0, it is often convenient to use SL(2,Z)U
modular redefinitions to the cusp at infinity, that is iŨ = −1/(iU − 1) ≈ i/U2, with

iŨ → i∞ in the supersymmetric limit: the standard expansion ϑ4(iŨ)→ 1− 2e−πŨ + . . .

then gives,

∆ = −C log
(

4T2Ũ2|η(iT )|4|η(iŨ)|4
)

+ (C − b) log
(

4T2Ũ2|ϑ4(iT )|4|ϑ4(iŨ)|4
)
,

=
π

3
C
(
T2 + Ũ2

)
− b log

(
4T2Ũ2

)
+O(e−πŨ2 , e−πT2) . (3.32)

As in the 5D case, the second term subtracts from 16π2/g(µ)2 the logarithmic running

between the lightest KK-mode MKK = 1/
√

4T2Ũ2 and the string scale, whilst the first

term replaces it with a power-law threshold. Under our assumption that C/b > 0, it is
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clear that one is prevented from going continuously to the boundary of moduli-space by

the appearance of strong coupling in the QCD theory where π
3C
(
T2 + Ũ2

)
∼ 16π2, and

this is precisely the region in which the minimum is expected to appear.

Returning to the appearance of the large volume dependence in the one-loop gaugino

mass, retaining only the pieces f ≈ S + C
8π2

π
6

(
T + Ũ

)
, eq. (3.17) and a little work shows

that the relation mλ = m3/2 holds at one-loop up to logarithmic corrections, as promised.

3.2 Calculation of Casimir energy

Next let us determine the cosmological constant for the general 6D → 4D case, essentially

repeating the computation of ref. [15] in the full string theory, but now retaining the full

T, U dependence. In particular it will be possible to check that the result respects the

Γ1(2) symmetry of the congruence subgroup described above.

The required expression is

Λ(4)(T, U) = −1

2

∫
F

d2τ

τ2
2

Z(τ) . (3.33)

Using the result in eq. (3.6), the partition function can be approximated at large volume

(T2 � 1) by neglecting the winding modes and Poisson resumming the KK modes of

eq. (3.3), giving

Z0,` =
M2

τ2|η|4
√

detGe
− π
τ2
`iGij`

j

. (3.34)

The main simplifying approximation we are making is to neglect the non-zero winding

mode contributions (i.e. Zn 6=0,`) because they are suppressed by exponential factors when

the volume is large. Indeed the largest possible terms with non-zero winding would come

from otherwise massless modes with ni = 1, and would be proportional to ∼ e−πT2/πT2.

This should be compared to the leading ni = 0 contributions which as in ref. [15] have a

milder exponential suppression factor of e−2π
√
T2 . The ni = 0,

∑
i `i =even contributions

remain supersymmetric regardless of the presence or otherwise of Wilson lines (assuming

the latter do not themselves break supersymmetry), and therefore we need only consider

`1 + `2 =odd. In addition one can ignore the various twisted sectors of the orbifold which,

being independent of the moduli, are supersymmetric and cannot contribute to Λ. As a

further approximation one may at large volume neglect the non-level matched terms which

allows one to express the result entirely in terms of physical states; the leading contributions

being neglected in this latter approximation are from the proto-graviton state described

in ref. [15], and are of order ∼ T2e
−πT2 . In making these approximations one obviously at

this point has to abandon the full SL(2,Z)T modular structure of Λ(T, U), but the Γ1(2)

U -symmetry should remain. We are henceforth obliged to always work at large T2 (which

just affirms the preamble concerning the importance of interpolation).

The result is an expression for the partition function of the form

Z(τ) ≈ M2

τ2|η|4
1

η8η̄20

∑
`

Z0,`

∑
α,β

e2πi
∑
i `i[e·Q]Zinternal

[
α

β

]
, (3.35)
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where α, β label the sectors along the two cycles of the torus. Written as a sum over the

physical states this reduces to

Z (τ) ≡ T2

τ2
2

∑
`=odd

level=k

(
N

(k)
b −N (k)

f

)
e
− π
τ2
`iGij`

j

e−πτ2α
′m2

k , (3.36)

where (N
(k)
b −N

(k)
f ) is the Bose-Fermi non-degeneracy of the states unshifted by the Scherk-

Schwarz mechanism at level k. Inserting into eq. (3.33) this gives a leading contribution

to the cosmological constant of

Λ(T, U) =
2

π3

1

T 2
2

(N0
f −N0

b )

1

2

∑
`1+`2=odd

U3
2

|`1 + iU`2|6

 . (3.37)

The sum in the square brackets, which will be referred to as E3(iU), is an Eisenstein series,

restricted to odd `1 + `2 = 1 mod (1), instead of the canonical (`1, `2) 6= (0, 0). One can

easily see that it indeed respects the congruence subgroup obeyed by the spectrum, and also

that it has zeros at the supersymmetric points: indeed since U1 = (2`1+1)/(2`2+1) implies

|m1 + U1m2| ≥ 1/(2`2 + 1) ∀`1 + `2 mod (1) = 1 , one may smoothly take the U2 → 0

limit of the sum for precisely these values. In accord with the modular transformation

above, there is an infinite number of such “trivial zeros”, at all odd integer values of U1 as

well as fractions with odd numerator and denominator, with the general structure as one

approaches the U2 = 0 line becoming extremely intricate to reflect its modular symmetry, as

shown in figure 3. (It is not clear if anything interesting happens at irrational values of U1.)

For use in the minimisation let us focus on the Casimir energy around the representative

supersymmetric cusp at iU = 1. The potential near iU = 1 is shown in figure 3. Clearly

the minimisation will take place near |U | = 1 and the phase of U will be the dynamically

important variable. The potential along the unit circle is also shown, along with the

following approximation which can be evaluated in closed form:

E3(iU) ≈ 2
∑
k

U3
2

|2k + iU |6
→ π6U3

2

240
. (3.38)

The N0
f = N0

b case is instead dominated by the leading saddle point. According to

eqs. (3.33) and (3.36) we find

Λ(T, U) =
T2

2
(N1

f −N1
b )

∑
`1+`2=odd

(`iGij`
j)−7/4e−2π

√
`iGij`j

=
(N1

f −N1
b )

2
T
−3/4
2 U

7/4
2

∑
`1+`2=odd

e−2π
√
T2/U2|`1+iU`2|

|`1 + iU`2|7/2
. (3.39)

Expanding about iU ≈ 1 the following approximation will be useful:

Λ(T, U) = 2(N1
f −N1

b )T
−3/4
2 U

7/4
2 e−2π

√
T2/U2 (1 +O(iU − 1)) . (3.40)
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(a) (b)

E3(eiθ)

(c)

Figure 3. The Casimir energy E3(iU). In a) we see the self-similarity near the critical line,

with the bottom of each valley corresponding to U1 = (2`1 + 1)/(2`2 + 1) for integer `1, `2, and

a different gravitino. Figure b) shows the vacuum energy around iU = 1 as a function of ρ, θ

where iU = ρeiθ, and figure c) shows it along the unit circle iU = eiθ. The dashed line is the

approximation E3(iU) ≈ 2
∑
k

U3
2

|2k+iU |6 .
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3.3 The congruence subgroup method for mapping soft-terms between Seiberg

duals

Next we determine how the ISS mechanism is governed by the congruence subgroup. This

subsection contains two new results. First it is shown that the string relation between the

modular weights in eq. (3.31) can be derived as the unique solution to modular invariance

in a pair of Seiberg duals, and secondly it is shown that the congruence subgroup provides

a useful means of tracking soft-terms, including the effect of gravity mediation. It is also

shown that the ISS mechanism still operates, with all masses, dynamical scales and so

forth being replaced by the corresponding physical and hence modular invariant quanti-

ties. The issue of how KK modes enter into the ISS mechanism will be addressed in the

following subsection.

Recall that in the ISS mechanism, the original electric theory has a Dirac mass super-

potential,

Wel = mDQQ̃ , (3.41)

while the magnetic dual has a superpotential

Wmag =
[QQ̃]qq̃

Λ̂
+mD[QQ̃] . (3.42)

The inverse coupling Λ̂ in the superpotential is expected to be of order the strong coupling

scale of the theory. One can determine its modular weight from the requirement that Wmag

has weight −1, as does the dynamically induced superpotential for the SQCD theory,

Wdyn = −Ñ

detF

[
QQ̃
]

Λ̂3N−F

1/Ñ

. (3.43)

This yields the modular weights of Q and q in terms of the weight of Λ̂:

nq = nΛ̂

2F − 3N

2F
− N

2F

nQ = nΛ̂

3N − F
2F

− F −N
2F

. (3.44)

A nontrivial consistency check is that these expressions are in accord with the string rela-

tions in eq. (3.31) in both the electric and magnetic phases. They are also in accord with

the well known matching relation,

Λ−bholΛ̃
−b̃
hol ∼ Λ̂−F , (3.45)

as well as the matching of baryons,

(
Q

Λhol

)N
∼
(

q

Λ̃hol

)Ñ
, (3.46)
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provided that nΛ̂hol
= nΛhol

= nΛ̃hol
, where Λhol and Λ̃hol are the electric and magnetic

QCD scales respectively. Their weights will be referred to collectively as nΛ. The weight

of the Dirac mass is then constrained to be

nmD = −nΛ
3N − F

F
− N

F
. (3.47)

As the three scales have the same modular weights, there can be no relative factors of T2 or

U2 between them, and it is natural to assume Λ̂ ∼ Λ̃hol ∼ Λhol. For example, if the fields Q

and Q̃ are incorporated into the “no-scale” structure such that they have weight nQ = −1,

then the corresponding modular weights of Λhol and mD are nΛ = −(N + F )/(3N − F )

and nmD = 1 respectively.

Finally the holomorphic magnetic meson is defined as

Φ =
[QQ̃]

Λhol
. (3.48)

It has weight

nΦ = nΛ

(
3N − 2F

F

)
− F −N

F
. (3.49)

Note that the dependence on nΛ in eq. (3.44) is proportional to the beta function in the

respective theory, and at fixed points the modular weights of fields are proportional to

their anomaly-free R-charges in the global theory. Thus when F ≈ 3N/2 and the magnetic

theory is weakly coupled, nq ≈ nΦ ≈ −1/3, which can be interpreted as the appropriate

modular weight for them to become free fields at a Gaussian fixed point. Likewise the

weakly coupled electric theory, when F ≈ 3N , has nQ ≈ −1/3. In addition note that a

non-zero value for mD breaks both the anomaly-free R-symmetry of the global theory, and

the modular symmetry.

How are these objects related to their physical counterparts? The physical mass

of the quarks is determined by the Kähler piece, K ⊃
(
|Q|2 + |Q̃|2

)
(4T2U2)nQ , so the

canonically normalized quark is Q̂ = Q(4T2U2)nQ/2, while the physical mass is m̂D =

eK/2WQQ̃(4T2U2)−nQ = mD(4T2U2)−(nQ+1/2). Both are modular invariant as they should

be. We must also be careful to distinguish the holomophic scale Λhol from the physical dy-

namical scale of the theory Λe. The two are related through the gauge thresholds according

to eq. (3.30), which yields

Λe = |Λhol| (4T2U2)
nΛ
2 . (3.50)

Thus the physical scale Λe can be different from the holomorphic one, but note that in

principle they can be similar in size, even at large volume: restoring the explicit radii and

tilt dependence, U1 ≈ 1 =⇒ R1 = R2 cos θ, and hence T2U2 ≈ R2
2 −R2

1. One may always

choose R2
2 ≈ R2

1 + c2 where c is an O(1) constant, so that T2U2 ≈ c2. In this limit the tilt

angle is very small, sin θ ≈ c/R2. This will turn out to be the dynamically relevant limit

for the minimisation.

In the large T2 and Ũ2 limit, eq. (3.32) gives,

16π2

g2(µ)
=

16π2

g2
s

+
π

3
C
(
T2 + Ũ2

)
− b ln

(
µ24T2Ũ2

)
, (3.51)
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and hence an approximation for Λe,

4T2Ũ2Λ2
e = e

− 16π2

g2
s |b|

+C
b
π
3 (T2+Ũ2)

. (3.52)

Since this approximation is valid only in the specific iU → 1 limit, it is unsurprisingly not

modular invariant. Indeed the physical KK scale is a non-modular invariant quantity, and

is given by the splitting in the spectrum, MKK = 1/
√

4T2Ũ2. As T2Ũ2 ≡ R2
1 it is, unlike

T2U2, inevitably large.

The story for the physical magnetic meson is less clear-cut because it is not possible

to determine the normalization precisely. However, given the modular weight of Φ, it is

reasonable to adopt an invariant Kähler potential of (up to irrelevant factors)

K ⊃ |Φ|2(4T2U2)nΦ + . . . (3.53)

Thus we work with a normalized field Φ̂ = Φ/γ, where γ ≡ (4T2U2)−nΦ/2. The canonically

normalized field is the modular invariant combination, Φ̂ = Q̂ ˆ̃Q/Λe. In the free-magnetic

window where the ISS mechanism operates,

− 1

3
≤ nΦ . 1 , (3.54)

with the lower limit corresponding to 2F = 3N .

The aspect of SQCD that we wish to address with this technology is the behaviour

of the soft supersymmetry breaking terms that are induced in the original theory by the

SS mechanism. In global theories such terms can be followed, even through regions of

strong coupling, using various tools, most notably the R-current superfield, as described

in refs. [50, 51]. For example, properly normalized gaugino masses in the original SQCD

electric theory are mapped to the magnetic dual as

m(mag)
g =

2F − 3N

3N − F
m(el)
g . (3.55)

There is a similar (and related) mapping of mass-squared operators for the squarks and

smesons, which in the global theory looks like

|Q̂|2 + | ˆ̃Q|2 →
(

2F − 3N

3N − F

)[
|q̂|2 + | ˆ̃q|2 − |Φ̂|2

]
. (3.56)

These mappings in softly broken global SQCD theories parametrically suppress the super-

symmetry breaking when the theory is just inside the free magnetic window 2F . 3N .

In a similar fashion, modular symmetry can track the soft-terms in the effective super-

gravity theory. Due to its holomorphic nature the gaugino mass mapping is unchanged.

But the mapping for the mass-squareds is different. Indeed a little work shows that a

generic canonically normalized matter field ϕ̂ has soft mass-squared terms

m2
ϕ̂ = m2

3/2(1 + 2nϕ) + . . . (3.57)

where the dots indicate loop corrections. Numerical factors in the normalisation obviously

cancel out in the physical mass-squared which depends only on the modular weights (which
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is why it was safe to ignore them). In the SQCD supergravity theories, this gives the

following mapping of soft-terms:

m2
Q̂

= m2
3/2

[
(3N − F )

F
nΛ +

N

F

]
m2
q̂ = m2

3/2

[
(2F − 3N)

F
nΛ +

F −N
F

]
m2

Φ̂
= m2

3/2

[
−2(2F − 3N)

F
nΛ +

2N − F
F

]
. (3.58)

One concludes that the relation in eq. (3.56) is not valid in the local theory, but that it

would hold if one were to add a universal −1
3m

2
3/2 constant to all the soft-terms. Combined

with the “1” in eq. (3.57), this extra 2
3m

2
3/2 contribution is precisely the gravity mediated

piece that is removed by the conformal compensator technique of ref. [50]. Here it is a real

physical effect, and leads to an interesting sum-rule,

2m2
q̂ +m2

Φ̂
= m2

3/2 . (3.59)

The right-hand side of this equation – which would be zero in a global theory – arises entirely

from gravity mediation. This sum-rule implies that, in contrast to the global theory, there

is now no choice of parameters that restores supersymmetry in the magnetic theory.

Eq. (3.57) cannot be the whole story for the scalar masses: for example no-scale models

have massless scalars that have nQ = −1. The additional contribution is of course from the

cross-term in K ⊃ |Q + Q̃†|2(4T2U2)nQ . For models of this form one finds a dimensionful

mass-squared operator in the potential for the canonically normalized fields of the form

Vel ⊃ m2
3/2(1 + nQ)|Q̂+ ˆ̃Q†|2 + . . . (3.60)

The global flavour symmetry is explictly broken as

SU(F )L × SU(F )R ×U(1)B ×U(1)R → SU(F )V ×U(1)B , (3.61)

by the cross term. All D-flat scalar degrees of freedom remain massless when supersymme-

try is spontaneously broken, and imposing these constraints on the magnetic description

(as well as the flavour symmetry breaking pattern), fixes the magnetic Kähler potential

to be

Kmag ⊃ |q† + q̃|2(4T2U2)nq + |Φ† + Φ|2(4T2U2)nΦ , (3.62)

with the anti-hermitian part of Φ remaining massless, but the hermitian and trace parts

picking up a mass of order m2
3/2. This gives soft-terms of the form

Vmag ⊃ m2
3/2(1 + nq)|q̂† + ˆ̃q|2 +m2

3/2(1 + nΦ)|Φ̂† + Φ̂|2 , (3.63)

up to normalisation factors that are irrelevant to the physical masses.

Finally with the above information to hand it is possible to check that the relevant

physical processes respect the modular symmetry. For example a superpotential can be

written for the canonically normalized fields of the effective global theory:

Ŵ (Φ̂, q̂, ˆ̃q) = We−〈K〉/2 = hΦ̂q̂ ˆ̃q − m̂DΛeΦ̂ , (3.64)
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where h = Λhol/Λ̂ is a modular invariant coupling. The conclusion is that the typical

induced physical mass scale in the ISS minimum is µ̂ =
√
m̂DΛe/h.

Likewise consider the tunneling action in the ISS sector (ignoring the additional soft-

terms for Φ when nΦ 6= −1). Defining εhol =
√
mD/Λhol and setting h = 1, the VEV of

the true supersymmetric minima in ISS is determined exactly:

Φ0 = µholε
(2F−3N)/2N , (3.65)

where µ2
hol = mDΛhol. An estimate for the tunnelling action that takes into account both

the factor eK and the normalization of Φ̂ is then [39]

SE ∼ 2π2Nε
4(2F−3N)/N
hol (T2U2)1+3nΦ . (3.66)

Upon inspection, this expression is the only possible modular invariant combination with

the correct functional dependence on ε (and this could have been used as a short-cut to

derive it). Indeed expressing holomorphic parameters in terms of physical ones, gives simply

SE ∼ 2π2Nε4(2F−3N)/N , (3.67)

where ε =
√
m̂D/Λe.

3.4 On Λe > MKK

An important point for the minimisation is that thanks to the remaining congruence sub-

group symmetry there is no longer any reason to prevent Λe > MKK . In particular the

matching governed by eqs. (3.41)–(3.46) is still valid in these regions of parameter space as

long as one bears in mind that the matching is between the effective 4D theories with KK

modes integrated out. It is effectively being done at the scale MKK . This fact will allow

us to avoid the upper constraint in eq. (2.1).

Let us comment on this more explicitly. The picture of interest is where the original

SQCD becomes strongly coupled at an energy scale Λe > MKK , when it still contains many

light KK modes. The effective 4D field theory description at this scale would resemble a

truncated 6D theory, while the magnetic theory will be some unknown dual description.

The physics of this full theory will be quite messy, so let us see what happens in a toy-

model: motivated by the fact that the extra KK states in the spectrum of the electric

theory include additional massive KK quarks with Dirac mass terms similar to those in

eq. (3.41), as per section 2, consider including just these extra states as a set of ∆F flavours

with mass m∆F . One can “integrate in” these quarks to find a theory with dynamical scale

Λ′hol and beta function coefficient b′ = b+ ∆F . The scale Λ′hol would then be regarded as

the scale for the truncated 6D theory with its additional ∆F quarks, and its relation to

Λhol can be found by holomorphic matching at the scale m∆F :(
Λhol

m∆F

)b
=

(
Λ′hol

m∆F

)b′
. (3.68)

The magnetic equivalent of this situation is very well known: the m∆F operator gives rise

to a linear meson term that via eq. (3.42) induces a Higgsing for the magnetic theory of
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〈q · q̃〉 = Λ̂m∆F . Hence the “integrating in” of the electric theory, corresponds in the

magnetic theory to an “unHiggsing” from SU(N) to SU(N + ∆F ), which gives a new beta

function coefficient b̃′ = b̃− 2∆F , and an accompanying matching equation(
Λ̃hol√
Λ̂m∆F

)b̃
=

(
Λ̃′hol√
Λ̂m∆F

)b̃′
. (3.69)

Now, upon inserting eqs. (3.68), (3.69), one finds that the 4D matching in eq. (3.45) derives

from the matching equation of the full theory, namely

Λ
′−b′
hol Λ̃

′−b̃′
hol ∼ Λ̂−(F+∆F ) . (3.70)

The point of this simple exercise is to demonstrate that no explicit powers of T2U2 can

enter when one integrates out modes between MKK and Λe, because that would be in

violation of the modular symmetry. In principle volume factors could have entered in a

modular invariant way via the dependence on ∆F ∼ (Λe/MKK)d, but this would have

introduced extra powers of Λ, and it would also have made the relation between the 6D

and 4D dynamical scales singular in the decompactification limit. We conclude that the

effective 4D relation in eq. (3.45) derives from the matching relation in the toy-model with

all KK modes present in eq. (3.70), and neither version of the matching can contain factors

of T2 or U2.

One does not expect that this conclusion would change if one were to start with the

full 6D theory truncated at Λe, and its much more complicated magnetic dual (whatever

form that may take). Thanks to the modular invariance, the “integrated in” 6D relation

and the “integrated out” 4D relation are equally valid, although the 4D one is obviously

the convenient choice. While it would be interesting to investigate how the 4D duality is

embedded in the truncated 6D theory, knowledge of this is not required for the mechanism

at hand. In particular, Λhol is indeed just a parameter that specifies the dynamical scale

of the effective 4D field theory when one integrates out all the KK physics, and Λ̃hol is

the relevant dynamical scale for the 4D theory that emerges below MKK , regardless of the

relative size of Λhol and MKK . Note that, if the couplings (i.e. h = Λhol/Λ̂ and friends)

are of order unity, the dynamical scales of the truncated 6D theory are inevitably similar

to those of the 4D theory regardless of the volume.

4 Stabilisation in the string-embedded theories

4.1 Generic Casimir energy

With all the necessary ingredients to hand, the minimisation can now be revisited. The

generic case is treated in this subsection. The following subsection considers the UV-

Casimir case.

To start with, one can deduce from eq. (3.59) that there are always some mass-squareds

of order m2
3/2 in the infra-red of the ISS theory. It is convenient for the discussion in this

and the following subsection to specialise to the weakly coupled case, and take F ≈ 3N/2
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giving nq, nq̃, nΦ ≈ −1/3. This yields positive (physical) mass-squared operators of 2
3m

2
3/2,

regardless of nQ and nΛ. Generalisation would be straightforward.

Therefore for the ISS mechanism to work as before (in particular for the rank-condition

to be unchanged) one requires only that µ̂2 = m̂DΛe/h & 2
3m

2
3/2. There is now the

additional attractive feature that gravity mediated contributions act to stabilise the smeson

fields around the origin, quenching tunnelling completely. This means one is able to relax

the conditions in eq. (2.1): one may work with Λe > m3/2 ∼MKK which then guarantees

that m̂D < Λe ensuring that the physical states all still remain in the ISS theory. It

should be stressed that this does not cause a problem for the proper functioning of the ISS

mechanism. As discussed in the previous section, the matching of the zero-mode SQCD

theories can be done at the scale MKK and goes through as before regardless of the presence

of heavier bulk modes. The magnetic ISS phase and the soft-terms all emerge below MKK

with Λe being the appropriate 4D SQCD scale, regardless of the relative size of Λe and

MKK , and regardless of what additional states or physics might appear above the KK scale.

A possible generic difficulty with Λe > m3/2 is rather that the ISS physics could change

the original Casimir energy. One can see this sensitivity explicitly, by for example just

removing the KK modes below the scale Λe with an IR cut-off τ2 < 1/Λ2
e on the Schwinger

integral: this adds a term that dominates the contribution from the SQCD sector when

Λe > MKK . One can then see the advantage of the UV-Casimir theories whose cosmological

constant is unchanged by such a cut-off: they automatically have a Casimir energy that

is completely shielded from all IR physics. We take advantage of this feature in the next

subsection. By contrast, for the generic case one must assume that the contribution to

the cosmological constant from the ISS sector is swamped by the contribution from all the

other massless degrees of freedom in the theory, that is N
(0)
f − N

(0)
b � N

(0)
fISS
− N

(0)
bISS

.

Given the large number of states, this assumption is reasonable.

To perform the minimisation, let us consider the case nQ = −1, which recall gives

nmD = +1. (It is simple but not particularly instructive to generalise.) The physical

Dirac mass then has the form m̂D = αD
√

4T2U2 where αD is a continuous parameter

that must have weight +1. (Therefore αD represents an explicit breaking of the modular

symmetry much like the Dirac mass in the original ISS scheme is an explicit breaking

of the anomaly-free R-symmetry.) Note that αD has mass dimension 2: henceforth all

dimensionful quantities are in units of Ms. It will become clear that the above choice is

consistent with the Dirac mass-term being a free parameter in the superymmetric theory.

Then using eq. (3.38) we have

V = VC + VISS

=
π3

120
(N0

f −N0
b )
U3

2

T 2
2

+Nm̂2
DΛ2

e ,

=
π3

120

(N0
f −N0

b )

T 2
2 Ũ

3
2

+
T2

Ũ2

4Nα2
De
− 16π2

g2
s |b|

+C
b
π
3 (T2+Ũ2)

. (4.1)

Note that strictly speaking one should add the superpotential terms corresponding to the

two sources of spontaneous supersymmetry breaking rather than the vacuum energies, and
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evaluate the resulting cosmological constant in the full supergravity theory. However the

terms in the superpotential comprise a U dependent part from the Casimir energy, and

a Φ dependent part from the ISS contribution. The terms that are being neglected by

not performing a full treatment can only arise from additional U − Φ mixing terms in the

Kähler metric (since FU and FΦ are the only non-zero F -terms); by flavour symmetry these

have extra factors of 〈Φ〉 which are zero at leading order.

The minimisation conditions give

Ũ2 =
3

2
T2 +

15b

2πC
. (4.2)

Assuming that the volume ends up at T2 � 1 (as will be verified in a moment), one may

neglect the second term and use

T2U2 =
2

3
+O(1/T2) , (4.3)

and hence MKK ≈
√

2/3 T−1
2 . Note that m̂D ≈

√
8/3αD regardless of the eventual scale

of supersymmetry breaking. Therefore αD can indeed be considered to be a parameter of

the supersymmetric theory.

The potential becomes

V (T2) =
π3

405

(N0
f −N0

b )

T 5
2

+
8Nα2

D

3
e
− 16π2

g2
s |b|

+C
b

5π
6
T2
. (4.4)

The remaining one-dimensional minimisation can be done analogously to that in the 5D

model of section 2. Using that notation, the fiducial scale of eq. (2.13) and the T2 VEV

are given by

µ2
0 ≈

(
5πC

6b

)5 π3

69

(N0
f −N0

b )

Nα2
D

≈ 4× 10−4

α2
D

(
C

b

)5 (N0
f −N0

b )

N
,

5πC

6b
T2 ≈

16π2

|b|g2
s

+ lnµ2
0 , (4.5)

where, recall, the dynamical scale is then given by Λe
MKK

= µ0 (in string units). As men-

tioned above, with maximal SS phases, in order to avoid the SS soft-terms interfering with

the ISS mechanism we choose Λe &MKK . From the above, assuming (N0
f −N0

b ) ∼ N and

C ∼ b requires α2
D � 1, which is consistent with m̂D � Ms. Indeed restoring the string

scale we have

Λe
MKK

≈

√
10−3

(
C

b

)5 (N0
f −N0

b )

N
× Ms

m̂D
. (4.6)

Summarising the 6D case then, when gs � 1, the minimum is at

T2 ≈
2

3U2
≈
√

2

3
M−1
KK ≈

96π

5|C|g2
s

, (4.7)

with Λe & MKK . As in the 5D case the potential rises exponentially fast beyond the

minimum until Λe surpasses Ms. A numerical example is shown in figure (4).
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log10 V (T2, Ũ2) log10 V (T2, Ũ2)

Figure 4. The potential for b = −100, C = −50, (N0
f − N0

b ) = N = 10, αD = 10−4 and

gs = 10−2. The approximation in eq. (4.5) gives a minimum at T2, Ũ2 = 12064, 18096 (in string

units) respectively. As in the 5D case, the minimum lies close to a boundary in moduli space beyond

which the effective field theory theory description breaks down as the dynamical QCD scale exceeds

the string scale. The dynamical scale is Λe ≈ 35MKK but it can be easily brought closer to MKK

with different choices of parameters, while Λe � m̂D over the whole parameter space.

4.2 UV-Casimir energy balanced against a gaugino condensate

Next we consider the N0
f = N0

b theories. As discussed earlier the Casimir energy in these

cases is generated entirely by UV modes, so it is completely insensitive to the low energy

physics. This separation is very interesting in the current context of balancing competing

Scherk-Schwarz induced terms against non-perturbative IR physics, because it suggests

that whatever mechanism is devised will be very robust. Moreover the two contributions

to the cosmological constant may be consistently determined independently even though

they necessarily involve the same moduli. In terms of the Schwinger integral, one can

envisage the integrand as having two separate peaks, one at the stringy UV end and the

other at the non-perturbative IR end. Therefore, one may simply add the two terms, which

will be referred to as VUV and VIR, in the cosmological constant. Indeed VUV is computed

in the string theory, while VIR can be computed independently in the low energy effective

field theory.

This opens up possibilities for stabilisation with non-perturbative physics that would

otherwise be rather difficult to treat. For example gaugino condensation is now an attrac-

tive option for our IR physics rather than the ISS mechanism. Note that by contrast a

standard SS Casimir energy (as considered in the previous section) balancing against a

gaugino condensate would require a treatment of both terms simultaneously because they

are functions only of S, T, U and are not independent; essentially everything in that case

would be happening in the IR, so it would be necessary to determine the full one-loop

effective supergravity theory in order to compute the cosmological constant.
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To see this in practice, consider a single gaugino condensation contribution to VIR.

The minimisation will now be done with all three fields, properly including the dynamics

of the dilaton S itself. However the philosophy is the same, namely we expect to end up

in a stable or metastable minimum that has relatively large S compensated by relatively

large T and Ũ .

The IR contribution to the potential is calculated in supergravity, incorporating the

superpotential WSS in eq. (3.16) for the Scherk-Schwarz background, in addition to the

gaugino condensate, that is WIR = WSS +Wgc. The latter is described by the well-known

superpotential

Wgc = dΛ3
hol , (4.8)

where d is a constant, and now

Λhol ≈ e
− 8π2

|b| S+C
b
π
6

(T+Ũ)
(4.9)

is the holomorphic scale for the pure Yang-Mills theory. Eq. (3.31) with F = 0 and

b0 = −3N correctly gives nWgc = −1. The approximation refers to T2, Ũ2 � 1 near

iU = 1 and as discussed earlier it breaks the modular symmetries. In the Scherk-Schwarz

background, adding WSS then incorporates the effect of the shifted mass spectrum. We

know that the potential without Wgc is entirely flat so one can anticipate that the resulting

contribution involves powers of Wgc.

Some care is required regarding phases: bearing in mind the cosmological constant

discussion in section 3.2, one can anticipate that U1 and T1 will ultimately be fixed to zero

by VUV , and therefore one does not need to consider them further. However the phase of

the dilaton S1 remains as a free field that is fixed by the gaugino condensate.

Using eq. (3.40), the potential is conveniently arranged (at U1 = T1 = 0) as

V = VUV + VIR = 2(N1
f −N1

b )T
−3/4
2 Ũ

−7/4
2 e−2π

√
T2Ũ2 +B

(
|Λ3

hol| −
A

B

)2

− |A|
2

B

A
S2T2

d
=

1

2
√

2

(
1 + log |Λ3

hol|
)

(4.10)

B
S2T2

d2Ũ2

=
1

2
log |Λ3

hol|(log |Λ3
hol| − 1)− π

2

C

b

(
(T2 + Ũ2) log |Λ3

hol| − Ũ2

)
+

(
π

2

C

b

)2

(T 2
2 + T2Ũ2 + Ũ2

2 ) .

The entire S2 dependence is contained within the eK prefactors and the |Λhol| dependence,

while S1 simply adjusts the phase of Λhol so that it comes to rest where it minimises the

square with a relative minus sign as shown. The minimisation with respect to the dilaton

is then dominated by the complete square term, which gives the approximation

|Λhol| ≈ A/B
(
1 +O(24π2S2/|b|)

)
≈ 1

2
√

2d

(
π

2

C

b

)−2 1

Ũ2(T 2
2 + T2Ũ2 + Ũ2

2 )
. (4.11)

– 30 –



J
H
E
P
1
1
(
2
0
1
6
)
0
8
5

The error on the right hand side of this equation is due to the eK pre-factor and is neg-

ligible when the gauge coupling at the string scale ends up being weak (as is the case of

interest). The A/B term on the right hand side depends only logarithmically on Λhol; the

approximation can be improved by iteration if required but as long as the volume T2 is

large, the zeroth order expression shown on the second line is sufficiently accurate.

The potential is qualitatively different from that in the ISS case because the single

gaugino condensate does not by itself give a minimum in T2 or U2. In fact without the

VUV contribution the potential has a runaway to small moduli (where our approximations

break down) or to infinity. With VUV however a minimum is found where the two terms

VUV and VIR balance, giving rise to the novel phenomenon that the non-perturbative low-

energy contribution self-tunes to be of the same order as the exponentially suppressed UV-

Casimir energy. A framework in which an exponentially small UV cosmological constant

governs and stabilises non-perturbative IR physics without being disrupted itself seems of

general interest.

An example potential is shown in figure 5 for a typical set of parameters. In addition

the plot shows the line where VUV = VIR close to the actual minimum. The nett result

is a minimum in which all the moduli are stabilised and Λhol ∼ Ms/10. Notice that the

approximation T2 ≈ 2
3 Ũ2 at the minimum still holds. This example takes N1

f −N1
b = 106

which may seem large, but one should recall that there are very many excitations at the first

string excitation level, and in fact this number is quite typical. Not surprisingly, reducing

this number (and increasing d) moves the minimum closer to the origin, where neglected

contributions to VUV such as those from winding modes will start to become important.

Discussion of this effect along with explicit examples was presented recently in ref. [63],

and it would be interesting to incorporate these additional terms in detail.

5 Conclusion

In summary, it is argued that a general means of addressing the decompactification prob-

lem dynamically is to balance non-perturbative physics contributions to the vacuum en-

ergy against the Casimir energy in Scherk-Schwarzed theories. Due to universality in both

the threshold corrections and the gauge couplings, the stable minimum will have consis-

tently large (order one) gauge couplings for any gauge group that shares the same N = 2

beta function for bulk modes as the gauge group taking part in the minimisation. By

contrast gauge symmetries with the wrong-sign beta function will remain as effectively

global symmetries.

Both the ISS mechanism and a single gaugino condensate were considered for the stabil-

ising non-perturbative physics in the case of compactification from 6D to 4D in heterotic

strings. In either case, both the Scherk-Schwarz contribution and the non-perturbative

contribution to supersymmetry breaking can be written as superpotential terms in N = 1

theories, which spontaneously break supersymmetry.

The ISS mechanism is interesting because it gives novel cross-checks based on the

residual modular symmetry of the theory, and also allows one to handle the supersymmetry

breaking from the ISS mechanism and the Scherk-Schwarz breaking simultaneously. By
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V (T2, Ũ2)

Figure 5. The potential for b = −80, C = −20, (N1
f − N1

b ) = 106 with d = 0.1. The dashed

line marks where the IR contribution to the potential is equal to the UV one. In practice the pre-

factors make very little difference to the qualitative form of the potential, but move the minimum

along T2 ≈ 2
3 Ũ2.

contrast the gaugino condensate is interesting when the original Scherk-Schwarzed theory

retains Bose-Fermi degeneracy and has exponentially suppressed cosmological constant. An

important aspect of the SS induced cosmological constant in this case is that it is entirely

generated by heavy modes and as such is completely immune to any non-perturbative

physics that might be added in the IR to provide a balancing contribution. It allows

very simple treatment of the minimisation which in this case takes place at moderate

volume. A full treatment in this generic set-up (that is, including the stabilisation of

the compactification moduli as well as the original dilaton) was presented. The energetic

separation between competing and balancing UV and IR induced terms in the potential

makes stabilisation very robust, and seems to be something that has not been remarked

upon before. It would be of interest to apply the mechanism to explicit examples, such

as the models discussed recently in ref. [63], which has some intriguing overlaps with the

work described here.

Acknowledgments

I would like to thank Keith Dienes, Costas Kounnas, Alberto Mariotti, Eirini Mavroudi

and Carlos Tamarit for discussions.

A Summary of SL(2,Z)U and SL(2,Z)U structure

The heterotic modular symmetries begin life as subgroups of the exact O(16 + d, d,Z)

target-space automorphisms of the Narain lattice [60–62]. The T -modular transformations

are presented here for reference. They form a subgroup SL(2,Z)T , under which the fields
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transform as

T → aT − ib
icT + d

,

U → U − ic φφ′

icT + d
,

S → S − δGS log(icT + d) ,

φ, φ′ → φ, φ′

icT + d
, (A.1)

with a, b, c, d ∈ Z and ad− bc = 1, while the U -modular transformation SL(2,Z)U is

U → aU − ib
icU + d

,

T → T − ic φφ′

icU + d
,

S → S − δGS log(icU + d) ,

φ, φ′ → φ, φ′

icU + d
. (A.2)

Some useful identities under the iT → −1/iT transformation of the SL(2,Z)T modular

group for example, are

T + T̄ → T + T̄

|icT + d|2

η(iT )2 → (icT + d) η(iT )2

|η(iT )|4
(
T + T̄

)
→ |η(iT )|4

(
T + T̄

)
, (A.3)

so that the Kähler potential K = − log
(
4T2U2 − |φ+ φ̄′|2

)
transforms as K → K +

log |icT + d|2. Thus the superpotential has to have weight −1 under SL(2,Z)T,U .
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