
A&A 598, A37 (2017)
DOI: 10.1051/0004-6361/201629271
c© ESO 2017

Astronomy
&Astrophysics

Wave-front error breakdown in laser guide star multi-object
adaptive optics validated on-sky by Canary

O. A. Martin1, É. Gendron2, G. Rousset2, D. Gratadour2, F. Vidal2, T. J. Morris3, A. G. Basden3, R. M. Myers3,
C. M. Correia1, and D. Henry4

1 Aix Marseille Université, CNRS, LAM, Laboratoire d’Astrophysique de Marseille, 38 rue F. Joliot-Curie,
13388 Marseille Cedex 13, France
e-mail: olivier.martin@lam.fr

2 LESIA, Observatoire de Paris – Paris Sciences et Lettres – CNRS – Université Paris Diderot – Sorbonne Paris Cité –
Université P. et M. Curie – Sorbonne Université, 5 place Jules Janssen, 92190 Meudon, France

3 Centre for Advanced Instrumentation, Durham University, South Road, Durham DH1 3LE, UK
4 UKATC, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK

Received 8 July 2016 / Accepted 22 September 2016

ABSTRACT

Context. Canary is the multi-object adaptive optics (MOAO) on-sky pathfinder developed in the perspective of multi-object spec-
trograph on extremely large telescopes (ELTs). In 2013, Canary was operated on-sky at the William Herschel telescope (WHT),
using three off-axis natural guide stars (NGS) and four off-axis Rayleigh laser guide stars (LGS), in open-loop, with the on-axis
compensated turbulence observed with a H-band imaging camera and a Truth wave-front sensor (TS) for diagnostic purposes.
Aims. Our purpose is to establish a reliable and accurate wave-front error breakdown for LGS MOAO. This will enable a comprehen-
sive analysis of Canary on-sky results and provide tools for validating simulations of MOAO systems for ELTs.
Methods. To evaluate the MOAO performance, we compared the Canary on-sky results running in MOAO, in single conjugated
adaptive optics (SCAO) and in ground layer adaptive optics (GLAO) modes, over a large set of data acquired in 2013. We provide
a statistical study of the seeing. We also evaluated the wave-front error breakdown from both analytic computations, one based on a
MOAO system modelling and the other on the measurements from the Canary TS. We have focussed especially on the tomographic
error and we detail its vertical error decomposition.
Results. We show that Canary obtained 30.1%, 21.4% and 17.1% H-band Strehl ratios in SCAO, MOAO and GLAO respectively,
for median seeing conditions with 0.66′′ of total seeing including 0.59′′ at the ground. Moreover, we get 99% of correlation over
4500 samples, for any AO modes, between two analytic computations of residual phase variance. Based on these variances, we obtain
a reasonable Strehl-ratio (SR) estimation when compared to the measured IR image SR. We evaluate the gain in compensation for the
altitude turbulence brought by MOAO when compared to GLAO.

Key words. instrumentation: adaptive optics – methods: data analysis

1. Introduction

New scientific challenges will become achievable thanks to the
future 30–40 m class telescopes such as the ESO European Ex-
tremely Large Telescope (E-ELT; McPherson et al. 2012). In
particular, it will be possible to track properties of first galax-
ies at high red-shifts (Evans et al. 2008). Such distant objects are
smaller than the seeing disk, and so faint that they may require
hours of integration time. They must be observable by integral
field spectroscopy and statistics on these objects will be provided
by a large multiplex system. Such a statistical analysis requires
the observation of the greatest possible number of galaxies dis-
tributed over a very large field of view (FoV). Thanks to the large
light-collecting power of the E-ELT combined with an adaptive
optics (AO) system having high sky coverage, such observations
will be feasible.

To perform the multi-object correction, an AO concept has
been proposed (Hammer et al. 2002): multi-object adaptive op-
tics (MOAO). A MOAO system is composed of individual op-
tical trains that split the FoV into different scientific directions.
Each of these optical trains includes a single deformable mir-
ror (DM) which corrects the turbulence over the small sub-field

(of the order of an arc-second) encircling the galaxy. In addi-
tion in MOAO, objects to be observed are too faint to provide
the number of photons required to measure the wave front (WF).
The WF sensing is thus achieved thanks to other natural guide
stars (NGS) within the field and laser guide stars (LGS). Unfor-
tunately, the turbulence measured by WF sensors (WFS) decor-
relates with angular distance because of the anisoplanatism ef-
fect (Fried 1982). The mitigation of this effect requires a tomo-
graphic approach: the DMs are driven from a combination of
the off-axis WF measurements taking into account their angu-
lar correlation. Using several NGS and LGS in the FoV, MOAO
estimates the wave-front in the scientific directions by a tomo-
graphic reconstruction to mitigate the anisoplanatism effect.

Eagle (Cuby et al. 2010) is a MOAO-assisted multi-object
spectrograph (MOS), that has been proposed for the E-ELT for
the statistical study of the formation process of distant galax-
ies. The concept of Eagle is to cover a 7 arcmin diameter FoV
and features 20 MOAO spectroscopic channels, working in par-
allel, and delivering a corrected wave-front for achieving an en-
squared energy (EE) greater than 30% in a resolution element
of 75 mas. The AO study (Rousset et al. 2010) has demonstrated
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that the tomographic reconstruction must be based on a mini-
mum of six LGS WFS and four to five NGS WFS in order to be
able to reach the correction performance and the sky coverage
requirement. Today, a new multi-object spectrograph, Mosaic,
possibly equipped with MOAO, is entering in phase A study for
the E-ELT (Hammer et al. 2014).

To demonstrate the technical feasibility of MOAO sky ob-
servations, the pathfinder Canary (Myers et al. 2008) has been
developed by an international consortium. It began in 2007, with
first light in 2010 at the William Herschel Telescope (WHT)
on La Palma, in the Canary islands (Spain) (Gendron et al.
2011). Canary is also a platform where innovative techniques
and algorithms can be tested on-sky for AO control techniques
(Sivo et al. 2014; Osborn et al. 2014; Bitenc et al. 2015) and
Shack-Hartmann (SH) centroiding (Basden et al. 2012, 2014)
for instance.

In this paper, we present the analysis of on-sky results ac-
quired by Canary in 2013. We first describe the MOAO control
and tomographic reconstruction with LGS in Sect. 2, as used
with Canary. In particular, we discuss the implementation of
the mixed NGS/LGS tomographic reconstruction.

In Sect. 3, we introduce the tomographic error in LGS
MOAO and describe how its evaluation is achieved for Canary.
In Sect. 4, we present an analytic LGS MOAO error breakdown
and describe how each term is derived. The variance of the resid-
ual phase taken in summing all terms, assumed to be indepen-
dent, is compared to what we estimate from the truth sensor (TS).
We show in Sect. 5 the two methods lead to the same evaluation
of the residual phase, with a 99% correlation over a large set of
4500 on-sky datasets. We also present an overview of the on-sky
Canary performance in single conjugate AO (SCAO), MOAO,
and open-loop ground layer AO (GLAO).

Finally in Sect. 6, we focus on particular results acquired
by Canary running successively in SCAO, MOAO and GLAO
modes. Using tools introduced in Sect. 4, we evaluate the
Canary error breakdown in these modes and analyze the im-
provement achieved using LGS/NGS tomography. We conclude
in Sect. 7.

2. Canary design: phase B

2.1. Phase B design

The Canary pathfinder is deployed on one of the Nasmyth focii
of the 4.2 m WHT. The project has been planned with several
phases of increasing system complexity (Myers et al. 2008) to
lead to a comprehensive demonstration of the MOAO configura-
tion as foreseen for Eagle on the E-ELT (Rousset et al. 2010).

The Canary optical design during phase B (Morris et al.
2013) includes up to eight SH WFS of 36 valid sub-apertures
each (7 × 7), three being off-axis NGS WFS, four being off-axis
Rayleigh LGS WFS and one being an on-axis NGS WFS. They
are installed behind an optical de-rotator (K mirror) placed at
the entrance of the bench to compensate for the field rotation at
the Nasmyth focus. The three off-axis NGS WFS are installed
on a target acquisition system (TAS) in the telescope focal plane
which allows us to point at directions anywhere within a FoV
of 2.5′ diameter. The four Rayleigh LGS WFS have a selectable
range gate (to tune the guide star height and depth), set to 21 km
for the data presented in this paper, and are optically com-
bined on a unique electronically time-gated CCD (Morris et al.
2013, 2014). The on-axis TS measures the WF corrected by the
DM and tip-tilt (TT) mirror for calibration procedures and for
performance diagnostics. A dichroic plate splits the corrected

Table 1. Notation.

Quantity Signification
〈U〉 Temporal average of vector U

tr (U) Trace of the matrix U
Ins ns × ns identity matrix

[1]ns ns × ns matrix full with 1.
[0]ns ns × ns matrix full with 0.
‖U‖ L2 norm of vector U
R Tomographic reconstructor

Soff Vector concatenating slopes measured by off-
axis WFSs

Son Vector concatenating slopes measured by on-
axis WFS

Mrz Calibrated reconstruction matrix Slopes to
Zernike

ns Number of measured slopes by a single WFS,
ns = 72 in this paper

nf Number of acquired frames
nl Number of discrete turbulent layers

nwfs Number of WFS, nwfs = 7 in this paper
nngs Number of NGS only WFS, nngs = 3 in this pa-

per
nlgs Number of LGS only WFS, nlgs = 4 in this paper

WF beam into a visible part (400–900 nm) for the TS and an
infra-red part (900–2500 nm) for an infra-red imaging camera,
called Camicaz, equipped with a NICMOS detector and a fil-
ter wheel delivering J, H and K-band images (Gratadour et al.
2013a).

All the WFS cameras are triggered with a master clock de-
rived from a sub-frequency of the laser pulses, leading to syn-
chronous WFS measurements sampled at 150 Hz for all cam-
eras. The real-time computer (RTC) DARC (Basden et al. 2010;
Basden et al. 2016) acquires synchronously the WFS data and
provides the user with time series of wave-front slopes and DM
and TT commands.

2.2. Wave-front sensor (WFS) slope vectors

The RTC provides for each WFS a vector Sp of ns (see Table 1)
slopes (ns = 2 × 36) every WFS frame. The set of local WF
slopes along x and y directions, measured by the pth WFS with
ns/2 sub-apertures, is collected into a global slope vector Sp:

Sp =



S x1

...

S xns/2

S y1

...

S yns/2


− Sref

p , (1)

where Sref
p is the vector of the reference slopes, previously cal-

ibrated in the laboratory (Vidal et al. 2014). To remove tip-tilt
signal from LGS measurements, we subtract the average slopes
on both the x and y axis:

SLGSp =
(
Ins − F

)
× Sp, (2)
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where Ins is the identity matrix of size ns and F is defined as:

F =
2
ns

[
[1]ns/2 [0]ns/2
[0]ns/2 [1]ns/2

]
, (3)

where [1]ns/2 and [0]ns/2 are squared matrices of size ns/2 filled
respectively with ones and zeros (see Table 1).

We denote Soff as the array resulting from the concatenation
of slope measurements in the off-axis directions. This therefore
includes the slopes coming from 4 LGS and 3 NGS, and is of
size (2×36×7)×nf. Likewise, we denote Son as the array of size
ns × nf that concatenates the TS measurements on the on-axis
source. We have:

Soff =



SLGS1(t = 1) · · · SLGS1(t = nf)
SLGS2(t = 1) · · · SLGS2(t = nf)
SLGS3(t = 1) · · · SLGS3(t = nf)
SLGS4(t = 1) · · · SLGS4(t = nf)
SNGS5(t = 1) · · · SNGS5(t = nf)
SNGS6(t = 1) · · · SNGS6(t = nf)
SNGS7(t = 1) · · · SNGS7(t = nf)


(4)

Son = (STS(t = 1) · · · STS(t = nf)) , (5)

where the SNGSp(t) and STS(t) are acquired according to Eq. (1),
while SLGSp comes from Eq. (2). In all the following, Soff and Son
will be WFS slopes measured with a disengaged loop, which are
measurements of uncompensated phase.

We define SEng
on as the TS measurements acquired when loop

is engaged. This represents a measurement of the residual phase.
Each time series of SEng

on (t) gathers TS slopes following Eq. (1).

2.3. NGS/LGS-based reconstructors

2.3.1. Ground layer compensation (GLAO) reconstructor

Canary has a ground layer compensation mode (GLAO mode)
with open-loop correction. It is comparable to the MOAO mode,
except the reconstructor is simplified. The GLAO reconstruc-
tor averages the WFS signals, ignoring the tip and tilt from the
lasers. It is computed as a sum of a tip-tilt (TT) reconstructor
RGlao

TT that averages the slopes on NGS WFS only, and a high
order reconstructor RGlao

HO that filters out the tip-tilt on all mea-
surements and averages the slopes. Mathematically we have:

RGlao = RGlao
HO + RGlao

TT , (6)

where RGlao
TT is the ns × (ns × nwfs):

RGlao
HO =

1
nwfs

[[
Ins − F

]
· · ·

[
Ins − F

]]︸                       ︷︷                       ︸
nwfs

, (7)

and RGlao
TT the matrix averaging the slopes on NGS WFS only is

designated as:

RGlao
TT =

1
nngs

[0]ns · · · [0]ns︸          ︷︷          ︸
nlgs

,F · · ·F︸  ︷︷  ︸
nngs

 . (8)

Calibration of references slopes, DM offsets, interaction and
command matrices are described by Vidal et al. (2014).

2.3.2. Minimum mean square error (MMSE) reconstructor

The on-axis phase is determined by minimizing the distance be-
tween the on-axis measurements and the linear combination of
off-axis measurements propagated through the reconstructor R:

ε =
〈
‖Son(t) − 〈Son〉 − R(Soff(t) − 〈Soff〉)‖2

〉
, (9)

where 〈...〉 denotes the temporal average over a time series. En-
suring ∂ε/∂R = 0 with Soff and Son assumed to be Gaussian
stochastic processes, we get:

RMMSE = argmin
R

(ε) = ConoffC
†

offoff
(10)

with Conoff the ns× (ns×nwfs) spatial cross-covariance matrix be-
tween on/off measurements, while Coffoff denotes the (ns×nwfs)×
(ns × nwfs) off-axis WFS spatial covariance matrix. They are de-
fined by:

Conoff =
〈
(Son − 〈Son〉)(Soff − 〈Soff〉)t

〉
Coffoff =

〈
(Soff − 〈Soff〉)(Soff − 〈Soff〉)t

〉
.

(11)

We note that the matrix C†offoff
in Eq. (10) is the generalized in-

verse of the covariance matrix Coffoff.

2.3.3. Filtering of pupil average slope

Laser guide stars (LGS) WFS do not properly measure the
pupil average slope (the overall angle of arrival), and we have
explained that we subtract this from their measurements, as
stated by Eq. (2). The same filtering operation on the lasers
needs to be taken into account in the tomographic reconstruc-
tor in order to get rid of undetermined modes. We use a global
approach (as opposed to techniques known as split tomogra-
phy (Gilles & Ellerbroek 2008) where the reconstruction is per-
formed independently for LGS and NGS).

Before applying Eq. (10), we rework the covariance matrix
Coffoff and apply on each of its blocks [Coffoff]pp′ between two
wave-front sensors p and p′ the following filtering operation:

At[Coffoff]pp′ A′ (12)

where A = Ins when p is a NGS wave-front sensor, and A =
Ins − F in the case of a LGS wave-front sensor (and similarly for
A′ and p′). After filtering, the covariance matrix Coffoff should
be understood as the covariance of measurements excluding the
undetermined modes.

As a comparison with other studies addressing the same
problem, we find it interesting here to point out the method used
by Tallon et al. (2010), who modifies the diagonal wave-front
sensor blocks of the covariance matrix using

[Coffoff]pp + B (13)

with B the covariance matrix of undetermined modes measure-
ments for a given LGS wave-front sensor p. This is equivalent to
adding noise to the measured undetermined modes, which will
automatically result in their filtering by the inversion process.

The inversion process is interesting and can be compared be-
tween the two methods. In the case of Tallon, the addition does
not modify the rank of Coffoff, while in our case filtering two de-
grees of freedom (tip and tilt) for each of our four LGS WFS
creates eight null eigenvalues (associated to eight eigenmodes
that span the subspace of our filtered modes). Therefore our ma-
trix cannot be inverted directly. Instead, we perform a singular
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value decomposition (SVD, which reduces to a diagonalization
in this particular case of a square, symmetric, positive definite
matrix), invert all non-zero eigenvalues, and set the inverse of
null ones to zero. This is how the average slope of LGS wave-
front gets filtered out in our case. We believe this approach is
equivalent to Tallon’s approach with the coefficients of matrix B
tending towards infinity.

We have chosen this method because the coefficients on B
would have been difficult to adjust experimentally. The position-
ing of our LGS suffers from drifts, possibly from rotations of the
asterism, that translate into long-term drifts of the average slopes
that are quite empirical to turn into a covariance noise. For this
reason, we prefer to completely eliminate of those modes.

In addition, we should mention that, in any case, the large
dispersion of the eigenvalues of Coffoff (even before filtering of
tilt) makes a direct inversion numerically risky, and that is it
preferable to filter out the weakest eigenmodes, instead of at-
tempting to take the inverse of their eigenvalues. This still re-
quires an SVD.

2.4. Reconstructor identification

The matrix Conoff can not be determined on-sky when observing
because the lack of photons forbids the use a TS in the scientific
directions. In addition, empirical covariance matrices suffer from
statistical convergence errors (Martin et al. 2012) that make the
tomographic reconstructor too specific to the particular time se-
ries from which it has been computed.

For these reasons, we fit the on-sky measured Coffoff to a
model of this matrix detailed in Appendix A.1. It provides an-
alytic values of Conoff and Coffoff from a list of parameters:

• nl: number of discrete layers, set ad hoc;
• hl: altitude of layers;
• r0(hl): strength of layers;
• L0(hl): outer scale of layers;
• telescope tracking error and vibration: adding of an isopla-

natic tip-tilt over all NGS WFS;
• WFS angular positions: they are sufficiently well known us-

ing encoders information from the target acquisition system;
• system mis-registration (pupil shifts, rotation and magnifica-

tion): well calibrated on bench;
• centroid gain variations;
• noise slope variance for each WFS, separately identi-

fied on the Soff time series by computing its temporal
autocorrelation.

In the previous list, only the altitude, strength and outer scale of
layers are retrieved, along with the tracking error. Other param-
eters are either set ad hoc or assumed to be known well enough.

The retrieval of these parameters is ensured thanks to the
Learn&Apply algorithm (Vidal et al. 2010). It is a least-square
minimization of the distance between the empiric covariance
and our model of that. The algorithm operates iteratively using
a Levenberg-Marquardt method. For determining the turbulent
profile on an engaged set of data, we estimate the disengaged
TS measurements, Son from the measured ones SEng

on (see Ap-
pendix B.1). We thus have an additional WFS, centred on-axis,
that allows us to increase the maximum FoV covered by tomog-
raphy.

Previously we have used a model (Vidal et al. 2010, 2014)
based on a Fourier transformation of the Von-Kármán spectrum
to get the bi-dimensional (2D) spatial covariance of the wave-
front slopes. This algorithm was particularly efficient when cou-
pled to wave-front sensors with fixed sub-aperture sizes, because

the computation using fast Fourier transforms (FFT) could be
used to extract all covariance values from the same 2D map be-
tween two wave-front sensors with arbitrary separation, with-
out requiring any interpolation of the map and provided the sub-
aperture size being a multiple of the FFT sampling.

However, the cone effect inherent to LGS induces layer-
projected sub-aperture sizes and pupil sizes that vary with al-
titude, which breaks the efficiency of the implementation when
it’s a matter of computing covariances between LGS and NGS.
An interpolation procedure could be implemented in order to ac-
cess values that lay between covariance samples of the FFT, but
unfortunately this kind of approximation does not go integrate
with a fitting procedure that internally requires the computation
of derivatives as finite differences of the covariance function. For
this reason, we have developed a new analytic way to compute
the covariances as it is presented in Appendix A.1. This method
allows us to get each coefficient of the matrix independently,
which is a great advantage for faster computation for parallel
implementation (Gendron et al. 2014a).

3. Evaluation of the tomographic error

3.1. Raw tomographic error

Tomographic reconstruction introduces a tomographic error
when compared to single conjugate AO, to be included in the
MOAO residual phase variance. In addition, the calibrated re-
constructor, applied on a given data set on-sky, is usually dif-
ferent from the MMSE one given by Eq. (10), because the
turbulence may evolve between the calibration time and the ac-
quisition time. Moreover, the identification of the model parame-
ters assumes the turbulence is composed by a few discrete layers,
which introduces additional errors.

We define e(t) as the error between the on-axis measurement
and its tomographic reconstruction from the off-axis measure-
ments:

e(t) = Son(t) − RSoff(t), (14)

with R the on-sky tomographic reconstructor. The tomographic
error can be derived by computing the trace of the error covari-
ance matrix Cee:

Cee =
〈
(e(t) − 〈e〉)(e(t) − 〈e〉)t

〉
. (15)

By replacing e in Eq. (15) by its expression given in Eq. (14), the
covariance matrix Cee can be split into four terms as follows:

Cee = Conon − ConoffRt − RCt
onoff + RCoffoffRt (16)

where Conon is the ns×ns spatial covariance matrix for the on-axis
direction:

Conon =
〈
(Son(t) − 〈Son〉)(Son − 〈Son〉)t

〉
. (17)

In Eq. (11), we define Conoff and Coffoff. We see in Eq. (16) that
the reduction of the tomographic error is given by the two terms
involving the covariance matrix Conoff between the on-axis and
the off-axis measurements. If the correlation is very low between
these measurements, in the case of strong anisoplanatism, the
on-axis error is not reduced by these two terms but instead in-
creased by the term RCoffoffRt: the tomographic reconstruction
should be avoided. This may appear when considering the high-
est altitude turbulence layers. On the contrary, for low altitude
layers, WFS measurements are strongly correlated and we are
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able to significantly reduce the on-axis WF variance by the to-
mographic reconstruction.

For the purpose of the WF error breakdown analysis in this
paper, we will reconstruct the slopes on the Zernike basis. For
Canary, we consider a reconstruction of the polynomials 2 to
36 (Vidal et al. 2014). We denote Mrz the corresponding recon-
struction matrix. The WF error is then defined by the quadratic
sum of the Zernike coefficients. We get the WF errorσ2(Cee), de-
noted as the raw tomographic error, from the trace of the Zernike
coefficient covariance matrix given by:

σ2(Cee) = tr
(
MrzCeeMt

rz

)
. (18)

3.2. Separating the aliasing error from the tomographic one

In Eq. (16), we compute the raw tomographic error covariance
matrix which may include a number of error terms like noise,
aliasing and tomography. In this section, we will focus on the
two spatial error terms related to the turbulence: the first linked
to the low spatial frequencies of the turbulence well measured by
the WFS and well compensated by the DM and the second linked
to the high frequencies aliased in the measurements because of
the spatial sampling by the WFS. A detailed analysis of aliasing
in tomography can be found in Quirós-Pacheco et al. (2010). To
build the error breakdown, we want to separate the aliasing error
from the tomographic one. For that purpose, we compute the
aliasing error covariance matrix as:

CAlias
ee = CAlias

onon − C
Alias
onoffRt − R(CAlias

onoff)t + RCAlias
offoffRt (19)

where the covariance matrices, CAlias
onon , CAlias

onoff
and CAlias

offoff
, are de-

rived by filtering in the turbulence spectrum all the low spatial
frequencies below the DM cut-off frequency 1/2d with d the
DM actuators pitch, as described in Appendix A.2. In Eq. (19),
the first term is related to the WFS placed on axis, the TS for
Canary. The fourth term is the error due to the aliasing of the
off-axis WFS propagated through the tomographic reconstruc-
tion. The two other terms are the correlation between the aliasing
in the TS and in the off-axis WFS. This correlation is only signif-
icant for the ground layer where the same turbulence is sampled
and measured by all the WFS. Hence these two terms reduce the
aliasing error in the measurement of the TS. We will make use
of Eq. (19) to derive the aliasing contributors in the error break-
down established in the next Section.

We now derive the tomographic error subtracted by the alias-
ing error. We define the tomographic error covariance matrix ex-
pressed for the low spatial frequencies of the turbulence (the WF
low orders controlled by the DM) as:

C‖ee = Cee − C
Alias
ee . (20)

And using Eqs. (16) and (19), we find:

C‖ee = C‖onon − C
‖

onoff
Rt − R(C‖onoff

)t + RC‖offoff
Rt. (21)

All these new covariance matrices C‖ are deduced from the sub-
traction of the slope covariance matrices, defined in Sect. 3.1 and
computed as presented in Appendix A.1, by the aliasing covari-
ance matrices CAlias defined above. Hence C‖ee can be fully com-
puted from the identified model of atmosphere, as presented in
Sect. 2.4, here excluding the noise contributions. Using Eq. (18),
we find the tomographic error of interest:

σ2
Tomography = σ2(C‖ee). (22)

To further describe the tomographic error decomposition,
Gendron et al. (2014b) has introduced the vertical error distri-
bution (VED) as the decomposition of the WF tomographic er-
ror with altitude. Thanks to the statistical independence of the
turbulent layers, the total tomographic error is the sum of the
tomographic error on each turbulent layer at altitude hl:

σ2(C‖ee) =

nl∑
l=1

tr
(
MrzC‖ee(hl)Mt

rz

)
=

nl∑
l=1

σ2(C‖ee(hl)).

(23)

Such a decomposition allows us to identify which altitude layer
contributes mostly to the tomographic error, and gives us the
ability to quantify the robustness of reconstructor to profile vari-
ability (Gendron et al. 2014b).

4. Error breakdown in MOAO

The design of future AO-assisted MOS for ELTs will require de-
tailed numerical simulations of AO systems with a very large
number of degrees of freedom. To prepare those simulations, it
is necessary to validate the current modelling of the MOAO sys-
tems and therefore to build an accurate WF error breakdown.
Canary provides two sources of performance diagnostics: the
residual phase as measured by the TS and the sky point spread
function (PSF) as delivered by the imaging camera Camicaz.

We propose two methods to evaluate the WF variance σ2
ε as

observed by the science camera. The first one as the indepen-
dent terms (IT) method gives σ2

ε from Canary telemetry data
by splitting the residual phase into a sum of terms assumed to be
uncorrelated. We compare the IT approach with the TS method,
as the direct evaluation of σ2

ε based on the TS measurements.
Our goal is then to compare the two methods on a large number
of data sets acquired on-sky by Canary and to demonstrate that
each of them leads to a very close evaluation of σ2

ε.

4.1. Analytic method: the IT method

The IT method consists of splitting the residual phase variance
σ2
εIT

in a sum of error terms assumed to be statistically inde-
pendent and coming from the AO system performance known
limitations:

σ2
εIT

=σ2
Tomography + σ2

Aliasing + σ2
Noise + σ2

Servo

+ σ2
Fitting + σ2

Go-to + σ2
Static + σ2

NCPA,
(24)

where:

– σ2
Tomography is the tomographic error on the WF low orders

compensated by the system;
– σ2

Aliasing is the aliasing error from the off-axis WFS propa-
gated through R;

– σ2
Noise is the noise error from the off-axis WFS propagated

through R and the MOAO loop;
– σ2

Servo is the temporal error due to the system transfer func-
tion including all delay;

– σ2
Fitting is the uncorrected high order error;

– σ2
Go-to is the go-to error of the DM;

– σ2
Static is the on-axis uncontrolled and uncalibrated static, or

quasi-static error;
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– σ2
NCPA is the non common path aberrations (NCPA) residu-

als.

Each of those variances involved in Eq. (24) are mostly com-
puted using analytical equations, listed in the following sub-
sections, depending on parameters deduced from the calibration
data and the RTC telemetry data, which are Soff(t) and SEng

on (t)
when the loop is engaged.

4.1.1. Tomographic error σ2
Tomography

The tomographic error is the error on the WF low orders com-
pensated by the system, linked to the tomographic process, the
used reconstructor R and the C2

n(h) profile encountered during
the observation. This error σ2

Tomography is given by Eq. (22). The
interest of our approach is to evaluate it without limiting statistic
convergence effects specific to the particular acquired time series
involved. Compared to Vidal et al. (2014), the TS measurement
is no longer required. It is only needed to compute the error co-
variance matrix for the low order modes, C‖ee, from the identified
model of the atmosphere free from any noise and aliasing con-
tribution (see Sect. 3.2).

4.1.2. Aliasing error σ2
Aliasing

To evaluate the aliasing term, we only need to consider the off-
axis aliasing error propagation through the reconstructor on the
WF observed by the IR camera. From Eq. (19), we can extract
this term, i.e. RCAlias

offoff
Rt. The aliasing error variance is then given

by:

σ2
Aliasing = tr

(
MrzRCAlias

offoffRtMt
rz

)
. (25)

The off-axis aliasing is also time-filtered by the system, which is
filtering out the high temporal frequencies. It is reasonable, for a
first approximation, to neglect the impact of the filtering on the
aliasing error variance, which means to neglect the temporal high
frequencies from the aliasing with regards to the others terms of
the error breakdown.

4.1.3. Noise error σ2
Noise

As the aliasing, the noise in the residual WF error is due to the
noise of the off-axis WFS propagated through the reconstructor
R and the system. Considering the noise as a white process, the
propagation through the loop can be readily taken into account.
We denote σ2

Noise as the variance noise contribution in the resid-
ual error variance. σ2

Noise is derived by:

σ2
Noise = η × tr

(
MrzRCNoise

offoff RtMt
rz

)
, (26)

with:

η =
g

2 − g
(1 − 2g∆t(1 − ∆t)), (27)

where g is the loop gain and ∆t the system latency additional to
the WFS exposure-time, assumed to be varying between 0 and 1
frame. From bench calibration, we get ∆t = 0.45 frame.

The noise covariance matrix CNoise
offoff

is assumed to be diag-
onal since the LGS spots elongation is negligible on Canary
(Morris et al. 2013). It is identified slope by slope computing the
temporal autocorrelation on the slope time series. We extract the
noise variance as a Dirac value at null delay through a parabolic
fit of the turbulence contribution.

4.1.4. Servo-lag error σ2
Servo

Vidal et al. (2014) has proposed to base the calculation of the
servo-lag error on a end-to-end approach, particularly to take
into account a fractional system delay, but it does not include
the propagation of the off-axis WFS measurements through the
reconstructor R.

We start by modelling the time-filtering process of the
MOAO loop using the correction transfer function h̃cor(z) derived
by a z-transform (see Appendix B.1):

h̃cor(z) = 1 − g
∆t + (1 − ∆t)z
z(z − 1 + g)

(28)

with z = e2πiν/νe where νe is the time frequency sampling. The
digital filter h̃cor(z) operates on the temporal spectrum RS̃off. We
note aoff the atmospheric off-axis modes filtered by the tomo-
graphic reconstructor and the MOAO loop. Its temporal spec-
trum is derived by:

ãoff(ν) = h̃cor(z = e2iπν/νe ) ×Mrz.R.S̃off(ν). (29)

In Eq. (29), S̃off(ν) includes a noise contribution from the off-
axis WFS through the reconstructor and the correction transfer
function h̃cor. For de-noising the variance of aoff, we subtract the
variance of the off-axis noise, tr

(
MrzRCNoise

offoff
RtMt

rz

)
, multiplied

by a coefficient which is the modulus of the MOAO correction
transfer function, integrated along temporal frequencies. It has
been computed by Vidal et al. (2014) to be 1 + η (see Eq. (27)).

The servo-lag WF error is then derived by integrating the
modal spectrum over temporal frequencies domain and modes,
until the 36th one considered as the higher order to be correctable
by the system. We have:

σ2
Servo =

∥∥∥∥∥∫
ν

ãoff(ν)dν
∥∥∥∥∥2

− (1 + η) × tr
(
MrzRCNoise

offoff RtMt
rz

)
.

(30)

In Eq. (30) we do not extract the contribution of the off-axis
aliasing. This term comes from the vector Soff and is propa-
gated through the tomographic reconstructor and then through
the MOAO correction transfer function. This later behaves as a
high-pass filter. It means we neglect the contribution from the
high temporal frequencies of the aliasing. For a Taylor-like tur-
bulence, these frequencies are related to high spatial frequencies.
Considering the turbulence spatial PSD is falling as k−11/3, the
high temporal frequency contribution of the aliasing we get in
Eq. (30) is negligible when compared to the parallel modes.

4.1.5. Fitting error σ2
Fitting

From end-to-end simulations, Vidal et al. (2014) has established
for the DM of Canary the fitting error expression versus the
DM actuators pitch d and the Fried’s parameter r0:

σ2
Fitting = 0.3125

(
d
r0

)5/3

· (31)

4.1.6. Go-to error σ2
Go-to

Go-to errors are produced because of the open-loop control of
DMs. Generally, the DM behaviour is modelled using an interac-
tion matrix. Many ways exist to perform this calibration, and this
has been investigated for the Canary case (Kellerer et al. 2012).
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In closed-loop AO systems, the DN mis-registration or inaccura-
cies in the interaction matrix calibration are compensated itera-
tively by the AO loop, thanks to the feedback between WFS and
DM. However, this is not the case for open-loop systems such as
Canary.

We therefore have an additional WF error σ2
Go-to that con-

tributes to the residual phase variance. In (Kellerer et al. 2012),
this go-to error is derived as a function of the commanded WF
for several methods of computation of the interaction matrix.

In the Canary case, this matrix has been computed using
a sinusoidal method and, from results of Kellerer et al. (2012),
we propose to define the go-to error in taking 5% of the DM
command. We have thus:

σ2
Go-to = 0.052 tr

(
MrzRCoffoffRtMt

rz

)
. (32)

This error is very small compared to the other error terms as we
will see in Sect. 6.

4.1.7. Static aberration errors σ2
Static

Differential quasi static aberrations may appear during an ob-
servation. A main reason is the optical beams to the wave-front
sensors and to the IR camera do not exactly cross the same areas
of the optical surfaces of, both the telescope and the Canary
bench. They include the field aberrations of the telescope and of
the Canary de-rotator and the creeping effect. This later is a
drifting of the DM shape with time (Kellerer et al. 2012).

In order to mitigate the effects of static aberration error, we
could use a model of the telescope field aberrations and de-
rotator optical aberrations, as well as a figure sensor to monitor
the DM shape; however this approach was deemed too challeng-
ing to be applied in Canary. Instead, we perform on-sky a num-
ber of calibrations and related pre-compensations of these static
aberrations for the different channels both before and during the
observation. The procedure is given in Vidal et al. (2014).

Nevertheless in Canary, the calibration is not perfect and
we are not able to update the static aberration compensation dur-
ing the observation. Hence we have to include, in the WF er-
ror breakdown, a static aberration error term σ2

Static. We evaluate
post-facto this error by computing:

σ2
Static =

∥∥∥∥〈MrzSEng
on (t)

〉
t

∥∥∥∥2
. (33)

4.1.8. NCPA residual errors σ2
NCPA

Non-common path aberrations (NCPA) are calibrated in closed
loop on the TS and the bench artificial sources using a
phase diversity algorithm processing the IR camera images
(Gratadour et al. 2013a). The measured NCPA are then applied
on the DM offset voltages during the whole duration of the ob-
servation as explained by Vidal et al. (2014). The NCPA calibra-
tion errors are mainly dominated to the high spatial frequencies
of the DM surface quality not correctable by the DM. They lead
to a 80% best Strehl ratio (SR) as measured in the 1550 nm im-
age at the end of the phase diversity procedure. This corresponds
to an error of 115 nm root-mean square (rms).

4.2. Empirical method: the TS method

The empirical method consists in considering the TS as the
primary source of information for determining the system

performance. We denote σ2
TS the variance of the TS WF engaged

measurements that includes both static and dynamic terms:

σ2
TS =

〈∥∥∥∥MrzSEng
on (t)

∥∥∥∥2〉
t
. (34)

We expect the TS method to give an accurate performance es-
timation when compared to the science image, since only a
dichroic plate separates the TS from the science path. The differ-
ences between the science wave-front and that measured by the
TS are the TS noise, the TS aliasing, the fitting errors due to the
wave-front high frequencies and NCPA residual errors. We want
to estimate the variance of the science wave-front, and it can be
written as:

σ2
εTS

= σ2
TS − σ

2
NoiseTS − σ

2
AliasingTS

+ σ2
Fitting + σ2

NCPA

(35)

where σ2
NoiseTS is the variance of the noise and σ2

AliasingTS the
variance of the aliasing, in the TS measurements.

The parameter σ2
NoiseTS is estimated using the noise covari-

ance matrix CNoise
onon , identified using the method based on the tem-

poral autocorrelation of the time series of SEng
on . Then, the TS

noise variance term is given by:

σ2
NoiseTS = tr

(
MrzC

Noise
onon Mt

rz

)
. (36)

The aliasing included into the TS measurements is firstly given
by the conventional term linked to CAlias

onon and is partially corre-
lated to the off-axis aliasing propagated through the tomographic
reconstructor. As presented in Sect. 4.1.1, the TS aliasing vari-
ance term is given by:

σ2
AliasingTS = tr

(
Mrz(CAlias

onon − C
Alias
onoffRt − R(CAlias

onoff)t)Mt
rz

)
. (37)

In this expression, the correlated part of the aliasing due to the
ground layer is directly taken into account without any addi-
tional computation, compared to the previous approach given in
Vidal et al. (2014).

4.3. SCAO error breakdown for CANARY

Error breakdown in SCAO has been investigated for over 20 yr
(see Rigaut et al. 1991; Gendron & Léna 1994). In SCAO, the
TS is obviously available and it makes sense to estimate the
residual phase variance using the TS measurements. We can di-
rectly use Eq. (35), but here not subtracting the term σ2

AliasingTS

which has to be kept in σ2
TS.

In addition, we want to have the same breakdown as in
Eq. (24), but specific to SCAO. In SCAO, we will not have tomo-
graphic, static aberrations and go-to errors. The residual phase
variance can be expressed as follows in SCAO mode:

σ2
εIT

= σ2
AliasingTS + σ2

NoiseTS + σ2
Servo

+ σ2
Fitting + σ2

NCPA.
(38)

Values of the fitting error σ2
Fitting and NCPA error σ2

NCPA are dis-
cussed respectively in Sects. 4.1.5 and 4.1.8.

We compute the aliasing error term σ2
AliasingTS by projecting

the covariance matrix of the aliasing in open-loop, derived from
known turbulence parameters, onto the Zernike basis:

σ2
AliasingTS = tr

(
MrzC

Alias
onon Mt

rz

)
. (39)
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In Eq. (39), we neglect the propagation of the aliasing through
the closed loop and the cross-correlation with parallel modes as
well. But once again, a posteriori over the large amount of SCAO
data we have processed, this approximation is not critical.

The noise error σ2
NoiseTS is retrieved by the temporal auto-

correlation function of the TS measurements. To make this esti-
mation more accurate, we handle the estimation of the TS slopes
in loop disengaged, Son from the engaged ones SEng

on (see Ap-
pendix B.2). The value of the noise we estimate is then multi-
plied by a propagation factor 1 + g/(2 − g)(1 − 2g∆t(1 − ∆t))
(Vidal et al. 2014) to take into account both the noise level at the
sequence t, and the one from the sequence t − 1 that has been
propagating through the loop to be measured again by the TS.

Finally, the servo-lag errorσ2
Servo is derived identically to that

in Eq. (30):

σ2
Servo =

∫
ν

‖aon‖
2 (ν)dν − σ2

NoiseTS, (40)

where ãon is estimated from the TS measurements:

ãon(ν) = h̃cor(ν) ×MrzS̃on(ν), (41)

where h̃cor(ν) is the correction transfer function given by
Gendron & Léna (1994) for SCAO systems.

4.4. Evaluation of the Strehl ratio

SR is known to be related to the phase variance by the Maréchal
approximation:

ŜRmar = exp(−(2π/λ)2σ2
ε), (42)

where λ is the wavelength of the science image and σ2
ε can be

either σ2
εIT

or σ2
εTS

. Such an approximation is valid for small vari-
ance (σ2

ε < 1rad2), or high SR greater than 10–20%. MOAO
is not designed to get very high performance and the Maréchal
approximation is not be accurate enough for our purposes. We
propose to use the Parenti & Sasiela (1994) heuristic formula:

ŜRpar =
e−(2π/λ)2σ2

εHO

1 + (2π/λ)2σ2
εTT

+
1 − e−(2π/λ)2σ2

εHO

1 + (D/r0(λ))2 (43)

where σ2
εTT

and σ2
εHO

are the residual WF error on respectively
the tip-tilt only and the higher orders (tip-tilt removed).

Contrary to the Maréchal approach, the SR estimated from
Eq. (43) includes two terms. The first one is the contribution of
the central core of the partially AO-corrected PSF but broadened
by the residual TT variance, while the second one is the contri-
bution of the PSF broad halo. The Parenti approximation, as we
will see, gives a better estimation for SR lower than 30% than
the Maréchal one, which is exactly the range of performance we
have encountered with Canary.

5. On-sky validation of MOAO

5.1. Observation conditions

We now focus on the Canary on-sky results acquired during the
observing runs of phase B. Our purpose is firstly to prove the fea-
sibility of managing a mixed LGS plus NGS MOAO system, sec-
ondly to evaluate the contribution of the tomographic reconstruc-
tion in the final performance of Canary. We have compared SR
and error breakdown between several AO modes: SCAO (closed-
loop on TS), NGS MOAO, NGS plus LGS MOAO, TT plus LGS
MOAO and GLAO (ground layer compensation only).

Table 2. Description of main asterism observed in Canary phase B.

# Asterism A47 A53 A12
Central mV 11 10.9 8.3

Sep (′′) 47.9 61.7 39.3
mV 9.9 11.2 11.2

Sep (′′) 40.6 49.1 31.4
mV 10.2 9.9 10.7

Sep (′′) 53 56.8 51.5
mV 8.7 9.8 10

Notes. The columns indicate the CANARY asterism reference num-
ber, the separation (in arcsec) of each off-axis star to the central one
and the V band magnitudes of each. See Vidal et al. (2014) for asterism
illustration.

We have simultaneously recorded system telemetry (2048
frames at 150 Hz) and H-band images. Each science image is the
sum of 15 individual exposures of one second, with no recentring
in order to keep tip-tilt errors between individual exposures.

During the phase B runs, we have mostly observed three dif-
ferent NGS asterisms, that are presented in Table 2. In addition
to the NGS, we also made use of four Rayleigh LGS. They are
placed on a square asterism centred on-axis. Each LGS is located
at 22.6′′ off-axis from the TS position. The distance of LGS, as
defined by the range gate on the LGS WFS, is 21 km, regard-
less of the airmass, for all nights. The gate width corresponds
to a depth of 1.5 km in the atmosphere. The number of detected
photons per LGS beacon is of the order of 300 photons by sub-
aperture and by frame (Morris et al. 2013).

The resolution in turbulence layer altitude and the maximum
distance vary between the data sets depending on the asterism.
In the phase B configuration, the minimum altitude resolution
was varying between 1 and 1.5 km, while the maximum distance
ranged from 18 to 28 km. This maximum distance is unaffected
by the LGS asterism because of the cone effect and their rela-
tively low altitude, but mostly determined by the off-axis dis-
tance of the NGS.

We present in Fig. 1 all the retrieved layers on-sky giving
for each point their altitude layers versus their local seeing at
500 nm. Each sample is a result from the L&A algorithm ap-
plied on a single data set, over 4500 sets acquired by Canary in
2013. This figure shows the distribution of the turbulence along
the altitude as a probability density. It makes a strong ground
layer appear, which is mainly concentrated in the first kilometer.
There is a significant strength of the turbulence between 1 and
5 km. We also find a group of high altitude layers, around 12 km
spreading over 4 km. A strong layer is observed around 16 km,
then the strength of the turbulence decreases at higher altitudes.

We present in Fig. 2 histogram of the seeing for the ground
layer (altitude below 1 km), for the altitude layer and for the total
atmosphere. The ground is defined by the sum of the contribu-
tions of the layers between 0 and 1 km. We get an altitude seeing
that is relatively stable, around 0.21′′ median with a standard de-
viation of 0.09′′, while at the ground, the median seeing reaches
0.59′′ with a much larger standard deviation of 0.34′′. The me-
dian total seeing is 0.66′′ with a standard deviation of 0.33′′.

We conclude that the variation of seeing during our nights
was mostly dominated by the variation of the ground layer
strength. The seeing in altitude remains quite constant during the
night while the ground evolves quickly and strongly. It changes
the weights between altitude and ground layers in terms of
strength. This introduces an additional error propagating through
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Fig. 1. Local seeing versus altitude. Each point corresponds to a result
from the Learn&Apply algorithm over about 4500 processed data sets.
Seeing and distance are unbiased from airmass. The plateau we observe
at 20 km gathers all the altitude layers retrieved above this limit imposed
by the tomographic geometry with Canary.

Fig. 2. Seeing histograms at 500 nm. Altitude layers are considered
up to 1 km, which corresponds to the minimal tomographic resolution
accessible with asterism observed using Canary (Vidal et al. 2014).
Seeing is unbiased from airmass.

the MOAO reconstructor that can be mitigated only by updat-
ing this as often as possible. We note the GLAO reconstructor,
that averages directly off-axis WFS measurements (see Eqs. (6)
to (8)), is not required to be updated.

Above 20 km, we are not able to identify the altitude layers
properly. In Fig. 1, we have gathered all layers retrieved above
20 km at this maximal altitude. We can determine that we have
around 0.089′′ seeing in median above 20 km, that corresponds
to 240 nm on a 4.2 m telescope. However, we observe very high
altitude layers only 34% of the time in all the phase B observa-
tions. It means such processes, quite strong but rare, exist above
the WHT and directly impact the tomographic performance of
Canary.

Fig. 3. On-sky H-band image SR measured with Canary and
Camicaz during phase B (2013). We have concentrated results on
SCAO, MOAO and GLAO modes with a configuration based on 3 NGS
and 4 LGS.

5.2. CANARY on-sky results

We report in Fig. 3 H-band image SR measured with Canary
running in SCAO, MOAO and GLAO. We notice on SR three
different performance regimes: globally SCAO performs better
than MOAO that performs better than GLAO.

Figure 3 makes a large scattering of results in any modes
appear. In SCAO, this scattering involves mainly the wind speed
variability and stars magnitude difference between asterisms.

In MOAO and GLAO, the scattering is mainly due to the
turbulence profile variability with time. For a given seeing, the
turbulence could be characterized by very different layer relative
strengths. Since GLAO is compensating the ground layer only,
for a given seeing, the SR will drop down if the turbulence in
altitude become stronger.Conversely, for the same seeing, the SR
will increase if the ground layer dominates the turbulence.

In MOAO, this scattering is less expanded than in GLAO, as
it is confirmed by Table 3, and this is what we should expect from
a MOAO system: if the tomographic reconstruction is properly
achieved, the MOAO system must be robust to turbulent profile
variability and provides the best reachable correction for a given
C2

n(h) profile.
In Table 3, we give median values of SR for various ranges of

seeing to illustrate what we have previously said. For each range,
we get the best performance in SCAO and the worst in GLAO.
In addition, results obtained with GLAO are more variable than
MOAO and SCAO.

Below 0.6′′ of seeing, we were working with good to ex-
ceptionally good conditions. The turbulence was not dominated
by the ground layer and the tomographic reconstruction has op-
erated well in comparing MOAO and GLAO. The difference
between SCAO and MOAO comes essentially from the tomo-
graphic resolution we have. At this level of seeing, it becomes
very important to identify accurately the C2

n(h) profile to take
into account weak layers, that are no more dominated by the
most probable layers identified in Fig. 1.

Between 0.6 and 0.8′′, we were observing in nominal ob-
servation conditions. Table 3 gives nominal performance of
Canary on-sky. For seeing larger than 0.8 arcsec, the SR is
dropping down drastically and for very bad conditions, seeing
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Table 3. Median values of H-band image SR in SCAO, MOAO, and
GLAO, with a 3 NGS/4 LGS configuration, for different ranges of
seeing.

Seeing [′′] SR SCAO SR MOAO SR GLAO

<0.6 37.3% ± 0.7 30.5% ± 1.2 22.1% ± 1.8
0.6–0.8 30.1% ± 0.7 21.4% ± 1.0 17.1% ± 1.5
0.8–1.2 20.6% ± 0.5 15.6% ± 0.9 11.0% ± 1.5

>1.2 11.5% ± 0.3 10.2% ± 1.3 9.0% ± 1.9

Notes. Error bars are given at one sigma and the seeing is given at
500 nm and unbiased from airmass.

larger than 1.2 arcsec, SCAO, MOAO and GLAO perform at
similar levels. It directly comes from our previous discussion on
the seeing distribution: when the seeing is so bad, it means the
turbulence is dominated by the ground layer. The tomographic
reconstruction can not provide a real improvement on perfor-
mance as it does for better conditions.

5.3. Statistical comparison with the IT and TS methods

In Fig. 4, we present the residual WF error σεIT (see Eq. (24))
versus σεTS (see Eq. (35)). By comparing these two quantities,
we quantify the accuracy of our error breakdown proposed in
Sect. 4. We get about 99% of correlation in all modes and less
than 1% of the total points are further than one sigma from the
y = x line. We get a larger scattering in MOAO and GLAO
since the error breakdown evaluation depends directly on the
C2

n(h) profile estimation. We accumulate more potential sources
of error.

A posteriori, the very high correlation between analytic cal-
culations and measurements shows all the assumptions we have
made in Sect. 4 are not limiting results at this scale of atmosphere
compensation.

On top of that, Fig. 4 illustrates the identification of the
turbulence has been done properly, with enough accuracy and
precision to get those fitting between calculations and observa-
tions. We do not observe any bias whatever the range of residual
WF error as well. We are thus able to determine the turbulence
characteristics, at a same level of accuracy, whatever the seeing
conditions.

These results make us confident in future developments for
preparing the future MOS design simulations, and especially
for Mosaic the next multi-object instrument proposed for the
E-ELT.

Figures 5 and 6 show the H-band SR estimated using re-
spectively Eqs. (42) and (43), versus the sky image SR. Both of
Maréchal and Parenti approximations are using σ2

εIT
in Eq. (24)

to estimate the SR. The relation between the SR and the resid-
ual WF variance is not bijective: for a given variance σ2

ε, several
values of SR are possible. For instance, the tip-tilt modes make
the PSF core spread. For a given residual variance, if there is
more residual tip-tilt in a situation than in another, the first one
will comes with a worse SR. The Parenti formulation proposed
in Eq. (6) tries to take into account this modal weighting, but
the real relation between SR and variance cannot be given by a
simple formula.

In Fig. 5, we observe a correlation between analytic and im-
age SR for SR larger than 20%, but find a bias for lower values of
image SR. For both methods, we get very similar Pearson coeffi-
cient, but the Parenti approximation makes the under-estimation

Fig. 4. Rms value of the residual phase computed analytically from the
IT method versus the empirical one got from the TS method. Less than
1% of the points are off (>1σ), most of them in MOAO. Coefficients
given at the right-down corner are the estimation of the correlation fac-
tor (Pearson coefficient) between analytic SR and image SR. SCAO=4,
MOAO=©, GLAO=×.

Fig. 5. Analytic SR estimated using Maréchal approximation fromσ2
εIT

versus H-band image SR. Coefficients given at the right-down corner
are the estimation of the correlation factor (Pearson coefficient) between
analytic SR and image SR. SCAO=4, MOAO=©, GLAO=×.

of low SR disappear as shown in Fig. 6. The scattering we ob-
serve on Figs. 5 and 6 comes from the inaccuracy of Maréchal
and Parenti approximations, since we do not observe such a scat-
tering in Fig. 4.

6. Analysis of the joint NGS plus LGS tomography
performed on-sky

We focus in this section on the Canary performance to tar-
get the improvement of the atmosphere compensation, achieved
thanks to both tomographic reconstruction and LGS. We com-
pare on-sky results acquired during what we call a script. A script
is five data recordings of the same sequence made of three suc-
cessive AO modes observation. A sequence lasts 45 s, 15 s per
AO mode. This duration has been chosen to enable us to compare
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Table 4. Observing conditions including turbulence parameters and Canary H-band image SR during scripts 274, 292 and 275.

Script 274 292 275

Mode 1 SCAO SCAO SCAO
AO modes Mode 2 MOAO 4L3N MOAO 4L3N MOAO 4L3N

Mode 3 GLAO 4L3N GLAO 4L3N MOAO 3N

R calibration 21 h 23 m 01 h 37 m 21 h 23 m
Local time Script start 21 h 55 m 02 h 30 m 22 h 03 m

Script end 22 h 01 m 02 h 35 m 22 h 08 m

Asterism A47 A53 A47

Airmass range 1.086–1.079 1.035–1.038 1.076–1.069

Total 0.83 0.78 0.81
Seeing [′′] Ground 0.70 0.56 0.68

Altitude 0.35 0.46 0.36

Total 13.3 12.2 11.9
L0 [m] Ground 5.2 5.9 12.1

Altitude 19.3 17.9 11.7

Wind speed [m/s] Total 3.0 2.9 3.1

Mode 1 28.3 30.0 29.0
Image SR [%] Mode 2 21.0 16.0 18.1

Mode 3 12.9 9.2 14.6

Notes. Each parameter has been retrieved an averaged on 15 successive 15 s data sets. Wind speed retrieved from the FWHM of slopes temporal
auto-correlation function.

Fig. 6. Estimate of SR using Eq. (43) from σ2
εIT

versus image SR. Co-
efficients given at the right-down corner are the results the estimation
of the correlation factor (Pearson coefficient) between analytic SR and
image SR. SCAO=4, MOAO=©, GLAO=×.

Canary performance, running in different AO modes, in similar
atmospheric conditions.

We compare on-sky performance achieved by SCAO, GLAO
and MOAO with and without LGS. We use the letters “N” and
“L” following the AO modes to define respectively NGS and
LGS sensors. For instance, “MOAO4L3N” means Canary was

compensating the turbulence in MOAO mode using the four LGS
and three NGS.

In the following, we will present three of those scripts, num-
bered 274, 292 and 275. In Table 4, we report observation con-
ditions we have identified during those scripts. The seeing and
outer scale values comes from the Learn&Apply algorithm.

The wind speed has been retrieved from the full width at half
maximum of the slope measurement temporal auto-correlation
function, after subtraction of the noise contribution. This method
provides an integrated value of the wind speed along the turbu-
lence profile.

These scripts have been selected because of their relatively
close observing conditions. The observed asterism was A47 for
scripts 274 and 275 and A53 for 292 (Vidal et al. 2014).

6.1. Script 274: SCAO/MOAO 4L3N/GLAO 4L3N

In Fig. 7, we show three PSFs averaged over five H-band im-
ages acquired during script 274 in SCAO, MOAO 4L3N and
GLAO 4L3N, the September 13th 2013 night. Thanks to the
tomographic reconstruction, we make the SR improving from
12.9% in GLAO to 21.0% in MOAO, corresponding to a wave-
front error reduction by an order of 190 nm rms between the two
modes, using Eq. (42). The best SR is obtained by SCAO with a
value of 28.3%.

In Fig. 8, we highlight the evolution of both analytic
and IR image SR with time. Analytic SR have been derived
from Eq. (43) using the residual phase variance developed in
Eq. (24) (IT method). The figure displays the five samples per
AO mode, acquired successively and interlaced between each
other.
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Fig. 7. Three AO compensated H-band PSF (log. scale) for SCAO, MOAO and GLAO. Each PSF is averaged on five IR images, not re-centred,
acquired on the same AO mode during script 274, the September 13th 2013 night.
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Circles: MOAO4L3N
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Fig. 8. Both IR image and analytic (see Eq. (43)) SR versus local time
for script 274. SCAO=4, MOAO LGS/NGS=×, MOAO 3 NGS=©. In
MOAO and GLAO, we have used the IT approach to get the residual
phase variance, while in SCAO we have used the TS approach.

By interlacing different AO modes, we minimize the impact
of the possible turbulence non-stationarity during the script. If a
particular event happens during the script, we should observe it
with each mode if it lasts for at least 45 s. This ensures that we
are able to compare AO modes with nearly similar observational
conditions.

Figure 8 shows that we are in the most able to reproduce an-
alytically the SR in a satisfactory way. The evolution of the IR
image SR with time is well reproduced, as the absolute value
and the difference between modes. However, we have an under-
estimation of the SR that becomes more severe when the SR be-
comes higher, especially for SCAO, thus implied by the Parenti
approximation according to Fig. 6. Note from the same figure,
the Maréchal approximation would give worse reproduction of
low SR.

For further performance analysis, we present in Fig. 9 top,
in the left panel, a comparison between the turbulent profile
on which the sky reconstructor has been calibrated and the

post-retrieved one on the script 274 data sets. These results are
from an average of fifteen profiles, each of which has been re-
trieved on five layers on each data set. We obtain (by post pro-
cessing) 75% of turbulence at the ground (below the first kilome-
ter), against 70% expected by the sky reconstructor (computed
20 min. before the script was run). In addition, the 11 km altitude
layer observed during the script was quite well identified in the
reconstructor. However, the observed 16 km altitude layer was
partially identified thanks to the high altitude layers, between
14 and 18 km, as expected by the reconstructor. Finally, it seems
that our MMSE reconstructor was still relevant for the turbulence
profile encountered during the script.

In the middle, left panel of Fig. 9, we present the full error
breakdown for each AO mode. It clearly highlights the improve-
ment coming from the tomographic reconstruction: the term
σ2

Tomography fell from 365 nm (GLAO) to 185 nm (MOAO), while
the other terms were very similar. The difference between SCAO
and MOAO is also explained by the tomographic error and the
static terms as well.

The fluctuations of the fitting, aliasing, servo-lag and noise
errors we observe are relatively small between AO modes and
mainly due to the variance on the seeing estimation. They also
depend on the system temporal transfer function including the
loop gain and the reconstructor used.

In both MOAO and GLAO, we get 140 nm of static errors,
despite the calibrations that have been done before the script (see
Sect. 4.1.7). It shows these calibrations are mandatory to operate
the turbulence tomographic compensation properly.

In a further analysis of the tomographic error, we show the
tomographic VED in Fig. 9 bottom, left panel. It becomes clear
that the MOAO reconstructor allows better compensation of the
altitude layers than the GLAO reconstructor. Note we reduce the
WF error by 170 nm on the 11 km layer by using MOAO. How-
ever, the GLAO reconstructor is better than the MOAO one at
compensating the very low altitude layers, below 2 km, near to
be the tomographic resolution with this asterism. This is due to
the robustness of MMSE reconstructor: the more layers it pre-
dicts, the less efficiently it is able to compensate individual lay-
ers (Gendron et al. 2014b). This is for the same reason that the
GLAO reconstructor is the only one to get 0 nm rms at 0 km,
predicting this unique layer.
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Fig. 9. Left: results for script 274. Right: results for script 292. Up: turbulent profiles: expected by the MOAO reconstructor (left), and averaged on
the turbulent profiles identified on each data set acquired during the script (right). Middle: error breakdown decomposition for the three AO modes.
Each variance has been averaged over the five realizations in the script. Down: tomographic VED for GLAO and MOAO. Each variance has been
averaged over the five realizations. The quadratic sum of the VED values gives the tomographic error.

6.2. Script 292: SCAO/MOAO 4L3N/GLAO 4L3N

We discuss here the results from script 292. In the same way as
script 274, we compared SCAO, MOAO and GLAO, but with

a mis-calibration of the MMSE reconstructor. We illustrate in
Fig. 9 the turbulence profile used to compute the MOAO recon-
structor, compared to the one retrieved during the script 292. Ac-
cording to Table 4, there was one hour between the calibration
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and the script. During this time, strong altitude layers were ap-
peared at 10.5 and 13.5 km, accounting together for 35% of the
total turbulence and these are not expected by the MOAO recon-
structor.

The global observation conditions, between script 292 and
274, was quite similar as given in Table 4. In addition, Fig. 9 al-
lows us to compare error breakdown between these two scripts,
to highlight that we obtained the same level on each error term
except for tomography. We get 285 nm rms during script 292
against 185 during script 274 for MOAO. These values are
comparable since the turbulence profiles during observations, as
shown in Fig. 9, were largely similar, with 60–70% of ground
turbulence and the rest of the energy distributed into two altitude
layers. The 215 nm rms difference in tomographic error is thus
due to the mis-calibration of the tomographic reconstructor. It
has led to a decrease of the IR image SR according to Table 4.

Vertical error distribution plots given in Fig. 9 also illustrate
that the MOAO reconstructor has been mis-calibrated. However
it still performs much better than the GLAO one, especially at
high altitudes. For instance at the 11 km layer, we get similar
performance in GLAO during the two scripts 274 and 292, with
275 nm and 285 nm of error respectively. We underline the to-
mographic errors of MOAO in script 292 are very significant for
the two high altitude layers at 11 and 13.5 km with 140 nm and
235 nm respectively. Much poorer performance is shown when
compared to the high altitude layers of script 274.

The MOAO reconstructor has to be calibrated several times
each night. It is thus mandatory to propose innovative techniques
to compute and update a MMSE reconstructor for large number
of degrees of freedom in order to prepare the E-ELT. Fast com-
putation and data transfer are required. Several works are on-
going on that, in particular using GPUs (Gratadour et al. 2013b;
Gratadour et al. 2012).

6.3. Script 275: SCAO/MOAO 4L3N/MOAO 3N

Script 275 was obtained directly after script 274. The turbulent
profile did not evolve significantly between the two scripts. We
were comparing SCAO with MOAO, with and without LGS. We
aim to evaluate the impact of using LGS on the tomographic
reconstruction for the Canary case. We report in Fig. 10 the
error breakdown we get during this script. In MOAO 4L3N, we
get the same errors compared to script 274 in Fig. 9, as we ex-
pect since the observational conditions were similar according
to Table 4 and the turbulent profile was similar as well. In addi-
tion, we get very similar error values between MOAO 4L3N and
MOAO 3N. The main difference comes from the tomographic er-
ror with 260 nm rms against 185 nm rms respectively in MOAO
3N and MOAO 4L3N. Overall, we see an increase of nearly 4%
in IR image SR (see Table 4) when introducing LGS.

Figure 11 gives the VED of the tomographic error. Thanks
to LGS, we reduce the error on every layer, even at the ground.
The most substantial gain is obtained at 11km because of the rel-
atively compact LGS asterism (LGS only 22.6′′ off-axis). While
at 16 km, the low altitude of the LGS (21 km) limits the gain.
The VED curve, as explained in Gendron et al. (2014b), shows
the distribution of the tomographic error along the altitude. In us-
ing more WFS, we should decrease the error level in this curve at
any altitude. But, because of the cone effect, in adding LGS, the
decrease of the tomographic error is not homogeneous over all
altitudes, we so get a better relative improvement for low altitude
layers than for high altitude ones. It is for this reason that we get
such a gap for the 0 and 2 km layers between MOAO 4L3N and
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Fig. 10. Average error breakdown for each observation mode during
script 275.
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Fig. 11. Average VED (nm rms) of the tomographic error along the
altitude in MOAO during the script 275.

MOAO 3N. By using sodium LGS, we could expect to reduce
this performance gap at higher altitudes.

7. Conclusions

This paper gives a detailed analysis of Canary sky performance
in its phase B configuration, for data sets acquired in 2013 at the
WHT. In particular, we gave our method to manage the LGS tip-
tilt filtering and how to compute mixed NGS plus LGS GLAO
and MOAO reconstructors. We have showed the tomographic er-
ror can be computed from only a reconstructor and a covariance
matrix of slopes, measured on uncompensated wave-fronts. This
matrix can be produced either empirically or analytically (see
Appendix A.1). We have also proposed an analytic formulation
of the residual phase variance. It is split into several error terms,
which are assumed to be independent. We have detailed the cal-
culation of each terms based on either the off-axis measurements
or analytic formulas. We gave also another method to get the
residual phase variance directly from the TS measurements.

Using 4500 data sets, we gave statistics of Canary perfor-
mance and presented average values of SR for different ranges of
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seeing, with 30.1, 21.4 and 17.1% of SR respectively in SCAO,
MOAO and GLAO using 4 LGS and 3 NGS for median seeing.

In addition, we have characterized the turbulence over the
WHT during Canary on-sky observations. This was mostly
dominated by the ground turbulence (h < 1 km), which reaches
0.59′′ of seeing (500 nm) with a standard-deviation of 0.34′′,
compared with 0.21′′ and 0.09′′ rms for combined higher alti-
tude layers. The total turbulence has reached 0.66′′ of median
seeing and 0.33′′ in standard-deviation. In addition, we have
0.09′′ of seeing above 20 km where Canary is not able to re-
construct the turbulence phase, but only for about 34% of the
time.

We have demonstrated that our analytic error breakdown
computations follow the IR image measured SR fairly closely.
Between the two error computation approaches (analytic and TS
based), we get a correlation of 99%, for all AO modes. We have
detailed the Canary performance on particular data sets. We
have showed the LGS can increase the SR by up to 4% com-
pared to the using only the NGS, while the MOAO tomographic
reconstructor allows a gain of 8.5 percentage points of SR, com-
pared to GLAO compensation.

We have also discussed the VED of the tomographic error,
evaluating the gain brought by MOAO in altitude compared to
GLAO, while the GLAO nulls the error in the ground layer.
Moreover, we have highlighted the static aberrations in MOAO
that must be carefully calibrated and monitored during the ob-
servations.
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Appendix A: Slopes covariance modelling

A.1. Parallel modes covariance

We consider the ith sub-aperture of the pth WFS. In the pupil
plane, we note ri the position of the ith sub-aperture than does
not depend on the WFS that are all conjugated at the pupil plane.
Then, αp will be the angular position of the pth WFS from the
center of the FoV. We will finally denote hLGS

p the altitude focus
of guide stars. We denote δipl the coordinate of this sub-aperture
at the lth layer in the Cartesian coordinate system of the pupil
plane. We have:

δipl =


αphl + ri

1 − hl

hLGS
p


for a LGS WFS and hl ≤ hLGS

p .

αphl + ri else

(A.1)

For the following theoretical developments, we define xipl and
yipl the projection of δipl on the pupil plane reference:

δipl = xiplx + yiply, (A.2)

where x and y form an orthonormal basis along directions x and
y. For a Shack-Hartmann WFS, the slopes 2D map comes from
the average phase gradient over the lenslet:

S(δipl) =
1
di

"
A

∇φ(ui, vi)duidvi, (A.3)

where di is the ith sub-aperture pitch and A is the square inte-
gration domain comprised between −di/2 and di/2 in x and y
directions. The integration variables ui yi are related to the ith
sub-aperture and are given by ui = x − xipl and vi = y − yipl.

We define the x-axis and y-axis slopes as the scalar product
between S(δipl) and respectively x and y. In projecting the slopes
along x or y directions, the integral on sub-aperture surface in
Eq. (A.3) becomes integrals along sub-aperture side:

S(δipl).x =
1
di

di/2∫
−di/2

dvi

×
(
φ(xipl + di/2, vi) − φ(xipl − di/2, vi)

)
S(δipl).y =

1
di

di/2∫
−di/2

dui

×
(
φ(ui, yipl + di/2) − φ(ui, yipl − di/2)

)
.

(A.4)

We then define the spatial covariance Gxx, Gyy and Gxy as the
following functions:

Gxx(∆i jpql) =
〈
(S(δipl).x) × (S(δ jql).x)

〉
Gyy(∆i jpql) =

〈
(S(δipl).y) × (S(δ jql).y)

〉
Gxy(∆i jpql) =

〈
(S(δipl).x) × (S(δ jql).y)

〉
,

(A.5)

where ∆i jpql = δipl − δ jql is the separation between the ith sub-
aperture of pth WFS and the gth sub-aperture of qth WFS, at
altitude hl. We develop here the method to get Gxx(∆i jpql) only,
both Gyy(∆i jpql) and Gxy(∆i jpql) are derived by the same way. The

averaged gradient is the difference of phase along each side of
the sub-aperture. We then get:

Gxx(∆i jpql) =
1

did j

"
dvidv j

×
〈(
φ(xipl + di/2, vi + yipl) − φ(xipl − di/2, vi + yipl)

)
×

(
φ(x jql + d j/2, v j + y jql) − φ(x jql − d j/2, v j + y jql)

)〉
.

(A.6)

The trick to handle Eq. (A.6) is to use the following remarkable
identity:

2 (A − a) (B − b) = − (A − B)2 + (A − b)2

+ (a − B)2 − (a − b)2,
(A.7)

that allows us to rewrite Eq. (A.6) as follows:

Gxx(∆i jpql) =
1

2did j

"
dvidv j

×
〈
−(φ(xipl + di/2, vi + yipl) − φ(x jql + d j/2, v j + y jql))2

− (φ(xipl − di/2, vi + yipl) − φ(x jql − d j/2, v j + y jql))2

+ (φ(xipl + di/2, vi + yipl) − φ(x jql − d j/2, v j + y jql))2

+(φ(xipl − di/2, vi + y jql) − φ(x jql + d j/2, v j + y jql))2
〉
.

(A.8)

Considering Dφ (ρ) =
〈
(φ(r) − φ(r + ρ))2

〉
as the phase Structure

Function (SF), we have the final expression of the x-axis slopes
covariance:

Gxx(∆i jpql) =
1

2did j

"
dvidv j

×

(
−2Dφ

(
∆i jpql +

di − d j

2
x + (vi − v j)y

)
+ Dφ

(
∆i jpql +

di + d j

2
x + (vi − v j)y

)
+Dφ

(
∆i jpql −

di + d j

2
x + (vi − v j)y

))
.

(A.9)

We now consider Wφ(k) as the Von-Kármán spatial power spec-
tral density (PSD) given by:

Wφ(k) = 0.023r−5/3
0

(
k2 + 1/L2

0

)−11/6
, (A.10)

The phase structure function (SF) is related to the spatial PSD
Wφ(k) by:

Dφ (ρ) = 2
"
R2

Wφ(k) (1 − cos(2πkρ)) dk. (A.11)

We commonly model the phase SF using the Von-Kármán ex-
pression:

Dφ(ρ) = k1

(
L0(hl)
r0(hl)

)5/3 [
k2 − ρ

5/6K5/6(ρ)
]
,

k1 =
21/6Γ(11/6)

π8/3

[
24
5

Γ(6/5)
]5/6

k2 =
Γ(5/6)

21/6 ,

(A.12)
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with ρ = 2π
∣∣∣∆i jpql

∣∣∣ /L0(hl). By the same way, we get:

Gyy(∆i jpql) =
1

2did j

"
duidu j

×

(
−2Dφ

(
∆i jpql +

di − d j

2
y + (ui − u j)x

)
+ Dφ

(
∆i jpql +

di + d j

2
y + (ui − u j)x

)
+Dφ

(
∆i jpql −

di + d j

2
y + (ui − u j)x

))
,

(A.13)

and:

Gxy(∆i jpql) =
1

2did j

"
du jdvi

×

(
−Dφ

(
∆i jpql −

(
u j −

d j

2

)
x +

(
vi −

di

2

)
y

)
− Dφ

(
∆i jpql −

(
u j +

d j

2

)
x +

(
vi +

di

2

)
y

)
+ Dφ

(
∆i jpql −

(
u j −

d j

2

)
x +

(
vi +

di

2

)
y

)
+Dφ

(
∆i jpql −

(
u j +

d j

2

)
x +

(
vi −

di

2

)
y

))
.

(A.14)

Integrals in Eqs. (A.9), (A.13) and (A.14) must be discretized
along the sub-aperture side. To speed up the computation, we
assume a Hudgin-like model: the phase gradient is calculated in
taking only the side-to-side phase difference at the middle of the
sub-apertures. We have thus ui, u j, vi and v j forced to zero and
the spatial covariance is obtained in summing the phase structure
functions under integrals (Gendron et al. 2014b; Martin et al.
2012).

A.2. Aliasing covariance

The covariance of the aliased phase can be derived using
Eqs. (A.9), (A.13) and (A.14). These equations involve an ex-
pression of the phase SF, that depends on the turbulence char-
acteristics and the geometry, according to Eq. (A.12). To get the
aliasing contribution in the covariance, we have to split the phase
into a parallel part, which is compensated by the system, and an
orthogonal part:

φ = φ‖ + φ⊥. (A.15)

The orthogonal phase contains only spatial frequencies higher
than 1/2d, the DM cut-off frequency. Considering the quantity
L0 is large compared to 2d, the aliasing SF D⊥φ (ρ) is given by:

D⊥φ (ρ) = 0.046r−5/3
0

∞"
1/2d

k−11/3(1 − cos(2πkρ))dk. (A.16)

Using Eq. (A.16) to replace the SF expression in
Eqs. (A.9), (A.13) and (A.14), we get an analytic expres-
sion of the spatial covariance of the aliasing.

Appendix B: MOAO control

B.1. MOAO control law

The residual modes in science directions are split into a com-
pensated, or parallel part by the DM, ε‖ and high frequencies
non-reproducible, or orthogonal, by the DM, a⊥:

ε = ε‖ + a⊥. (B.1)

The turbulence compensation achieved thanks to the DM results
in that direction from the subtraction between the incoming par-
allel modes and the mirror modes mDM:

ε‖ = a‖ − mDM. (B.2)

The MOAO controller determines the mirror modes mDM to ap-
ply at a sequence t from the previous sequence t − 1, the off-
axis measurements Soff and Mc the modal command matrix used
on-sky. This later includes both tomographic reconstruction and
DM/WFS calibrations (Vidal et al. 2014). In order to get a sys-
tem fractional delay 1 + ∆t, we combine off-axis measurements
acquired at t − 2 and t − 1 in this way:

mDM(t) = (1 − g) × mDM(t − 1)
+ gMcR (∆tSoff(t − 2) + (1 − ∆t)Soff(t − 1)) .

(B.3)

Applying the z-transform to Eq. (B.3), we get:

m̃DM(z) = h̃ol(z) ×McRS̃off(z) (B.4)

where z = e−2iπν/νe and νe the sampling frequency. The transfer
function h̃ol(z) is the MOAO controller transfer function defined
as:

h̃ol(z) = g ×
∆t + (1 − ∆t)z
z(z − 1 + g)

· (B.5)

The MOAO correction transfer function of the atmospheric par-
allel modes, h̃cor is given by:

h̃cor(z) =
ε̃‖
ã‖

= 1 − h̃ol(z). (B.6)

B.2. Disengaged TS measurements estimation

We note SEng
on (t) the time series acquired by the TS in engaged

loop. Using the voltages vector V, the interaction matrix Mint and
the calibrated the fractional delay ∆t, the disengaged TS slopes
is estimated by:

Ŝon(t) = SEng
on (t) −Mint (∆tV(t − 2) + (1 − ∆t)V(t − 1)) . (B.7)

We reproduce the filtering operated by the RTC, described in
Eq. (B.3), on-sky to estimate what the TS would measure if the
DM stayed flat.

A37, page 17 of 17


	Introduction
	Canary design: phase B
	Phase B design
	Wave-front sensor (WFS) slope vectors
	NGS/LGS-based reconstructors
	Ground layer compensation (GLAO) reconstructor
	Minimum mean square error (MMSE) reconstructor
	Filtering of pupil average slope

	Reconstructor identification

	Evaluation of the tomographic error
	Raw tomographic error
	Separating the aliasing error from the tomographic one

	Error breakdown in MOAO
	Analytic method: the IT method
	Tomographic error 2Tomography
	Aliasing error 2Aliasing
	Noise error 2Noise
	Servo-lag error 2Servo
	Fitting error 2Fitting
	Go-to error 2Go-to
	Static aberration errors 2Static
	NCPA residual errors 2NCPA

	Empirical method: the TS method
	SCAO error breakdown for CANARY
	Evaluation of the Strehl ratio

	On-sky validation of MOAO
	Observation conditions
	CANARY on-sky results
	Statistical comparison with the IT and TS methods

	Analysis of the joint NGS plus LGS tomography performed on-sky
	Script 274: SCAO/MOAO 4L3N/GLAO 4L3N
	Script 292: SCAO/MOAO 4L3N/GLAO 4L3N
	Script 275: SCAO/MOAO 4L3N/MOAO 3N

	Conclusions
	References
	Slopes covariance modelling
	Parallel modes covariance
	Aliasing covariance

	MOAO control
	MOAO control law
	Disengaged TS measurements estimation


