
J Supercomput
https://doi.org/10.1007/s11227-017-2217-1

The influence of datacenter usage on symmetry
in datacenter network design

Iain A. Stewart1 · Alejandro Erickson1

© The Author(s) 2017. This article is an open access publication

Abstract We undertake the first formal analysis of the role of symmetry, interpreted
broadly, in the design of server-centric datacenter networks. Although symmetry has
been mentioned by other researchers, we explicitly relate it to various specific, struc-
tural, graph-theoretic properties of datacenter networks. Our analysis of symmetry is
motivated by the need to ascertain the usefulness of a datacenter network as regards
the support of network virtualization and prevalent communication patterns in multi-
tenanted clouds. We argue that a number of structural concepts relating to symmetry
from general interconnection networks, such as recursive-definability, the existence
anddynamic constructionof spanning trees, pancyclicity, andvariations inHamiltonic-
ity, are appropriate topological metrics to use in this regard. In relation to symmetry,
we highlight the relevance of algebraic properties and algebraic constructions within
datacenter network design. Built upon our analysis of symmetry, we outline the first
technique to embed guest datacenter networks in a host datacenter network that is
specifically oriented towards server-centric datacenter networks. In short, we provide
the graph-theoretic foundations for the design of server-centric datacenter networks so
as to support network virtualization and communication patterns in cloud computing.

Keywords Datacenter networks · Server-centric ·Network topology ·Virtualization ·
Communication patterns · Topological metrics · Graphs

The research in this paper was supported by the UK Engineering and Physical Sciences Research Council
(EPSRC) Grant EP/K015680/1 ‘Interconnection Networks: Practice unites with Theory (INPUT)’.

B Iain A. Stewart
i.a.stewart@durham.ac.uk

Alejandro Erickson
alejandro.erickson@gmail.com

1 Department of Computer Science, Durham University, South Road, Durham DH1 3LE, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-2217-1&domain=pdf
http://orcid.org/0000-0002-0752-1971

I. A. Stewart, A. Erickson

1 Introduction

The primary aim of this paper is to show how certain structural graph-theoretic proper-
ties, characterized as symmetry in datacenter networks, can be used to evaluate aspects
of usage and communication in datacenters. This paper is both the first significant effort
to define symmetry in datacenter networks, and the first to relate symmetry to impor-
tant datacenter properties such as virtualization, as it relates to cloud computing, and
communication patterns, arising from distributed data processing. As such, this paper
opens up the study and design of datacenters and their networks to a wider theoretical
community, within which lies a significant capacity to contribute to what is rapidly
becoming the pervasive global computing infrastructure.

In Sect. 1.1 of this introduction, we explain some essential concepts relating to
the server-centric datacenter networks studied in this paper, before highlighting how
network topology designs are traditionally evaluated in Sect. 1.2. In Sect. 1.3, we give
examples of datacenter usage that have hitherto not impacted upon datacenter network
design, and in Sect. 1.4, we overview the various research contributions made in this
paper.

1.1 Datacenter network design

Datacenters are used for a variety of purposes such as large-scale search, e-commerce,
media hosting and distribution, social networking, and large-scale scientific and data-
intensive applications (such as weather forecasting, healthcare, bioinformatics, and
data mining). Datacenters can be dedicated to one specific use under the control of
one owner, e.g. a Facebook datacenter under the control of Facebook. Alternatively,
and as is increasingly the case as cloud computing gathers pace, datacenters can
incorporate multiple concurrent applications under the control of multiple users, each
of whom has shared access to a portion of the overall datacenter, e.g. Amazon’s Elastic
Compute Cloud. The reader is referred to a plethora of review articles for a general
background as regards datacenters and issues only touched upon or not mentioned
here (e.g. [1,5–7,34,41,51,53,59,63,64]).

The prevailing architecture is that datacenters consist of tree-like fabrics of switches
with the servers as terminalswithin this fabric, e.g. Fat-Tree [3],VL2 [28], andPortland
[52]. It is generally acknowledged that this basic switch-centric architecture, where
routing is handled by routing tables within the switches (and so there can be no direct
server-to-server links), has its limitations as datacenters grow (see, for example, [51]).
New datacenter architectures have subsequently emerged which include the server-
centric architecture whereby interconnection intelligence is imposed on the servers
with switches only acting as ‘dumb’ crossbars; now there can be server-to-server and
server-to-switch links, but not switch-to-switch links. Typical examples of such server-
centric datacenter networks (DCNs) are DCell [31], BCube [29], FiConn [44], DPillar
[49], HCN and BCN [32], SWCube, SWKautz, and SWdBruijn [45], and GQ∗ [22],
and it is with server-centric DCNs that we are concerned exclusively in this paper.

The construction of an actual datacenter is a mammoth and massively expensive
task with some datacenters reputed to have hundreds of thousands of servers; more-
over, researchers are currently exploring building datacenters incorporating millions

123

The influence of datacenter usage on symmetry in. . .

of servers. Of course, the design of a datacenter is painstakingly undertaken so that a
good understanding of the efficacy of the eventual datacenter can be obtained with-
out having to build it. At the root of the design of a datacenter is the design of the
DCN’s physical topology; that is, the topology of how the servers and switches are all
interconnected. There are many dimensions involved in DCN topology design such
as (incremental) scalability, latency, wiring complexity, bisection bandwidth, connec-
tivity, (aggregated) throughput, routing algorithms, fault tolerance, energy efficiency,
costs and packaging, traffic patterns, reliability, security, and agility (see [59] for a
survey of many of these aspects). Of course, some of these aspects work against each
other and DCN topology design is a challenging arena where trade-offs have to be
made.

Henceforth, for brevity, wewrite ‘DCN’ tomean ‘DCN topology’, andwe abstract a
server-centric DCN as an undirected graphwhere the nodes are partitioned into server-
nodes and switch-nodes. Notice that the partition of the nodes of a graph abstracting a
DCN into server-nodes and switch-nodes, in tandem with the entirely different func-
tionalities of servers and switches in datacenters, makes a graph-theoretic abstraction
of a DCN different from the usual notion of a graph.

1.2 Evaluation of designs

There are three essential mechanisms by which the design of a general interconnec-
tion network can be evaluated: by building a small prototype; by simulation; and
by investigating what might be called topological metrics (that is, beneficial struc-
tural properties). Given that DCNs aim to consist of hundreds of thousands of servers
and switches, building a small prototype is simply not effective; behaviours within a
500,000 server datacenter will likely not manifest themselves in a small test bed of,
say, 30 servers. Besides, even were a test bed to be helpful, researchers must ascer-
tain whether building one is worth the cost in terms of finance and labour (indeed,
many academic researchers do not have the financial capacity to build a test bed).
That leaves simulation and topological metrics as the primary means to predict the
real-world performance of DCNs.

Topological metrics are essentially used to advise on the likely behaviour of the
constructed interconnection networkwith regard to some specific issue of interest, such
as the way path length relates to latency and connectivity to fault tolerance. Experience
has shown, particularly in the distributed-memory multiprocessor environment, that
many of the metrics used truly reflect eventual behaviour. As such, the use of metrics
is crucial as a foundational tool, with simulation providing empirical confirmation. It
is with topological metrics, on the graph-theoretic abstraction of a DCN, that we are
primarily concerned in this paper.

The design of interconnection networks for distributed-memory multiprocessors
and networks-on-chips is well established (see, for example, [15], which is the stan-
dard text, particularly as regards distributed-memorymultiprocessors, and [40], where
the focus is on networks-on-chips) and a thriving area of research. Whilst the design
of DCNs is more recent, it has much in common with general interconnection net-
work design yet there are profound differences too, prompted by, for example, usage,
scale, and packaging. Hitherto, the most common metrics used for DCN evaluation

123

I. A. Stewart, A. Erickson

are the availability of routing algorithms, hardware cost (e.g. number of servers and
switches), hardware complexity (e.g. number of server ports), diameter, bisection
width, connectivity, and shortest-path lengths. It is probably fair to say that the devel-
opment of appropriate topological metrics for DCNs is not as advanced as it is for
distributed-memory multiprocessors and networks-on-chips, and that the validity of
these topological metrics within a datacenter environment is not as well established.
Our paper seeks to strengthen the role of topological metrics in DCN design.

1.3 Datacenter usage

In this paper, we consider some distinctive uses to which datacenters are put, so
as to differentiate them from distributed-memory multiprocessors and networks-on-
chips. Our aim is to examine these uses in some detail so that we might develop
appropriate topological metrics that reflect beneficial properties of datacenters with
regard to this usage. This paper can be seen as one of advocacy for a more systematic
consideration of datacenter usage as informing datacenter design; as such, it is perhaps
the first paper to do this in any great detail. The aspects of datacenter usage that we
consider, from amongst many possibilities, are virtualization and the implementation
of communication patterns.

Virtualization is a fundamental concept in cloud computing where virtual machines
and virtual datacenters, belonging to users, are embedded at physical locations within
the host datacenter so that quality of service guarantees can be given to the users, but
also so as to secure an efficient embedding from the perspective of the cloud owner.
We examine virtualization through the lens of SecondNet [30] and Oktopus [4], two
mechanisms for manipulating virtual machines and virtual datacenters within the dat-
acenter hosting a cloud. There is nothing particularly special about our choice: both
SecondNet and Oktopus are representative of (and influential in) the current virtual-
ization landscape and simply allow us to examine virtualization in a concrete context
so as to draw topology-based conclusions from their usage.Whilst the intended targets
of SecondNet and Oktopus are switch-centric DCNs (indeed, as yet no virtualization
methodology has been developed specifically for server-centric DCNs), we examine
the general principles behind SecondNet and Oktopus and consider these principles
within a server-centric context.

In addition to virtualization, the different uses to which datacenters are put result in
a variety of communication patterns needing to be supported within distributed data
processing. Just as we used SecondNet and Oktopus to provide a concrete context
for virtualization, we use MapReduce [16,17] to do likewise as regards (primarily)
many-to-many communication patterns.

1.4 Our contributions

There are various novel aspects to our research contributions.

– We undertake the first study of how datacenter usage can influence server-
centric DCN design, through a detailed examination of existing virtualization

123

The influence of datacenter usage on symmetry in. . .

methodologies applicable to switch-centric DCNs and of potential support for
(many-to-many) communication patterns which feature in datacenter applications.

– We outline the first generic virtualization methodology for application within
server-centric DCNs (the omission of such a consideration was noted in [5] and
suggested as a direction for further research; in so far as we are aware, our method-
ology is the first to be proposed).

– We show that support for datacenter usage and intrinsic communication patterns
is closely correlated with certain topological aspects of DCNs that we identify as
symmetry. We define symmetry in DCNs broadly, encompassing structural proper-
ties that are applied locally, but universally within any locality; basic illustrations
might be that every switch has the same number of ports, every server sits on
a cycle of servers of some given length, or every server is part of a sub-DCN
that is similar to the whole. We show that concepts such as recursive-definability,
complete connection, pancyclicity, variations in Hamiltonicity, and other generic
algebraic constructions all provide topological support (so, we add weight to the
general acceptance of these symmetry-based metrics in interconnection design).
We rapidly come to the conclusion that DCNs should be viewed compositionally
as topologies within which other topologies have multifarious embeddings.

– We explain how the established notions of symmetry in interconnection networks,
that is, node-symmetry and link-symmetry, are perhaps not so relevant toDCNs and
that other notions of symmetry aremore pertinent. Although other researchers have
mentioned symmetry within a DCN, insofar as we are aware our paper contains the
first systematic analysis of different aspects of symmetry within a server-centric
DCN context. We use the DCN HCN (from [32]) to refine and exemplify our
discussions of symmetry (we provide the definition of HCN in Sect. 5), but we
alsomention other existing server-centric DCNs in the context of symmetry (albeit
more briefly).

– We highlight the efficacy of using existing interconnection network research to
support the design ofDCNs and also demonstrate how the use of algebraicmethods
is beneficial to the design process.

It is important to note that our aim is not to be definitive as to what makes a DCN
‘properly symmetric’, but to argue as to why various aspects of symmetry are very
relevant as regards datacenter design in relation to how datacenters are used. In short,
we provide the theoretical foundations for the design of server-centric DCNs so that
the usage of DCNs, through support for virtualization and communication patterns, is
a primary concern.

Our work sits between the engineering process of building datacenters and the
theoretical consideration of abstractions of DCNs as discrete structures; that is, it is
graph theory targeted towards a practical application area. Our intention throughout
is: to provide enough information concerning server-centric DCNs and their design
for the theoretician to appreciate the underlying practical issues that go to influence
any graph-theoretic abstraction and analysis; and to demonstrate that theoretical ideas
and concepts are relevant to and can impact significantly on the study of DCNs. As
such, our paper provides an introduction to the design of server-centric DCNs for

123

I. A. Stewart, A. Erickson

graph theorists who, we hope, can consequently contribute to the development of the
computational infrastructures that underpin cloud computing.

There is a long path from the theoretical formulation of the server-centric DCN
paradigm to the construction of real, large-scale server-centric datacenters; this path is
made longer due to the significant costs of actually building such a datacenter and the
need to be sure that what emerges will be fit for purpose in an engineering sense. Our
work is novel in that it lies one step further along this path than most current server-
centric DCN research: it is motivated by the applications that run on datacenters and
the traffic patterns that emerge, rather than just internal aspects of routing within
DCNs. We have more to say about the subsequent development of our research and
framework in our conclusions.

1.5 The structure of this paper

In the next section, we detail some basic definitions and concepts before looking at
datacenter virtualization and communication patterns, and deriving some preliminary
influences of this usage on design, in Sect. 3. In Sect. 4, we consider symmetry in a
broad sense and within interconnection networks in general. In Sect. 5, we define the
DCN HCN before undertaking a systematic consideration of aspects of symmetry in
relation to virtualization and communication patterns in Sect. 6. Our analysis in Sect. 6
feeds into Sect. 7wherewedevelop the first virtualizationmethodology geared towards
server-centric DCNs. Our conclusions and directions for further research are given in
Sect. 8.

2 Basic definitions and concepts

We abstract DCNs as (undirected) graphs such that nodes are either server-nodes or
switch-nodes. Switch-nodes are used to interconnect groups of server-nodes and direct
server-node to server-node links are also allowed; as such, we are dealing with server-
centric DCNs. We reiterate that we do not allow switch-node-to-switch-node links as
to do so would require interconnection intelligence at the switches modelled by our
switch-nodes; we insist that switches should operate only as ‘dumb’ crossbars. The
upshot is that our server-centric DCNs are abstracted as graphs where the node set is
partitioned into a set of server-nodes and a set of switch-nodes. We also refer to our
DCNs as topologies (when we are emphasizing the interconnection patterns).

The notion of a graph embedding will prove to be important in our work. Graph
embeddings are well established within the study of interconnection networks (see,
for example, [61, Sect. 1.3.2] for more details).

Definition 1 Let H = (U, F) be the guest graph and let G = (V, E) be the host
graph. A graph embedding is a mapping f : U → V so that, in addition, every link
(x, y) ∈ F is explicitly associated with a path joining f (u) and f (v) in G; call these
paths f (F). The dilation of the embedding is themaximum length of any path in f (F);
the congestion of the embedding is the maximum over all links e ∈ E of the number

123

The influence of datacenter usage on symmetry in. . .

of paths in f (F) on which e lies; and the load of the embedding is the maximum over
all nodes x of G of the total number of nodes of H that are mapped to x by f .

The parameters dilation, congestion, and load have clear relevance as regards, for
example, the simulation of one distributed-memory multiprocessor by another (with,
of course, an optimal embedding being one where all of these parameters have the
value 1).

Our notion of an embedding within a datacenter context will be slightly different
and more flexible than that in Definition 1; for one thing, we have server-nodes and
switch-nodes to consider. Our embeddings map guest DCNs to host DCNs so that:
server-nodes are mapped to server-nodes; switch-nodes are mapped to (connected)
sub-networks within the host DCN; and links are mapped to paths of links, and so
that the ‘virtual’ DCN induced by the images of the server-nodes, switch-nodes, and
links under the embedding is connected. The notions of load, dilation, and congestion
for a DCN embedding can be amended appropriately (we do not provide these details
here as throughout this paper we are only concerned with general principles relating
to embeddings and not precise analytical measurements).

An example of an embedding of a switch-node with 6 adjacent server-nodes in a
DCN can be visualized as shown in Fig. 1 (the server-nodes are circles and the switch-
nodes rectangles) where: the sub-network surrounded by a dotted line in the host
DCN corresponds to the switch-node in the guest DCN; the white circles correspond
to the server-nodes of the host DCN to which the server-nodes of the guest DCN
have been mapped; and the bold (paths of) links in the host DCN correspond to the
server-node-to-switch-node links in the guest DCN.

We mention a number of DCNs and interconnection networks in what follows. The
precise definitions of these DCNs can be found in: [31] for DCell; [29] for BCube; [44]
for FiConn; [49] for DPillar; [44] for HCN andBCN; and [45] for SWCube, SWKautz,

Fig. 1 An embedding of one DCN in another

123

I. A. Stewart, A. Erickson

and SWdBruijn. The references [15,37,61] provide details of other interconnection
networks and graph-theoretic concepts we happen to mention in this paper.

We endwith a remark on terminology. Strictly speaking, an interconnection network
is a family of networks, parameterized by at least one parameter; for example, there is
a hypercube of dimension n, for each positive integer value of n. The same can be said
of DCNs. However, for brevity, we usually refer to such a family of interconnection
networks as ‘an interconnection network’, and likewise for families of DCNs. Hence,
when we write, for example, ‘the DCN HCN’, what we really mean is ‘the family of
DCNs HCN’.

3 Datacenter usage

We now examine two aspects of datacenter usage that should influence the design of
DCNs: virtualization and the implementation of communication patterns. Our inten-
tion in this section is to draw out issues within virtualization and communication
patterns that directly impact upon DCN design. As we shall ultimately see, (various
notions of) symmetry within a DCN can support both virtualization and the imple-
mentation of communication patterns.

3.1 Virtualization

Three essential services are provided by cloud providers (see, for example, [63]): IaaS,
or Infrastructure as a Service, provides (possibly shared hardware) allocations of the
cloud to users (or tenants); PaaS, or Platform as a Service, provides, for example,
operating system support and software development frameworks to users; and SaaS,
or Software as a Service, provides on-demand applications to users. An important
aspect of datacenter support for IaaS is virtualization. Virtualization is a mechanism
by which datacenter hardware (the servers, switches, links, etc.) is both shared and
conglomerated so as to form virtual machines and virtual datacenters to be made
available to users for rent. A virtual machine might reside at a server, but share the
processor(s) with other virtual machines residing at the same server. Virtual machines,
possibly residing at different processors, might be joined via virtual links (which are
essentially paths of real links, within the host datacenter) and/or virtual switches
(which are essentially sub-networks of real switches, servers, and links) so as to form
virtual datacenters. Users can pay rent for virtual machines or virtual datacenters
within the datacenter forming the cloud (that is, the host datacenter) and possibly also
for guarantees of quality of service. A user request to the cloud owner might be to
provide a virtual datacenter with a user-specified topology and dedicated stipulated
link bandwidth, computational power, memory, storage requirements, and so on. In
a graph-theoretic sense, virtualization is a (much) more complex version of graph
embedding.

In order to support virtualization, a datacenter owner needs to be able to not only
embed guest topologieswithin the hostDCN, but also to arrange that these embeddings
come with the requisite amounts of resource and that different such embeddings can
all ‘fit together’ within the host. It is clear how DCN analogies of concepts such as

123

The influence of datacenter usage on symmetry in. . .

dilation, congestion, and load, from Definition 1, will have relevance. Importantly,
embeddings need to be:

– flexible, in that there should be a variety of possibilities available so that a virtual
datacenter can be physically located in a beneficial location depending upon, for
example, other current virtual datacenter embeddings, hardware usage, and traffic
loads (beneficial in that the owner’s physical resources are used efficiently and the
tenant’s performance guarantees are achievable);

– identifiable, in that there should be amechanismbywhich the different possibilities
for (physical) location can be efficiently generated by the datacenter owner; and

– agile, in that there should be amechanism for themigration of existing embeddings
to other parts of the host datacenter so as to free up the previously tied resources
for subsequent embeddings.

Whilst we focus on graph-theoretic embeddings (given that our aim is to find struc-
tural properties of DCNs that support such embeddings, and so virtualization), it
should not be forgotten that associated with these embeddings in reality are resource
demands regarding link bandwidths, CPU speeds, memory, server bandwidth, and
so on.

As a simple illustration as to the additional complexity that this can impose, suppose
that two virtual machines m1 and m2 reside at a server and two virtual machines n1
and n2 reside at another server so that a virtual link joining m1 and n1 forms a virtual
datacenter with a virtual link joining m2 and n2 forming another virtual datacenter,
where these virtual links share the same actual physical path of links joining the
servers in the host datacenter. The bandwidth of this physical path of links needs to be
shared between the two virtual datacenters; moreover, the actual physical bandwidth
needs to be enough to accommodate the required bandwidths for the two virtual links
(of course, the path links might also be currently used by other virtual datacenter
embeddings). Implementing full-blown virtualization is incredibly difficult to achieve
and is a vibrant area of research, with embedding just one aspect of virtualization
(albeit a significant one); there are many other (more practical) aspects to consider
too such as scalability, fault tolerance, security, performance isolation, and monitoring
(the reader is referred to recent surveys [5,56,60] for detailed accounts of the current
state of the art as regards datacenter virtualization).

In order that we might get a flavour of how heuristic methods are applied to embed
virtual datacenters within host datacenters (and so obtain an appreciation of the sort
of structural properties of DCNs that might support virtualization), let us take a brief
look at two influential methods: SecondNet [30] and Oktopus [4]. These two method-
ologies are good illustrations of the current research landscape as regards datacenter
virtualization. They are primarily geared towards switch-centric DCNs, but the basic
methodologies can be applied within server-centric DCNs too. Both SecondNet and
Oktopus aremore relevant to server-centricDCNs thanmethodologies such as FlowVi-
sor [54] and FlowN [18]: SecondNet and Oktopus enforce virtual datacenter isolation
through hypervisors installed at servers,whereas FloVisor andFlowNenforce isolation
through configured rules at switches (however, we have more to say about the appli-
cability of SecondNet and Oktopus to server-centric DCNs presently). We emphasize

123

I. A. Stewart, A. Erickson

that we are only interested in the embedding algorithms underlying SecondNet and
Oktopus, and that there are many other more practical aspects to both.

3.1.1 SecondNet

In SecondNet, the focus is on providing bandwidth guarantees for a set of virtual
machines between each pair of which there is a required bandwidth constraint. In a
sense, virtual datacenters in the form of cliques are being embedded though other
topologies can be embedded by setting the bandwidth requirement of specific virtual
links to 0. The embedding algorithm has the limitation that distinct virtual machines
must be allocated to distinct physical servers, and it proceeds as follows. Core to
the methodology is that the host datacenter can be partitioned into (not necessarily
disjoint) sub-networks of varying numbers of (interconnected) servers.

Given some virtual datacenter consisting ofm virtual machines, say, a sub-network
of at leastm servers in the host datacenter is sought. In the first phase of the algorithm,
a bipartite graph is constructed with nodes representing them virtual machines on one
side of the partition and nodes representing the servers of the host sub-network on
the other. There are edges introduced into this bipartite graph to denote the possible
embedding of a virtual machine at a server (this is subject to CPU, memory, server
bandwidth, and other requirements) and edge weights are added reflecting the used
(ingress and egress) server bandwidth of embedding the given virtual machine at the
given server. A min-cost network flow algorithm is used to obtain a minimum weight
matching where every virtual machine is matched with some server, if one exists; if
one does not exist then the search within this sub-network is terminated and we begin
again with a different sub-network.

In the next phase, if a matching has been found, then the algorithm searches for
paths between the servers within the sub-network so that the virtual link bandwidth
requirements of the different pairs of virtual machines are accommodated (of course,
there is nothing to be done if this bandwidth requirement is 0). This search is on a
greedy, path-by-path basis (working through the virtual links in order of decreasing
required bandwidth) using a simple shortest-path algorithm and amending link band-
width availability as the algorithm proceeds. If such a set of paths cannot be found,
then the search within this sub-network terminates and we begin again with a different
sub-network. If a set of paths can be found, then the embedding is made, with all
residual capacities in the host datacenter amended to reflect the embedding, and the
host datacenter is ready to receive another virtual datacenter for embedding.

The actual allocation of some virtual datacenter is undertaken by a centralized
manager, hosted at some server, that communicates with other servers in the datacenter
via a signalling spanning tree (that can be evolved in the case of node or link failures).
We reiterate that key to the philosophy of SecondNet is that the host servers can
be grouped into sub-networks of different sizes with these sub-networks iteratively
explored as regards to whether some virtual datacenter can be embedded. There is
also scope for amending existing virtual datacenter embeddings and also migrating
existing embedded virtual machines (primarily so as to defragment the allocation of
virtual datacenters with respect to the sub-networks).

123

The influence of datacenter usage on symmetry in. . .

3.1.2 Oktopus

In Oktopus, the focus is on providing bandwidth guarantees for virtual datacenters in
the form of virtual machines all connected to a virtual switch, called virtual clusters in
[4], and also collections of virtual clusters where the virtual switches of these clusters
are connected to a root virtual switch, called oversubscribed virtual clusters in [4]
(as is noted in, for example, [14], the Amazon EC2 cloud embeds tenant requests in
the form of a virtual cluster). It is remarked in [4] that other virtual datacenters in
the (topological) form of hypercubes, multidimensional meshes, de Bruijn networks,
and so on might also be offered to users (though this possibility is not seriously
examined). Crucial to the ethos of Oktopus is that hierarchical, recursively defined,
tree-like topologies are key, both as regards the virtual datacenters to be embedded
and the host datacenter.

The embedding algorithm proceeds (roughly) as follows. It initially only considers
host servers and tries to embed the given virtual cluster or oversubscribed virtual
cluster entirely within each server (as to whether the virtual datacenter can be so
embedded depends solely on whether the server can support the number of virtual
machines in the virtual datacenter). If unsuccessful, then the algorithm looks for an
embedding at the next ‘level’ up. This has the effect of looking for an embeddingwithin
each sub-network of the host datacenter consisting of a number of servers and their
parent switch, so that link bandwidth constraints are maintained (each such grouping
within the host is considered). If unsuccessful, the algorithm looks for an embedding
at the next level up which means looking within each sub-network formed by servers,
parent switches of servers, and a parent switch of these switches. This continues until
either an embedding is found or none is possible. In a sense, there is commonality
with SecondNet in that a sequence of sub-networks is iteratively explored; here, the
sub-networks are determined by the tree-like structure of the host topology.

Like SecondNet, there is a centralized network manager within Oktopus that main-
tains the current situation as regards which virtual clusters and oversubscribed virtual
clusters are currently embedded where along with the residual link bandwidths and
server capacities available. Also, it is stated in [4] that Oktopus can be extended to
dealwith themigration of already embedded virtual clusters and oversubscribed virtual
clusters.

Both SecondNet and Oktopus are symptomatic of current methodologies: almost
all are primarily targeted towards switch-centric DCNs, such as Fat-Tree [3], VL2
[28], and Portland [52], or server-centric DCNs that are heavily tree based such as
BCube [29], and they are heuristic based. It is immediately apparent that Oktopus
is strongly geared towards tree-based topologies; however, SecondNet is too with
its clustering principles based around racks and pods (see [30]; of course, any tree-
based methodology can be used in an arbitrary DCN simply by utilizing spanning
trees within sub-networks). Having said this, DCell is mentioned in [30] as a possible
DCN to which SecondNet might be applied, but this is more in terms of DCell’s
routing capabilities rather than with regard to support for embedding. The simulations
undertaken for SecondNet in [30] are done so in Fat-Tree, VL2, and BCube (with the
notion of sub-network derived from the tree-based structure of the host topology), and
the simulations undertaken for Oktopus in [4] are done so in simple three-level tree

123

I. A. Stewart, A. Erickson

topologies. Centralized control in both SecondNet and Oktopus is undertaken via a
spanning tree though this would probably also be the case in any datacenter (if there is
to be a solitary network manager server). In summary, virtualization has not yet been
seriously considered for the (non-tree-based) server-centric datacenters of interest to
us and the structural analysis for doing so is as yet undeveloped.

Both SecondNet and Oktopus are also symptomatic of another aspect of current
approaches to virtualization: virtualization (and embedding) is generally undertaken
independently of the actual underlying hostDCN (to some extent this is understandable
given that the DCNs to which these methodologies are applied are all tree based and
it is this structural property that dominates the methodologies). On the one hand, both
SecondNet and Oktopus can be applied within a variety of (tree-based) datacenters; on
the other hand, the actual topology of aDCNhas not been fully utilized. Itwould appear
that there might be scope for a better use of the actual host topology in virtualization
tools such as SecondNet and Oktopus. This remark is also made in [5] where it is
noted that the network utilization of SecondNet varies according to the underlying host
topology; indeed, the authors of [5] remark upon the current lack of a consideration
of embeddings on DCN design and mention this topic explicitly as a future research
direction.

The general approach taken in very recent work on virtualization (which builds on
SecondNet and Oktopus) is as follows: the underlying DCN topology is ignored; it is
noted that the general virtualization problem is NP-hard; and solutions are developed
based on heuristic methods, e.g. ant colony optimization algorithms in [66], greedy
algorithms in [48], and linear programming in [14,65]. Of course, with a fixed DCN as
the host, it is possible that the virtualization problem becomes solvable in polynomial
time (though, in our view, unlikely for existing DCNs). In any case, graph-theoretic
properties of the host DCN topology have so far not been used.

Within this paper, it is our intention to identify structural aspects of DCNs that are
conducive to virtualization; however, we also outline a new methodology for develop-
ing virtualization algorithms for server-centric DCNs. Even though our virtualization
methodology uses the underlying host DCN topology, it is not tied to one particular
DCN as it actually only uses structural properties of the DCN that are prevalent in
many server-centric DCNs. Thus, just as existing tree-basedmethodologies are widely
applicable, so is ours within the landscape of server-centric DCNs. We shall return to
our discussion of datacenter virtualization and currentmethodologies whenwe present
our own server-centric virtualization methodology in Sect. 7.

3.2 Implementing communication patterns

The actual use a datacenter, or a virtual datacenter, is put to can result in specific
communication patterns being prevalent. We are heavily influenced by MapReduce
(see, for example, [16,17]) which is extremely common within many distributed data-
intensive applications and which gives rise to many-to-many traffic patterns. In short,
MapReduce has three essential phases: a map phase; a shuffle phase; and a reduce
phase.

123

The influence of datacenter usage on symmetry in. . .

– In the map phase, a master server assigns a map task to a collection of worker
servers (the mappers) at which the inputs for these tasks are stored. Each mapper
produces intermediate data in the form of key–value pairs.
– For example, each mapper might have local access to a file of text and the map
task might be for each mapper to compute the number of occurrences of each
word in its text file. Each key of a key–value pair is an actual word, and each
value is the number of occurrences of that word in the text file.

– On completion of the map tasks, in the shuffle phase the mappers redistribute the
intermediate data based upon the keys so that after the shuffle phase all data corre-
sponding to some key reside at the sameworker server (the reducers); alternatively,
the mappers might send location details of their intermediate data to the master
server.
– In our example, after the shuffle phase, all data relating to the same word
resides at the same reducer.

– In the reduce phase, each reducer executes its reduce task on the intermediate
key–value data residing at that server; alternatively, the master server distributes
location data to the reducers with each reducer given a key or set of keys so that
each of these reducers then reads the intermediate values corresponding to its key
or keys from (possibly) other reducers and executes its reduce task.
– In our example, the reduce task might be for each reducer to sum all of the
instantiations of keywords that have been assigned to it.

It could well be that in a virtual datacenter (or indeed the whole datacenter) every
server plays the role of both a mapper and a reducer. Clearly, with MapReduce, com-
munication patterns such as many-to-many, one-to-many, and many-to-one need to
be supported by the underlying topology (see, for example, [62]). We focus in this
paper on many-to-many as it is the most important communication pattern as regards
MapReduce (and generally the most difficult to implement).

Other usage examples, such as data replication (whereby chunks of data are repli-
cated at various servers, so as to aid search query latency, for example), distributed file
systems in general (such as that in [27]), and Web searching, also give rise to one-to-
many and many-to-one communication patterns (see, for example, [11,62]). There is
a detailed consideration of multicast, or one-to-many communication, in datacenters
in [46].

3.3 The basic influence of usage

The necessity for virtualization in datacenters means that unlike the situation for
distributed-memory multiprocessors and networks-on-chips, we should not necessar-
ily be looking at the DCN in its entirety; we should be looking at the DCN as being
composed of constituent and interlinked parts. We should not necessarily demand that
the whole DCN possesses some topological property, for example, but that within
the DCN there are (numerous) sub-networks possessing this property. Similarly, we
should not necessarily be looking for the DCN to support the communication patterns
mentioned earlier, but for sub-networks within the DCN to do so.

123

I. A. Stewart, A. Erickson

These simple observations lead us to what we feel is a fundamental basic principle
of DCN design in relation to the usage of datacenters to support clouds: a DCN
should be viewed as a topology within which other topologies (including itself) have
multifarious embeddings and not as an indivisible entity that necessarily possesses
specific topological properties in its own right.

To some extent, this perspective is not new and somewhat obvious (we have already
heard how the general embedding problem for DCNs has been shown to be computa-
tionally intractable, thus provoking a search for heuristic solutions often based upon
an iterative search through sub-networks). However, the key point is that, as yet,
datacenter usage has not really fed explicitly into DCN design. The drivers for embed-
ding from general interconnection networks remain but the necessity for virtualization
raises their importance.

Finally, although we take a compositional view of DCNs, we cannot ignore some
topological aspects of the DCN as a whole that arise because of usage-related issues.
For example, we saw earlier that both SecondNet and Oktopus have a centralized
manager to collect, process, and disseminate information. In order that this manager
can do this, a spanning tree (at least) needs to be identified within the DCN. Thus, we
cannot wholly ignore the overall topology of the DCN (we shall revisit this remark
later when we discuss recursively defined DCNs).

4 Symmetry

Our study of virtualization and communication patterns has led to our fundamental
basic principle, as laid out above, but the problem remains as to howwemight ascertain
ormeasure howwell aDCNdesign adheres to this principle.Our principle is concerned
with the internal structure of a topology in relation to the whole and thus is all about
symmetry. In this section, we compare and contrast established notions of symmetry
within distributed-memory multiprocessors and networks-on-chips with what might
be required of symmetry within a DCN (which we interpret broadly, recall).

4.1 Symmetry in distributed-memory multiprocessors

‘Symmetry’ in interconnection networks is regarded as a good thing, and in distributed-
memory multiprocessors it means node- and link-symmetry (also called node- and
link-transitivity, respectively).

Definition 2 A graph G = (V, E) is node-symmetric if given any u, v ∈ V , there
exists an automorphism ρ of G so that ρ(u) = v, where an automorphism ρ of
G is a bijection from V to V such that if (u, v) ∈ E then (ρ(u), ρ(v)) ∈ E . A
graph G = (V, E) is link-symmetric if given any (u, v), (u′, v′) ∈ E , there is an
automorphism ρ of G such that either ρ(u) = u′ and ρ(v) = v′ or ρ(u) = v′ and
ρ(v) = u′.

Node-symmetry means, amongst other things, that each individual processor can
be supplied with the same program, routing is vastly simplified (as is the implemen-
tation of communication patterns such as many-to-many), and network analysis is

123

The influence of datacenter usage on symmetry in. . .

easier [15,35]. Implicit is the assumption that every processor is working on the same
computational task. Furthermore, algebraic characterizations of networks as Cayley
graphs, so that node-symmetry immediately follows, can yield an even more benefi-
cial environment (see, for example, [2,35,43,67]). On the other hand, link-symmetry
can yield well balanced traffic loads [15]. Of course, such symmetry is only part of
the story, as traffic patterns, routing algorithms, fault tolerance, packaging constraints,
and so on, all have their part to play (and likewise do so in DCNs). Nevertheless,
(traditionally defined) symmetric interconnection networks have proved their worth
in practice.

4.2 Symmetry in DCNs

The term ‘symmetry’ is widely used in the context of DCNs too. However, its meaning
in the DCN context has yet to be succinctly defined as in the distributed-memory
multiprocessor context. Unlike distributed-memory multiprocessors, datacenters are
certainly not ‘single-task machines’ in that they generally simultaneously undertake a
whole range of independent computational activities, under the auspices of different
users, and they do this in a flexible fashion (from the perspective of the datacenter
owner). There are multiple tasks operating under different routing algorithms and
generating different traffic loads and communication patterns. Also, DCNs consist of
server-nodes and switch-nodes, with the different types of nodes playing very different
roles. Indeed, there is an additional dimension to this heterogeneous nature: datacenter
usage is geared much more towards the users than is, for example, a distributed-
memory multiprocessor computation. Consequently, datacenters need to have a user-
facing capacity and some servers or switches within the datacenter need to handle
incoming and outgoing user-oriented communication.

All this might imply that the notions of symmetry from Definition 2 are seemingly
irrelevant. However, whilst virtualization leads to our fundamental basic principle, it
also demands that there exists some form of centralized control within a datacenter so
that locations for virtual machines and virtual datacenters can be chosen andmanaged.
This means that there must also be some capacity for the centralized collection of data
such as existing link and node loads. Thus, a DCN needs to be able to support (a
limited amount of) global communication, for example, via spanning trees or other
spanning networks (see, for example, [4,30,47] for more on this).

We propose here that symmetry with regard to server-centric DCNs should be
with respect to the server-nodes, which is where all the intelligence lies, with the
switch-nodes simply being regarded as providing conduits between server-nodes. For
example, consider routing a message within a DCN: it is a server-node that initiates
this message and the destination of the message is a server-node too. Key to our
consideration of symmetry within DCNs will be our fundamental basic principle of
datacenter design from Sect. 3.3, and we will move towards formulating more relaxed
notions of symmetry, than those in Definition 2, that still reflect beneficial practical
datacenter properties. These properties include not only facilitating routing and anal-
ysis, as in the case of distributed-memory multiprocessors, but also the identification

123

I. A. Stewart, A. Erickson

of sub-networks, the embedding of (guest) topologies, and the provision of support
for implementing communication patterns within the resulting sub-networks.

So, to summarize, symmetry within DCNs should:

– facilitate multiple embeddings of chosen topologies, e.g. virtual clusters and over-
subscribed virtual clusters (from [4]), point-to-point pairs (from [30]), and possibly
other topologies such as hypercubes, de Bruijn networks, and even other DCNs,
so that these embeddings can be efficiently identified (via an algebraic description
of the DCN that is amenable to combinatorial and algorithmic manipulation); and

– support the implementation of specific communication patterns within specific
sub-networks as well as global communication across the DCN (so that data col-
lection and dissemination can be undertaken).

As is ever the case with interconnection networks, there will be no silver bullet; that
is, there will not exist DCNs that are optimal as regards all aspects of symmetry. What
is more, symmetry is but one aspect of interconnection network design and there are
many others to consider, some of which might be in conflict with beneficial aspects
of symmetry.

5 Illustrative DCNs

Wewill soon look at specific aspects of DCN symmetry that support virtualization and
the implementation of communication patterns, and we will illustrate these aspects
using the DCN HCN [32]. We choose HCN as our illustrative vehicle due to conve-
nience (the DCN HCN is easy to define and to visualize) and because it possesses
an intimate relationship with an existing interconnection network; not necessarily
because it possesses all of the symmetric properties we highlight below and believe
important. As we stated above, symmetry is claimed for HCN in [32] without actually
being defined; however, we will see that this DCN is indeed ‘symmetric’ in certain
senses relevant to datacenter design. We could equally well have used alternative
server-centric DCNs as illustrative vehicles.

TheDCNHCN forms the first layer of the two-layerDCNBCN;more precisely, lots
of copies of HCN do. However, the constructions of the two layers are distinct in the
following sense: all switch-nodes have adjacent server-nodes in the form of master-
nodes and slave-nodes (so called in [32]): at the first layer, where a DCN HCN is
constructed, the construction uses only the master-nodes, and at the second layer, so as
to obtain the DCNBCN, the construction uses only the slave-nodes of different copies
of HCN. Consequently, the switch-nodes provide the ‘points of contact’ between two
algebraically distinct DCNs, with the second layer construction of the DCN BCN
‘overlaid’ on the first-layer construction of the DCN HCN. (In fact, one could reverse
the order of construction of BCN, by building the second layer first, and still obtain
the same resulting DCN.) As we do not work with BCN in what follows, we simply
refer the reader to [32] for full details of the construction of BCN.

So that we might focus on the DCN HCN, let us simply remove the slave-nodes
from all switch-nodes (so, we are just considering the first-layer construction high-
lighted above). Also, with respect to our intention, laid out above, to focus symmetry

123

The influence of datacenter usage on symmetry in. . .

on server-nodes and to regard switch-nodes as providing conduits between server-
nodes, we can abstract a switch-node joining n server-nodes, say, as a clique of links
involving these n server-nodes; we sometimes refer to this abstraction of the DCN
as its clique-abstraction. When one does this for HCN, what one actually obtains is
the interconnection network known as a WK-recursive network which originated in
[55] and which has since been studied in some detail within the context of distributed-
memory multiprocessors and networks-on-chips (this observation, linking HCN and
the WK-recursive network, was originally made in [23]).

Definition 3 The DCN HCN(n, h), with its slave-nodes removed (see [32]) and with
every switch-node replaced by a ‘clique of links’ joining the server-nodes adjacent to
the switch-node, has node set {1, 2, . . . , n}h+1. There are links of the form

((ih, ih−1, . . . , i2, i1, x), (ih, ih−1, . . . , i2, i1, y)),

whenever x �= y, and also links of the form

((ih, ih−1, . . . , i j+1, i j , i
′
j , . . . j times . . . , i ′j)

(ih, ih−1, . . . , i j+1, i
′
j , i j , . . . j times . . . , i j)),

where j ∈ {1, 2, . . . , h} and i j �= i ′j . The parameter n details the degree of any
switch-node and the parameter h the level or depth of the recursive construction.
When considering HCN(n, h) as a WK-recursive network, we refer to the parameter
n (that is, the size of the base cliques) as the amplitude.

The DCN HCN(4, 3) can be visualized as shown in Fig. 2 (where we also show
how a switch can be abstracted as a 4-clique). Note how there are potential additional
links involving the ‘corner’ nodes that can be used to construct HCN(4, 4) (there is a
hint given in Fig. 2 as regards the naming scheme; see [32] for more details).

6 Aspects of symmetry in DCNs

In this section, we argue as towhy specific symmetry properties ofDCNs are beneficial
as regards various aspects of datacenter usage encompassing virtualization and the
implementation of communication patterns (primarily many-to-many). We describe
these symmetry properties and illustrate them (when we can) in the DCN HCN (and
briefly in other DCNs). Our aim is to justify why these symmetry properties should
be important parameters as regards future (server-centric) DCN design. In the next
section, we outline how some of these symmetry properties might be utilized in the
design of new server-centric virtualization methodologies.

6.1 Recursively defined DCNs

Let us begin by looking at the DCN HCN(n, h) where there is obvious recursive
symmetry. The sub-networks obtained by fixing the first component of all node

123

I. A. Stewart, A. Erickson

Fig. 2 A visualization of HCN(4, 3)

names form n copies of HCN(n, h − 1). With regard to Fig. 2, the corresponding
4 copies of HCN(4, 2) are related via the automorphism obtained by a rotation clock-
wise through 90◦. Furthermore, there are numerous other copies of HCN(n, h − 1)
within HCN(n, h). Again with reference to Fig. 2, in HCN(4, 3) there are copies
of HCN(4, 2) identified by their ‘top-left corner-nodes’ (1, 2, 1, 1), (1, 4, 1, 1),
(1, 3, 1, 1), (2, 4, 1, 1) and (3, 1, 1, 1). Similarly, by fixing the first two components
of all node names, we obtain n2 copies of HCN(n, h − 2) within HCN(n, h). In
fact, the DCN HCN is an example of what are commonly called recursively defined
interconnection networks.

Definition 4 A family {X (h): h = 0, 1, . . .} of interconnection networks is recur-
sively defined if the network X (h), where h > 0, is the disjoint union of copies
of X (h − 1) with the inclusion of additional nodes and/or links interconnecting the
disjoint copies.

123

The influence of datacenter usage on symmetry in. . .

We need to adapt Definition 4 to DCNs.

Definition 5 A family {X (h): h = 0, 1, . . .} of DCNs is recursively defined if the
network X (h), where h > 0, is the disjoint union of copies of X (h − 1) with the
inclusion of additional server-nodes, switch-nodes and/or links interconnecting the
different copies.

The focus as regards recursively defined DCNs is that the constituent ‘sub-DCNs’
should be ‘glued together’ using (limited) additional resources, so that these constituent
sub-DCNs remain available within the larger DCN.

Consider HCN again. It is clearly the case that HCN is recursively defined: here,
each HCN(n, h) contains disjoint, constituent HCN(n, h − 1)s, with the additional
resources used consisting of a relatively small number of links. An analogous state-
ment can be made as regards DCell and FiConn. The DCN BCube is also recursively
defined, but now the additional resources involve links and switch-nodes. The DCN
SWCube, formed from a generalized hypercube by regarding the nodes as switch-
nodes and sub-dividing each edge with a server-node, is also recursively defined, but
the additional resources come in the form of additional server-nodes, switch-nodes,
and links (SWKautz and SWdBruijn are similarly constructed from Kautz digraphs
and de Bruijn digraphs, respectively). However, BCN, DPillar, SWKautz, and SWd-
Bruijn are not recursively defined, for lower-level sub-DCNs do not exist as constituent
copies within a larger DCN; these networks do have a ‘recursive flavour’, but do not
adhere to Definition 5, which, as we shall argue now, is what is required in order to
best support virtualization and communication patterns.

6.1.1 The automatic provision of virtual datacenters in clouds

The property of a DCN being recursively defined is not just of idle curiosity (and
in keeping with our fundamental basic principle from Sect. 3.3); it is an important
aspect of DCN design. Recall that both SecondNet and Oktopus operate so that sub-
networks within the underlyingDCN are of fundamental importance: with SecondNet,
sub-networks (of differing sizes) are used as a search space within which embeddings
might be obtained (minimal consideration is given in [30] as to how sub-networks
might be defined for consideration within SecondNet), and with Oktopus, tree-like
topologies of increasing depth within the host DCN are used likewise as regards the
embedding of virtual clusters and oversubscribed virtual clusters (Oktopus is inextrica-
bly tied to operation within tree-like DCNs). Having recursively defined DCNs yields
two significant advantages: first, there is a ready-made and uniformly structured notion
of sub-networks of different sizes within the DCN, namely the lower-level recursive
sub-DCNs; second, the recursive nature of the decompositions means that only one
embedding algorithm is required (parameterized by the depth of recursion). Also, as
we’ll see in a moment, recursively defined interconnection networks lend themselves
to the recursive construction of embedded (spanning) trees and other (tree-like) topolo-
gies. Consequently, having a recursively defined DCN facilitates the implementation
of virtualization methodologies such as SecondNet and Oktopus: it makes uniform
both the search for sub-networks of server-nodes and embedding within sub-DCNs.

123

I. A. Stewart, A. Erickson

Of course, recursive-definability also aids other tasks within DCNs such as routing
(we expand upon this later whenwe discuss the connectivity of recursive-definability).

Allied to a DCN being recursively defined is having an algebraic description of
the recursive definition that makes the search for (recursive) sub-structures and the
utilization of these sub-structures (with respect to embedding, routing, or whatever)
efficient. Each of our DCNs HCN, BCN, BCube, DCell, FiConn, DPillar, SWCube,
SWKautz, and SWdBruijn has a concise algebraic description. However, there is still
much to do in terms of combinatorially investigating these DCNs. For example: we
do not even have a closed form for the number of server-nodes in FiConn; we do
not have a shortest-path routing algorithm for DCell, FiConn, and BCN; and we have
only recently determined the diameter of DPillar [21] and a shortest-path routing
algorithm for DPillar [21] and HCN [23]. Of course, hardly anything is known as
regards automorphisms of these DCNs that would prove practically useful as regards
virtualization (by yielding mappings between embedded sub-structures).

6.1.2 The connectivity of recursive-definability

What can be important as regards recursively defined interconnection networks is
the pattern of interconnection as one builds higher-level networks out of lower-level
networks. In what follows, when we say that a network is recursively defined, we
assume that there are canonical copies of lower-level networks around which the
recursive definition is phrased.

Definition 6 A recursively defined family {X (h): h = 0, 1, . . .} of interconnection
networks is completely connected (see, for example, [9]) if X (0) is connected and the
following holds:

– for each pair of distinct (canonical) copies Y and Z of X (h − 1) in X (h), there
is a path from a node of Y to a node of Z using only the nodes and links that we
added to build X (h) from the copies of X (h − 1).

Again, we have to adapt Definition 6 for DCNs.

Definition 7 A recursively defined family {X (h): h = 0, 1, . . .} of DCNs is com-
pletely connected if X (0) is connected and the following holds:

– for each pair of distinct (canonical) copies Y and Z of X (h − 1) in X (h), there
is a path, which we call a linkage, from a server-node of Y to a server-node of Z
using only the server-nodes, switch-nodes, and links that we added to build X (h)

from the copies of X (h − 1).

However, it is possible that linkages share server-nodes, switch-nodes, or links,
and consequently, the simultaneous use of these paths might incur congestion. If we
can find linkages that are mutually pairwise internally disjoint, then we say that our
recursively defined DCN is strongly completely connected. Each of the recursively
defined DCNs HCN, BCube, DCell, FiConn, and SWCube is strongly completely
connected.

Whilst it is clear that (strongly) completely connected recursively defined DCNs
provide additional flexibility as regards embedding virtual datacenters, they also facil-
itate support for routing as we now demonstrate. Let {X (h): h = 0, 1, . . .} be any

123

The influence of datacenter usage on symmetry in. . .

completely connected recursively defined family of DCNs. Given any two copies of
X (h−1)within X (h), there is at least one linkage incident with a node in both copies.
There is a canonical routing algorithm for the family X as follows:

– if the source node s and the destination node t lie in the same copy of X (h − 1)
within X (h), then route the message from s to t recursively

– if the source node s and the destination node t lie in different copies of X (h − 1)
within X (h), then:
– find a linkage joining the two copies of X (h − 1)
– route the message recursively from s to the node in the copy of X (h − 1)
containing s that is incident with the linkage

– route the message over the linkage
– route the message recursively to t from the node in the copy of X (h − 1)
containing t that is incident with the linkage.

Clearly there are different routing algorithms available when there is more than one
linkage joining copy of X (h−1) in X (h); also, themore the linkages that are available,
the more the scope there is for improving throughput and fault tolerance. It should be
noted that HCN(n, h) is such that there is only 1 linkage between any two copies of
HCN(n, h − 1) within HCN(n, h), with analogous statements as regards the DCNs
DCell and FiConn. However, there are numerous linkages joining two corresponding
sub-DCNs in SWCube and BCube.

We should remark that the above canonical routing algorithm need not be such that
the paths obtained are the shortest possible. For example, as regards WK-recursive
networks, and so HCN, the canonical routing algorithm resulting from the description
above is that from [10, Sect. 3.1] where it is noted that sometimes the paths obtained
are not shortest paths. An improved algorithm is presented in [10, Sect. 3.2]. The
degree of improvement was experimentally validated in [23] where a practical anal-
ysis of the resulting routing algorithms for the DCNs HCN and BCN is undertaken.
Also, in [19], the completely connected nature of FiConn and DCell was utilized to
develop improved routing algorithms, beyond those presented in [31] and [44], by
using the numerous alternative (‘proxy’) routes available. However, irrespective of
whether canonical algorithms in some DCN can be improved or not, having com-
pletely connected recursively defined DCNs means that these canonical algorithms
are readily available (assuming that the algebraic description of the DCN enables a
straightforward implementation, which is the case for HCN, BCube, DCell, FiConn,
and SWCube).

Not only does a completely connected recursively defined DCN support virtualiza-
tion and routing algorithms, but it also supports the generation of spanning trees and
the evolution of spanning trees in the presence of faults; recall that both SecondNet
and Oktopus need to establish spanning trees (for use by a centralized manager) and it
is explicitly stated in [30] that SecondNet has the capacity to evolve this spanning tree
in the presence of faults. The generation of a spanning tree is by an obvious recursive
algorithm and the fact that the DCN is completely connected obviously provides some
flexibility as regards this construction (particularly in the presence of a limited number
of faults).

123

I. A. Stewart, A. Erickson

6.1.3 The flexibility of the recursive decomposition

Many standard interconnection networks, like the families of hypercubes and k-ary
n-cubes, are recursively defined; moreover, they have additional flexibility as regards
their recursive structure. Consider the n-dimensional hypercube Qn for example. The
interconnection network Qn is constructed from two copies of Qn−1 so that adjoining
links are added between every node of one copy of Qn−1 and its counterpart in the other
copy. However, we can partition Qn in this way by choosing to partition over any one
of n dimensions. Such flexibility to the recursive decomposition clearly translates into
flexibility as regards embedding where there is more potential to find sub-networks
withinwhich to embedor so as to avoid faults. TheDCNSWCube shares this additional
flexibility as regards partitioning. On the other hand, the DCNs HCN, BCube, DCell,
and FiConn only have one way to undertake a recursive partition.

Aswe sawearlier,HCN(n, h)does possess various embedded copies ofHCN(n, h−
1) (even though there is only one recursive decomposition). Any recursive embedding
algorithm will clearly benefit from having access to a variety of sub-networks. As
regards recursively defined interconnection networks, the existence of a sub-network
X (h − 1) within a host network X (h) has been considered via studies on reliability:
eachnode is apportioned some failure probability and an analysis of X (h) is undertaken
as to the likelihood of there existing a healthy copy of X (h − 1) within X (h). This
model for reliability was first proposed in [8] (see, for example, [50] for some more
recent developments). Of course, an analogous analysis of reliability in DCNs would
be directly relevant to embedding within recursively defined DCNs, but, as far as we
are aware, no such reliability analysis exists (the only consideration of notions of
reliability in DCNs that we know of can be found in [13]).

In summary, the following aspects of symmetry are important so as to support
virtualization within DCNs.

– A DCN should be recursively defined so that the recursive structure is completely
connected with a choice of linkages between two recursive components. In addi-
tion, there should exist numerous copies of sub-DCNs with a host DCN. The
recursive definition of the DCN should be algebraically concise.

6.2 Support for communication patterns

As we have seen, DCNs need to support various communication patterns, such as
many-to-one, one-to-many, many-to-many, and so on, within sub-networks of the
DCN. Note that if a DCN is recursively defined, then this essentially means that the
DCN itself needs to support such communication patterns (this qualifies the remark
we made right at the end of Sect. 3.3). The most common method by which these
communication patterns are supported is by using spanning trees (see, for example,
[4,12,29–31,46,47,64]). Indeed, BCube [29] andCamdoop [12] utilizemultiple edge-
disjoint spanning trees.

The analysis of aDCNas regards its capacity to supportmany-to-many broadcasts is
usually undertaken by measuring the aggregate bottleneck throughput. The aggregate
bottleneck throughput was established in [29] and is defined as the number of flows

123

The influence of datacenter usage on symmetry in. . .

multiplied by the throughput of the bottleneck flow, where the bottleneck flow is the
flow that receives the smallest throughput (by a flowwemean a path from a source to a
sink complete with a data load; flows are generally used to refer to the transportation of
significant amounts of data where the lifespan of the reserved path is non-trivial). The
measurement of the aggregate bottleneck throughput (see, for example, [29,33,44])
is not usually undertaken with respect to a specific routing algorithm; rather, it is
assumed that all flows traverse a shortest path between the two corresponding server-
nodes. Consequently, the calculation of the bottleneck flow is not always reflective of
the variations in load caused by employing a specific routing algorithm. In short, the
underlying DCN topology and routing algorithms are generally not taken fully into
account in an analysis of many-to-many broadcast support in server-centric DCNs.

There is another important point to note with regard to many-to-many broadcasts
in relation to supporting MapReduce: it is often the case that the key–value pairs
generated by a map task do not constitute a significant amount of data, so that one can
treat this data en masse. This yields an alternative method by which a many-to-many
broadcast relating toMapReduce can be undertaken: if the reducers are interconnected
in the form of a closed path and these reducers are also the mappers, then the different
batches of key–value pairs generated by each mapper can be ‘daisy-chained’ around
the closed path with each reducer pulling out the key–value pairs from the packet (or
small number of packets) that are relevant to it (by ‘daisy chain’ we mean a mapper
receives data from the previous mapper on the closed path, removes data intended
for itself, and passes on the remaining data to the next node on the closed path). The
daisy-chaining implementationmight also help to smooth out traffic spikes. Obviously
it is preferable (so as to avoid undue congestion) that no server-node nor link appears
more than once on this closed path.

For example, consider the DCN HCN(4, 3), as depicted in Fig. 2. If we abstract
switch-nodes as 4-cliques of server-nodes (that is, we are working with the clique-
abstraction of HCN), then it is not difficult to derive a Hamiltonian cycle; the same
applies to HCN(4, 2) and HCN(4, 1). Whilst a cycle in the abstracted WK-recursive
network does not necessarily translate to a cycle in HCN, it does translate to a closed
path containing the corresponding server-nodes, butwhere a switch-nodemight appear
more than once (this is because a server-node-to-server-node path through a switch-
node in HCN is abstracted as a link in the WK-recursive network). However, this
causes no additional congestion or other problems when it comes to ‘daisy-chaining’
data around this closed path in the DCN HCN (as switches in datacenters are non-
blocking). Consequently, sometimes when we say that there is a cycle in some DCN,
what we mean is that there is a closed path corresponding to a cycle in the clique-
abstraction of the DCN. Similarly, when we say that a DCN is Hamiltonian, what we
mean is that there is a Hamiltonian cycle in the clique-abstraction of the DCN.

In order that we might utilize cycles within a DCN so as to facilitate many-to-many
broadcasts relating to MapReduce, it is preferable that we have numerous cycles to
choose from and that these cycles are widespread within the DCN (recall that virtu-
alization dictates that sub-networks within our DCN might be used by some tenant to
undertake a MapReduce and that we have already examined in detail the need for our
DCNs to be amenable and flexible as regards simultaneously accommodating numer-

123

I. A. Stewart, A. Erickson

ous virtual datacenters). A related concept within general interconnection networks
intuitively reflects the existence of cycles.

Definition 8 An interconnection network X on n nodes is pancyclic if there is a cycle
of every length from 3 to n in X , and node-pancyclic (resp. link-pancyclic) if every
node (resp. link) lies on a cycle in X of every length from 3 to n.

Node- and link-pancyclicity are clearly properties relating to symmetry as they reflect
the existence of cycles specific to any particular node or link of the interconnection
network. There are a number of variations in the concept of pancyclicity in the literature
(see, for example, [37]).

Consider theDCNHCNabstracted as aWK-recursive network by replacing switch-
nodes with cliques. The WK-recursive network is pancyclic, so long as the amplitude
is at least 5 [24]. In fact, it was further proved in [26] that if the amplitude is at least 6,
then the WK-recursive network is node-pancyclic, and that whilst the WK-recursive
network of amplitude at least 7 is not link-pancyclic, there exists an m (depending
on the amplitude) for which given any link, there is a cycle of any length at least m
passing through that link. Hence, there is considerable scope for finding cycles in the
DCN HCN.

In the absence of pancyclicity and in the situation where our DCN is recursively
definable, the existence of spanning cycles within each recursive copy would be ben-
eficial (in the above context). Of course, given the recursive-definability, this amounts
to the DCN being Hamiltonian (which is trivially the case forWK-recursive networks,
given the above).Whilst a Hamiltonian (recursively defined) DCN facilitates many-to-
many broadcasts, stronger properties can improve things even further. For example,
it is proved in [39] that a WK-recursive network of amplitude 2n + 1 has n link-
disjoint Hamiltonian cycles from which an almost optimal all-to-all broadcast can be
developed (here, optimality is with respect to an all-port model of computation). The
following property provides additional flexibility with regard to finding Hamiltonian
cycles.

Definition 9 An interconnection network X is Hamiltonian-connected if there is a
Hamiltonian path joining any two distinct nodes.

Of course, when we say that a DCN is Hamiltonian-connected, we mean that its
clique-abstraction is.

The DCNs in this paper have not been extensively studied as to whether they
have properties relating to pancyclicity and Hamiltonicity. However, there are a few
results known and we can sometimes use the relationship of a DCN with an existing
interconnection network in order to use existing results. It was proved in [25] that any
WK-recursive networkof amplitude at least 4 isHamiltonian-connected; consequently,
HCN is Hamiltonian-connected (when all switch-nodes have degree at least 4). It was
shown in [57] that (apart from a very small number of cases) DCell is Hamiltonian-
connected and remains Hamiltonian-connected even in the presence of (a limited
number of) faults. The fact that DCell is strongly completely connected means that it
has numerous useful cycles embedded, with the Hamiltonian connectedness adding
to the flexibility of finding these cycles (it should be added that an algorithm to find a
Hamiltonian path in DCell is given in [57]). Aswas remarked in [57], the constructions

123

The influence of datacenter usage on symmetry in. . .

used there do not apply to FiConn and do not yield pancyclicity results for DCell.
The clique-abstraction of the DCN BCube is the generalized hypercube. It has been
proved in [38] that the generalized hypercube isHamiltonian-connected and pancyclic;
consequently, BCube has these properties too. The clique-abstraction of the DCN
DPillar contains a wrapped butterfly network as a spanning subgraph; consequently, as
a wrapped butterfly network is Hamiltonian [58], so is DPillar. As we have mentioned,
SWCube is derived from the generalized hypercube by replacing each node with
a switch-node and sub-dividing every link with a server-node. However, it is not
immediately apparent as to whether Hamiltonicity and pancyclicity results for the
generalized hypercube translate into analogous results for SWCube; essentially, the
construction of the DCN SWCube from a generalized hypercube, as described above,
corresponds to taking the line graph of a generalized hypercube.

Other aspects of symmetry can support different communication patterns. We have
heard how spanning trees feature widely in supporting communication. Suppose that
we take the clique-abstraction of a DCN and that this graph is node-symmetric. So,
given a source and a target server-node, there is an automorphism mapping the source
to the target. Consequently, we can choose to ‘re-root’ any spanning tree to any cho-
sen server-node by taking its image under an appropriate automorphism; this gives us
added flexibility as to how we utilize spanning trees. Algebraic aspects of intercon-
nection networks should not be underestimated. For example, algebraic constructions
are used in [36] to develop an all-to-all broadcast algorithm for Cayley graphs where
the resulting paths are all shortest paths and where there is a uniform load on nodes.

Some DCN constructions, such as that for FiConn, are not homogeneous; with
FiConn, some server-nodes have degree 1 and some degree 2. Here, traditional node-
symmetry is not the concept that is relevant to us. What is important is the existence
of automorphisms of (the clique-abstraction of) our DCN so that the number of orbits
is as small as possible, where an orbit in this context is a set of server-nodes each
of which can be mapped to any other in the set via an automorphism of the DCN.
The server-nodes of each orbit can be handled similarly; for example, a spanning tree
rooted at one server-node can be algebraically transformed into a spanning tree rooted
at any other server-node in the same orbit. For example, in HCN(4, 1) the ‘corner-
nodes’ clearly form an orbit and it can easily be shown that there is an automorphism
from any non-corner server-node to any other non-corner server-node; thus, the server-
nodes are partitioned into 2 orbits. The study of the automorphisms of server-centric
DCNs has hitherto not been undertaken; indeed, this discussion is the first mention of
the relevance of automorphisms within DCN design.

Finally, let us return to the computation of the aggregate bottleneck throughput
that we highlighted earlier. As we noted, this computation is generally not undertaken
with respect to specific routing algorithms. However, if our DCN is recursively defined
then, as we explained earlier, there are obvious methods to obtain canonical routing
algorithms. Consequently, this framework lends itself to a more accurate analysis of
aggregate bottleneck throughput.

In summary, the following aspects of symmetry are important so as to support
many-to-many broadcasts (relating to MapReduce) as well as other communication
patterns and routing in DCNs.

123

I. A. Stewart, A. Erickson

– A DCN should contain numerous cycles of various lengths, a property that is
reflected in the DCN being pancyclic (or some variation on this theme). In the
absence of pancyclicity, a recursively defined DCN should be Hamiltonian.

– The use of spanning trees to support communication patterns is best undertaken
within DCNs for which the number of orbits of server-nodes (under automor-
phisms) is small.

6.3 Hierarchical DCNs

We end this section with a brief consideration of hierarchical DCNs, motivated by the
construction of the DCNs BCN from (or on top of) the DCNs HCN in [32]; a DCN or
interconnection network is hierarchical if it is constructed from a ‘fusion’ of different
methodologies, e.g. by superimposing one network on another or identifying nodes of
two distinct networks. It is worthwhile commenting on the extension of HCN to BCN
and how this relates to symmetry. First, we explain how to define the DCN BCN from
the DCN HCN.

Suppose that we have a graph G on n nodes. We can take n + 1 copies of G,
say G0,G1, . . . ,Gn , and add n(n+1)

2 additional links so that for every distinct i, j ∈
{0, 1, . . . , n}, there is exactly one link joining a node in Gi to a node in G j and every
node is incident with exactly one new link (this can be done in a number of ways). In
fact, this is essentially the iterative construction used to build the DCN DCell [31].

However, rather than do this with HCN(n, h) replacing G, above, we can alterna-
tively attach to every switch-node of HCN(n, h) m server-nodes called slave-nodes
(recall that we ignored these slave-nodes earlier when we worked with HCN(n, h)).
So, there are mnh slave-nodes adjacent to switch-nodes in HCN(n, h). We now take
mnh+1 copies of HCN(n, h) and undertake the aboveDCell constructionwith respect
to the slave-nodes (as to which links we introduce is clearly defined in [32], although
we can actually introduce these links in a variety of ways; see [31]).

We can extend this construction. We could consider HCN(n, h) as consisting of,
for example, (the canonical) n2 copies of HCN(n, h − 2); each of these copies has
mnh−2 slave-nodes. We might now take mnh−2 + 1 copies of HCN(n, h) and join
corresponding copies of HCN(n, h − 2) according to the DCell construction above.
Full details can be found in [32] (again, as to which links we introduce is clearly
defined in [32]). What is sufficient for us is that the DCN BCN is formed from disjoint
copies of HCN(n, h) by overlaying the DCell construction from [31] (and there are a
number of ways to do this).

The question is: how does the DCN BCN conform to our notions of symmetry
developed so far? In a sense, the formation of any BCN (no matter which construction
is adopted) is a recursive construction, albeit of a different nature to the one used to
build HCN. It introduces many more copies of HCN(n, i), where 0 ≤ i ≤ n, and
since we have argued that the DCN HCN is symmetric, in many of the senses we have
discussed, this can only be a good thing. A negative aspect of the BCN construction is
that it ‘seals’ the DCN, as once one has applied the BCN construction once, one can
go no further. The hierarchical DCN BCN is a fusion of two distinct constructions.
However, we have yet to fully analyse the DCN DCell in terms of (DCN notions of)

123

The influence of datacenter usage on symmetry in. . .

symmetry, and, of course, we have yet to fully consider the symmetric interactions
of the DCN HCN and the overlaying of the DCell construction within BCN. We
leave these topics for another time and close by remarking that the concept of overlay
constructs, as illustrated by the DCN BCN, is an interesting and as yet undeveloped
region of future DCN design.

7 A new virtualization methodology

Let us now turn to a new embedding methodology for virtualization. We look again at
aspects of symmetry in DCNs that aid virtualization but we do this in tandem with a
new methodology to enable virtualization in server-centric DCNs. In so far as we are
aware, this is the first real attempt to, first, consider virtualization in (non-tree-based)
server-centric DCNs, and, second, explicitly use the underlying DCN topology when
embedding virtual DCNs (so addressing a specific direction for future research as
proposed in [5]). However, as we explain later, our methodology is not as topology
specific as one might think as it exploits properties of symmetry inherent within many
server-centric DCNs, and also highlights properties we would wish of new DCNs in
order that virtualization is better supported.

We begin by highlighting our new methodology and its potential benefits; these
benefits are with regard to the practicalities of virtualization. We only describe our
new methodology in sufficient detail so that key design concepts can be grasped; the
full implementation of our methodology, and the necessary empirical experimentation
and analysis, is beyond the scope of this paper and will be undertaken subsequently.
Having outlined our methodology, we look at structural topological properties of
DCNs that might support this methodology (we provide enough detail as regards
our methodology so that the relevance of the underlying aspects of symmetry can
be appreciated). Finally, we briefly review existing server-centric DCNs from the
perspective of these properties and, consequently, how supportive these DCNs might
be to virtualization.

7.1 A new virtualization methodology

Our key observation is simple: a (long) path (or cycle) of server-nodes and switch-
nodes can be used to ‘stack’ virtual DCNs. For concreteness, we illustrate our ideas
by embedding virtual clusters in the DCN HCN.

Suppose, for simplicity, that each server-node can support only one virtualmachine;
that is, the load of any embedding is necessarily 1 (in addition, for simplicity, we
ignore other aspects of the host DCN and the virtual cluster such as memory, storage,
bandwidth, and so on). Consider the copy of HCN(4, 3) in Fig. 3 and the bold grey path
of links (joining the two black switch-nodes whose indices are (1, 2, 1) and (4, 1, 3)).
By regarding this bold grey path of links as a virtual switch, we can embed a virtual
cluster with 256 server-nodes in HCN(4, 3) (each server-node of the virtual cluster
is mapped to a unique server-node of HCN(4, 3); the grey links in Fig. 3 are links
connecting black server-nodes to the virtual switch, whereas the grey server-nodes
are already within the virtual switch). Of course, by taking sub-paths of this path we

123

I. A. Stewart, A. Erickson

Fig. 3 An embedding path in HCN(4, 3)

can obtain analogous embeddings of virtual clusters with up to 256 server-nodes (in a
similar one-to-one matching of virtual machines to host server-nodes).

A more concrete illustration of how we can embed a virtual cluster consisting of
10 virtual machines along a path within HCN(3, 3) is visualized in Fig. 4a. Here: the
white server-nodes host the 10 virtual machines of the virtual cluster; the sub-network
within the dotted lines implements the virtual switch; and the bold dotted black links
are the links which bear the brunt of the traffic. Note how the sub-network hosting the
virtual cluster is a tree; actually, it is a caterpillar (a tree where all nodes are adjacent to
nodes on a central path) with nodes that can be server-nodes or switch-nodes.Whereas
a virtual machine-to-virtual machine route in the virtual cluster is simply a path from
the source virtual machine to the virtual switch and on to the target virtual machine,
in the worst case this path maps to a path in the host DCN consisting of 8 links;
consequently, depending upon the traffic pattern, there will be overheads, in terms of

123

The influence of datacenter usage on symmetry in. . .

Fig. 4 Virtual cluster embeddings in HCN(3, 3)

latency and congestion, to be borne within the host DCN (but, of course, this is true
no matter which methodology one uses to embed).

However, with reference to Fig. 4, the linear nature of our embedded path enables
us to ‘stack’ additional virtual cluster embeddings one after the other along this path,
in a convenient and easy-to-maintain fashion. For example, suppose that we had an
additional virtual cluster to embed where this additional virtual cluster consists of 5
virtual machines. We could stack this virtual cluster on our path by using the 2 unused
server-nodes adjacent to one of the switch-nodes involved in the embedding of the
first virtual cluster, along with 3 server-nodes adjacent to the next switch-node on the
path, as depicted in Fig. 4b. In this way, we can use the structural property of a DCN
having a long path or cycle to store and organize the embedding of virtual clusters.
We now highlight the potential benefits of our approach.

7.1.1 Migration

Virtual clusters come and go within virtualization, and our methodology lends itself
to the allocation and migration of virtual cluster embedding. For example, suppose
that our first virtual cluster (consisting of 10 virtual machines) terminates. We have
a choice of either reusing the freed server-nodes by embedding subsequent virtual
clusters or we can migrate existing embeddings by ‘sliding’ them down our stack
towards the source. So, for instance, our second virtual cluster (of 5 virtual machines)
could be re-embedded using the 4 server-nodes adjacent to the black switch-node (in
Fig. 4) together with an adjacent server-node (of course, we still embed within our
chosen caterpillar within HCN(3, 3)). Moreover, any other embedded virtual clusters
can be ‘slid’ down the stack in exactly the same way. Consequently, we can easily
migrate existing embeddings of virtual clusters in order to group together (in terms
of locality and according to whatever migration strategy we choose to employ) large
numbers of unused server-nodes and switch-nodes so as to provide capacity for future
embeddings.Of course, the locality inherentwithin the path facilitates thismigration of

123

I. A. Stewart, A. Erickson

virtual clusters by limiting network traffic generated by the re-embedding. In practice,
of course, the migration of virtual cluster embeddings will be determined by a number
of factors such as the fragmentation caused by existing embeddings, the (expected)
lifespan of existing embeddings, the (expected) arrival of new virtual clusters, and
the cost of migration. One can clearly appreciate the ease by which we can cope
with migration within our caterpillar when one compares with the analogous situation
within, say, a tree.

7.1.2 Locality and global data collection

Our approach should be compared with the existing (switch-centric) virtualization
embedding approaches that we highlighted earlier. The only structural assumptions
theymake are that servers are organized in racks in a tree-like fashion and that commu-
nication is via top-of-rack switches, edge switches, and core switches. The assumption
is that the embedding algorithm has complete knowledge of which virtual cluster is
embedded where within the host DCN; such is the case for SecondNet, for example,
where the DCN collects its information via a spanning tree signalling channel. Of
course, there is a cost in that there needs to be a continual collection of data so as
to ascertain exactly which virtual clusters have terminated, where resources are free,
and whether a migration should be undertaken (though as is noted in [30], this span-
ning tree is only used for signalling purposes and so the traffic generated within it
is light). There is nothing to stop us mirroring SecondNet and generating an analo-
gous signalling spanning tree, where this tree is dynamically constructed as nodes and
links become faulty. Alternatively, it could be the case that our path-based methodol-
ogy provides an alternative signalling mechanism (although we have not pursued this
consideration any further).

Thenature of existingvirtualization algorithms is that adhoc (relative to the underly-
ing topology) distributions of virtual clusters within the host DCN result; in particular,
there is no guarantee of locality (consequently, migration costs might be higher). Our
approach guarantees locality and also yields the possibility of improving data collec-
tion by limiting migration traffic generated, as we now explain.

A highly localized traffic-limiting approach is to think of data collection being
via a ‘window’ that continually moves up and down the caterpillar (or at least the
portion of the path within which there are currently virtual clusters embedded) so that
when ‘gaps’ are found, embedded virtual clusters are ‘slid’ down the stack so as to
fill the gap. Such a ‘sliding window’ approach uses the locality inherent within the
path and within the virtual cluster embeddings to limit fragmentation and so facilitate
new embeddings. The key point is that such a defragmentation approach could not
be employed with embedding methodologies that are tree based or based around ant
colony optimization, greedy topology-agnostic heuristics, or linear programming.

7.1.3 Energy efficiency

Recent attempts to facilitate virtualization have been geared towards energy efficiency
and it is appropriate thatwehighlight potential benefits of our proposedmethodology in
this light.Aswe stated earlier, as yet there have been no attempts to tackle virtualization

123

The influence of datacenter usage on symmetry in. . .

in a server-centric setting; however, the energy models as regards virtualization and
energy efficiency in switch-centric DCNs hold good in server-centric DCNs. The
fundamentals concerning energy efficiency are well laid out in [14], for example.
Broadly speaking: the energy consumption of a server depends upon the CPU load,
with the idle server still consuming a significant fraction of the energy consumed
when it is fully loaded; and the energy consumption of a switch is dependent upon
the number of ports that are disabled, with a switch with all its ports disabled still
consuming a significant fraction of the energy consumed when all ports are enabled.
The upshot, from [14], is that (not surprisingly) it makes sense to run CPUs with as
high a load as possible and to enable as many switch ports as possible. Note that our
methodology supports both intuitive aims: in an unfragmented embedding of virtual
clusters along our path, there is at most one switch-node with an enabled port and a
disabled port, and there is most one server-node where the CPU is not idle and not
fully loaded. Also, it is not difficult to appreciate that our methodology lends itself
to powering down unused server-nodes and links (given a virtual cluster embedding
scenario).

7.2 Symmetry for virtualization

Given our proposed virtualizationmethodology for server-centric DCNs, we now look
at structural topological properties that support the usage of this methodology and so
virtualization (on the grounds of simplicity, we continue to embed virtual clusters).

Ideally, we want a path upon which every switch-node lies and is such that every
server-node is either on the path or adjacent to a switch-node; that is, we have an
embedded caterpillar containing all switch-nodes on the central spine. Existing server-
centric DCNs are often such that every server-node is adjacent to at least one switch-
node; for such a DCN, if we can find a path that contains every switch-node then
we obtain our required caterpillar. Note that whilst finding a caterpillar in an arbitrary
graph isNP-hard [42], DCNs are highly structured by design and consequently finding
caterpillars should be much easier.

Consider HCN(n, h). By identifying a switch-node of HCN(n, h) and its adjacent
server-nodes with a ‘mega-node’, with links between two mega-nodes being inher-
ited in the obvious way, we obtain a WK-recursive network of level h − 1. As we
have already seen, any WK-recursive network of amplitude at least 4 is Hamiltonian-
connected [25]; this clearly yields a connected caterpillar in HCN(n, h) (when n ≥ 4).
Moreover, the Hamiltonian connectivity gives us additional flexibility as to which
caterpillar we use to support our virtualization methodology.

However, in order to use caterpillars, derived from such Hamiltonian paths, as
embedding vehicles, not only do we need such Hamiltonian paths to exist (as they
do in WK-recursive networks), but we need to know how to construct them. As it
happens, the proof of Hamiltonian connectivity in [25] is constructive (it uses the
recursive-definability of WK-recursive networks); hence, we can build caterpillars in
HCN as an aid to embedding virtual clusters.

There is yet more flexibility as regards the availability of myriad paths in HCN
along which to embed virtual clusters, for, as we saw earlier, a WK-recursive network

123

I. A. Stewart, A. Erickson

of amplitude at least 5 is pancyclic [24] and so we can use any (maximal length) path
on some cycle to embed our virtual clusters; indeed, when the amplitude is at least 6,
the WK-recursive network is node-pancyclic [26]. Additionally, and as we mentioned
earlier, a WK-recursive network of amplitude 2n + 1 has n link-disjoint Hamiltonian
cycles [39]; these link-disjoint cycles might be used to simultaneously embed virtual
clusters via a more sophisticated embedding algorithm.

An analogous methodology can be used to embed oversubscribed virtual clus-
ters too: the different virtual clusters within the oversubscribed virtual cluster can be
embedded consecutively along a (Hamiltonian) path and the path provides for com-
munication between server-nodes of the same virtual cluster as well as server-nodes
of different virtual clusters.

7.3 Existing DCNs

The upshot of our discussion is that general ‘symmetry’ properties relating to Hamil-
tonicity and its variations (such as Hamiltonian connectedness and pancyclicity) are
extremely useful properties for various abstractions of a DCN to have in relation to
supporting virtualization (via our novel methodology).We now examine this comment
in further detail and in relation to other existing DCNs.

Of the existing DCNs mentioned earlier, FiConn, DPillar, HCN, BCN, SWCube,
SWKautz, and SWdBruijn are all dual-port DCNs, so that every server-node is
adjacent to at least one switch-node and at most one server-node (note that dual-
port server-centric DCNs can support datacenters built with commodity-off-the-shelf
servers which ordinarily only have two NIC ports). Consequently, if we abstract these
DCNs so as to form a graph where the nodes are the switch-nodes and where there is
an edge joining two nodes if, and only if, there is a path of server-nodes joining the
two corresponding switch-nodes in the DCNs, then a Hamiltonian cycle or path in this
graph yields a spanning caterpillar in the DCN (note that it might be the case that a
pendant server-node in this spanning caterpillar is adjacent to two switch-nodes). Let
us refer to the graph abstracted in this way as the switch-abstraction of the DCN. As
we noted above, the switch-abstraction of HCN(n, h), where h ≥ 1, is aWK-recursive
network of amplitude n and dimension h − 1.

It is not difficult to see that the switch-abstraction of DPillar contains a wrapped
butterfly network; consequently, as a wrapped butterfly network is Hamiltonian [58],
we obtain a spanning caterpillar inDPillar. Aswe remarked earlier, the constructions of
SWCube, SWKautz, and SWdBruijn are all of the same type. In order to build SWCube
(resp. SWKautz, SWdBruijn), take a generalized hypercube (resp. Kautz graph, de
Bruijn digraph) and regard the nodes as switch-nodes with a server-node ‘dividing’
each edge (so as to transform a switch-node-to-switch-node link into a switch-node-
to-server-node link followed by a server-node-to-switch-node link; the orientations
for the de Bruijn digraph are simply removed from the edges). Consequently, the
switch-abstraction of SWCube (resp. SWKautz, SWdBruijn) reverts us back to the
generalized hypercube (resp. Kautz graph, de Bruijn digraph). It is well known that
a generalized hypercube, a Kautz graph, and a de Bruijn digraph are Hamiltonian
(see, for example, [61]) and so we obtain our spanning caterpillar in each of SWCube,

123

The influence of datacenter usage on symmetry in. . .

SWKautz, and SWdBruijn. The precise structure of the switch-abstractions of DCell,
FiConn, and BCube is not clear and deserves further analysis.

8 Conclusions

We have covered a lot of ground in this paper. We have undertaken a thorough consid-
eration of symmetry within server-centric DCNs, motivated by aspects of datacenter
usage, namely virtualization and the implementation of communication patterns. We
have developed structural metrics, involving recursive-definability, the existence and
construction of spanning trees, pancyclicity, and variations in Hamiltonicity, and
argued that these metrics imply the suitability of DCNs as regards their capacity
for virtualization and to support various communication patterns. Our focus on the
underlying server-centric DCN topologies has enabled us to outline a new embedding
methodology for server-centric DCNs. Moreover, whilst we have worked with the
underlying DCN topology, the structural properties that we have highlighted are such
as to make our embedding technique widely applicable and not tied to a specific DCN
topology. We have also emphasized the importance and started the development of
algebraic techniques to support virtualization and the implementation of communica-
tion patterns, and our analysis has resulted in combinatorial abstractions of DCNs as
graphs that are directly relevant to virtualization and the implementation of commu-
nication patterns.

It is important that a proper understanding of our research is appreciated. What we
have done is to highlight aspects of datacenter usage and, from this usage, derived
topological properties of DCNs relating to symmetry that will support this usage. We
do not claim that these topological properties are definitive as regards DCN design
in relation to symmetry or usage, for there are many aspects of datacenter usage
that we have not considered. For example, in terms of traffic patterns, we have only
considered many-to-many, whereas in reality they are numerous others. What we do
claim is that if a DCN possesses the topological properties that we have highlighted
here, then it will, in general, be amenable to virtualization and supporting certain
communication patterns. Our paper has initiated a closer relationship between DCN
design and the usage to which datacenters are put; this relationship has, up until now,
not been significantly considered.

Whilst we feel that we have successfully motivated the consideration of aspects of
symmetry as regards the design of server-centric DCNs, we also feel that our research
has opened up a number of important avenues for further research; indeed, one of the
purposes of our paper is to provide the platform for subsequent long-term projects,
four of which we highlight below and none of which could be undertaken without
recourse to the research in this paper.

8.1 Developing server-centric virtualization methodologies

The most obvious direction for research is as regards our outline (in Sect. 7) of a
new methodology to embed guest topologies in non-tree-based server-centric DCNs.
Note that our proposed new virtualization methodology guarantees locality and has

123

I. A. Stewart, A. Erickson

the potential to improve data collection by limiting the amount of migration traffic
generated. We intend to further develop this methodology so that we obtain a fully
operational implementation.Wealso intend to implement virtualizationmethodologies
based on the principles inherent within SecondNet and Oktopus so as to evaluate the
different methodologies against each other and across a wide range of server-centric
DCNs. This will allow us to empirically evaluate the various graph-theoretic metrics
and notions of symmetry that we have proposed. However, this will be a significant
undertaking.

Let us highlight here some tasks that need to be accomplished in order to
fully develop our proposed server-centric virtualization methodology. Our proposed
methodology relies on the existence of (long) paths and cycles in the underlying DCN.
Whilst we have exhibited such paths and cycles in the DCNHCN (cf. Fig. 3), we need
to find paths and cycles in other server-centric DCNs too. These paths and cycles
will need to be algorithmically constructible. Having found our paths and cycles, we
need to develop algorithms to ‘stack’ and ‘slide’ virtual clusters within the embedded
path (cf. Sect. 7.1), which will be parameterized by the topological structure of the
virtual clusters to be embedded and the rate at which migration needs to be under-
taken. The resulting algorithmic framework will need to be empirically tested across
a range of existing server-centric DCNs. This is entirely feasible, but will be algo-
rithmically involved. In addition, the integration of a virtualization methodology with
energy efficiency adds yet more demands.

8.2 Devising generic combinatorial constructions to provide symmetry

Our paper has initiated a closer relationship between theoretical computer science
(in particular, graph theory) and the design of server-centric DCNs. The design of
DCNs has hitherto been undertaken piecemeal, in that different DCNs have been pro-
posed in an ad hoc fashion with no real focus on generic structural properties. We
hope that our paper has helped to formalize some of the design methodologies used
so far. It is interesting that many of the existing DCNs possess strong relationships
with established interconnection networks, e.g. HCN with WK-recursive networks,
BCube and SWCube with generalized hypercubes, and also that established combi-
natorial constructions feature in the construction of these DCNs (albeit implicitly),
e.g. the construction of SWCube, SWKautz, and SWdBruijn from the line graphs of
generalized hypercubes, Kautz digraphs, and de Bruijn digraphs, respectively. It is
also interesting that graph-theoretic abstractions of a DCN, as its clique-abstraction
and its switch-abstraction, have key roles to play.

A concerted research effort should now be undertaken to ascertain generic com-
binatorial constructions that yield new server-centric DCNs and to explore the wider
application of these constructions. A recent paper has followed this line of research
and proposed the stellar transformation which takes any interconnection network and
immediately derives a corresponding dual-port server-centric DCN [22] (the construc-
tion is similar to those used to build SWCube, SWKautz, and SWdBruijn except that
the sub-division of links is with a pair of server-nodes). In [22], an instantiation of this
construction using generalized hypercubes is empirically compared with FiConn and
DPillar (the results are very promising). However, and pertinent to the research in this

123

The influence of datacenter usage on symmetry in. . .

paper, there needs to be a focus on combinatorial constructions that provide support
for datacenter usage and communication patterns, together with their integration with
energy efficiency; up until now, these aspects have not influenced design at all. In
particular, techniques to design new server-centric DCNs encompassing the relevant
aspects of symmetry we have highlighted here, such as pancyclicity, Hamiltonicity,
and so on, need to be established.

8.3 Analysing symmetry within existing DCNs

ExistingDCNs are as yet not fully understood in a combinatorial or algebraic sense;we
mentioned earlier (inSect. 6.1.1) our current lackof knowledge as regards, for example,
the exact number of server-nodes in FiConn, and also the progress only recently made
as regards finding optimal routing algorithms for DPillar and HCN. The key point is
that existing DCNs are not well known outside the (engineering-oriented) datacenter
community yet they are combinatorial objects that will be of interest to theoreticians
and for which theoreticians can prove new properties and algorithms. Such properties
and algorithms can then be integrated within more holistic simulations of the DCNs
and their practical efficacy evaluated.

As regards the analysis of existing DCNs in relation to the research proposed in
this paper, what is required is a theoretical consideration of the degree to which these
DCNs adhere to our principles of symmetry; one reason being so that we can see how
amenable these DCNs are as regards to supporting the virtualization methodology
described above. Of course, this should be combined with extensive simulations of
the DCNs under new virtualization methodologies and also under many-to-may traffic
patterns (and indeed other traffic patterns arising through datacenter usage). A start has
been made in, for example, [57]. As regards simulation, we have developed an open-
source, flow-based simulator INRFlow [20] that is specifically designed for flow-based
simulation in server-centricDCNs andwhich can be extended in order to perform these
simulations.

8.4 Supporting other applications and traffic patterns

We have necessarily had to limit our consideration to virtualization, in terms of appli-
cations, and many-to-many traffic patterns, in terms of communication primitives.
Even with these limits, we have seen that the situation is complex. However, the real-
ity is that other applications and traffic patterns will impact upon DCN design too, and
similar analyses need to be undertaken with respect to alternative usage and traffic.
Our focus on virtualization and many-to-many traffic was because of their widespread
nature. Of course, we should not expect that alternative usage and traffic frameworks
will necessarily yield similar results. As ever in the design of interconnection net-
works, no matter what the context, there are numerous tensions, with demands often
working against each other, and at the heart of the matter is securing a design that can
be implemented so that a good overall general performance is secured. In summary,

123

I. A. Stewart, A. Erickson

there is tremendous scope for the fusion of theory and practice in order to better design
datacenters and their networks.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Abts D, Felderman B (2012) A guided tour through data-center networking. ACM Queue 10(5):1–13
2. Akers SB, Krishnamurthy B (1989) A group-theoretic model for symmetric interconnection networks.

IEEE Trans Comput 38(4):555–566
3. Al-Fares M, Loukissas A, Vahdat A (2008) A scalable, commodity data center network architecture.

In: Proceedings of ACM SIGCOMM, pp 63–74
4. Ballani H, Costa P, Karagiannis T, Rowstron A (2011) Towards predictable datacenter networks. In:

Proceedings of ACM SIGCOMM, pp 242–253
5. Bari MF, Boutaba R, Esteves R, Granville LZ, Podlesny M, Rabbani MG, Zhang Q, Zhani MF (2013)

Data center network virtualization: a survey. IEEE Commun Surv Tutor 15(2):909–928
6. BarrosoLA,HoelzleU (2009)Thedatacenter as a computer: an introduction to the designofwarehouse-

scale machines. Morgan and Claypool, San Rafael
7. Bilal K, Malik SUR, Khalid O, Hameed A, Alvarez E, Wijaysekara V, Irfan R, Shrestha S, Dwivedy

D, Ali M, Shahid Khan U, Abbas A, Jalil N, Khan SU (2014) A taxonomy and survey on green data
center networks. Future Gener Comput Syst 36:189–208

8. Chang Y, Bhuyan LN (1995) A combinatorial analysis of subcube reliability in hypercubes. IEEE
Trans Comput 44(7):952–956

9. ChenG-H,HwangS-C,SuM-Y,DuhD-R (1998)Ageneral broadcasting scheme for recursive networks
with complete connection. In: Proceedings of International Conference on Parallel and Distributed
Systems (ICPADS), pp 248–255

10. ChenC-H,DuhD-R (1994)Topological properties, communication, and computation onWK-recursive
networks. Networks 24(6):303–317

11. Chen K, Hu C, Xin Z, Zheng K, Chen Y, Vasilakos AV (2011) Survey on routing in data centers:
insights and future directions. IEEE Netw 25(4):6–10

12. Costa P, Donnelly A, Rowstron A, O’Shea G (2012) Camdoop: exploiting in-network aggregation for
big data applications. In: Proceedings of 9th USENIX Symposium on Networked Systems Design and
Implementation

13. Couto RDS, Secci S, Campista MEM, Costa LHMK (2016) Reliability and survivability analysis of
data center network topologies. J Netw Syst Manag 24(2):346–392

14. Dai X, Wang JM, Bensaou B (2016) Energy-efficient virtual machines scheduling in multi-tenant data
centers. IEEE Trans Cloud Comput 4(2):210–221

15. Dally WJ, Towles B (2004) Principles and practices of interconnection networks. Morgan Kaufmann,
Los Altos

16. Ding Z, Guo D, Chen X, Luo X (2012) Performing MapReduce on data centers with hierarchical
structures. Int J Comput Commun Control 7(3):432–449

17. Ding Z, Guo D, Liu X, Luo X, Chen G (2012) A MapReduce-supported network structure for data
centers. Concurr Comput Pract Exp 24(12):1271–1295

18. Drutskoy D, Keller E, Rexford J (2013) Scalable network virtualization in software-defined networks.
IEEE Internet Comput 17(2):20–27

19. Erickson A, Kiasari A, Navaridas J, Stewart IA (2015) Routing Algorithms for Recursively-defined
Data Center Networks. Proceedings of 13th IEEE International Symposium on Parallel and Distributed
Processing with Applications (ISPA), pp 84–91

20. Erickson A, Kiasari AE, Pascual Saiz J, Navaridas J, Stewart IA (2016) Interconnection networks
research flow evaluation framework (INRFlow) [software]. https://bitbucket.org/alejandroerickson/
inrflow

123

http://creativecommons.org/licenses/by/4.0/
https://bitbucket.org/alejandroerickson/inrflow
https://bitbucket.org/alejandroerickson/inrflow

The influence of datacenter usage on symmetry in. . .

21. Erickson A, Kiasari A, Navaridas J, Stewart IA (2017) An optimal single-path routing algorithm in the
datacenter network DPillar. IEEE Trans Parallel Distrib Syst 28(3):689–703

22. Erickson A, Stewart IA, Kiasari AE, Navaridas J (2017) The Stellar transformation: from interconnec-
tion networks to datacenter networks. Comput Netw 113:29–45

23. Erickson A, Stewart IA, Pascual JA, Navaridas J (2017) Improved routing algorithms in the dual-port
datacenter networks HCN and BCN. Future Gener Comput Syst 75:58–71

24. Fernandes R, Friesen DK, Kanevsky A (1994) Embedding rings in recursive networks. In: Proceedings
of 6th IEEE Symposium on Parallel and Distributed Processing, pp 273–280

25. Fu J (2004) Hamiltonian-connectedness of the WK-recursive network. In: Proceedings of 7th Interna-
tional Symposium on Parallel Architectures, Algorithms and Networks (ISPAN), pp 569–574

26. Fang J-F, Huang C-H (2014) On vertex-pancyclicity and edge-pancyclicity of the WK-recursive net-
work. Inf Sci 287:131–139

27. Ghemawat S, Gobioff H, Leung S-T (2003) The Google file system. ACM SIGOPS Oper Syst Rev
37(5):29–43

28. Greenberg A, Hamilton JR, Jain N, Kandula S, Kim C, Lahiri P, Maltz DA, Patel P, Sengupta S (2009)
VL2: a scalable and flexible data center network.ACMSIGCOMMComputCommunRev 39(4):51–62

29. Guo C, Lu G, Li D, Wu H, Zhang X, Shi Y, Tian C, Zhang Y, Lu S (2009) BCube: a high perfor-
mance, server-centric network architecture for modular data centers. SIGCOMM Comput Commun
Rev 39(4):63–74

30. Guo C, Lu G, Wang HJ, Yang S, Kong C, Sun P, Wu W, Zhang Y (2010) SecondNet: a data center
network virtualization architecture with bandwidth guarantees. In: Proceedings of ACM Conference
on Emerging Networking Experiments and Technology, article no. 15

31. GuoC,WuH, TanK, Shi L, ZhangY, Lu S (2008) DCell: a scalable and fault-tolerant network structure
for data centers. In: Proceedings of IEEE SIGCOMM, pp 75–86

32. Guo D, Chen T, Li D, Li M, Liu Y, Chen G (2014) Expandible and cost-effective network structures
for data centers using dual-port servers. IEEE Trans Comput 62(7):1303–1317

33. Guo D, Li D, Wu J, Zhou X (2014) DCube: a family of network structures for containerized data
centers using dual-port servers. Comput Commun 53:13–25

34. HammadiA,Mhamdi L (2014)A survey on architectures and energy efficiency in data center networks.
Comput Commun 40:1–21

35. Heydemann M-C, Ducourthial B (1997) Cayley graphs and interconnection networks. In: Hahn G,
Sabidussi G (eds) Graph symmetry: algebraic methods and applications, NATO science series C, vol
497. Springer, Dordrecht, pp 167–226

36. HeydemannMC,Meyer JC, Sotteau D (1989) On forwarding indices of networks. Discrete Appl Math
23:103–123

37. Hsu L-H, Lin C-K (2008) Graph theory and interconnection networks. CRC Press, Boca Raton
38. Huang C-H, Fang J-F (2008) The pancyclicity and the Hamiltonian-connectivity of the generalized

base-b hypercube. Comput Electr Eng 34(4):63–269
39. Huang C-H, Fang J-F, Yang C-Y (2006) Edge-Disjoint Hamiltonian Cycles of WK-Recursive Net-

works. In: Proceedings of 7th International Workshop on Applied Parallel Computing, Lecture Notes
in Computer Science, vol 3732, pp 1099–1104

40. Jerger NE, Peh L-S (2009) On-chip networks. Morgan and Claypool, San Rafael
41. Kachris C, Tomkos I (2012) A survey on optical interconnects for data centers. IEEE Commun Surv

Tutor 14(4):1021–1036
42. Khosravani M (2011) Searching for optimal caterpillars in general and bounded treewidth graphs. PhD

Thesis, University of Auckland
43. Lakshmivarahan S, Jwo J-S, Dhall SK (2003) Symmetry in interconnection networks based on Cayley

graphs of permutation groups: a survey. Parallel Comput 19(4):361–407
44. Li D, Guo C, Wu H, Tan K, Zhang Y, Lu S, Wu J (2011) Scalable and cost-effective interconnection

of data-center servers using dual server ports. IEEE/ACM Trans Netw 19(1):102–114
45. Li D, Wu J (2015) On data center network architectures for interconnecting dual-port servers. IEEE

Trans Comput 64(11):3210–3222
46. Li D, Xu M, Liu Y, Xie X, Cui Y, Wang J, Chen G (2014) Reliable multicast in data center networks.

IEEE Trans Comput 63(8):2011–2024
47. Li D, Yu J, Yu J, Wu J (2011) Exploring efficient and scalable multicast routing in future data center

networks. In: Proceedings of IEEE INFOCOM, pp 1368–1376

123

I. A. Stewart, A. Erickson

48. Li D, Zhu J, Wu J, Guan J, Zhang Y (2015) Guaranteeing heterogeneous bandwidth demand in multi-
tenant data center networks. IEEE/ACM Trans Netw 23(5):1648–1660

49. Liao Y, Yin J, Yin D, Gao L (2012) DPillar: dual-port server interconnection network for large scale
data centers. Comput Netw 56(8):2132–2147

50. Lin L, Xu L, Zhou S, Wang D (2015) The reliability of subgraphs in the arrangement graph. IEEE
Trans Reliab 64(2):807–818

51. Liu Y, Muppala JK, Veeraraghavan M, Lin D, Katz J (2013) Data center networks: topologies, archi-
tectures and fault-tolerance characteristics. Springer, Berlin

52. Mysore RN, Pamboris A, Farrington N, Huang N, Miri P, Radhakrishnan S, Subramanya V, Vahdat
A (2009) PortLand: a scalable fault-tolerant layer 2 data center network fabric. ACM SIGCOMM
Comput Commun Rev 39(4):39–50

53. Popa L, Ratnaswamy S, Iannaccone G, Krishnamurthy A, Stoica I (2010) A cost comparison of data
center network architectures. In: Proceedings of 6th International Conference on EmergingNetworking
Experiments and Technologies (CoNEXT), article no. 16

54. Sherwood R, Chan M, Covington A, Gibb G, Flajslik M, Handigol N, Huang T-Y, Kazemian P,
Kobayashi M, Naous J, Seetharaman S, Underhill D, Yabe T, Yap K-K, Yiakoumis Y, Zeng H, Appen-
zeller G, Johari R, McKeown N, Parulkar G (2010) Carving research slices out of your production
networks with OpenFlow. SIGCOMM Comput Commun Rev 40(1):129–130

55. Vecchia GD, Sanges C (1987) Recursively scalable networks for message passing architectures. In:
Proceedings of International Conference on Parallel Processing and Applications (ICPP), pp 33–40

56. Wang B, Qi Z, Ma R, Guan H, Vasilakos AV (2015) A survey on data center networking for cloud
computing. Comput Netw 91:528–547

57. Wang X, Erickson A, Fan J, Jia X (2015) Hamiltonian properties of DCell networks. Comput J
58(11):2944–2955

58. Wong SA (1995) Hamilton cycles and paths in butterfly graphs. Networks 26(3):145–150
59. WuK, Xiao J, Ni LM (2012) Rethinking the architecture design of data center networks. Front Comput

Sci 6(5):596–603
60. Xu F, Liu F, Jin H, Vasilakos AV (2014) Managing performance overhead of virtual machines in cloud

computing: a survey, state of the art, and future directions. Proc IEEE 102(1):11–31
61. Xu J (2001) Topological structure and analysis of interconnection networks. Kluwer, Dordrecht
62. Xu M, Shang Y, Li D, Wang X (2013) Greening data center networks with throughput-guaranteed

power-aware routing. Comput Netw 57(15):2880–2899
63. Zhang Q, Cheng L, Boutaba R (2010) Cloud computing: state-of-the-art and research challenges. J

Internet Serv Appl 1(1):7–18
64. Zhang Y, Ansari N (2013) On architecture design, congestion notification, TCP incast and power

consumption in data centers. IEEE Commun Surv Tutor 15(1):39–64
65. Zhao Y, Huang Y, Chen K, YuM,Wang S, Li D (2015) Joint VM placement and topology optimization

for traffic scalability in dynamic datacenter networks. Comput Netw 80:109–123
66. Zhu F, Wang H (2016) A modified ACO algorithm for virtual network embedding based on graph

decomposition. Comput Commun 80:1–15
67. Zhou S (2009) A class of arc-transitive Cayley graphs as models for interconnection networks. SIAM

J Discrete Math 23(2):694–714

123

	The influence of datacenter usage on symmetry in datacenter network design
	Abstract
	1 Introduction
	1.1 Datacenter network design
	1.2 Evaluation of designs
	1.3 Datacenter usage
	1.4 Our contributions
	1.5 The structure of this paper

	2 Basic definitions and concepts
	3 Datacenter usage
	3.1 Virtualization
	3.1.1 SecondNet
	3.1.2 Oktopus

	3.2 Implementing communication patterns
	3.3 The basic influence of usage

	4 Symmetry
	4.1 Symmetry in distributed-memory multiprocessors
	4.2 Symmetry in DCNs

	5 Illustrative DCNs
	6 Aspects of symmetry in DCNs
	6.1 Recursively defined DCNs
	6.1.1 The automatic provision of virtual datacenters in clouds
	6.1.2 The connectivity of recursive-definability
	6.1.3 The flexibility of the recursive decomposition

	6.2 Support for communication patterns
	6.3 Hierarchical DCNs

	7 A new virtualization methodology
	7.1 A new virtualization methodology
	7.1.1 Migration
	7.1.2 Locality and global data collection
	7.1.3 Energy efficiency

	7.2 Symmetry for virtualization
	7.3 Existing DCNs

	8 Conclusions
	8.1 Developing server-centric virtualization methodologies
	8.2 Devising generic combinatorial constructions to provide symmetry
	8.3 Analysing symmetry within existing DCNs
	8.4 Supporting other applications and traffic patterns

	References

