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Abstract

In reliability mathematics, optimisation of maintenance policy is derived based on

reliability indexes such as the reliability or its derivatives (e.g., the cumulative fail-

ure intensity or the renewal function) and the associated cost information. The

reliability indexes, also referred to as models in this paper, are normally estimated

based on either failure data collected from the field or lab data. The uncertainty

associated with them is sensitive to factors such as the sparsity of data. For a com-

pany that maintains a number of different systems, developing maintenance policies

for each individual system separately and then allocating maintenance budget may

not lead to optimal management of the model uncertainty and may lead to cost-

ineffective decisions. To overcome this limitation, this paper uses the concept of risk

aggregation. It integrates the uncertainty of model parameters in optimisation of

maintenance policies and then collectively optimises maintenance policies for a set

of different systems, using methods from portfolio theory. Numerical examples are

given to illustrate the application of the proposed methods.
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1 Introduction

Optimisation of maintenance policies, in particular planning preventive maintenance activ-

ities, is an important research topic in reliability mathematics with great relevance to real

world applications. It helps the asset managers to monitor the condition of assets and to un-

derstand the financial exposure associated with maintenance costs. Many existing methods

for maintenance policy optimisation are based on the assumption that the true and precise

reliability indexes, also referred to as models in this paper, of asset reliability can be obtained.

This assumption is unrealistic, in the sense that model uncertainty exists, in particular if

model parameters are estimated based on available data. Existing methods for maintenance

planning tend to neglect such model uncertainty, which may be particularly problematic if

many similar units need to be maintained.

This paper considers maintenance planning under uncertainty about parameter values in

an assumed model. The approach proposed is based on the use of sample data to estimate

the optimal maintenance policy, which minimizes the expected cost and its variance. The

method involves defining a model and estimating its parameters from data. Consequently,

estimating the variance for the expected cost (which is a function of the parameters) involves

the variance estimated for these parameters.

1.1 Prior work

Maintenance policies are normally developed through applying the least-cost methodology, in

which the optimum maintenance policy with the minimised expected cost rate on maintaining

a stand-alone system within a given time period is sought (Wang, 2002). To formulate the

expected cost rate requires reliability indexes such as the cumulative failure function and the

renewal indexes, and cost information such as cost of failure and cost of maintenance (see

1 Corresponding author. Email: s.m.wu@kent.ac.uk. Telephone: 0044 1227 827 940.
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Moghaddass et al. (2015); Zhang & Yang (2015), for example).

Reliability indexes are normally estimated based on lab data and failure data collected from

the field (Wu & Scarf, 2015). The sparsity of such data varies from case to case, which

can result in different efficiency levels of the maintenance models, or model uncertainty.

It is known that three main sources of uncertainties in models stem from (1) data uncer-

tainty (e.g. measurement errors, small sample size, etc); (2) model parameters (uncertainty

of model parameters); and (3) model structural uncertainty (models are too simple or too

complicated). As identified by Aven (2001), the following two levels of uncertainty exist

regarding maintenance models.

Level 1. At the first level, there is uncertainty about observable quantities such as the time

to the next failure, for which we develop probability models to describe the uncertainty.

Level 2. At the second level there is uncertainty regarding unobservable quantities such as

model structure and model parameters, which stems from the quality of the first level such

as the size of observed failure data.

As highlighted by Percy et al. (2010), failure data can be sparse and maintenance schedul-

ing problems are notoriously sensitive to the inaccuracy inherent in model structure and

parameter estimates.

In reality, there may be the following scenarios with regard to data collection.

No data scenario. For newly developed or highly reliable equipment, there may be no

failure data that can be collected. In this scenario, the technique of expert elicitation can

be pursued to estimate the reliability of such equipment. Apparently, uncertainty exists in

the probability distributions estimated by the experts. It should be noted that “elicitation

of probability distributions is a far from perfect process” (O’Hagan & Oakley, 2004) and

“overconfidence is one of the most common (and potentially severe) problems in expert

judgement ”(Lin & Bier, 2008).

Sparse data scenario. When the number of observations collected is small, huge uncertainty

may exist in the estimated parameters of an assumed probability distribution. In the

literature, two main approaches have been developed to tackle this problem. They are the

re-sampling technique and the Bayesian updating approach. For example, Laggoune et al.

(2010) applies the bootstrap technique to tackle the uncertainties in parameter estimates,
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considering the problem of the small size of failure data samples. Their work leads to a more

general result, as it considers the parameter distribution, according to the available number

of failure data. Fang & Huang (2008) uses the Bayesian updating approach to tackling the

scenario where data are sparse. Their work, nevertheless, investigates approaches to dealing

with model uncertainty for a specific maintenance policy of a given product (system) and

may therefore not be ideal for a maintenance planner looking after a set of different types

of assets, as argued in the following.

Of course, there is also the scenario of large amounts of data, leading to the possible use of

‘big data’ methods. This is not addressed in this paper because the typical issues of model

uncertainties are very different in this case. Recently, de Jonge et al. (2015) studied the

effect of parameter uncertainty on the optimum age-based maintenance strategy. The effect

of uncertainty is evaluated by considering both a theoretical uniform lifetime distribution

and a more realistic Weibull lifetime distribution.

In the reliability literature, despite presence of uncertainty in maintenance models, main-

tenance policies are developed to a large degree of mathematical elegance, or “ad hoc”,

meaning that new maintenance models 2 have been designed in an attempt to represent

particular preferences and that little consideration has been paid to the presence of model

uncertainty caused by sparsity of data. As a result, most maintenance models and policies,

while possessing certain attractive mathematical properties, have been lacking applicability

and relevance in the real world.

1.2 Our approach

Since maintenance models possess different levels of uncertainty, it may be cost-ineffective

if a company, which maintains a set of different systems, ignores the uncertainty, develops

maintenance policy for each individual system separately, and then allocates maintenance

budget to each system respectively. A more cost-effective approach may be to collectively

optimise maintenance policies for the set of systems, with consideration of model uncertainty.

This motivates the research presented in this paper.

2 In this paper, maintenance policy means the frequency of maintenance activities that are exe-

cuted, and maintenance model means the model from which the maintenance policy was developed.
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This paper proposes to use portfolio theory, which is widely used in the finance sector

(Krokhmal et al., 2011) for managing risk and uncertainty, to collectively optimise mainte-

nance policies for a set of systems. It will concentrate on parameter uncertainty of mainte-

nance models. This uncertainty will be summarised by the variance of the estimated param-

eters.

The proposed approach can be interesting to both practitioners and researchers. It is use-

ful to the firms that maintain different types of systems but the sparsity of the historical

reliability data (e.g., time between failures, or maintenance performance) of different sys-

tems may vary, and it can also be applied to optimise a collection of different policies of

preventive and predictive maintenance activities. Here, firms can be maintenance companies

or manufacturers. For example, a maintenance firm may need to allocate its limited budget

on maintenance, or a manufacturer may want to decide the length of the extended warranty

for a set of different products sold. In the meantime, academic researchers may be interested

to extend this work, for example, some further research topics are listed in the conclusion

section of this paper.

To our best knowledge, this is the first paper attempting to collectively optimise different

types of maintenance policies (for example, block replacement, age replacement policies, and

failure limit policies can be optimised simultaneously) for different systems. The optimization

of the maintenance policy through the minimization of the expected cost and its variance is

the big novel of the present paper.

1.3 Overview

It should be noted that, in this paper, the term risk refers to the financial risk caused by

model uncertainty. In reliability mathematics, there are many publications discussing risk-

based maintenance (Zhu & Frangopol, 2013; Hu & Zhang, 2014), in which risk, such as

risk of health damage or property loss, is caused by system failures. Further, in this paper

the term uncertainty refers to the “aleatory uncertainty” (or uncertainty due to variability)

which represents randomness of samples.

The remainder of this paper is structured as follows. Section 2 formulates the problems

considered in this paper. Section 3 discusses properties of the optimisation problems. Section
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4 discusses the proposed techniques. Section 5 gives numerical examples on optimisation of

maintenance policy. Some concluding remarks are presented in Section 6.

2 Uncertainty of the expected cost

In this section, parameter uncertainty of three maintenance models and their implications

are discussed.

2.1 Three replacement policies

In the following, we use three basic replacement policies as examples. Time required for repair

or replacement is assumed to be negligible. Of course, the optimisation method proposed

in this paper can also be applied to a combination of preventive policies and predictive

maintenance policies.

Denote F (t|θ) as the lifetime distribution function, F̄ (t|θ) = 1 − F (t|θ), and θ as the

parameter vector of F (t|θ) (for example, θ in the Weibull distribution includes both the

shape parameter and the location parameter). Let M(t|θ) =
∑∞
n=1 F

(n)(t|θ), where F (n)(t|θ)

is the nth Stieltjes convolution of F (t|θ) and F (n)(t|θ) =
∫ t
0 F

(n−1)(t− u|θ)dF (u|θ).

We consider the following three maintenance policies, with the optimality criteria all based

on the renewal reward theory (Barlow & Proschan, 1965). One could also include different

criteria (Coolen-Schrijner & Coolen, 2006), this is left as a topic for future research.

Age replacement Under this policy, one replaces a unit with a new identical unit either at

a pre-determined age T or upon failure if it occurs earlier. Let c1 be the cost of replacement

for a failed unit and c2 be the cost of scheduled replacement. Then according to Barlow

& Proschan (1965), the expected cost is given by

Ca(T |θ) =
c1F (T |θ) + c2F̄ (T |θ)∫ T

0 F̄ (t|θ)dt
. (1)

Block replacement Under this policy, a unit is replaced with a new identical unit upon

failure or at fixed times kT (k = 1, 2, ..., ). Let c1 be the cost of replacement for a failed

unit and c2 be the cost of scheduled replacement. Then according to Barlow & Proschan
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(1965), the expected cost is given by

Cb(T |θ) =
c1M(T |θ) + c2

T
. (2)

Periodic replacement with minimal repair Under this policy, a unit is replaced at fixed

times kT (k = 1, 2, ...) with a new identical unit. If a unit fails between replacements, min-

imal repair is made to restore the unit back to work. Denote c1 as the cost of minimal

repair and c2 as the cost of scheduled replacement. Then according to Barlow & Proschan

(1965), the total expected cost is given by

Cp(T |θ) =
c1Λ(T |θ) + c2

T
, (3)

where Λ(x|θ) is the cumulative intensity function of the repairable unit.

Note that it is reasonable to assume that c1 > c2. This assumption will be followed in this

paper.

2.2 Uncertainty of the expected cost

As discussed in Section 1.1, the uncertainty of a model is larger (smaller) if the model is

developed based on a smaller (larger) sample size. That is, for example, in the equations (1),

(2), and (3), the variances of estimated parameters θ are larger for small sample size than

those for large sample size. Now the following two questions are important.

Q1. how to estimate the variance for parameters θ; and

Q2. how to estimate the variance for a function of parameters θ.

Different methods for Q1 can be found in the literature. For example, in case of fitting the

Weibull distribution, one may have three scenarios: (1) when there is no data available or a

very small sample size (n < 10 for example) for developing a model, expert elicitation (EE)

or EE with Bayesian updating may be pursued to estimate the variance (Speirs-Bridge et al.,

2010); (2) when the sample size n is between 10 and 52, the weighted least-square method

is preferable (Wu et al., 2006); and (3) If one has a larger sample size (n ≥ 53), then the

maximum likelihood may be used (Wu et al., 2006).

To answer Q2, one may use one of the following methods to estimate the variances of Ca(T |θ),
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Cb(T |θ), and Cp(T |θ) after the variance of θ is given. That is, one needs to estimate the

variance for g(θ) if the variances for θ is given, here g(θ) = Ca(T |θ) for the age replacement

policy, for example.

In the literature, there are some approaches to estimating confidence intervals for functions

of parameters, for example, the bootstrap method Krinsky & Robb (1986) and the δ method

(see p. 172, Weisberg (2014)).

2.3 Decision problem

Suppose a company is maintaining n different systems and attempting to develop mainte-

nance policies for those systems. Denote Ci(Ti|θi) as the expected cost of the maintenance

policy for system i (i = 1, 2, ..., n), where Ti is the vector of decision variables such as pre-

ventive maintenance intervals for maintaining system i, and θi includes the parameters in

the reliability index of system i.

Then, the expected total cost of maintenance of the n systems is given by

C(T |θ) =
n∑
i=1

Ci(Ti|θi), (4)

where θ = (θ1, . . . ,θn) and T = (T1, . . . , Tn).

In the literature, the existing approach to optimising maintenance policy is to minimise

each Ci(Ti;θi), respectively, and then to allocate the total amount to each of the n systems.

However, as θi is estimated based on observations, its efficiency can vary with sample sizes.

In other words, θi can be treated as a random variable. Consequently, the total amount,

C(T |θ), becomes a random variable. This leads to different attitudes of the decision makers

in order to deal with the possible variation in expected costs resulting from uncertainty

about the parameter value. For example, assume that a company is maintaining a number

of systems. Suppose that there are several options of maintenance policies are designed and

they have different total expected cost C(T |θ) and different variance Vθ(C(T |θ)). Then, the

selection of options may depend on the company’s risk attitude as well as its budget. (1)

If the company is risk-averse, it may choose an option with lower risk (i.e., Vθ(C(T |θ)));

(2) if the company is risk-prone, it may choose an option having lower expected cost (i.e.,

C(T |θ)).
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That is, to choose an option depends not only on the total expected cost C(T |θ), but also

on the variance Vθ(C(T |θ)). Of course, the total attitude towards risk can be taken into

account, for example through the use of utility functions. However, this is often difficult

to measure meaningfully, in portfolio theory the variance is typically used as a surrogate

measure for risk. In other words, company’s risk attitude plays an important role in decision

making. Risk-averse planners differ from risk-loving planners in that they are concerned more

about the decisions that minimise risk than about those that minimise the expected cost.

In summary, factors influencing decision making include the total expected cost, decision

maker’s risk attitude, and available budget. Those factors will be considered when we opti-

mise maintenance policies in the following sections.

3 Collective optimisation of risk

In this section, we propose three new methods to optimise maintenance policies.

3.1 Methods of collectively optimising PM policies

To incorporate risk in optimisation of maintenance policies, one may choose one of the

following three optimisation problems.

Option 1. One may explicitly trade risk against the expected cost in the objective function:

min
T∈R

C(T |θ) + ρ Vθ(C(T |θ)). (5)

where ρ is a pre-specified non-negative parameter and it is typically assumed to be re-

stricted to values in [0, 1]. The value of ρ reflects the decision maker’s risk attitude. For

example, if the decision maker is risk averse, ρ may be set larger. In the current formu-

lation ρ would not be unit-less, its unit would be the chosen monetary unit to the power

−1. Note that alternative formulations replace the variance by the standard deviation,

or divide both the expected costs and the variance by similar functions, for example cor-

responding to a standard scenario, in order to do away with units and hence to make

the sum meaningful. In all cases though, this option relates to an explicit weighting of

expected costs and risk which are together minimised. Clearly, this can also be considered
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as only allowing solutions on a Pareto boundary, that is any decrease in expected costs at

an optimal value will lead to increase of the risk.

Option 2. One may select the decision T that minimises the expected cost C(T |θ) while

imposing a maximum level of risk Vθ(.):

min
T∈R

C(T |θ), (6)

subject to : Vθ(C(T |θ)) ≤ ν0.

where ν0 reflects decision maker’s risk attitude. For example, if the decision maker is risk

averse, ν0 may be set small.

Option 3. A third alternative can be to minimise the risk Vθ(.) while imposing a maximum

level of the expected cost C(T |θ):

min
T∈R

Vθ(C(T |θ)), (7)

subject to : C(T |θ) ≤ C0.

where C0 reflects the budget constraint.

Option 3 is mainly used for portfolio management in finance. However, it is thought that

its inclusion is relevant as practical maintenance planning under quite severe budget limita-

tions is very common, with maintenance managers often explicitly working towards using an

allocated budget while aiming to keep variance low, a reflection of low risk of huge overspend.

In the following, we use letters a, b and p in the subscripts of relevant quantities to distin-

guish notation of the age replacement policy, the block replacement policy and the periodic

replacement with minimal repair policy, respectively.

Suppose a set of one-unit systems composed of ma systems maintained with age replacement

policy, mb systems maintained with block replacement policy, and mp systems maintained

with periodic replacement with minimal repair policy. We assume throughout that all ma

systems subject to age replacement are exchangeable with regard to their time to failure and

costs associated with running and maintaining them. Of course, in practice this may not be

entirely realistic. The method presented in this paper can be quite easily adapted to more

complicated scenarios, studying such scenarios from practical perspective is an important

topic for future research.
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We now have the following three properties.

In the following, we assume that the parameters in maintenance policies for different systems

are statistically independent.

Property 1 With the optimisation Option 1, the objective function is given by

G(T ) =maCa(Ta|θa) +mbCb(Tb|θb) +mpCp(Tp|θp)+

ρ
(
m2
aVθ(Ca(Ta|θa)) +m2

bVθ(Cb(Tb|θb)) +m2
pVθ(Cp(Tp|θp))

)
. (8)

Assume fa(Ta|θa)/F̄a(Ta|θa) is continuous and increasing with respect to Ta. Then there

exists an optimum solution T ∗ = (T ∗a , T
∗
b , T

∗
p ) that minimises the following problem:

min
T∈R

G(T ). (9)

The proof of the properties can be found in the Appendix. We should emphasize here that the

variance of the expected costs is due to the assumed uncertainty in the parameter value. At

planning stage, the expected costs for all systems that are maintained with age replacement

are the same, and hence all these systems will be maintained with the use of the same optimal

value for Ta. Hence, when we take the variance of the sum of these ma expected costs, we

get the term m2
a times the variance expression as given above.

Property 2 With the optimisation Option 2, the objective function is given by

min
T∈R

maCa(Ta|θa) +mbCb(Tb|θb) +mpCp(Tp|θp), (10)

subject to : m2
aVθ(Ca(Ta|θa)) +m2

bVθ(Cb(Tb|θb)) +m2
pVθ(Cp(Tp|θp)) ≤ ν0. (11)

Then, one can use the following algorithm to find the optimum PM policies.

Algorithm 2. The optimisation process under Option 2 can be done with the following

procedures.

Step 1. Find the maintenance policy for each system respectively, and then check if the

constraint in (11) holds. If the constraint holds, then stop; otherwise, go to Step 2;
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Step 2. Solve equations (12–15) to obtain optimum solutions.

∂Ca(Ta|θa)
∂Ta

+ µma
∂Vθ(Ca(Ta|θa))

∂Ta
= 0, (12)

∂Cb(Tb|θb)
∂Tb

+ µmb
∂Vθ(Ca(Tb|θb))

∂Tb
= 0, (13)

∂Cp(Tp|θp)
∂Tp

+ µmp
∂Vθ(Cp(Tp|θp))

∂Tp
= 0, (14)

µ(m2
aVθ(Ca(Ta|θa)) +m2

bVθ(Cb(Tb|θb)) +m2
pVθ(Cp(Tp|θp))− ν0) = 0, (15)

where µ is a Lagrange multiplier.

Property 3 With the optimisation Option 3, the objective function is given by

min
T∈R

m2
aVθ(Ca(Ta|θa)) +m2

bVθ(Cb(Tb|θb)) +m2
pVθ(Cp(Tp|θp)), (16)

subject to : maCa(Ta|θa) +mbCb(Tb|θb) +mpCp(Tp|θp) ≤ C0. (17)

Then, one can use the following algorithm to find the optimum PM policies.

Algorithm 3. The optimisation process under Option 3 can be done with the following

procedures.

Step 1. If C0 is large enough, the optimum maintenance policy is that no replacement should

not be conducted; otherwise, go to step 2;

Step 2. One can solve equations (18–21) to obtain optimum solutions.

µ
∂Ca(Ta|θa)

∂Ta
+ma

∂Vθ(Ca(Ta|θa))
∂Ta

= 0 (18)

µ
∂Cb(Tb|θb)

∂Tb
+mb

∂Vθ(Ca(Tb|θb))
∂Tb

= 0 (19)

µ
∂Cp(Tp|θp)

∂Tp
+mp

∂Vθ(Cp(Tp|θp))
∂Tp

= 0 (20)

µ(maCa(Ta|θa) +mbCb(Tb|θb) +mpCp(Tp|θp)− C0) = 0 (21)

where µ is a Lagrange multiplier.

The equations in Step 2 in both Algorithm 2 and Algorithm 3 follow from the well-known

Karush-Kuhn-Tucker first-order necessary condition for a candidate solution point to be an

optimum solution. Those conditions are not sufficient. To seek the sufficient conditions, or

the second order sufficient conditions, the reader is referred to Theorem 4.46 in page 99 in

Zörnig (2014), which will not be repeated in the current paper.
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3.2 Special cases

To apply the above-proposed methods in optimisation problems shown in Eqs (5)–(7), one

needs to calculate Vθ(Ca(Ta|θa)), Vθ(Cb(Tb|θb)) and Vθ(Cp(Tp|θp)). Below we give some

example methods of calculating those quantities for the case when the lifetime distribution

is the Weibull distribution.

Calculation of Vθ(Ca(Ta|θa)).
Given lifetime distribution F (t|θ) = 1− exp

(
− tβ

−1
a

αa

)
. Assume ma units are under a Type

I censoring scheme: unit i may fail at Xi before the threshold time τa or survive over the

time interval (0, τa). From Sirvanci & Yang (1984), the estimator of αa and its variance

are given by

α̂a =
ma∑
i=1

V β−1
a

i

M
, (22)

and

V(α̂a) =
α2
a

p
+
α2
a

β2
a

(1 + I1p + logαa)
2V(βa), (23)

respectively, where Vi = min{Xi, τa}, M is the number of failures occurring in [0, τa], p

can be estimated by p̂ = M
ma

, I1p = 1
p

∫ p
0 log log 1

1−tdt, and h(p) = log log 1
1−p − I1p.

The estimator of βa and its variance are given by

β̂a =
ma∑
i=1

(log τa − logXi)Ii
Mh(p)

, (24)

and

V(β̂a) =
β2
aI2p − β2

apI
2
1p + β2

ap
3(1− p)

{[
(1− p) log 1

1−p

]−1
− h(p)

p

}2

(ph(p))2
, (25)

respectively, where Ii is the indicator of the event [Xi < τa]. That is, Ii = 1 if item i fails

in [0, τa] and Ii = 0 otherwise, and I2p =
∫ p
0

(
log log 1

1−t

)2
dt.

The covariance of β̂a and α̂a is given by

cov(α̂a, β̂a) =
1

β2
a

[−αaβa(1 + I1p + logαa)V(βa)] . (26)

One may use the δ method to calculate the variance of the expected cost for the age

replacement policy.

Calculation of Vθ(Cb(Tb|θb)).
Given lifetime distribution F (t|θ) = 1− exp

[
−
(
t
β−1
b

αb

)]
, in order to calculate the variance

of Vθ(Cb(Tb|θb)), one needs first to obtain the renewal function M(t). Assume mb units
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are under a Type I censoring scheme: unit i may fail at Xi before the threshold time τb

or survive over the time interval (0, τb). Jiang (2010) develops the following formula to

approximate M(t|θ),

M(t|θ) = q

1− exp

−
tβ−1

b

αb

+ (1− q)

tβ−1
b

αb

 , (27)

where q = 1 − exp
[
− 1

0.8818

(
1−βb
βb

)0.9269]
. Based on the above approximation of M(t) and

similar estimators as those shown in Eqs. (22)—(25) 3 , one can use the δ method to

calculate the variance of Vθ(Cb(Tb|θb)) for the block replacement policy.

Calculation of Vθ(Cp(Tp|θp)).
Calculating Vθp(Cp(Tp|θp)) differs from calculating Vθa(Cp(Ta|θa)) and Vθb(Cp(Tb|θb)),
as there exists minimal repair between replacements and therefore involves the estimation

of the intensity function Λ(t). Assume there are mp identical repairable systems. These

systems are tested until time τp and the failure times of these systems are recorded as

{t1,1, . . . , t1,n1}, . . . , {tmp,1, . . . , tmp,nmp}. We assume that the failure process in Section 2

follows a power law NHPP (Non-Homogeneous Poisson Process) model. That is, the ex-

pected number of failures and failure intensity function for the system are derived from

the following equation:

λ(t) = αpβpt
βp−1. (28)

Then, the expected number of failures at time t is:

Λ(t) = αpt
β−1
p . (29)

Λ(t) can be estimated from failure data based on the following approach, as indicated in

Guo & Pan (2008). The variance of V[Λ̂(t)] is given by Guo & Pan (2008)

V[Λ̂(t)] =
αpt

2β−1
p

mpτ
β−1
p

p

[
1 + β−2p (lnτp − lnt)2

]
, (30)

where α̂p =

∑mp
j=1 nj

mpτ
β̂p

−1

p

and β̂p =

∑mp
j=1 nj ln τp −

∑mp
j=1

∑n
i=1 ln tij∑mp

j=1 nj
.

Thus, the variance of Cp(Tp|θp) is given by

Vθ(Cp(Tp|θp)) =

c21αpT
2β−1
p −2

p

mpτ
β−1
p

p

[
1 + β−2p (lnτp − lnTp)

2
]

1/2

. (31)

3 One can simply replace ma with mb in (22)—(25) to obtain the estimators of αb and βb.
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4 Discussion

The above-mentioned three reliability indexes, the reliability function, the renewal function,

and the cumulative hazard function, are the most frequently used basic reliability indexes in

developing maintenance policies. The above methods simply offer examples how the variances

of the expected cost rate can be calculated, when the uncertainty about the parameter

estimates is taken into account. In real-world applications and from a research perspective,

other maintenance policies can also be optimised jointly.

In each of the three maintenance policies discussed above, we assume systems are identical.

Normally, a maintenance policy is assumed to be optimised on a set of identical items. In

case there are a lot of different items, then different maintenance policies should be applied

on them but the method proposed in this paper, which is to jointly optimise maintenance

policies for all the items, are still applicable.

Developing maintenance policy with the above-proposed approach requires estimating the

variances of given reliability indexes g(θ), which can be the renewal function or the cumu-

lative hazard function. It should be noted that, however, for a given reliability index, using

different estimation methods to derive the variances can result in different levels of efficiency.

In other word, the selection of estimation methods provides another source of uncertainty

caused. For example, using a parametric method may yield smaller variance than using a

nonparametric method (From & Tortorella, 2005).

5 Numerical examples

In this section, we illustrate optimisation of preventive maintenance policy along the lines

presented in this paper, using the bootstrap method and the δ method to deal with the

uncertainty due to the parameter estimation.

The choice of the bootstrap method or the δ method depends on sample size. The bootstrap

method may be used if the sample size is small (see Krinsky & Robb (1986)), and the δ

method may be used if the sample size is large (see p. 172, Weisberg (2014)). Below a short

introduction to the two methods is given.
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5.1 A short introduction to the bootstrap method and the δ method

To answer Q2 listed in Section 2.2, one may use one of the following methods to estimate

the variances of Ca(Ta|θa), Cb(Tb|θb), and Cp(Tp|θp) after the variance of θ is given. That is,

one needs to estimate the variance for g(θ) if the variances for θ is given, where g(θ) may

be Ca(Ta|θa) for the age replacement policy, for example.

The bootstrap method. For example, Krinsky and Robb Krinsky & Robb (1986) recom-

mend the following procedure to obtain a (1−α) confidence interval for g(θ). On the basis

of this method, one can also estimate the variance:

Step 1. generate a large number of random numbers from the distribution of the parameter

estimates;

Step 2. calculate the function value g(.) for each random number; and

Step 3. trim (α/2) from each tail of the resulting distribution of the function values.

The δ method. When the sample size is big, if the function g(.) is differentiable and has

nonzero and bounded derivatives, one may use the following delta method (see p. 172,

Weisberg (2014)).

In probability theory, if a consistent estimator X converges in probability to its true

value θ, the asymptotic normality can be obtained using the central limit theorem:

√
n0 (X − θ)

D−→ N (0,Σ) , (32)

where n0 is the number of observations,
D−→ denotes convergence in distribution, and Σ

is a (symmetric positive semi-definite) covariance matrix. Then the delta method implies

that
√
n0 (g(X)− g(θ))

D−→ N
(
0,∇g(θ)T · Σ · ∇g(θ)

)
. (33)

5.2 Parameter settings

The following parameter settings are used in this subsection. The parameters in Table 1 are

arbitrarily selected. In a real situation, some of these would be estimated from data, and

some would be predetermined by the manufacturing team.

In Table 1, we use c1∗ and c2∗ to distinguish repair costs that occurred in age replacement,
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Table 1: Parameter setting.

αa βa τa c1a c2a αb βb τb c1b c2b αp βp τp c1p c2p

1 0.5 1.25 20 10 1 0.333 1 25 10 1 0.5 2 40 10

block replacement, and periodic replacement policies. For example, c1a and c2a are the cost of

replacement for a failed item and the cost of replacement for a scheduled item, respectively.

Here, we assume that c1∗ > c2∗ as replacement due to an unexpected failure typically incurs

higher costs than scheduled replacement.

5.3 Using the bootstrap method

We assume ma = mb = mp = 10.

We use the bootstrap method proposed by Efron (1981). The idea of this method is to sample

data from the censored dataset and the uncensored dataset respectively, and then combine

the two sample sets as a new sample set. We obtain the estimated parameters with the given

data and plot the cost and variance variation with respect to the replacement time Ta, Tb,

and Tp.

5.3.1 Independently optimising maintenance policies

Age replacement The results are α̂a = 0.942 and β̂a = 0.335. When Ta = 0.80, the optimal

cost Ca(T |θ) = 20.1 is achieved and its associated variance V ar(Ca(T |θ)) = 2.02.

Block replacement The results are α̂b = 1.0395 and β̂b = 0.341. When Tb = 0.66, the

optimal cost Cb(T |θ) = 24.7 is achieved and its associated variance V ar(Ca(T |θ)) = 8.37.

Periodic replacement with minimal repair The results are α̂p = 0.753 and β̂p = 0.567.

When Tp = 0.63, the optimal cost Cp(T |θ) = 37.4 is achieved and its associated variance

V ar(Ca(T |θ)) = 9.6.

5.3.2 Collectively optimising maintenance policies

For the three options, we have the following results.

Option 1 Let ρ = 0.2. When Ta = 0.81, Tb = 1.19 and Tp = 0.61, the optimal solution
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G(T ) = 1076.2 is achieved.

Option 2 On the basis of the results of the three policies in Section 5.3.1, the variance in the

left hand-side of the inequality (11):m2
aVθ(Ca(Ta|θa))+m2

bVθ(Cb(Tb|θb))+m2
pVθ(Cp(Tp|θp)) =

100× (2.02 + 8.37 + 9.6) = 1999, which implies the following two situations.

• if ν is set to be smaller than 1999, the constraint in the inequality (11) should take effect

on the objective function;

Let ν0 = 1744. When Ta = 0.81, Tb = 0.63 and Tp = 0.63, the optimal solution

G(T ) = 825 is achieved. As can be seen, the values Ta, Tb and Tp are not equal to those

values in the three policies in Section 5.3.1. This implies that the constraint takes effect.

• if ν is set to be larger than 1999, the constraint in the inequality (11) should not take

effect on the objective function.

If we let ν0 = 2044. When Ta = 0.81, Tb = 0.68 and Tp = 0.63, the optimal solution

G(T ) = 822 is achieved. As can be seen, the values Ta, Tb and Tp are the same values

as in the three policies in Section 5.3.1. This implies that the constraint does not take

effect.

Option 3 Let C0 = 822. When Ta = 0.81, Tb = 0.68 and Tp = 0.63, the optimal solution

G(T ) = 1944 is achieved.

Let C0 = 922. When Ta = 0.81, Tb = 1.99 and Tp = 0.42, the optimal solution G(T ) =

1095 is achieved.

5.4 Using the δ method

We set ma = mb = mp = 200, so we are considering maintenance policies for a large

organisation which applies the same policies to many systems. Of course, the uncertainties

due to parameter estimation in assumed mathematical models will have a more substantial

influence the larger the number of systems maintained is.

5.4.1 Independently optimising maintenance policies

Age replacement The results are α̂a = 1.053, V (α̂a) = 1.419, β̂a = 0.469 , V (β̂a) = 0.219,

and covariance between parameters αa and βa is -0.0383. When Ta = 1.03, the optimal

cost Ca(T |θ) = 21.05 is achieved and its associated variance V ar(Ca(T |θ)) = 139.5.

Block replacement The results are α̂b = 1.0226 , V (α̂v) = 1.774, β̂b = 0.271 , V (β̂b) =
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0.112, and covariance between parameters αb and βb is 0.107. When Tb = 0.63, the optimal

cost Cb(T |θ) = 22.37 is achieved and its associated variance V ar(Cb(T |θ)) = 216.00.

Periodic replacement with minimal repair The results are α̂p = 1.0385 and β̂p =

1.981. When Tp = 0.49, the optimal cost Cp(T |θ) = 41.04 is achieved and its associated

variance V ar(Ca(T |θ)) = 2.13.

5.4.2 Collectively optimising maintenance policies

On the three options, we have the following results.

Option 1 Let ρ = 0.001. When Ta = 0.84, Tb = 1.38 and Tp = 0.49, the optimal solution

G(T ) = 25220 is achieved.

Option 2 On the basis of the results of the three policies in Section 5.3.1, the variance in the

left hand-side of the inequality (11):m2
aVθ(Ca(Ta|θa))+m2

bVθ(Cb(Tb|θb))+m2
pVθ(Cp(Tp|θp)) =

40000× (139.5 + 216.0 + 2.13) = 1.43052×107, which implies the following two situations.

• if ν is set to be smaller than 1.43052× 107, the constraint in the inequality (11) should

take effect on the objective function;

Let ν0 = 1.23 × 107. When Ta = 1.01, Tb = 0.54 and Tp = 0.59, the optimal solution

G(T ) = 17011 is achieved. As can be seen, the values Ta, Tb and Tp are not equal to

those values in the three policies in Section 5.3.1. This implies that the constraint takes

effect.

• if ν is set to be larger than 1.43052 × 107, the constraint in the inequality (11) should

not take effect on the objective function.

Let ν0 = 1.53 × 107. When Ta = 1.03, Tb = 0.63 and Tp = 0.49, the optimal solution

G(T ) = 16891 is achieved. As can be seen, the values Ta, Tb and Tp are the same those

values in the three policies in Section 5.3.1. This implies that the constraint does not

take effect.

Option 3 Let C0 = 16891. When Ta = 1.03, Tb = 0.63 and Tp = 0.59, the optimal solution

G(T ) = 1.43× 107 is achieved.

Let C0 = 18891. When Ta = 0.47, Tb = 1.4 and Tp = 0.48, the optimal solution

G(T ) = 0.68× 107 is achieved.
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5.5 Sensitivity analysis

In Option 1 in the above examples, ρ is selected to balance the effect of the expected cost and

the variance of the cost. If the variance is small, compared with the expected cost, a large ρ

is selected to highlight the influence of variance. If a small ρ is selected, the variance would

have little influence on the optimal decision. On the other hand, if the variance is large, a

small ρ is selected to emphasize the effect of expected cost. Because with the δ method, the

number of systems is 200; while with the bootstrap method, the number of systems is 10.

There exists a quadratic relationship between the total variance and the number of systems.

The total variance with δ method is much larger than that with bootstrap method, a smaller

ρ is selected. In reality, ρ may be selected on the basis of the attitude of the decision maker.

(a) (b)

(c) (d)

Fig. 1. Sensitivity analysis of ρ on the optimal decisions

The sensitivity analysis of ρ on the optimal decisions is shown in Figure 1. Optimal replace-

ment time and maintenance cost is plotted with different ρ, with respect to the bootstrap

method and δ method, respectively.

As shown in Figure 1, if ρ is increased towards 1, the objective function G(T ) presents

an increasing trend (See (c) and (d) in Figure 1) and the optimal maintenance time does

not share a similar behaviour (See (a) and (b) in Figure 1). This is because: the optimal
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maintenance time is determined jointly by the expected cost rate function and the variance

function. As such, the relationship between the variance and maintenance time is not simply

monotonously decreasing or increasing.

6 Conclusions

This paper presents the first attempt to collectively optimise maintenance policies for a set

of different systems using the conditional value-at-risk theory, where model uncertainty is

explicitly considered in optimising maintenance policy. The proposed approaches can espe-

cially be beneficial to the asset management sector (or warranty suppliers), in which a large

number of different types of asset may be maintained and their reliability functions have

different levels of efficiency. Collectively optimising preventive maintenance policies for each

asset can be more cost-effective.

This paper provides practitioners with alternative methods to optimise maintenance policies:

one can jointly optimise both the uncertainty of the expected cost of the maintenance policies

considered for a portfolio of assets and the expected cost. The selection among the three

options depends on decision maker’s risk attitude.

We briefly discuss some open questions and possible implications for asset management.

Risk aggregation. The above discussion uses the variance as a measure of risk. Many other

measures can also be applied. For example, the conditional value at risk (Rockafellar

& Uryasev, 2000), the mean absolute deviation approach of Konno & Yamazaki (1991),

the regret optimisation approach of Dembo & King (1992), and the minimax approach

of Young (1998) are notable, and can be applied in the context of maintenance policy

optimisation.

Adaptive preventive maintenance policy. As the above-mentioned, the reliability indexes are

assumed to be estimated based on failure data before the first PM time point. With time

development, more failure data can be collected and then fed into the model development.

As such, the efficiency of the estimators and the PM policy can be improved.

Maintenance policies. In this paper, only periodic PM policy is discussed. With more data

available over time, developing sequential PM policy is possible. Furthermore, one can also

integrate predictive maintenance policies in the optimisation.
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Other uncertainty. In this paper, we considered model uncertainty. Other sources of un-

certainty may of course be taken into consideration. In developing maintenance policies

for either one-unit systems or complex systems, cost information is needed. In reality,

however, precise data on costs may not be available, which is especially true for complex

systems which includes many units and cost of repairing the units vary.
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Appendix

Proof of Property 1.

Set the derivatives of G(T ) in respect to Ta, Tb, and Tp to zero, respectively, and obtain

∂Ca(Ta|θa)
∂Ta

+ ρma
∂Vθ(Ca(Ta|θa))

∂Ta
= 0 (34)

∂Cb(Tb|θb)
∂Tb

+ ρmb
∂Vθ(Ca(Tb|θb))

∂Tb
= 0 (35)

∂Cp(Tp|θp)
∂Tp

+ ρmp
∂Vθ(Cp(Tp|θp))

∂Tp
= 0 (36)

Plugging Eq. (1) into Eq. (34), one has

(ca1 − ca2)ra(Ta|θa)
∫ Ta

0
F̄a(t|θa)dt− (ca1 − ca2)Fa(Ta|θa)

= ca2 − µma
dVθ(Ca(T a|θa))

dTa

[∫ Ta
0 F̄a(t|θa)dt

]2
F̄a(Ta|θa)

(37)

where ra(Ta|θa) represents the failure rate fa(Ta|θa)/F̄a(Ta|θa).

If one further assumes that ra(Ta|θa) is continuous and increasing, the left side of Eq. (37)

is continuous and increasing. Since both Vθ(Ca(T a|θa)) and
[∫ Ta

0 F̄a(t|θa)dt
]2
/F̄a(Ta|θa) are

increasing in Ta, the right side of Eq. (37) is decreasing. The minimum value of the left side

is 0 (when Ta = 0) and the maximum value of the right side of Eq. (37) is ca2 (when Ta = 0),

so there exists a solution T ∗a satisfying Eq. (37).

Similarly, substituting Eqs (2) and (3) into Eq. (35) and Eq. (36), respectively, one obtains

cb1m(Tb|θb)Tb − cb1M(Tb|θb) = cb2 − ρmb
dVθ(Cb(T b|θb))

dTb
T 2
b (38)

and

cp1λ(Tp|θp)Tp − cp1Λ(Tp|θp) = cp2 − ρmp
dVθ(Cp(T p|θp))

dTp
T 2
p (39)

where m(.) is the renewal density function and λ(.) is the failure intensity function.

Similarly, one can prove that there exist solutions for Eq. (38) and Eq. (39).

This proves Property 1. �

Proof of Property 2.
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One can write the Lagrange function for the optimisation problem in Eqs (10) and (11) as:

L(T ) =maCa(Ta|θa) +mbCb(Tb|θb) +mpCp(Tp|θp)
+µ(m2

aVθ(Ca(Ta|θa)) +m2
bVθ(Cb(Tb|θb)) +m2

pVθ(Cp(Tp|θp))− ν0). (40)

Then, the first order necessary conditions for a solution in nonlinear programming to be

optimum, or the Karush-Kuhn-Tucker conditions (see Zörnig (2014), p. 72), are given by

those equations shown in Eqs (12)—(15), and the following two inequalities:

m2
aVθ(Ca(Ta|θa)) +m2

bVθ(Cb(Tb|θb)) +m2
pVθ(Cp(Tp|θp)) ≤ ν0 (41)

µ ≥ 0 (42)

Below we discuss the existence of possible solutions of the above conditions.

Case 1. µ = 0.

Conditions (12),(13), and (14) become

∂Ca(Ta|θa)
∂Ta

= 0 (43)

∂Cb(Tb|θb)
∂Tb

= 0 (44)

∂Cp(Tp|θp)
∂Tp

= 0 (45)

Solving equations (43), (44), and (45) is equivalent to finding the PM policy for each

system respectively, and then checking whether the constraint in (41) holds or not.

Case 2. µ > 0.

In this case, the optimisation problem becomes solving Eqs (12), (13), (14), and the

following equation:

m2
aVθ(Ca(Ta|θa)) +m2

bVθ(Cb(Tb|θb)) +m2
pVθ(Cp(Tp|θp)) = ν0 (46)

Similar to the proof process in Property 1, from Eqs (43), (44) and (45), one can obtain

solutions T ∗a , T
∗
b and T ∗p , which are functions of µ. Substituting T ∗a , T

∗
b and T ∗p into Eq.

(46), one can obtain an equation with respect to µ. If the equation can be solved, then

optimum T ∗a , T
∗
b and T ∗p can be obtained.

This proves Property 2. �

Proof of Property 3.
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If C0 is large enough, the constraint shown in Eq. (17) can be ignored. As m2
aVθ(Ca(Ta|θa))+

m2
bVθ(Cb(Tb|θb)) + m2

pVθ(Cp(Tp|θp)) is decreasing in Ta, Tb and Tp, its minimum can be

achieved if Ta, Tb and Tp are infinity. This implies that no replacement is needed when C0 is

large enough.

The rest of the proof is similar to that of the proof of Property 2. �
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